
Chapter 1

Introduction

In every phenomenon the beginning remains always the most no-
table moment.

Thomas Carlyle

In colloquial terms, learning to classify consists in analyzing a set of objects
with different characteristics and of different classes and after that being able
to assign a possibly unseen object to one of the classes. The field of Machine
Learning has been interested in designing automatic classification algorithms
since its inception. The areas of application of such algorithms are immense,
ranging from historic Artificial Intelligence (AI in the following) objectives such
as “begin able to adapt the behaviour of machines by telling them what is good
and what is bad” to far more recent and business oriented objectives such as
“targeting direct marketing campaigns”.

Probability theory has always been perceived as a relevant discipline to help
in the quest of solving the classification problem and for AI in general. Fur-
thermore, the development in the late eighties and early nineties in the field
of Bayesian networks, together with an increased interest from the community,
have further increased this belief. In this thesis we show several ways in which
the application of probability theory can improve Bayesian network classifiers.

We start this chapter by introducing the objectives of the thesis in section
1.1. After that, we provide a roadmap for the reader in section 1.2 pointing out
the key contributions of the thesis. Finally, in section 1.3 we outline a rationale
for the contributions.
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1.1 Objective

This thesis focuses in improving a family of classification algorithms known as
Bayesian network classifiers. The objective of the thesis is improving Bayesian
network classifiers by means of the application of objective Bayesian probability
theory techniques.

1.2 Roadmap and contributions

In this section we provide an overview of the structure of the thesis which is
depicted in Figure 1.1. In that figure, chapters with original contributions are
dark gray coloured while introductory and review chapters appear coloured light
gray.

The thesis starts with this introductory chapter, where the reader can find
the objectives, structure and a rationale for the contributions.

Chapter 2 presents a short introduction to the foundations of probability
theory summarizing the results in the first two chapters of “Probability The-
ory: The logic of science” by E.T. Jaynes. The reason for including this short
summary is twofold: on one hand it will help a reader without knowledge about
Bayesian statistics understand the philosophy behind the thesis, on the other
hand, it gives a deserved visibility to these results. Also in chapter 2 the princi-
ple of indifference is introduced. The principle will be used in the contributions
of chapters 6 and 8.

In order to ease understanding of the contributions of the thesis, chapter 3
contains an introduction to the problem of classification, a short state of the art
of Bayesian network classifiers and a presentation of Bayesian model averaging
as a probability technique that is useful for the design of classifiers. The notation
and terminology to be used in the thesis are fixed in this chapter. Also in this
chapter, the two main classification algorithms that have been improved are
introduced: Naive Bayes and Tree Augmented Naive Bayes (TAN).

Discretization techniques help broaden the application of classifiers that can-
not deal easily with numerical attributes. In chapter 4 we present a discretization
method that can be implemented in parallel providing for a fast and effective
method for the discretization of numerical attributes and prove its performance
against state of the art discretization methods. The work has been presented at
the Third International Conference on Knowledge Discovery and Data Mining.

Chapters 5 and 6 will present two different ways of improving the Naive Bayes
classifier. In chapter 5 a variation of the naive Bayes classifier is introduced which
is easier to interpret while keeping a reasonable accuracy. This work has been
presented at the 2nd European Symposium on Principles of Data Mining and
Knowledge Discovery. In chapter 6 Bayesian model averaging and the principle
of indifference are applied in order to construct a more accurate Naive Bayes
classifier. This work has been presented at The 16th International FLAIRS
Conference.

Chapters 7, 8 and 9 show different ways in which Bayesian techniques can



1.2. Roadmap and contributions 3
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4. Discretization

3. Bayesian 
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10. Conclusions
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Figure 1.1: Thesis roadmap
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improve Tree Augmented Naive Bayes. Chapter 7 shows a hands-on approach
to the calculation of the model averaging of TAN by the use of empirical local
Bayesian model averaging that results in a classifier (stan+bma) that improves
both the classification accuracy and the approximation of the class probabilities
of the state of the art TAN classifier (Friedman et al., 1997): stan. This work
has been presented at the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Chapter 8 presents the most significant
result in this thesis, showing that under some conditions, the averaging of models
for Tree Augmented Naive Bayes results in an integral that can be calculated in
closed form. To do this we introduce decomposable distributions over TANs and
show that the expression resulting from the Bayesian model averaging of TAN
models can be integrated into closed form if we assume the prior probability dis-
tribution to be a decomposable distribution. This result allows the construction
of a classifier (tbmatan) that is most of the cases more accurate than stan and
approximates better the class probabilities. tbmatan learning time can be very
long for large datasets due to computational problems. To fix this problem we
introduce an approximation to tbmatan (sstbmatan) which is more efficient.
sstbmatan has a shorter learning time a longer classification time than stan.
sstbmatan is most of the cases more accurate than tbmatan and approximates
better the class probabilities. This work has been presented at the Twentieth
International Conference on Machine Learning. Finally, in chapter 9, we show
that it is possible to calculate efficiently both the TAN model with maximum a
posteriori probability, and the set of k TAN models with maximum a posteriori
probability and their relative probability weights. We show that these results
allow the construction of two classifiers (maptan and maptan+bma) which
outperform stan and stan+bma respectively in error rate and quality of the
predicted probabilities. Furthermore, maptan+bma learning time complexity
is lower than stan+bma. In the three chapters, experimental results are given
that allow the reader to evaluate the improvements.

1.3 Rationale for the contributions

In this section we propose a simplified comparison of classifiers from the per-
spective of a user and motivate the contributions of this thesis in this simplified
framework. The purpose of the section is easing understanding of what the thesis
proposes, why we think it can be useful and what have been the main characteris-
tics we have taken into consideration while trying to improve Bayesian classifiers.
The reader should not take this framework as a proposal for future use but as a
simple tool for understanding what has been done.

1.3.1 Characteristics of a classifier

Classifiers can be compared by different characteristics. In order to ease the
understanding of the contributions of the thesis from the point of view of a user
of machine learning or data mining algorithms, at the end of some chapters the
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Figure 1.2: Three axis in which a classifier can be placed

different classifiers introduced are plot in a three dimensional space where the
three axis are determined by accuracy, interpretability and time complexity (see
Figure 1.2). Evidently, these are not the only characteristics we could define,
but in our opinion these are the most significant when evaluating a classifier.
For a more extended list of classifier characteristics from the perspective of a
user, the reader can refer to section 10.7 of (Hastie et al., 2001).

Accuracy can be defined as how well a classifier performs the task that is its
main objective, that is, classifying. There are different measures of classification
accuracy. The error rate computes the percentage of instances that are misclassi-
fied. Some more sophisticated measures do also take into account the probability
that the classifier has assigned to the class. This way, those measures punish
much more misclassifications where the probability of the class was very high
than those were the classifier itself knew that it was confused and assigned a not
so high probability to the most probable class. In the last few years, the evalu-
ation of accuracy of classifiers based on the Receiver Operating Characteristics
is gaining momentum (Provost et al., 1998; Fawcett, 2003). Independently of
how it is measured, increasing classification accuracy is, obviously, an objective
when proposing new classifiers.

Interpretability stands for how easily humans can understand the decisions
taken by a classifier. Many times, machine learning algorithms, and also clas-
sifiers, are used as supporting devices for a human being who is in charge of
taking a decision in a concrete situation. In these cases, being able to interpret,
understand and explain to interested third parties the rationale behind the de-
cision will influence heavily whether we can use a classifier or not. Increasing
the interpretability of classifiers is hence another objective when proposing new
classifiers.

Time complexity is the amount of time needed for a classifier to perform its
task. Given a dataset, classifiers usually split their work in two steps, a learning
step where the dataset is processed and the information from the dataset sum-
marized in some way, and a classification step where new unclassified instances
are observed and the classifier guesses the class in which they should be classi-
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fied. This split generates two different complexity measures for a classifier. We
will call learning time complexity the time spent on the first task, and classifica-
tion time complexity the time spent to classify a new instance once the learning
step is over. Decreasing both learning time complexity and classification time
complexity is yet another objective when proposing new classifiers.

1.3.2 Why do we need new classifiers?

If we accept the simplified view proposed by this three axis, when proposing a
new classifier we can be in one of two cases. In the first case, we can move in
a positive direction in one or more of the axis while keeping the others fixed.
This is the case, for example, when the accuracy of a classifier is increased
without modifying its interpretability or time complexity, which is the case for
the improvement of Naive Bayes presented provided by indifferentnb (see
chapter 6) as well as for the improvement for stan provided by maptan (see
chapter 9). This kind of “moves” are clear improvements of previous results and
are usually expected to substitute the previous version of the classifier. In the
second case, we can move in a positive direction in some axis while losing in
some other. This is the case, for example, when we create a classifier with a
better accuracy but at the cost of increasing the time complexity and decreasing
the interpretability, as is the case for the improvements for stan suggested in
chapters 7 and 8. This is also the case when we create a classifier with increased
interpretability but higher time complexity, as is the case for the improvement
presented for Naive Bayes in chapter 5. This kind of moves provide an increase
in the “palette” of tools for the classification user. In the face of a new problem,
the user can evaluate which are the constraints in that concrete case for accuracy,
interpretability and complexity and choose the classifier best suited for the task.
For example, imagine that our task is to create a system to be used for disease
self-treatment and that the system has to suggest the user the correct treatment
for his disease. Assuming the user is not knowledgeable in the area, he will have
to rely on the system decision without trying to interpret the decision, because
he should be knowledgeable in medicine to do that. He will not be willing to
wait for days to get an answer, but he can wait for one or two hours. Accuracy
is probably the most important characteristic for a classifier for this task. If we
slightly change the task and assume that the classifier will be used by a doctor in
his office, this heavily increases the interpretability and time complexity needs
(he will definitely not be willing to make the patient wait for the computer to
answer back) and lowers the accuracy needs, because probably the doctor will
use the system as a double check for his own decisions and in case of disagreeing
he will be able to explore the patient more carefully and generate the adequate
treatment.

Due to the increasing computational power, that allows higher complexity
calculations, increasing accuracy is specially significant. That is why we consider
specially valuable the results in chapter 8, which provide, to the best of our
knowledge, the most accurate classifier with a learning time complexity linear
on the number of observations of the dataset.
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We understand that the new classifiers proposed in this thesis provide rea-
sonable trade-offs and cover areas of the described three dimensional space that
where uncovered before. Hence we think that they deserve to be selected by any
user for some domains and that they could end up being a valuable tool in an
users “palette”.




