Chapter 1

Introduction

The main goal of this thesis is to provide a framework for open Multi-Agent
Systems that maximizes the reuse of agent capabilities through multiple appli-
cation domains, and supports the automatic, on-demand configuration of agent
teams according to stated problem requirements.

We have devoted considerable effort to the applicability of our proposals,
which resulted in the implementation of an infrastructure to develop Multi Agent
Systems according to the principles and requirements stated by our framework.

During the rest of this Chapter the main goal of this thesis is analyzed and
boiled down to the several issues and problems it encompasses. First, we situate
our work in the field of Multi-Agent Systems, focusing on the open problems
and challenges that motivated us; second, the main contributions of this thesis
are summarized; and third, the structure of the thesis is presented as a guide for
readers.

1.1 Motivation and context

Distributed Artificial Intelligence has historically been divided in two main
areas: Distributed Problem Solving (DPS) and Multi-Agent Systems (MAS)
[Bond and Gasser, 1988a]. In the DPS approach problems are divided and dis-
tributed among a number of nodes that cooperate in solving the different parts
of the problem; but the overall problem solving strategy is an integral part of
the system. In contrast, MAS research is concerned with the behavior of a
collection of possibly pre-existing autonomous agents aiming at solving a given
problem [Jennings et al., 1998]. MAS have been defined as loosely coupled net-
works of problem-solving entities working together to find answers to problems
that are beyond the individual capabilities or knowledge of the isolated entities
[Durfee and Lesser, 1989]. The MAS approach advocates decomposing problems
in terms of autonomous agents that can engage in flexible, high level interactions,
and this way of decomposing a problem aids the process of engineering complex
systems [Jennings, 2000]. Some characteristics of MAS are the following:

1



2 Chapter 1. Introduction

e each agent has incomplete information or capabilities for solving the prob-
lem, thus each agent has a limited viewpoint;

there is no global system control;

data is decentralized; and

e computation is asynchronous.

Some reasons for the increasing interest in MAS research include: the ability
to provide robustness and efficiency, the ability to allow inter-operation of exist-
ing legacy systems, and the ability to solve problems in which data, expertise, or
control is distributed. Agents are defined as sophisticated computer programs
that act autonomously on behalf of their users, across open and distributed
environments, to solve a growing number of complex problems.

Considering the former definitions, MAS are supposed to be open systems in
that agents can enter / leave at any time. Nonetheless, most of the initial work
devoted to MAS research has focused on closed systems [Klein, 2000], typically
designed by one team for one homogeneous environment, with participating
agents sharing common high-level goals in a single domain. The communications
languages and interaction protocols are typically in-house protocols, and are
defined by the design team prior to any agent interactions. Systems are scalable
under controlled conditions and design approaches tend to be ad hoc, inspired
by the agent paradigm rather than using any specific methodologies.

It is often suggested the need for real open systems that were capable of
dynamically adapting themselves to changing environments. Some examples
are electronic markets, communities and distributed search engines. All in all,
in open MAS the participants (both human and software agents) are unknown
beforehand, can change over time and can be developed by different parties.
Open systems are opposite to closed or proprietary systems, i.e. open systems
can be supplied by hardware components from multiple vendors, and whose
software can be operated from different platforms.

According to the predictions of the European Network of Excellence for Agent
Based Computing, fully open MAS spanning multiple application domains and
involving heterogeneous participants will not be achieved in a foreseeable future,
and not before year 2009 [Luck et al., 2003]. This cautious prediction obeys to
some challenges yet to be undertaken, including the following;:

e provide effective agreed standards to allow open agent systems;
e provide semantic infrastructure for open agent communities;

e develop reasoning capabilities for agents in open environments;
e develop agent ability to understand user requirements;

e develop agent ability to adapt to changes in the environment;

e cnsure agent confidence an trust in agents



1.1. Motivation and context 3

Progress

Open agent
systems

Cross-boundary
systems

Closed agent
systems

Tnneh

2002 2005 2008 2010

Figure 1.1: Roadmap timeline for agent technologies

Figure 1.1 (adapted from [Luck et al., 2003]) shows a roadmap timeline sug-
gesting how agent technology will progress over time if R & D is aimed at the
main challenges identified.

Although we are not going to solve all these problems entirely, we hope to
provide tentative solutions to some of them and to bring about some insights
that could drive future work on these issues. We are not going to exhaustively
describe these problems here, since they are described in Chapter 2; we are
rather going to sketch them so as to let the reader become acquainted with the
motivations for this work.

Nowadays, MAS are increasingly being designed to cross corporate bound-
aries, so that the participating agents have fewer goals in common, although
their interactions are still concerning a common domain. The languages and
protocols used in these systems are being agreed and standardized; however,
despite this raising diversity, all participating agents are designed by the same
team designing the system and share common domain knowledge.

In order to overcome the limitations of current agent infrastructures for open
MAS, researchers must tackle with several problems:

e the connection problem, or how to put providers and requesters (services
and customers) in contact;

e the interoperability problem, or how to achieve a meaningful interaction
among heterogeneous agents at the syntactic, semantic and pragmatic lev-
els;



4 Chapter 1. Introduction

e the coalition problem, or how to form and coordinate agent teams to solve
problems in a cooperative way;

e the reuse problem, or how to use the same agent capabilities across several
application domains;

e the accountability problem, or how to predict or explain the behavior of
MAS according to the requirements of the problem.

The MAS community builds intelligent agents capable of reasoning about
how to cooperate to solve complex problems. This area uses knowledge in-
tensively: for adding meaning (using ontologies), enabling service discovery and
composition (using annotations and reasoning for matchmaking), and coordinat-
ing processes (using negotiation strategies). In closed environments knowledge
is usually homogeneous and static. In open environments such as the Internet,
knowledge is pervasive, distributed, heterogeneous, and dynamic in nature.

Nowadays the Web is shifting the nature of software development to a dis-
tributed plug-and-play process. This change requires a new way of managing and
integrating software based on a software integration architectural pattern called
middleware. Middleware is connectivity software; it consists of enabling services
that allow multiple processes running on one or more machines to interact across
a network. It follows that a middleware layer is required to provide a common set
of programming interfaces that developers can use to create distributed systems.

Intelligent middleware aims to achieve the highest degree of interoperability,
where systems can identify and react to the semantics of data. For this reason,
many research communities are focusing their attention to semantic interoper-
ability, for example: MAS, Semantic Web Services, Cooperative Information
Systems and Component Based Software Development.

In open MAS the middleware layer is usually provided by middle agents
[Decker et al., 1997b] that mediate between requesters and providers of capa-
bilities, e.g. matchmakers [Decker et al., 1996], facilitators [Erickson, 1996a,
Genesereth and Ketchpel, 1997] and brokers[Nodine et al., 1999]). Typically,
the function of a middle agent is to pair requesters with providers that are
suitable for them, and this process is called matchmaking. To enable match-
making, both providers and requesters share a common language to describe
the requests (tasks or goals) and the advertisements (capabilities or services) in
order to compare them. This language is called an Agent Capability Description
Language (ACDL).

Matchmaking is the process of verifying whether a capability specification
matches the specification of a request (e.g. a task to be solved): two specifi-
cations match if their specifications verify some matching relation, where the
matching relation is defined according to some criteria (e.g. a capability being
able to solve a task). Semantic matchtmaking, which is based on the use of
shared ontologies to annotate agent capabilities [Guarino, 1997al, improves the
matchmaking process and facilitates interoperation.

Semantic matchmaking allows to verify whether a capability can solve a
new type of problem (a task), but the reuse of existing capabilities over new



1.1. Motivation and context 5

application domains is difficult because capabilities are usually associated to a
specific application domain.

The notion of an Agent Capability Description Language (ACDL) has been
introduced recently [Sycara et al., 1999a] as a key element to enable MAS in-
teroperation in open environments. An ACDL is a shared language that al-
lows heterogeneous agents to coordinate effectively across distributed networks.
Sometimes, capabilities are referred as “services” and, consequently, an ACDL
can alternatively be called an Agent Service Description Language (ASDL).

In the literature, an ACDL is defined as a language to describe both agent
advertisements and requests, and is primarily used by middle agents (e.g. brokers
and matchmakers) to pair service-requests with service-providing agents that
meet the requirements of the request [Sycara et al., 1999b, Sycara et al., 1999a].

Some desirable features for such a language are expressiveness, efficiency and
ease of use:

o Faxpressiveness: the language should be expressive enough to represent
not only data and knowledge, but also the meaning of a capability. Agent
capabilities should be described at an abstract rather than implementation
dependent level.

e Efficiency: inferences on descriptions written in this language should
be supported. Automatic reasoning and comparison on the descriptions
should be both feasible and efficient.

e FEase of use: descriptions should not only be easy to read and understand,
but also easy to write. The language should support the use of ontologies
for annotate agent capabilities with shared semantic information.

However, in addition to capability discovery, an ACDL should bring support
to other activities involved in MAS interoperation. On the one hand, once a
capability is discovered, it should be enacted automatically; agents should be
able to interpret the description of a capability to understand what input is
necessary to execute a capability, what information will be returned, and which
are the effects or postconditions that will hold after applying the capability. In
addition, an agent must know the communication protocol, the communication
language and the data format required by the provider of the capability in order
to successfully communicate with it.

On the other hand, in order to achieve more complex tasks, capabilities may
be combined or aggregated to achieve complex goals that existing capabilities
cannot achieve in isolation. This process may require a combination of match-
making, capability selection among alternative candidates, and verification of
whether the aggregated functionality satisfies the specification of a high-level
goal.

Our approach to these activities is tightly related with the idea of reuse: how
to reuse a capability for different tasks, across several application domains, and
in cooperation with other capabilities provided by different, probably heteroge-
neous agents. The idea of reuse is being addressed by the Software Engineering
and the Knowledge Engineering communities.



6 Chapter 1. Introduction

The reuse of complete software developments and the process used to create
them has the potential to significantly ease the process of software engineering
by providing a source of verified software artifacts [Wegner, 1984]. It is sug-
gested than reuse of software artifacts can be achieved through the utilization of
software libraries [Atkinson, 1997]. Essentially a software library is a repository
of information which can be used to construct software systems. The main goal
of software libraries reuse is to enable previous development experiences to guide
subsequent software development. To this end, MAS designers must be provided
with libraries of:

e generic organisation models (e.g., hierarchical organisations, flat organisa-
tions);

e generic agent models (e.g., purely reactive agent models, deliberative BDI
models);

e generic task models (e.g., diagnostic tasks, information filtering tasks,
transactions);

e communication languages and patterns for agent societies;

e ontology patterns for agent requirements, agent models and organisation
models;

e interaction protocol patterns between agents with special roles;

e reusable organisation structures; and

reusable knowledge bases.

From the compositional approach, building a software system is essentially a
design problem [Biggerstaff and Perlis, 1989]. The Component-Based Software
development (CBSD) approach focuses on building large software systems by in-
tegrating previously-existing software components. By enhancing the flexibility
and maintainability of systems, the ultimate goal is to reduce software develop-
ment costs, assemble systems rapidly, and reduce the maintenance burden associ-
ated with the support and upgrade of large systems [Brown and Wallnau, 1996].

Constructing an application involves the use of prefabricated pieces, per-
haps developed at different times, by different people and possibly with different
purposes, therefore integrability of heterogeneous components is a key when con-
sidering whether to acquire, reuse, or build new components. Reusable software
components can be deployed independently and are subject to composition by
third parties [Szyperski, 1996]. There is, however, a major problem with soft-
ware composition, the so called Bottom Up Design Problem [Mili et al., 1995],
defined as:

given a set of requirements, find a set of components within a software
library whose combined behavior satisfies the requirements.



1.2. Contributions 7

The fundamental difficulty when considering this problem is how to decom-
pose the requirements in such a way as to yield component specifications. A
reverse approach is to search the space of all possible component compositions
until one satisfying the requirements is found [Hall, 1993, Zhang, 2000]. Thus,
composition of components can be regarded as composition of their specifications
[Butler and Duke, 1998].

Concerning Knowledge Engineering, we are interested in Knowledge Mod-
elling Frameworks that has proposed several methodologies, architectures
and languages for analyzing, describing and developing knowledge systems
[Steels, 1990, McDermott, 1988, Schreiber et al., 1994a, Fensel et al., 1999].
The goal of a Knowledge Modelling Framework (KMF) is to provide a conceptual
model of a system which describes the required knowledge and inferences at an
implementation independent way. This approach is intended to support the en-
gineer in the knowledge acquisition phase [Van de Velde, 1993] and to facilitate
reuse [Fensel, 1997al.

However, KMFs and reusable software libraries have rarely been applied in
the field of MAS to deal with the reuse and interoperation problems arising in
open environments. This thesis explores the utility of a KMF to support the
automated design and coordination of agent teams according to stated problem
requirements; in other words, we translate the Bottom Up Design Problem prob-
lem to the MAS field: given a set of requirements, find a set of agent capabilities
whose combined competence and knowledge satisfy the requirements.

1.2 Contributions

The main outcome of our efforts to overcome the problems concerning interop-
erability and reuse in open MAS is a multi-layered framework for MAS devel-
opment and deployment that integrates Knowledge Modelling and Cooperative
Multi-Agent Systems together. This framework is called ORCAS, which stands
for Open, Reusable and Configurable multi-Agent Systems.

The ORCAS framework explores the use of a KMF for describing and com-
posing agent capabilities with the aim of maximizing capability reuse and sup-
porting the automatic, on-demand configuration of agent teams according to
stated problem requirements. The ORCAS KMF is being used as an ACDL sup-
porting semantic matchmaking and allowing capability descriptions in a domain
independent manner, in order to maximize capability reuse.

The Knowledge Modelling Framework of ORCAS has been complemented
with an Operational Framework, which describes a mapping from concepts in
the Knowledge-Modelling Framework to concepts from Multi-Agent Systems and
Cooperative Problem Solving. Specifically, the Operational Framework describes
how a composition of capabilities represented at the knowledge-level can be op-
erationalized by a customized team of problem solving agents. In order to do
that, the Operational Framework extends the KMF to describe also the commu-
nication and the coordination mechanisms required by agents to cooperate. Our
approach to describe such aspects of a capability is based on the macro-level



8 Chapter 1. Introduction

(societal) aspects of agent societies, which is focused on the communication and
the observable behavior of agents, rather than adopting a micro-level (internal)
view on individual agents. The reason to focus on the macro-level is to avoid im-
posing a specific agent architecture, thus facilitating the design and development
of agents to third parties, a basic requirement of open MAS.

The ORCAS Operational Framework proposes a new model of the Coopera-
tive Problem Solving process that is based on a knowledge-level [Newell, 1982]
description of agent capabilities, using the ORCAS KMF. This model includes a
Knowledge Configuration process that takes a specification of problem require-
ments as input and searches a composition of capabilities and knowledge satisfy-
ing those requirements. The result of the Knowledge Configuration process is a
task-configuration, a knowledge-level design of an abstract agent team, in terms
of the tasks to be solved, the capabilities to be applied, and the knowledge to
be used by those capabilities.

An agent willing to start a cooperative activity requires an initial plan
to know which are the capabilities required in order to select suitable agents
for that plan. In larger systems, team selection may involve an exponen-
tial number of possible team combinations, and a blow-out in the number
of interactions required to select the members of a team. There are two
approaches to overcome these problems: one approach, that still relies on
some kind of global plan is that of guiding the team formation with prob-
lem requirements [Tidhar et al., 1996]; another approach is to use distributed
tasks allocation methods to make the team selection computationally tractable
[Shehory and Kraus, 1998, Sandholm, 1993]; furthermore, a mixture of both ap-
proaches is also feasible [Clement and Durfee, 1999].

In this thesis we adopt the approach based on guiding the team formation
process with the problem requirements, but the notion of a initial plan is here
replaced by the notion of a task-configuration. A task-configuration reduces the
complexity of the team formation process by constraining the composition of
the team to a certain design that satisfies the requirements of the problem. In
spite of its combinatorial nature, the complexity of the team selection process
is mitigated, though partially transferred from the team formation process to
the Knowledge Configuration process. Therefore, in order to further reduce the
complexity of the Knowledge Configuration and the team formation activities,
we propose Case-Based Reasoning to heuristically guide the search process over
the space of possible configurations.

Finally, we have implemented and agent infrastructure according to the
ORCAS model of the CPS process. This agent infrastructure has being
implemented using the electronic institutions formalism [Esteva et al., 2001,
Esteva et al., 2002b], which is based on a computational metaphor of human
institutions from a macro-level point of view.

Human institutions are places where people meet to achieve some goals fol-
lowing specific procedures, e.g. auction houses, parliaments, stock exchange
markets, etc. Intuitively, the notion of electronic institutions refers to a sort
of virtual place where agents interact according to explicit conventions. The



1.2. Contributions 9

institution is the responsible for defining the rules of the game, to enforce them
and impose the penalties in case of violation.

An electronic institution, or e-Institution, is a “virtual place” designed to
support and facilitate certain goals to the human and software agents concurring
to that place. Since these goals are achieved by means of the interaction of
agents, an e-institution provides the social mediation layer required to achieve a
successful interaction: interaction protocols, shared ontologies, communication
languages and social behavior rules. The interaction is not only regulated by
the institution, furthermore it is mediated by institutional agents that offer an
added value to participating agents.

The ORCAS e-Institution brings an added value to both requesters and
providers: on the one hand, requesters are freed of finding adequate providers
and provides a single interface to the multiple and heterogenous providers; on
the other hand, the institution provides an advertisement service to capabil-
ity providers, provides a mediation service for the team formation process, and
facilitates coordination during the teamwork activity, allowing agents to solve
complex problems that cannot be achieved by an agent alone.

However, in addition to implement an agent infrastructure using the elec-
tronic institutions formalism, we are interested on using the concepts proposed
by the e-Institutions approach to describe the communication and the opera-
tional description of agent capabilities without imposing neither a specific agent
architecture, nor an attitudinal theory of cooperation.

The goal of partitioning the ORCAS framework in layers is to bring devel-
opers an extra flexibility in adapting this framework to their own requirements,
preferences and needs. We claim that a clear separation of layers will support
a flexible utilization and extension of the framework to fit different needs, and
to build different infrastructures. Therefore, we divide the ORCAS framework
in three complementary frameworks:

1. The Knowledge Modelling Framework (KMF) proposes a conceptual and
architectural description of problem-solving systems from a knowledge-
level view, abstracting the specification of components from implementa-
tion details. In addition, a Knowledge Configuration model is presented
as the process of finding configurations of components that fulfill stated
problem requirements.

2. The Operational Framework deals with the link between the characteri-
zation of components and its implementation, that in our framework is
realized by Multi-Agent Systems. This framework comprehends an exten-
sion of the KMF to become a full-fledged Agent Capability Description
Language, together with a new model of the Cooperative Problem Solving
process based on the KMF.

3. The Institutional Framework describes an implemented infrastructure for
developing and deploying Multi-Agent Systems configurable on-demand,
according to the the two layered —knowledge and operational— config-
uration framework. This infrastructure is designed and implemented ac-



10 Chapter 1. Introduction

cording to an institutional model of open agent societies. The result is
multi-agent platform that supports flexible, extensible and configurable
Multi-Agent Systems.

Institutional
Framework

Operational
Framework

Figure 1.2: The three layers of the ORCAS framework

Figure 1.2 shows the three layers as a pyramid made of three blocks. The
block at the bottom corresponds to the more abstract layer, while upper blocks
corresponds to increasingly implementation dependent layers. Therefore, devel-
opers and system engineers can decide to use only a portion of the framework,
starting from the bottom, and modifying or changing the other frameworks ac-
cording to its preferences and needs.

1.3 Structure

This thesis consist of 7 chapters, including this one, and several appendixes
providing technical information. The thesis is organized as follows (Figure 1.3):

Chapter 2 reviews some research relevant to our thesis and discusses some of
their contributions that put the basis for our work, together with its limi-
tations and the open issues we are dealing with. Since our work integrates
two fields together -knowledge modelling and multi-agent systems-, this
chapter have to address very different issues.

Chapter 3 draws the structure of ORCAS framework to give the reader an
overall view of it, and remarks the outstanding elements of each layer so
as to disclose the logic underpinning that structure.

Chapter 4 proposes a knowledge modelling framework for Multi-Agent Sys-
tems. This framework describes a conceptual and architectural charac-
terization of problem-solving systems from a knowledge-level perspective,



1.3. Structure 11

abstracting the specification from any implementation details. Moreover,
this chapter describes a Knowledge Configuration process that is able to
find a configuration of components (tasks, capabilities and domain-models)
fulfilling stated problem requirements.

Chapter 5 describes a framework to operationalize a knowledge-level config-
uration by forming and instructing a team of agents with the required
capabilities and domain knowledge. This chapter describes also a model
of teamwork based on the social view on agent cooperation.

Chapter 6 introduces the institutional framework, an implemented infrastruc-
ture for system development that is based on the two layered approach
to multi-agent configuration together with an institutional approach to
open agent societies, in support of flexible, customizable and extensible
Cooperative Multi-Agent Systems.

Chapter 7 shows an implemented application as a case study of the ORCAS
framework, the Web Information Mediator (WIM). WIM is an application
to look for medical bibliography in Internet that relies on a library of tasks
and agent capabilities for information search and aggregation, linked to a
medical application domain.

Chapter 8 presents some conclusions and draws up those open issues that are
believed to deceive future work.



12 Chapter 1. Introduction

Chapter 1 Chapter 2
. Background &
Introduction
related work

\/

Chapter 3
overview

Chapter 4 Chapter 5
Knowledge Modelling Operational
Framework v Framework
Chapter 6
Institutional
Framework

A 4

Chapter 7
Applications

A 4

Chapter 8

Conclusions

Figure 1.3: Thesis structure





