
Chapter 1

Introduction

The Unification Problem has several variants and has been studied in a number
of fields of computer science (Knight, 1989; Baader and Snyder, 2001), includ-
ing theorem proving, logic programming, automatic program transformation,
computational linguistics, etc.

Abstractly, unification means: given two descriptions d1 and d2, can we find
an object o that fits both descriptions?

In a more mathematical sense, unification consists of solving equations, i.e.,
given a pair of “terms” (equation) with some possibly common “unknowns”
(variables), the problem is to decide whether or not there exists a possible assig-
nation (substitution) to these unknowns that makes both objects “equal” modulo
some equality theory. If such substitution exists, it is called unifier. When we
have unknowns in only one of the terms, we talk about matching instead of
unification. When we are not just considering a set (conjunction) of equations,
but we allow to have more complex formulae combining equations and involving
in particular negation, the problem is called Disunification (Comon, 1991).

Depending on what are the terms, the unknowns and the equality notion that
we are considering, we get distinct kinds of unification. For instance, solving
arithmetic equations can be seen as solving unification where the objects are
arithmetic expressions, the unknowns are the variables that will be instantiated
by numbers and the equality relation is the relation defined by the field structure
of numbers. Therefore, the 10th Hilbert’s problem, can be formalised as an
(undecidable) unification problem.

1.1 Main Distinct Unification Problems

1.1.1 First-Order Unification

In First-Order Unification, terms are first-order terms, the unknowns are first-
order variables, i.e. variables that can be instantiated by first-order terms, and
the notion of equality corresponds to the syntactic equality.

1

2 Chapter 1. Introduction

The First-Order Unification Problem can be stated as: Given two first-order
terms s and t, does there exist a substitution σ of terms for the variables in s
and t such that σ(s) = σ(t)?

Note that σ(s) and σ(t) denote the application of substitution σ to terms s
and t respectively i.e., σ(s) and σ(t) denote terms s and t respectively where
all variables have been replaced by their corresponding values in σ. In general
we will denote the unknowns by capital letters, constant symbols by lower case
ones and substitutions by greek letters.

As a simple example, consider the following equation:

f(f(X3, X2), X1)
?= f(X1, f(X2, X3))

A possible unifier, could consist of assigning f(a, a) to X1 and a to X2 and X3.
This assignment can be represented by means of the substitution σ:

σ = [X1 7→ f(a, a), X2 7→ a, X3 7→ a]

Now, as we can see, the application of σ to both sides of the equation gives us
the same term:

σ(f(f(X3, X2), X1)) = f(f(a, a), f(a, a)) = σ(f(X1, f(X2, X3)))

First-Order Unification was firstly studied by Herbrand in 1931, although its
main crucial role in automated deduction was not considered until the 60’s when
J. A. Robinson invented the simple and powerful inference rule named resolution
(Robinson, 1965). First-Order Unification is the cornerstone of the rule discov-
ered by Robinson. In some sense this was also the beginning of automated logic.
Robinson also showed that the First-Order Unification problem is decidable and
that whenever a solution, or unifier exists, there always exists what is called a
most general unifier, i.e. a unifier from which all other unifiers can be generated.
Even more, in First-Order Unification whenever this most general unifier exists,
it is unique up to variable renaming. Robinson’s algorithm was quite inefficient
requiring exponential time and space in the worst case. A great deal of effort has
gone into improving the efficiency of unification. Among several other results,
there are the ones of Venturini-Zilli (1975) reducing the complexity of Robin-
son’s algorithm to quadratic time, and of Martelli and Montanari (1976) when
they proved that a linear time algorithm for unification exists.

It was soon realised that resolution is better behaved in the restricted context
of Horn clauses, a subset of first-order logic for which SLD-resolution is complete.
Colmenauer and Kowalski considered this class of clauses and defined the elegant
programming language PROLOG, which spurred the whole new field of logic
programming (Kowalski, 1974).

First-Order Unification is not just used in resolution, but for many other
purposes: in type inferencing for polymorphic programming languages (Mil-
ner, 1978), in expert systems, or in the calculation of critical pairs in the
Knuth/Bendix completion procedure (Knuth and Bendix, 1967). Even in an-
other theorem proving method that does not use resolution, like the so called
matings, unification is required (Andrews, 1981).

1.1. Main Distinct Unification Problems 3

Since the early 60’s there have been many attempts to generalise the basic
paradigm of theorem proving, and these attempts have stimulated research into
more general forms of unification. On the one hand there was the goal of adding
equality into the theorem proving procedure, and on the other hand there was
the goal of automate higher-order logic. Both goals propitiated the two main
generalisations of First-Order Unification: E-Unification and Higher-Order Uni-
fication.

1.1.2 E-Unification

The relevance of equational reasoning, i.e., the replaceability of equals by equals,
in ordinary mathematical reasoning, and the expressive power of first-order logic
to define algebraic structures, naturally lead to the introduction of equality into
resolution. In this framework, Robinson and Wos introduced a new deduction
rule dedicated to equality, paramodulation (Robinson and Wos, 1969; Nieuwen-
huis and Rubio, 2001). Due to efficiency reasons, the best option is to split the
deduction mechanism considering just the non-equational part in the refutation
mechanism and using E-Unification, that is, First-Order Unification modulo an
equational theory, instead of simply First-Order Unification to deal with the
equational reasoning during the unification steps (Plotkin, 1972).

In E-Unification the terms are again first-order terms, and the unknowns
first-order variables, but now the notion of equality is not just syntactic equality
but equality modulo a given equality theory E.

The E-Unification Problem can be stated as: Given a (finite) set E of equal-
ities and two first-order terms s and t, does there exist a substitution σ of terms
for the variables in s and t such that σ(s) and σ(t) are provably equal from the
equations in E?

As an example, consider the equation:

f(f(X1, X2), c)
?= f(X1, f(X2, c))

and the equational theory:

E = { f(x, f(y, z)) = f(f(x, y), z) }

a possible solution1 is the substitution:

σ = [X1 7→ a, X2 7→ b]

σ(f(f(X1, X2), c)) = f(f(a, b), c) =E f(a, f(b, c)) = σ(f(X1, f(X2, c)))

where here =E means the equality modulo the theory E.
Unlike First-Order Unification, E-Unification is undecidable in general. For

instance, due to the undecidability of the word problem for semi-groups, E-
Unification is undecidable when considering the semi-groups theory. Another

1Notice that if we were just considering first-order unification, this equation would have no
solution.

4 Chapter 1. Introduction

major difference with respect to First-Order Unification, is that if an equation
is solvable then there may not be a single most general unifier.

Nevertheless there are some theories known to be decidable, for instance
∅-Unification (i.e. First-Order Unification), AC-Unification (i.e. Associative-
Commutative Unification), D-Unification (i.e. Distributive Unification), and
A-Unification (i.e. Associative Unification). For a good summarisation of E-
Unification see (Siekmann and Szabó, 1984) and (Baader and Siekmann, 1993).

A-unification is of special interest to us because it corresponds to the well
known Word Unification Problem, shown to be decidable by Makanin (1977).

1.1.3 Word Unification

Word (String) Unification is unification where the terms are words, the unknowns
can be instantiated by words and equality means to be the same word.

The Word Unification Problem can be stated as: Given two words w1 and
w2, does there exist a substitution σ of words for the variables in w1 and w2 such
that σ(w1) and σ(w2) are the same word?

Word Unification can also be seen as A-Unification where we use an asso-
ciative symbol to form the words. Word Unification is decidable, but solvable
Word Unification Problem instances do not always have just one most general
unifier but possibly infinitely many independent unifiers, as illustrated by the
following example:

aX ?= Xa

for which for all n ≥ 0, any substitution of the form:

[X 7→

n︷ ︸︸ ︷
a . . . a]

is a unifier, not comparable to any other.
The race for the decidability proof of Word Unification was long and full

of little steps: firstly it was shown that the case when no variable occurs more
than twice is decidable, then the three occurrences fragment was also proved
decidable, and finally, thanks to the exponent of periodicity lemma, the general
case was proved decidable by Makanin (1977). Since then, a lot of work has
been made looking for lower upper bounds on the exponent of periodicity and
trying to get the precise complexity of the problem (Kościelski and Pacholski,
1995, 1996). Two recent and independent works, due to Plandowski (1999a,b)
and Gutiérrez (1998, 2000), show, with an alternative to Makanin’s proof, that
Word Unification is in the NEXP class and in the PSPACE class. These are the
best complexity classes known for Word Unification. Nevertheless, some people
believe that Word Unification is in NP.

It has also been proved that word equations, where variables can be con-
strained to belong to regular languages, is also decidable (Schulz, 1991). Several
attempts to simplify Makanin’s proof and trying to give a practical implemen-
tation of the algorithm, have been made (Jaffar, 1990; Schulz, 1993). Expres-
siveness of word equations has also been subject of study in (Karhumäki et al.,
1997).

1.1. Main Distinct Unification Problems 5

Word Unification has applications, for instance, in deduction systems (Huet,
1976) and in constraint logic programming (Colmerauer, 1988).

Closely related to Word Unification there is the Context Unification problem.
In fact, Word Unification can be seen also as “Monadic Context Unification”,
i.e. Context Unification considering just a monadic signature.

1.1.4 Context Unification

In Context Unification the terms are first-order terms and the unknowns are first-
order and context variables. Substitutions assign first-order terms to first-order
variables and contexts to context variables. Contexts are terms with “holes”,
i.e. terms with a special constant symbol called the hole, that is denoted by
’•’. When a context is “applied” to some terms (arguments), the result is the
term formed by the context where the holes have been replaced by the argument
terms.

The Context Unification Problem can be stated as: Given two terms s and t,
does there exist a substitution σ of first-order terms and contexts for the variables
in s and t such that σ(s) and σ(t) are the same term?

As an example consider:

f(F (a), b) ?= F (f(a, b))

where F is a context variable. One of its solutions is the substitution:

σ = [F 7→ •]

which, when applied to the equation, identifies both sides:

σ(f(F (a), b)) = f(a, b) = σ(F (f(a, b)))

But as we can easily observe, as in the previous Word Unification example, there
are infinitely many incomparable solutions for this equation, all of them having
this form:

F →

n︷ ︸︸ ︷
f(. . . f(•

n︷ ︸︸ ︷
, b) . . . , b)

Therefore, solvable Context Unification equations can have infinitely many most
general unifiers.

The Context Unification problem was firstly defined by Comon (1992a) and
its decidability still remains unsolved. Context Unification has applications in
rewriting (Comon, 1992a,b, 1998; Niehren et al., 1997a, 2000), in unification
theory (Schmidt-Schauß, 1996, 1998), and in computational linguistics (Pinkal,
1995; Niehren et al., 1997b; Egg et al., 1998; Niehren and Villaret, 2002, 2003).

Context Unification can also be seen as a variant of Higher-Order Unification,
in fact it is closely related to Linear Second-Order Unification (Levy, 1996; Levy
and Villaret, 2000, 2001), a variant of Second-Order Unification.

6 Chapter 1. Introduction

1.1.5 Higher-Order and Second-Order Unification

Higher-Order Unification serves for solving equations in the Simple Typed λ-
Calculus (Church, 1940). In this unification problem, the terms considered are
simply typed λ-terms, the unknowns are higher-order variables, i.e. variables
that can be instantiated by simply typed λ-terms of the same type, and the
equality relation is the congruence defined by the α, β and η congruencies of the
λ-calculus.

The Higher-Order Unification Problem can be stated as: Given two sim-
ply typed λ-terms s and t, does there exist a substitution σ of λ-terms for the
variables in s and t such that σ(s) and σ(t) are λ-equivalent?

For example, let s and t be:

F (λy. y, b) ?= G(a)

one of its infinitely many solutions is:

σ = [F 7→ λx1x2. x1x2, G 7→ λx. b]

σ(s) = (λx1x2. x1x2)(λy. y, b) =β (λy. y)b =β b β = (λx. b)a = σ(t)

where =β and β = denote β-equivalence in λ-calculus.
Like E-unification, Higher-Order Unification is undecidable in general and

most general unifiers may not exist.
Second-order variables are variables that stand for functions on individuals.

When variables are at most second-order, we talk about Second-Order Unifi-
cation. Second-Order Unification is also undecidable (Goldfarb, 1981). There
exists some recent work based on the number of distinct variables and the number
of occurrences per variable, that draws a frontier between decidable and unde-
cidable subclasses of Second-Order Unification (Levy, 1998; Levy and Veanes,
1998, 2000). Also the signature has been considered in the decidability question
(Farmer, 1988, 1991).

There is a variant of Second-Order Unification problem called Linear Second-
Order Unification (Levy, 1996). In this variant, it is imposed a limitation on the
possible instances of variables: they are just allowed to be instantiated by linear
terms, i.e. terms in normal form where each bound variable occurs in the body
of the term once and only once. As we will show, this problem is closely related
to Context Unification (Levy and Villaret, 2000). Although its decidability
is still an open question, the fact that some subclasses that are undecidable
in Second-Order Unification have been shown decidable in Context Unification
(Levy, 1996; Schmidt-Schauß and Schulz, 1999), supports the common belief
that Context Unification is decidable.

When variables are allowed to be instantiated by terms where bound vari-
ables can occur in the body of the term a bounded number of times, we talk
about Bounded Second-Order Unification. Bounded Second-Order Unification
is defined and shown decidable by Schmidt-Schauß (1999a, 2004). Adding the
constraint that the number of lambdas in the unifiers is also bounded, and con-
sidering no just second-order variables, but variables of any order, the Bounded

1.2. Higher-Order Applications 7

Higher-Order Unification Problem is obtained. This last problem is also decid-
able (Schmidt-Schauß and Schulz, 2002a).

1.2 Higher-Order Applications

Despite of its undecidability, Higher-Order Unification is useful and necessary in
many fields of computer science.

1.2.1 Automated Theorem Proving

Higher-Order Unification is required when automating higher-order logic. In
this logic, quantification over sets or predicates and functions is allowed. This
feature permits us, for instance, to axiomatise Peano arithmetic, which cannot
be axiomatised just using first-order logic. But this increase on the expressive
power is not for free. One of the major objections to the use of this logic comes
from the Gödel first incompleteness theorem that states that no system that can
formalise Peano arithmetic admits a complete deduction system. Nevertheless,
Henkin generalised the notion of model theory with the so-called general models
and proved that within this model theory, appropriate generalisations of first-
order calculi to higher-order logics exist and are sound and complete. Since then,
a wide range of methods for higher-order automated theorem proving has been
proposed (Robinson, 1969; Darlington, 1971; Pietrzykowski, 1973; Huet, 1973a;
Jensen and Pietrzykowski, 1976; Miller and Nadathur, 1987; Felty et al., 1990;
Paulson, 1990; Miller, 1991a; Paulson, 1993; Benzmüller and Kohlhase, 1998a,b).
A textual cite from (Jensen and Pietrzykowski, 1976) illustrates the interest in
higher-order logic despite its difficulty: “...The attractiveness of higher-order
methods in computational logic is not what you can or cannot prove, but rather
that many proofs are more natural in a higher-order setting.”.

The first successful attempts to mechanise and implement higher-order logic
were those of Pietrzykowski (1973); Jensen and Pietrzykowski (1976) and of
Huet (1973a). They combined the resolution principle with Higher-Order Uni-
fication. As we have already said, Higher-Order Unification is undecidable, in
fact semidecidable, and researchers were looking for procedures that were capa-
ble of completely enumerate all set of unifiers (notice that there can be infinitely
many). The first implementation of a procedure for Higher-Order Unification
already revealed that the search space for unifiers is far too large to be feasible
for practical applications. Huet made a major contribution in showing that a re-
stricted form of unification (also undecidable), called preunification, is sufficient
for most refutation methods, and in defining a method for solving this restricted
problem which is used by most current higher-order systems (Huet, 1975, 1976).

Nevertheless, since Higher-Order Unification is undecidable and when so-
lutions exist there can be infinitely many, incorporating unification into the
resolution inference rule would not result in an effectively computable rule. As
a remedy, the unification process can be delayed by capturing the unification

8 Chapter 1. Introduction

equations as constraints and effectively interleaving the search for empty clauses
by resolution with the search of unifiers.

But Higher-Order Unification is not only used in automated theorem proving
but also in higher-order logic programming, in program synthesis and program
transformation and in computational linguistics among other areas. We will
illustrate now some of these applications.

1.2.2 Higher-Order Logic Programming

As in Prolog, unification plays a crucial role in higher-order logic programming.
But now, the variables considered are not just first order but higher-order ones,
therefore we can write programs which are parameterised not just by values but
by functions. This feature is not just a privilege of higher-order logic program-
ming, but of higher-order programming in general like functional programming.

According to the use of variables there are distinct approaches, on the one
hand there is the logical framework Isabelle (Paulson, 1990, 1993) that just allow
higher-order variables as functions but not as predicates, and on the other hand
there is λProlog (Felty et al., 1990; Miller, 1991a,b; Müller and Niehren, 1998)
that allows both uses of variables.

One simple example to illustrate the higher-order features is the definition of
a mapping function: a function that takes a function and a list as arguments and
produces a new list by applying the given function to each element of the former
list. We show this example from the perspective of quantifying over predicates,
in a relational style.

We write the predicates in a higher-order logic program style, a la Prolog,
as follows:

mappred(P, [], []).

mappred(P, [X|L], [Y|K]) :- P(X, Y), mappred(P, L, K).

age(mateu, 31).

age(gemma, 29).

We have also added two facts that define the predicate age over two elements.
Using this program, now we could get the list of ages of mateu and gemma with
the query:

?- mappred(age, [mateu, gemma], L).

the answer of which would be the substitution [31, 29] for L. Tracing a suc-
cessful solution path for this query we can observe that Higher-Order Unification
has been required; for instance, to shoot the first rule, P has been matched with:

\x y. age(x, y)

As we can also notice, when predicate variables get instantiated and after
being supplied with appropriate arguments, they become new queries. In fact

1.2. Higher-Order Applications 9

the first new goal to solve becomes age(mateu, X’). Therefore, one needs to
be careful because Prolog only considers Horn clauses, therefore the predicate
variables when instantiated need to be correct Horn goals. Accordingly with this
fact, we can only use conjunctions, disjunctions and existential quantifications
to instantiate predicate variables that can become queries.

In (Miller et al., 1991), it is proposed the use of Hereditary Harrop Formu-
lae, a generalisation on the formulae considered to overcome these Horn clauses
limitations.

The previous example illustrates how predicate variables can be used and
the power increase that they provide. But not everything one could expect to
obtain can be achieved. Consider the following query:

?- mappred(R, [mateu, gemma], [31, 29]).

that could be used to find out what is the relation that exists between the two
lists [mateu, gemma] and [31, 29]. One could expect the answer to be:

R -> \x y. age(x, y)

but this is too much optimistic. In fact, there are infinitely many relations that
satisfy this query, and enumerating these does not seem to be a meaningful
computational task. The problem can be stated in the intensional/extensional
role of predicate variables. A broad discussion about these problems can be
found in (Nadathur and Miller, 1998).

In the next subsection we will show how higher-order logic programming has
nice properties to perform program transformations. We will also see that there
are some other techniques that use Higher-Order Unification and Matching for
program synthesis and program transformation.

1.2.3 Program Synthesis and Transformation

Automatic program synthesis consists of generating programs from specifications
in an automatic manner. One of the pioneers of these techniques was Darlington
(1973). His technique consisted of generating SNOBOL programs given a set of
axioms based on those of Hoare, and employing a resolution based theorem
prover incorporating a restricted Higher-Order Unification algorithm.

Program transformation is the process of converting a piece of code from one
form to another whilst preserving its essential meaning. We will show a couple
of perspectives to this field.

For instance, there is the work of Miller and Nadathur in λ-Prolog. Consider-
ing the higher-order facilities that λ-Prolog provides, basically its Higher-Order
Unification features, we can see that it is possible to give rules that apply to cer-
tain patterns only matchable using Higher-Order Unification, and that allows
us to re-build programs. One of such pattern examples occur in tail-recursive
programs. From this recognition we can translate such programs into equivalent
imperative programs.

10 Chapter 1. Introduction

Consider for instance, the following tail-recursive program that sums two
non-negative integers, written in a pseudo λ-calculus style, and using fixpt as
a recursive combinator:

fixptλsum.λn.λm. if (n=0) then m else (sum (n-1) (m+1))

The tail-recursiveness of this program can be easily recognised by using
Higher-Order Unification (Matching). The program is in fact, an instance of
the term:

fixptλf.λx.λy. if (C x y) then (H x y) else (f (F1 x y) (F2 x y))

as substitution σ shows:

[C 7→ λz1z2. (z1 = 0)

H 7→ λz1z2. z2
F1 7→ λz1z2. (z1 - 1)

F2 7→ λz1z2. (z2 + 1)]

In fact, any closed term that unifies with this last “second-order template”
must be a representation of a recursive program of two arguments whose body
is a conditional and in which the only recursive call appears as the head of the
expression that constitutes the “else” branch of the conditional. Clearly any
functional program that has such a structure must be tail-recursive.

Now we should use these matched parts to form the corresponding imperative
version of the program that will return the result in variable result. We use an
imperative style a la PASCAL:

done := false

while (not done) do

if (C par1 par2) then

begin

done := true;

result := (H par1 par2)

end

else

begin

par1 := (F1 par1 par2);

par2 := (F2 par1 par2)

end

Now, if we apply substitution σ to this imperative program template term,
we obtain the imperative version of the summing program:

done:=false

while (not done) do

if (par1 = 0) then

begin

1.2. Higher-Order Applications 11

done := true;

result := par2

end

else

begin

par1 := par1 - 1;

par2 := par2 + 1

end

Notice also that this template does not recognise all tail-recursive programs
but just the ones that have two parameters and just one conditional in their
body. A deeper study and discussion of how to solve this problem, and some
other nice examples about program transformation can be found in (Miller and
Nadathur, 1987).

There is a more recent work due to de Moor and Sittampalam (2001); Sittam-
palam and de Moor (2001). As they notice themselves, the automatic program
transformation field has its major impact in easing the tension between program
efficiency and program abstraction. The purpose of these program transformers
is to translate an abstract and readable human-written code into an efficient
one. But in general this task cannot be fully automatised and some human
annotations are required.

These annotations are made by means of conditional higher-order rewriting
rules that lead the transformed program to the transformation intended by the
programmer. These rules require Higher-Order Matching.

The work of de Moor and Sittampalam on the development of the system
MAG for HASKELL program transformation provides some nice examples that
illustrate the power of Higher-Order Matching. One of their examples is the
reverse list function expressed by means of a fold:

reverse = foldr (λx.λxs. xs ++ [x]) []

In this definition, we first apply to each element of the list the “switching
side” function and then the list concatenation function, therefore this reverse

definition has quadratic time complexity. Our goal is to transform it into a linear
time program using the so called “fold fusion” law:

if
λx.λy. (O2) x (Fy) = λx.λy. F (O1 x y)

then
F (foldr (O1) E xs) = foldr (O2) (FE) xs

The application of this law to our definition requires Higher-Order Matching
and provides us with this substitution for the new fold operator:

[O2 7→ λx.λg.λxs. g(x:xs)]

12 Chapter 1. Introduction

Then, applying the resulting substitution2 we obtain a linear time version of
the reverse function:

reverse l = foldr (λx.λg.λxs. g(x:xs)) ((++) []) l []

1.2.4 Natural Language Semantics

Now we will illustrate the Higher-Order Unification applications in computa-
tional linguistics, like scope ambiguity (Pinkal, 1995; Niehren and Koller, 2001).
We will dedicate a particular attention to the field of characterising the inter-
pretative possibilities generated by elliptical constructions in natural language.
In contrast to the previously presented applications of Higher-Order Unification,
a part of our work, mainly Chapter 7 which is based on (Niehren and Villaret,
2002, 2003), is closely related to these natural language semantics topic. Hence,
we will introduce this field in more detail than the previous ones.

In computational semantics, the formal description of the meaning of an
expression often requires the use of sets and higher-order notions. The task of
representing and reasoning about meaning in a computational setting was dealt,
for instance, by Montague (1988), or by Miller and Nadathur (1986) who showed
how it is possible to integrate syntactic and semantic analysis with λ-Prolog.

We now illustrate scope ambiguity and ellipsis, the two main linguistic phe-
nomena where Context Unification has been used. Then we will introduce the
approach that we will study and relate with Context Unification, in the last part
of the thesis.

Scope Ambiguity

Scope Ambiguity consists of having more than one possibility for determining the
scope of some elements (usually quantifiers) of the sentence. One of the examples
in (Pinkal, 1995) is this scope ambiguity example where Linear Second-Order
Unification is used, hence substitutions of Second-Order variables are required
to be linear. The following sentence:

Every researcher visited a company

which is represented by the following equation:

C1(@(every researcher, λx1 .(C3(@(visit,@(x1, x2))))))
?=

C2(@(a company, λx2 .(C4(@(visit,@(x1, x2))))))

has the following two possible solutions corresponding to the two possible read-
ings:

2Notice that in fact O2 is a third-order term because its second abstraction is a bound
variable of order two, i.e. a function.

1.2. Higher-Order Applications 13

1. every researcher visited a company which is not necessarily the same as the
one that the others researchers visited. To obtain this reading we consider
the following substitution:

[C1 7→ λx. x
C2 7→ λx. @(every researcher, λx1 .(x))
C3 7→ λx. @(a company, λx2 .(x))
C4 7→ λx. x]

which, applied to the equation gives us the following term:

@(every researcher, λx1 .(@(a company, λx2 .(visit,@(x1, x2)))))

2. or there exists a company (the same for all) that is visited by every re-
searcher. To obtain this reading we consider the following substitution:

[C1 7→ λx. @(a company, λx2 .(x))
C2 7→ λx. x
C3 7→ λx. x
C4 7→ λx. @(every researcher, λx1 .(x))]

which, applied to the equation, gives us the following term:

@(a company, λx2 .(@(every researcher, λx1 .(visit,@(x1, x2)))))

As we can appreciate, all substitutions are linear3.
The work of Pinkal has been extended by Niehren et al. (1997b) where it is

shown how Context Unification also deals with Ellipses.

Ellipses

Ellipses consist of omitting from a sentence, words needed to complete the con-
struction or sense. In (Dalrymple et al., 1991) it is shown how Higher-Order
Unification correctly predicts a wide range of interactions between ellipsis and
other semantic phenomena such as quantifier scope and bound anaphora. As
a particular example, we can reproduce the verb phrase ellipsis phenomenon
example from (Dalrymple et al., 1991):

Dan likes golf, and George does too. (1.1)

The intended meaning of the sentence is that that Dan and George both
like golf: like(dan, golf) ∧ like(george, golf). The source clause, “Dan likes

golf”, parallels the target “George does too”, with the subjects “Dan” and
“George” being parallel elements, and the verb phrase of the target sentence
being represented by the target phrase “does too”.

3Notice that there is a distinction between the lambdas and the bound variables of the
object language like λx1 and x1, and the lambdas and bound variables of the substitutions,
which disappear when applied to the term.

14 Chapter 1. Introduction

Now, we know that the property, let’s say P , being predicated of George in
the second sentence is such that when it is predicated on Dan, it means that Dan
likes golf. We might state this by means of a Higher-Order Unification equation
as follows:

P (dan) ?= like(dan, golf) (1.2)

where P is a predicate variable. A possible value for P in this equation is the
property represented by the λ-term λx. like(x, golf). Applying this predicate
to George, we obtain like(george, golf), and the full sentence meaning becomes
the intended one:

like(dan, golf)∧ like(george, golf)

Nevertheless not all the solutions of equation 1.2 have a meaningful coun-
terpart in the linguistic semantic world. Consider now the substitution of P by
λx. like(dan, golf). This is also a solution for the equation but when applied
to George we obtain like(dan, golf) and the following meaning for our elliptical
sentence:

like(dan, golf) ∧ like(dan, golf)

which is not an interesting semantic interpretation, in fact it is wrong because
it is not the intended meaning of sentence 1.1.

The way to solve this problem is to forbid some kind of substitutions, basically
those that instantiate variables by terms that contain primary occurrences of the
parallel elements (Dalrymple et al., 1991). In this example then, the proposed
second substitution is not a valid substitution because it contains a primary
occurrence: dan. The technique of Dalrymple et al. (1991), computes reasonably
enough solutions in comparison with other systems. But this way of filtering
substitutions was not fully satisfactory. The goal was not to filter among a huge
set of generated solutions, but rather to filter beforehand those solutions which
are correct from those which are not.

There have been several researchers who have approached this problem, for
instance Gardent and Kohlhase (1996), who deal with the primary occurrence
constraint, or the one that we have shown in the scope ambiguity example of
Pinkal (1995), using Linear Higher-Order Unification.

The Underspecified Semantic Representation Approach of The

Constraint Language for Lambda Structures

The use of Context Unification has been broadly studied and related with other
formalisms like Dominance Constraints (Koller et al., 1998) and Parallelism
Constraints (Erk and Niehren, 2000), in the works of Egg et al. (1998, 2001);
Erk et al. (2002). Although Parallelism Constraints are equivalent to Context
Unification, the procedures used to solve these constraints have a nicer behaviour
than the ones for solving Context Unification (Koller, 1998; Erk and Niehren,
2000; Erk et al., 2002), for instance the implementation of an incomplete Context
Unification procedure in (Koller, 1998), runs into combinatoric explosion when
dealing with scope ambiguities, and it does not perform well enough on the
Context Unification equivalent of Dominance Constraints.

