
E
x
p
l
o

it
in

g
 t

h
e
 S

t
r

u
c

t
u

r
e
 o

f
 D

is
t
r

ib
u

t
ed

 C

o
n

s
t
r

a
in

t
 O

p
t
im

iz
a

t
io

n

P

r
o

b
l
e
m

s
 t

o
 A

ssess

 a

n
d
 B

o
u

n
d
 C

o
o

r
d

in
a

t
io

n
 A

c
t
io

n
s
 i

n
 MA

S

MONOGRAFIES DE L’INSTITUT D´INVESTIGACIÓ EN
INTEL·LIGÈNCIA ARTIFICIAL

4644447

M
e
ri

tx
e
ll
 V

in
ya

ls
 S

a
lg

a
d

o

CSIC

 Santi Ontañón Villar

Ensemble Case Based
Learning for

Multi-Agent Systems

 Consell Superior d´Investigacions Científiques

MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ
EN INTEL·LIGÈNCIA ARTIFICIAL

Number 25

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

Monografies de l’Institut d’Investigació en
Intel·ligència Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based Systems

Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification Model Based

on Inclusions

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in Knowledge–Based

Systems

Num. 4 M. Domingo, An Expert System Architecture for Identification in Biology

Num. 5 E. Armengol, A Framework for Integrating Learning and Problem Solving

Num. 6 J. Ll. Arcos, The Noos Representation Language

Num. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial Constraint

Satisfaction

Num. 8 P. Noriega, Agent Mediated Auctions: The Fishmarket Metaphor

Num. 9 F. Manyà, Proof Procedures for Multiple-Valued Propositional Logics

Num. 10 W. M. Schorlemmer, On Specifying and Reasoning with Special Relations

Num. 11 M. López-Sánchez, Approaches to Map Generation by means of Collabo-

rative Autonomous Robots

Num. 12 D. Robertson, Pragmatics in the Synthesis of Logic Programs

Num. 13 P. Faratin, Automated Service Negotiation between Autonomous Compu-

tational Agents

Num. 14 J. A. Rodŕıguez, On the Design and Construction of Agent-mediated Elec-

tronis Institutions

Num. 15 T. Alsinet, Logic Programming with Fuzzy Unification and Imprecise Con-

stants: Possibilistic Semantics and Automated Deduction

Num. 16 A. Zapico, On Axiomatic Foundations for Qualitative Decision Theory -

A Possibilistic Approach

Num. 17 A. Valls, ClusDM: A multiple criteria decision method for heterogeneous

data sets

Num. 18 D. Busquets, A Multiagent Approach to Qualitative Navigation in

Robotics

Num. 19 M. Esteva, Electronic Institutions: from specification to development

Num. 20 J. Sabater, Trust and Reputation for Agent Societies

Num. 21 J. Cerquides, Improving Algorithms for Learning Bayesian Network Clas-

sifiers

Num. 22 M. Villaret, On Some Variants of Second-Order Unification

Num. 23 M. Gómez, Open, Reusable and Configurable Multi-Agent Systems: A

Knowledge Modelling Approach

Num. 24 S. Ramchurn Multi-Agent Negotiation Using Trust and Persuasion

Num. 25 S. Ontañón Ensemble Case Based Learning for Multi-Agent Systems

Num. 26 M. Sánchez Contributions to Search and Inference Algorithms for CSP

and Weighted CSP

Ensemble Case Based Learning for
Multi-Agent Systems

Santi Ontañón Villar

Foreword by Enric Plaza i Cervera

2006 Consell Superior d’Investigacions Cient́ıfiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Foreword by
Enric Plaza i Cervera
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Volume Author
Santi Ontañón Villar
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

c© 2006 by Santi Ontañón Villar
NIPO: 653-06-043-1
ISBN: 84-00-08433-0
Dip. Legal: B.36352-2006

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IIIA, Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Contents

Foreword xv

1 Introduction 1
1.1 Motivation . 1
1.2 The Framework . 4
1.3 The Goals . 5
1.4 The Thesis . 6
1.5 Notation . 9

2 State of the Art 11
2.1 Ensemble Learning . 11

2.1.1 Quantifying the Ensemble Effect 13
2.1.2 The Basic Ensemble Method 13
2.1.3 Reducing Error Correlation 14
2.1.4 Aggregating the Classifiers’ Predictions 15
2.1.5 Error Correcting Output Codes 17
2.1.6 Boosting . 17
2.1.7 Summary . 19

2.2 Case Based Reasoning . 20
2.2.1 Selection of Training Examples 21
2.2.2 Explanation Generation 27
2.2.3 Summary . 29

2.3 Multi-Agent Learning . 30
2.3.1 Multi-Agent Reinforcement Learning 30
2.3.2 Genetic Algorithms for Multi-Agent Systems 32
2.3.3 Multi-Agent Case Based Reasoning 33
2.3.4 Classification in Multi-Agent Systems 35
2.3.5 Summary . 36

3 A Framework for Multi-Agent Learning 39
3.1 Multi-Agent Systems . 39

3.1.1 Collaboration Strategies 41
3.1.2 Interaction Protocol Specification 42

3.2 Knowledge Representation and Agent Platform 44

v

3.2.1 The Feature Terms Representation Language 44
3.2.2 The NOOS Agent Platform 46

3.3 Multi-Agent Case Based Reasoning Systems 46
3.4 Individual Problem Solving . 47
3.5 An Approach to Multi-Agent Learning 47

3.5.1 Competence Models . 51
3.5.2 Justification Generation 51
3.5.3 A CBR View of the Multi-Agent Learning Framework . . 53

3.6 Summary . 55

4 Committee Collaboration Strategies 57
4.1 Introduction . 57
4.2 The Committee Collaboration Strategy 58
4.3 Bounded Weighted Approval Voting 60
4.4 Characterizing Committees . 62

4.4.1 Individual Case Base Characterization 63
4.4.2 Committee Characterization 68

4.5 Experimental Evaluation . 71
4.5.1 Committee Evaluation under Uniform Conditions 72
4.5.2 Committee Evaluation with Case Redundancy 77
4.5.3 Committee Evaluation with Case Base Bias 82
4.5.4 Voting System Comparison 87

4.6 Ensemble Space Redux . 90
4.7 Conclusions . 92

5 Dynamic Committees 93
5.1 Introduction . 93
5.2 Peer Counsel Collaboration Strategy 94
5.3 Bounded Counsel Collaboration Strategy 96
5.4 Experimental Evaluation . 99

5.4.1 Accuracy Evaluation . 100
5.4.2 Committee Size Evaluation 102

5.5 Conclusions . 106

6 Proactive Learning for Collaboration 109
6.1 Introduction . 109
6.2 Competence Models . 110
6.3 Proactive Learning of Competence Models 113

6.3.1 Acquisition of M-examples 115
6.3.2 Induction of the Competence Models 119
6.3.3 Exemplification . 123

6.4 Proactive Bounded Counsel . 124
6.4.1 Proactive Bounded Counsel Policies 125
6.4.2 Proactive Bounded Counsel Protocol 128

6.5 Experimental Evaluation . 129
6.5.1 PB-CCS Evaluation in the Uniform Scenario 130

vi

6.5.2 PB-CCS Evaluation in the Redundancy Scenario 134
6.5.3 PB-CCS Evaluation in the Untruthful Agents Scenario . . 136

6.6 Conclusions . 139

7 Justification Endorsed Collaboration 143
7.1 Introduction . 143
7.2 Justifications in CBR Systems . 144

7.2.1 Symbolic Similarity Measures 145
7.2.2 Symbolic Local Approximation and Symbolic Similarity . 147
7.2.3 Counterexamples and Endorsing Cases 149

7.3 Justification Endorsed Committee Collaboration Strategy 151
7.4 Examination of Justifications . 152
7.5 Justification Endorsed Voting System 154
7.6 Justification Endorsed Committee Interaction Protocol 156

7.6.1 Confidence Estimation Robustness 158
7.6.2 Exemplification . 160

7.7 Experimental Evaluation . 162
7.7.1 JE-CS evaluation in the uniform scenario 162
7.7.2 JE-CS evaluation in the redundancy scenario 165
7.7.3 JE-CS evaluation in the biased scenario 167

7.8 Conclusions . 168

8 Case Retention Collaboration Strategies 171
8.1 Introduction . 171
8.2 Multi-agent Case Retention Strategies 173

8.2.1 CBR Case Retention Decision Policies 175
8.2.2 Active Learning Decision Policies 176
8.2.3 Case Offering Decision Policies 178
8.2.4 Case Retention Strategies 179
8.2.5 Experimental Evaluation 180

8.3 Justification-based Case Reduction 188
8.3.1 Justification-based Case Utility 188
8.3.2 Justification-based Selection of Training Examples 192
8.3.3 Experimental Evaluation 199

8.4 Collaborative Case Bargaining 204
8.4.1 Collaborative Case Bargaining Protocol 206
8.4.2 Collaborative Case Bargaining Decision Policies 208
8.4.3 Experimental Evaluation 211

8.5 Conclusions . 217

9 Case Bartering Collaboration Strategies 221
9.1 Introduction . 221
9.2 The Case Bartering Collaboration Strategy 222
9.3 Bias Based Case Bartering . 223

9.3.1 Bias Based Information Gathering 223
9.3.2 Bias Based Case Bartering 225

vii

9.3.3 Bias Based Offer Acceptance 227
9.4 The Case Bartering Interaction Protocol 228
9.5 Exemplification . 230
9.6 Justification Based Decision Policies 234

9.6.1 Justification Based Information Gathering 234
9.6.2 Justification Based Case Bartering 236

9.7 Experimental Evaluation . 242
9.7.1 Accuracy Evaluation . 242
9.7.2 Case Base Evaluation . 246

9.8 Conclusions . 248

10 Conclusions 251
10.1 Summary . 251
10.2 Contributions . 255
10.3 Future Work . 258

A Notation 261
A.1 General Notation . 261
A.2 Ensemble Space Notation . 262
A.3 Committees Notation . 262
A.4 Voting Systems . 263
A.5 Proactive Learning Notation . 263
A.6 Justifications Notation . 263
A.7 Retention Notation . 264
A.8 Bartering Notation . 265

B The NOOS Agent Platform 267
B.1 Overview . 267
B.2 Knowledge Representation . 268
B.3 Agent Platform . 271

C Probability Estimation 277

viii

List of Figures

1.1 Graphical overview of the contents of this thesis. 7

2.1 Probability of different agents erring at the same time. 12
2.2 Stacked Generalization combination method. 15
2.3 Cascade Generalization combination method. 16
2.4 The AdaBoost algorithm. 18
2.5 The Case Based Reasoning Cycle [Aamodt and Plaza, 1994]. . . 20
2.6 The Condensed Nearest Neighbor (CNN) algorithm. 22
2.7 The Case Base reduction algorithm presented by Zhu and Yang. 24
2.8 Region of uncertainty defined for a version space learning algorithm. 25
2.9 The predator prey domain. 30

3.1 A collaboration strategy consists of an interaction protocol and a
set of individual decision policies. 41

3.2 Specification of a basic Request-Inform protocol. 43
3.3 Example of a simple feature term. 44
3.4 Three feature terms: a) subsumes both b) and c). 45
3.5 A symbolic justification generated by the LID CBR method in the

marine sponges classification domain. 52
3.6 Example of a justification generation by a decision tree in a toy

problem. 53
3.7 The Case Based Reasoning Cycle [Aamodt and Plaza, 1994]. . . 54
3.8 Distributed and individual processes of the CBR cycle in the MAC

framework . 55

4.1 Illustration of an agent using CCS in a MAC system 58
4.2 Interaction protocol for the Committee collaboration strategy. . . 60
4.3 Graphical Visualization of Case Base Bias. 66
4.4 Space of possible different characterizations of individual case

bases using completeness and bias. 67
4.5 Ensemble Space . 70
4.6 [Classification accuracy using LID]Classification accuracy compar-

ison between agents using LID to solve problems individually and
with the committee collaboration strategy. 73

4.7 Classification accuracy using 1-NN 74

ix

4.8 Classification accuracy using 3-NN 75
4.9 Redundancy effect on the Classification accuracy in agents using

LID. 78
4.10 Redundancy effect on the Classification accuracy in agents using

1-NN. 79
4.11 Redundancy effect on the Classification accuracy in agents using

3-NN. 80
4.12 Redundancy effect in the classification accuracy of individual

agents and in the Committee. 81
4.13 Bias effect on the CCS classification accuracy in agents using LID. 83
4.14 Bias effect on the CCS classification accuracy in agents using 1-NN. 84
4.15 Bias effect on the CCS classification accuracy in agents using 3-NN. 85
4.16 Bias effect on the Classification accuracy in agents using LID to

solve problems individually. 86
4.17 Bias effect on the Classification accuracy in agents using 1-NN to

solve problems individually. 87
4.18 Bias effect on the Classification accuracy in agents using 3-NN to

solve problems individually. 88
4.19 Classification accuracy comparison between agents using LID to

solve problems individually and with the committee collaboration
strategy. 89

4.20 Classification accuracy comparison between agents using 3-
Nearest Neighbor to solve problems individually and with the
committee collaboration strategy. 90

4.21 Ensemble Space 2 . 91

5.1 Interaction protocol for the Peer Counsel collaboration strategy. 94
5.2 Illustration of B-CCS where 3 agents have already been invited

to join the committee, forming a committee of 4 agents. 97
5.3 Interaction protocol for the Bounded Counsel collaboration strategy. 98
5.4 Classification accuracy comparison between agents using LID to

solve problems with several collaboration strategies. 100
5.5 Classification accuracy comparison between agents using Nearest

Neighbor to solve problems with several collaboration strategies. 101
5.6 Classification accuracy comparison between agents using 3-

Nearest Neighbor to solve problems with several collaboration
strategies. 102

5.7 Committee size comparison between agents using LID to solve
problems with several collaboration strategies. 103

5.8 Committee size comparison between agents using Nearest Neigh-
bor to solve problems with several collaboration strategies. . . . 104

5.9 Committee size comparison between agents using 3-Nearest
Neighbor to solve problems with several collaboration strategies. 105

6.1 Illustration of PB-CCS at a round t. 111

x

6.2 Detailed graphical representation of the proactive learning tech-
nique to learn competence models. 114

6.3 Algorithm to take a bounded sample of subsets of agents 119
6.4 a) A decision tree b) a Confidence tree from the decision tree

shown in a). 120
6.5 a) Decision tree learnt as the committee competence model. b)

Confidence tree computed from the decision tree shown in a). . . 121
6.6 Relation among the competence models and the Proactive

Bounded Counsel decision policies. 127
6.7 Interaction protocol for the Proactive Bounded Counsel collabo-

ration strategy. 128
6.8 Classification accuracy and average committee size for agents us-

ing CCS, B-CCS, and PB-CCS in the sponges data set and using
3-NN in the uniform scenario. 131

6.9 Percentage of times that the convener agent has convened commit-
tees of different sizes in the uniform scenario (a), the redundancy
scenario (b) and in the untruthful agents scenario (c). 132

6.10 Distribution of the error among different convened committees for
a 5 agents system (a) and a 9 agents system (b). 133

6.11 Classification accuracy and average committee size for agents us-
ing CCS, B-CCS, and PB-CCS in the sponges data set and using
3-NN in the redundancy scenario. 134

6.12 Classification accuracy and average committee size for agents us-
ing CCS, B-CCS, and PB-CCS in the sponges data set and using
3-NN in the redundancy scenario. 137

7.1 Illustration of the retrieval process using a numerical similarity
measure for a two dimensional problem space. 144

7.2 Case base and decision tree built to index the cases for a simple
problem. 145

7.3 The problem P is solved using the cases in the corresponding leaf
of the tree. 145

7.4 Simple problem with two numerical attributes and two classes. . 146
7.5 Decision tree learnt for the problem shown in Figure 7.4. 147
7.6 Partition induced over the problem space by the decision tree

shown in Figure 7.5. 148
7.7 The problem P is solved using the cases in the corresponding leaf

of the tree. 149
7.8 Set of retrieved cases by the similarity description presented in

Figure 7.7. 150
7.9 Counterexamples and endorsing cases for a given justification. . . 151
7.10 An agent examines the justification endorsement record provided

by another agent after solving a specific problem. 153
7.11 Each agent can generate one or more JERs for a given problem. . 154
7.12 Interaction protocol for the JE-CS collaboration strategy. 156

xi

7.13 Each agent in the committee generates an examination record for
every justification endorsement record. 157

7.14 Justification generated by an agent after solving a problem. . . . 160
7.15 Classification accuracy comparison between agents using LID to

solve problems with JE-CS, CCS, and individually in the uniform
scenario. 163

7.16 Classification accuracy comparison between agents using decision
trees to solve problems with JE-CS, CCS, and individually in the
uniform scenario. 164

7.17 Classification accuracy comparison between agents using LID to
solve problems with JE-CS, CCS, and individually in the redun-
dancy scenario. 165

7.18 Classification accuracy comparison between agents using decision
trees to solve problems with JE-CS, CCS, and individually in the
redundancy scenario. 166

7.19 Classification accuracy comparison between agents using LID to
solve problems with JE-CS, CCS, and individually in the biased
scenario. 167

7.20 Classification accuracy comparison between agents using decision
trees to solve problems with JE-CS, CCS, and individually in the
biased scenario. 168

8.1 Case Retention strategies are designed to work during the last
process of the CBR cycle: Retain 172

8.2 Interaction protocol for the Multi-agent Retention collaboration
strategy. 174

8.3 Classification accuracy comparison between agents using the dif-
ferent MAR-CS collaboration strategies in the sponge data set. . 182

8.4 Classification accuracy comparison between agents using the dif-
ferent MAR-CS collaboration strategies in the sponge data set. . 183

8.5 Classification accuracy comparison between agents using the dif-
ferent MAR-CS collaboration strategies in the sponge data set. . 184

8.6 Artificial data set to show the behavior of JCU. 190
8.7 A set of cases is going to be evaluated using the set of examina-

tion cases shown. On the right hand side, the incorrectly solved
problems of the exam are crossed. 191

8.8 Set of counterexamples of the justification given for two exam
problems. 192

8.9 The JUST algorithm. 194
8.10 Three first rounds of the execution of JUST for a two dimensional

case base. 197
8.11 Rounds 3 to 5 of the execution of JUST for a two dimensional

case base. 198
8.12 Comparison of the accuracy evolution in the reduced case bases

for several exam sizes in the sponges dataset using JUST. 201

xii

8.13 Comparison of the accuracy evolution in the reduced case bases
for several exam sizes in the soybean dataset using JUST. 202

8.14 Comparison of the accuracy evolution in the reduced case bases
for several exam sizes in the zoology dataset using JUST. 202

8.15 Agents using delayed retention need to have a pool de delayed
retention cases. 205

8.16 Interaction protocol for the CCB-CS collaboration strategy. . . . 206
8.17 Classification accuracy of a 5 agent MAC system using CCB-CS

in the sponge data set. 212
8.18 Classification accuracy of a 5 agent MAC system using CCB-CS

in the soybean data set. 213
8.19 Classification accuracy of a 5 agent MAC system using CCB-CS

in the zoology data set. 214

9.1 Interaction protocol used by the agents in the Bias Based Infor-
mation Gathering. 223

9.2 Interaction protocol used by the agents in the Bias Based Case
Bartering. 225

9.3 The CB-CS interaction protocol. 228
9.4 Relation between the protocols and decision policies used in bias

based case bartering. 230
9.5 Two dimensional data set used in the bartering exemplification . 231
9.6 Initial distribution of cases among the four agents. 232
9.7 Partition of the problem space obtained using a decision tree al-

gorithm to index the cases of the individual case bases. 232
9.8 Distribution of cases among the four agents obtained after using

CB-CS. 233
9.9 Partition of the problem space obtained using a decision tree al-

gorithm to index the cases of the individual case bases obtained
after using CB-CS. 233

9.10 Interaction protocol used by the agents in the Justification Based
Information Gathering. 234

9.11 Interaction protocol used by the agents in the Justification-based
Case Bartering Policy. 238

9.12 Relation between the protocols and decision policies used in jus-
tification based case bartering. 239

9.13 Classification accuracy comparison between agents using the dif-
ferent CB-CS decision policies in the sponge data set for several
MAC systems. 243

9.14 Classification accuracy comparison between agents using the dif-
ferent CB-CS decision policies in the soybean data set for several
MAC systems. 245

9.15 Classification accuracy comparison between agents using the dif-
ferent CB-CS decision policies in the zoology data set for several
MAC systems. 246

xiii

xiv

10.1 The different techniques presented in this thesis, grouped by areas.252

B.1 Example of a simplified sponge represented using feature terms. . 268
B.2 NOOS definition of the ontology needed to define the feature term

depicted in Figure B.1. 269
B.3 Part of the NOOS definition of the domain model for the marine

sponge identification domain. 270
B.4 NOOS definition of the feature term depicted in Figure B.1. . . . 271
B.5 NOOS definition of the interaction protocol that two agents (AI

and AJ) follow to barter two cases. 272
B.6 NOOS definition of the two activities required to play each of the

two roles defined in the protocol specified in Figure B.5 273
B.7 NOOS definition of the behaviors to play the roles AI and AJ in

the protocol specified in Figure B.5 274
B.8 NOOS definition of an agent that is able to deal with the sponge

domain and to perform some activities. 275
B.9 Screenshot of the NOOS Agent Platform development environment.275

C.1 Left, Likelihood function as a uniform density probability func-
tion; Right, Likelihood function for a single observation (correct) 278

C.2 Left, Likelihood function for two observations;Right, Likelihood
function for twenty observations 279

C.3 Likelihood function for 60 observations where 90% of them are
correct. 280

Foreword

The focus of Artificial Intelligence in agents and multiagent systems (MAS) has
provided a paradigm shift that has allowed to explore the social aspects of intelli-
gent behavior. This monograph by Santi Ontañón studies the interplay between
cooperation and learning, two of the main features characterizing complex social
interaction and individual intelligent behavior. The difficulty of this endeavor
is challenging, because multiagent systems pose some assumptions, namely dis-
tributed information and decentralized control, that are not readily met by the
classical approach of Machine Learning techniques.

The approach taken here is to extend existing approaches in machine learn-
ing and multiagent systems and combine them in a framework that supports the
study of cooperation and learning. In this way, notions from ensemble learning
are extended to cope with decentralized control as is required for a multiagent
setting. The adoption of the paradigm of case-based reasoning (CBR) as the indi-
vidual agent mechanism for learning and problem solving provides a contribution
both to CBR and MAS by integrating the notion of agency and cooperation into
CBR. Moreover, agent committees are new form of cooperation, different from
tams and coalitions, introduced in this monograph. Agent committees allow
a flexible and robust form of cooperation that can profit from individual agent
learning and can also provide collaborative strategies that favor individual agent
performance and learning capabilities.

The core content of this monograph is a systematic and empirical study on
the trade-off between cooperation and learning in different settings and for dis-
tinct purposes. The study addresses and answers issues like which properties a
committee should have to perform better and how can the agents cooperate to
achieve those properties; how individual agents may decide whether to convene
a committee and how to learn the models needed to support the decision process
to select which agent could join a committee; how to learning from cases can be
improved by cooperative strategies like case bartering and distributed case re-
tention; these and more issues are posed, alternative approaches are formulated,
experiments are performed to evaluate the proposals and analyze the factors
that determine their outcome.

Finally, the work by Santi Ontañón was performed at the IIIA and with
strong collaboration with current and past work by IIIA researchers. New con-
tributions in this monograph enrich existing IIIA research in case-based rea-

xv

xvi

soning, machine learning, multiagent systems, and electronic institutions. This
form of cumulative work, both conceptually and practically, is indispensable for
a scientific endeavor as that of Artificial Intelligence.

Bellaterra, July 26 2006

Enric Plaza i Cervera
IIIA-CSIC

Agradecimientos

Por mucho que en la portada de una tesis aparezca el nombre de un único au-
tor, está bien claro que una tesis no la realiza una única persona, sino que es
el resultado del trabajo de un grupo de personas. Por ello me gustaŕıa agrade-
cer la ayuda y apoyo de toda esa gente gracias a la cual esta tesis ha podido
llevarse a cabo. En particular a Enric Plaza, el director de este trabajo, por su
aportación de experiencia e ideas, y por su casi infinita paciencia al revisar y
mejorar una por una las innumerables versiones de los caṕıtulos que forman esta
tesis. También me gustaŕıa dedicar un agradecimiento especial a Eva Armengol
y Josep Llúıs Arcos, ya que sin su ayuda y trabajo esta tesis tampoco hubiera
sido posible. Pero no solo a ellos, también quiero dedicar un agradecimiento al
resto de miembros del IIIA, por crear un ambiente tan agradable, social y bueno
para la investigación.

También me gustaŕıa dar las gracias a mis amigos y a mi familia, y especial-
mente a mis padres y mi hermana, que han tenido que aguantar con paciencia
mi comportamiento “ermitaño” durante los últimos meses del desarrollo de este
trabajo.

Éste trabajo ha estado financiado por los proyectos IST-1999-19005
”IBROW”, TIC2000-1414 ”eInstitutor” y TIC2002-04146-C05-01 ”SAMAP”, y
por una beca de la Generalitat de Catalunya CIRIT FI/FAP 2001.

xvii

Resumen

Esta monograf́ıa presenta un marco de trabajo para el aprendizaje en un esce-
nario de datos distribuidos y con control descentralizado. Hemos basado nuestro
marco de trabajo en Sistemas Multi-Agente (MAS) para poder tener control
descentralizado, y en Razonamiento Basado en Casos (CBR), dado que su nat-
uraleza de aprendizaje perezoso lo hacen adecuado para sistemas multi-agentes
dinámicos. Además, estamos interesados en agentes autónomos que funcionen
como ensembles. Un ensemble de agentes soluciona problemas de la siguiente
manera: cada agente individual soluciona el problema actual individualmente
y hace su predicción, entonces todas esas predicciones se agregan para formar
una predicción global. Aśı pues, en este trabajo estamos interesados en desar-
rollar estrategias de aprendizaje basadas en casos y en ensembles para sistemas
multi-agente.

Concretamente, presentaremos un marco de trabajo llamado Razonamiento
Basado en Casos Multi-Agente (MAC), una aproximación al CBR basada en
agentes. Cada agente individual en un sistema MAC es capaz de aprender
y solucionar problemas individualmente utilizando CBR con su base de casos
individual. Además, cada base de casos es propiedad de un agente individ-
ual, y cualquier información de dicha base de casos será revelada o compartida
únicamente si el agente lo decide aśı. Por tanto, este marco de trabajo preserva
la privacidad de los datos y la autonomı́a de los agentes para revelar información.

Ésta tesis se centra en desarrollar estrategias para que agentes individuales
con capacidad de aprender puedan incrementar su rendimiento tanto cuando
trabajan individualmente como cuando trabajan como un ensemble. Además,
las decisiones en un sistemaMAC se toman de manera descentralizada, dado que
cada agente tiene autonomı́a de decisión. Por tanto, las técnicas desarrolladas en
este marco de trabajo consiguen un incremento del rendimiento como resultado
de decisiones individuales tomadas de manera descentralizada. Concretamente,
presentaremos tres tipos de estrategias: estrategias para crear ensembles de
agentes, estrategias para realizar retención de casos en sistemas multi-agente, y
estrategias para realizar redistribución de casos.

xix

Abstract

This monograph presents a framework for learning in a distributed data scenario
with decentralized decision making. We have based our framework in Multi-
Agent Systems (MAS) in order to have decentralized decision making, and in
Case-Based Reasoning (CBR), since the lazy learning nature of CBR is suitable
for dynamic multi-agent systems. Moreover, we are interested in autonomous
agents that collaboratively work as ensembles. An ensemble of agents solves
problems in the following way: each individual agent solves the problem at hand
individually and makes its individual prediction, then all those predictions are
aggregated to form a global prediction. Therefore, in this work we are interested
in developing ensemble case based learning strategies for multi-agent systems.

Specifically, we will present the Multi-Agent Case Based Reasoning (MAC)
framework, a multi-agent approach to CBR. Each individual agent in a MAC
system is capable of individually learn and solve problems using CBR with an
individual case base. Moreover, each case base is owned and managed by an
individual agent, and any information is disclosed or shared only if the agent de-
cides so. Thus, this framework preserves the privacy of data, and the autonomy
to disclose data.

The focus of this thesis is to develop strategies so that individual learning
agents improve their performance both individually and as an ensemble. More-
over, decisions in the MAC framework are made in a decentralized way since
each individual agent has decision autonomy. Therefore, techniques developed in
this framework achieve an improvement of individual and ensemble performance
as a result of individual decisions made in a decentralized way. Specifically,
we will present three kind of strategies: strategies to form ensembles of agents,
strategies to perform case retention in multi-agent systems, and strategies to
perform case redistribution.

xxi

Chapter 1

Introduction

This monograph presents a framework for learning in a distributed data scenario
with decentralized decision making. We have based our framework in Multi-
Agent Systems (MAS) in order to have decentralized decision making, and in
Case-Based Reasoning (CBR), since the lazy learning nature of CBR is suitable
for dynamic multi-agent systems. Moreover, we are interested in autonomous
agents that collaboratively work as ensembles. An ensemble of agents solves
problems in the following way: each individual agent solves the problem at
hand individually and makes its individual prediction, then all those predictions
are aggregated to form a global prediction. Therefore, in this work we are
interested in multi-agent learning techniques to improve both individual and
ensemble performance. In this chapter we are going to motivate our framework
and state our research goals. Then, we will present a road-map of the contents
of this thesis.

1.1 Motivation

Data of interest is distributed among several sources in many real world appli-
cations. Therefore, traditional machine learning techniques cannot be directly
used, since they assume a centralized access and control of the data. In order
to deal with the distributed nature of data of interest, several approaches have
been proposed.

A first approach is to collect data from the different data sources, and store
it in a centralized repository, where machine learning techniques can be used.
However, in many domains this approach is not desirable or even not feasible for
a variety of reasons. For instance for property rights, bandwidth limitations, or
because of management concerns (since data owners may not be wiling to cede
their data to a centralized repository because they want to maintain control over
their data).

A second approach is based on the fact that many machine learning tech-
niques can be decentralized. For instance, certain decision trees techniques can

1

2 Chapter 1. Introduction

be used in a distributed way [Caragea et al., 2003] by locally computing certain
statistics at each data source, and then sending those statistics to a central repos-
itory where a decision tree can be learnt. However, this second approach only
solves the problem of bandwidth limitation and is only applicable to machine
learning techniques that can be decentralized.

The previous two approaches correspond respectively to data warehousing
and distributed machine learning. Moreover, they both share two assumptions:
a) that the only problem is that data is distributed, and b) that a single model
of all the data is going to be constructed. Let us develop both issues in more
detail.

In many applications the fact that data is distributed among several sources
is not the only problem. The problem is that the different data sources may cor-
respond to different partners or organizations, and that those organizations may
consider their cases as assets and may not be willing to allow other organizations
to have access to their data either because of ownership rights or management
concerns. However, these organizations would be interested in benefiting from
the collaboration with other organizations but keeping the control of their data.

A way to deal with the privacy rights and management concerns may
be Multi-Agent Systems (MAS) [Durfee and Rosenschein, 1994, Jennings, 1993,
Woolridge, 1992], a sub-field of distributed artificial intelligence that studies how
autonomous entities (a.k.a. agents) interact, in a collaborative or competitive
way. Researchers in multi-agent systems focus mainly on architectures that
can support agent systems [Esteva et al., 2001], and on distributed mechanisms
to coordinate multiple agents so that they can jointly accomplish a given task
[Jennings, 1993]. The intersection of learning and multi-agent systems is called
Multi-Agent Learning (MAL) [Stone and Veloso, 2000], and addresses the inte-
gration of learning in multi-agent systems. However, it is a relatively new field
and a lot of work still remains to be done. Moreover, most of the work focuses
on reinforcement learning and evolutionary algorithms.

We have to take into account the difference between a distributed algorithm
and a multi-agent system: in a distributed algorithm there is a global goal (and
there are several processes running in parallel to accomplish that goal), while
in a multi-agent system each individual agent has its own goals. The joint
goals emerge from the interaction among several agents following an interaction
protocol: eventually a group of agents may collaborate together to solve a task,
but only if that task is beneficial for each one’s goals. Thus, multi-agent systems
are a suitable tool to preserve the privacy and management concerns in the
distributed data scenario, where each organization can be modelled as an agent
that has control over its private data. Moreover, two organizations will only
collaborate when they both are interested in collaboration.

Concerning the issue of building a single model, it is not obvious that build-
ing a single model of the data is always the best solution. For instance, ensemble
learning is a subfield of machine learning based on constructing several models
of the same data and then combine them in order to reduce error with respect to
using a single model. Thus, at least in principle, having multiple models of data

1.1. Motivation 3

is better than having a single model. Ensemble learning methods are centralized
and, given a training set, construct a set of different classifiers by training each
classifier with a variation of the training set or with a different learning method.
Ensemble methods reduce error with respect to using a single model for three
main reasons [Dietterich, 2000]: first, they enhance the expressive power of the
classifiers (since the ensemble can express hypothesis that cannot be expressed
with a single classifier); second, they reduce the impact of having a small training
sample (since a small sample increases the likelihood of finding a wrong hypoth-
esis, and the aggregation of several hypotheses is more likely to perform better);
and third, they reduce the problem of getting stuck in a local minimum dur-
ing learning (since each classifier is expected to find a different local minimum,
and their aggregation is expected to perform better). Moreover, we will call the
classification error reduction achieved by ensemble methods the ensemble effect.

A basic assumption of ensemble learning methods is a centralized control
over the data. This assumption does not hold in multi-agent systems where
control is decentralized, since each individual agent controls part of the data and
each agent is autonomous. Therefore, ensemble learning techniques cannot be
directly applied to build multiple models in a distributed data setting modelled
using multi-agent systems. Another problem is that ensembles must satisfy some
preconditions in order to perform well (that we will refer to as the “preconditions
of the ensemble effect”), and in an open multi-agent system we have no guarantee
that the individual agents satisfy those preconditions. Thus, if the benefits of
the ensemble effect are desired, alternative techniques are needed.

In this work, we are going to present a framework to deal with learning in
distributed data, based on multi-agent systems, and where we are interested in
using multiple models of the data. Moreover, due to the open and dynamic
nature of multi-agent systems, we are interested in Lazy Learning techniques,
and specially Case-Based Reasoning (CBR) [Aamodt and Plaza, 1994]. Lazy
learning techniques are better suited for open and dynamic systems than eager
learning techniques, since they are not sensitive to changes in the data, while
eager learning techniques have to rebuild (or adapt) their models of the data
every time that data changes.

Case-Based Reasoning (CBR) is a specific type of lazy learning, that consists
of storing problem solving experiences (called cases) so that they can be reused
to solve future problems. CBR basically relies on the assumption that similar
problems require similar solutions. A typical CBR system solves a problem by
retrieving cases stored in its case memory (called the case base) that are similar
to the problem at hand, and reusing the solution of the retrieved cases to solve
the problem. Once the proposed solution for the new problem has been revised,
a new case is created and it can be retained in the case base. This problem
solving cycle is known as the R4 model [Aamodt and Plaza, 1994], that divides
the activity of a CBR system in four processes: retrieve, reuse, revise, and retain.

Classical CBR considers a single case base with which to solve problems.
Applying CBR to multi-agent systems arises several issues. For instance, the
reuse process in the R4 model assumes that cases from a single case base have

4 Chapter 1. Introduction

been retrieved. However, in a multi-agent system several agents may control
different case bases. Moreover, agents may consider their case bases private,
and thus the problem is not simply to retrieve cases from several case bases,
but how several agents (each one controlling its case base) can collaborate to
solve problems using CBR, without violating neither autonomy of agents nor
the privacy of data. Moreover, case retention is not obvious either: in a classical
CBR system a case is retained into the case base after being solved. However, in
a multi-agent system, where a group of agents may have collaborated to solve a
case, it is not clear which agent or agents should retain that case. Therefore, at
least two new issues appear: how to solve problems in a collaborative way, and
how to perform retention in a collaborative way.

1.2 The Framework

In this thesis we will present the Multi-Agent Case Based Reasoning Systems
(MAC) framework for learning in distributed data settings with decentralized
decision making. Agents in a multi-agent system (MAS) have autonomy of deci-
sion, and thus control in a MAS is decentralized. Moreover, MAC systems take
a social agents approach based on electronic institutions [Esteva et al., 2001].
In electronic institutions, coordination among agents is performed by means of
shared interaction protocols. Basically, an interaction protocol defines a set of
interaction states, and the set of actions that each agent can perform in each
interaction state. Each agent uses individual decision policies to choose form the
set of possible actions at each interaction state. In the MAC framework, agents
collaborate by means of collaboration strategies, consisting on an interaction
protocol and a set of individual decision policies. Thus, the electronic institu-
tions offers us a framework where autonomy in decentralized decision making is
preserved.

Each individual agent in a MAC system is capable of individually learn and
solve problems using CBR, with an individual case base. Moreover, each case
base is owned and managed by an individual agent, and any information is
disclosed or shared only if the agent decides so. Thus, this framework preserves
the privacy of data, and the autonomy to disclose data. Therefore, the MAC
framework extends the case-based reasoning paradigm to multi-agent systems.
Moreover, notice that since each individual agent is an individual case based
reasoner, agents have the ability to learn individually.

The focus of this thesis is investigating ensembles of agents. Specifically, we
are interested in studying how to organize agents into ensembles, and how they
can collaborate to achieve the ensemble effect. For this purpose, we need to
address other issues such as determining when an agent should solve a problem
individually or organizing an ensemble, and determining which agents should
be present in an ensemble. Moreover, we are also interested in studying how
individual and ensemble performance can be improved. For this purpose, we
need to address several other issues such as learning how to select the members
of an ensemble, learning how to improve individual performance maintaining (or

1.3. The Goals 5

even improving) ensemble performance, determining how to redistribute cases
among the agents to achieve better distributions (in terms of performance), and
deciding which agents should retain new cases so that individual and ensemble
performance improves.

In order to address those issues we will design collaboration strategies, i.e.
we will design interaction protocols and individual decision policies. Thus, these
collaboration strategies will allow agents to form ensembles and to improve their
performance as a result of individual decisions made in a decentralized way. In
the next section we will present a detailed list of our research goals in the MAC
framework.

1.3 The Goals

The main goal of the thesis is to study the effects of distributed data and de-
centralized individual decision making in learning processes, and specifically in
a multi-agent setting where individual agents own different parts of the data.

Moreover, in this thesis we have also several goals related with CBR, multi-
agent systems and ensemble learning:

• The first goal is the integration of the three related areas (ensemble learn-
ing, case-based reasoning and multi-agent systems) and formally define the
Multi-Agent Case Based Reasoning framework (MAC).

• How to achieve the ensemble effect in multi-agent systems by forming com-
mittees of agents. Thus, allowing agents to improve their performance as
an ensemble as a result of their individually made decisions.

• Analyze the ensemble effect and its preconditions in a wide range of situa-
tions so that measures can be defined to characterize ensembles, and thus
predicted their performance. This measures are required so that agents
trying to behave as an ensemble can measure how well will they perform
as an ensemble and decide which actions should be taken to improve their
ensemble performance.

• Develop learning techniques to improve the performance of the agents
(both individually and as an ensemble). Specifically, we are interested
in two types of leaning: learning processes that allow agents to improve
individual problem solving performance, and learning processes that allow
agents to improve their collaboration, i.e. learning when to collaborate
and with whom to collaborate.

• Extend the Case-Based Reasoning paradigm to deal with multi-agent sys-
tems, in such a way that agent autonomy, data privacy, and individual
data control are preserved in the autonomous agents. The four processes
of CBR (retrieve, reuse, revise and retain) have to be rethought. Specif-
ically, in this thesis we focus on how reuse and retain can be adapted to
work in multi-agent systems.

6 Chapter 1. Introduction

• Develop techniques to perform the reuse process of CBR in a decentral-
ized way. Decentralized reuse would be preferable to decentralized re-
trieve under certain conditions, since decentralized reuse can preserve pri-
vacy of the data while decentralized retrieve cannot. Decentralized reuse
should be able to determine a global prediction through a collaborative
process (based for instance in voting or in any other aggregation mech-
anism) among several agents that have performed the retrieval process
individually.

• Develop techniques to perform the retain process of CBR in a decentral-
ized way. Decentralized retain raises several new problems with respect
to classical retain involving a single case base. For instance, using decen-
tralized retain, a group of agents solving a problem has to decide not only
if a case is going to be retained, but which agent or agents will retain it.
Moreover, decentralized retain has to take into account the performance of
the agents when they act as an ensemble, in addition to the performance
of the agents solving problems individually.

• Develop techniques for decentralized data redistribution. Since in a multi-
agent system we cannot make any assumption about the initial distribution
of data among the agents, it would be interesting to study data redistribu-
tion techniques that rely in decentralized control and that preserve the au-
tonomy of the agents. Redistribution techniques have the goal of achieving
a distribution of data that improves both individual and ensemble perfor-
mance.

1.4 The Thesis

In this section we will present a road map of the thesis, shortly summarizing
the contents of the rest of the chapters and appendices. Figure 1.1 shows a
condensed view of the contents of the thesis.

• Chapter 2 presents an overview of the state of the art in the areas related
to the research presented in this thesis. First, related work in Ensemble
Learning is presented, emphasizing in the work related to the ensemble
effect and on different methods for creating ensembles. Then, related work
on Case-Based Reasoning is considered, specifically the work related to
retain techniques and to explanations generation. Finally, recent work on
multi-agent learning is reviewed. Specifically, four areas of multi-agent
learning are reviewed: reinforcement learning and genetic algorithms in
multi-agent systems (since these two are the most applied techniques to
multi-agent learning) and also Case-Based Reasoning in multi-agent sys-
tems.

• Chapter 3 presents the MAC framework for ensemble case based learn-
ing. First, the relevant multi-agent systems concepts for our research are

1.4. The Thesis 7

Committees

Committee
Formation

Prediction
Aggregation

BWAV

Justifications

CCS

Analysis
Ensemble

Space

JEV

JEC

Retention

Redistribution
of cases

Multi-Agent
Retention

Justification-based
Retention

Delayed Retention

MAR-CS

JCU

JUST

CCB-CS

Case
Bartering:

CB-CS

Bias-based
Bartering

Justifications-based
Bartering

Multi-Agent
CBR

Systems

Chapter 9

Chapter 3 Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 4

B-CS

P-CSCompetence
Models

Proactive
Learning

PB-CS

Figure 1.1: Graphical overview of the contents of this thesis.

introduced. Specifically, collaboration strategies are defined and a formal-
ism to specify interaction protocols is presented. Then, feature terms, the
formalism used to represent knowledge in our work, are presented jointly
with the NOOS Agent Platform, a LISP based agent platform specifically
designed to incorporate integrate learning and reasoning techniques using
feature terms as representation language. Finally, the Multi-agent Case
Based Reasoning Systems are formally defined and our approach to multi-
agent learning is presented from a Case-Based Reasoning perspective.

• Chapter 4 presents the concept of a committee (a group of agents that
joins together to solve a problem using a voting system). A committee is
the organizational form of an “ensemble of agents” from the point of view
of multi-agent systems, defined to study the ensemble effect in multi-agent
systems. Specifically, the Committee Collaboration Strategy with which a
group of agents can act as a committee is presented, and the Bounded
Weighted Approval Voting is introduced as a voting system specifically de-
signed for committees of agents that use CBR to solve problems. Chapter
4 also presents the ensemble space analysis, an analytical tool to charac-
terize committees of agents and that we will use in the rest of the thesis as
a way to analyze the performance of a committee. Later, Chapters 5, 6,
and 7 present extensions of the basic Committee Collaboration Strategy.

8 Chapter 1. Introduction

• Chapter 5 presents the idea of the dynamic committee collaboration
strategies, that are strategies that convene different committees of agents
depending on the problem that has to be solved. Specifically, two differ-
ent dynamic committee collaboration strategies, namely the Peer Counsel
Collaboration Strategy and the Bounded Counsel Collaboration Strategy.

• Chapter 6 deals with how agents can learn to collaborate better. For
that purpose we introduce competence models, functions that assess the
likelihood of the solution provided by an agent (or set of agents) to be
correct. Next, we present the proactive learning of competence models as
a way in which individual agents can learn when to collaborate and with
whom to collaborate. Competence models can be autonomously learnt by
the agents interacting with other agents. Finally, the Proactive Bounded
Counsel Collaboration Strategy is presented, combining dynamic commit-
tees with proactive learning.

• Chapter 7 introduces the notion of justification. A justification is the
explanation given by a CBR agent (or any other problem solving system)
of why it has considered the solution of a specific problem to be correct.
In this chapter, we use justifications to deal with the issue that it can-
not be taken for granted that the agents in a MAC system satisfy the
preconditions of the ensemble effect. For that purpose, we will show that
justifications can be examined by some agents to assess the confidence of
the predictions made by other agents. Then, we will show how to use
this information to define an aggregation mechanism to determine which
is the solution with highest confidence, namely, the Justification Endorsed
Voting System (JEV). Finally, we present the Justification Endorsed Com-
mittee Collaboration Strategy that uses JEV to improve the performance of
committees by weighting the individual votes according to the confidence
assessed to their predictions.

• Chapter 8 addresses the issue of case retention in Multi-Agent Case-Based
Reasoning Systems. Specifically, three ideas are introduced: collaboration
strategies for case retention, the assessment of the case utility using justi-
fications, and delayed retention. First, several collaboration strategies for
case retention are presented, showing that they can outperform individual
retention strategies. Then, we introduce the Justification-based Case Util-
ity (JCU), a case utility function based on justifications that can assess how
useful will be a case for an agent. Moreover, we present the Justification-
based Selection of Training Examples, a case base reduction technique that
uses JCU to generate a reduced case base with the same problem solving
accuracy as the original one. Thirdly, we show that delayed retention can
improve performance with respect to retention strategies that consider
cases one by one. Finally, the Collaborative Case Bargaining Collabora-
tion Strategy is presented as a retention strategy that combines the three
ideas presented in the chapter.

1.5. Notation 9

• Chapter 9 presents a new family of collaboration strategies that use the
idea of case bartering. Case bartering is designed as a way to deal with the
problem of finding a redistribution of cases among the case bases of the
agents so that they perform better both as individuals and as a committee.
Specifically, we present two basic case bartering strategies: the Bias Based
Case Bartering Collaboration Strategy and the Justifications Based Case
Bartering Collaboration Strategy. The first one is inspired on the ensemble
space analysis presented in Chapter 4, and is based on decreasing the
bias in the individual case bases of the agents with the goal of boosting
both the individual performance of agents and their ensemble performance.
The second strategy is inspired in the case utility assessment based on
justifications and allows each agent to obtain high utility cases with the
goal of improving both their individual and ensemble performance.

• Chapter 10 first summarizes the work presented in this thesis. Then, the
contributions with respect to ensemble learning, case-based reasoning and
multi-agent systems are presented. The chapter closes with a discussion of
future lines of research.

• Appendix A presents a comprehensive list of the notation used in all the
chapters of this thesis.

• Appendix B presents an overview of the NOOS agent platform, that we
have used in our research.

• Appendix C presents a probability assessment technique used in the
Proactive Bounded Counsel Collaboration Strategy (Chapter 5), and in
the Justification-based Selection of Training Examples (Chapter 8). This
technique determines a confidence interval for classification accuracy esti-
mations.

1.5 Notation

In the remainder of this thesis we have followed the following notation conven-
tions:

• Ai: is used for agents (different subindexes denote different agents).

• ci: is used for cases.

• R: boldface upper case letters are used for tuples (or records).

• 〈f1, ..., fn〉: angle-bracketed lists are also used for tuples (or records).

• R.fi: dot notation is used to refer to the value of the field fi of the tuple
R.

10 Chapter 1. Introduction

• C: when elements of a certain kind are noted with a lower case letter, sets
of such elements are noted with an upper case letter. For instance, since
cases are noted with letter c, sets of cases — a.k.a. case bases — are noted
with letter C.

• A: when elements of a certain kind are noted with an upper case letter,
sets of such elements are noted with a calligraphic upper case letter. For
instance, since agents are noted with an upper case letter A, sets of agents
are noted with a calligraphic letter A.

• A: when elements of a certain kind are noted with a calligraphic letter,
sets of such elements are noted with a “blackboard bold” letter. Moreover,
since elements noted with a calligraphic letter are usually sets, elements
noted with blackboard bold letters are usually called “collections of sets”
(for not using “sets of sets” that would be confusing).

• #(A): denotes the cardinality of the set A.

Appendix A contains a comprehensive list of all the notation used throughout
this thesis.

Chapter 2

State of the Art

In this chapter, we will present an overview of the state of the art in the areas
related to our work. We have divided it into four areas:

• Ensemble Learning

• Case Based Reasoning

• Active Learning

• Multi-Agent Learning

The following sections describe each the work done in each one of the previous
areas in detail.

2.1 Ensemble Learning

Usually, when we have a set of training examples and a set of classifiers trained
from them, we have to select which is the best individual classifier. We can
define several criteria, such as the classifier that minimizes the classification
error in a test set. However, the bayesian learning theory tells us that if we want
to minimize the classification error, the best that we can do is not to select a
single classifier, we have to take into consideration all the possible classifiers and
aggregate their results building an ensemble of classifiers where each individual
classifier is weighted by its posterior probability given the training examples.
This ensemble of classifiers is known as the bayes optimal classifier, and no
other classifier can outperform it on average, since it maximizes the probability
of a new problem to be classified correctly.

Obviously, it is not possible to make such an ensemble since the number of
possible classifiers given a real problem is prohibitive. However, we can take
a sample of all the classifiers and aggregate them hoping to reduce the clas-
sification error compared to the best individual classifier. That is exactly the
idea behind ensemble learning. The classification error reduction obtained by

11

12 Chapter 2. State of the Art

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 errors 1 error 2 errors 3 errors 4 errors 5 errors

Figure 2.1: Probability of different agents erring at the same time.

the ensemble methods (that we may call ensemble effect) is usually stated like
this: the resulting error of the combined predictions made by several classifiers
is lower than the error of the individual classifiers if the following conditions are
met [Hansen and Salamon, 1990]:

1. The individual error of the classifiers is lower than 0.5

2. The individual error of the classifiers is uncorrelated (i.e. the individual
classifiers don’t err on the same problems).

The first condition states that the individual classifiers have to be minimally
competent, and the second conditions means that the individual classifiers have
to be different. Notice that if we combine identical classifiers, we do not gain
anything, since the aggregated output will be identical to the output of any of
the individual classifiers.

The error correlation between two classifiers Ai and Aj can be defined in the
following way [Gama and Brazdil, 2000]:

C(Ai, Aj) = p(Ai(P) = Aj(P)|Ai(P) 6= SP ∨Aj(P) 6= SP)

where Ai(P) represents the classification given by the classifier Ai for a problem
P , and SP is the true solution class of the problem P . Notice that the correlation
lies in the interval [0, 1], and the error correlation between a classifier and itself is
1. From now on, we will say that two classifiers are correlated if their individual
errors are correlated.

2.1. Ensemble Learning 13

2.1.1 Quantifying the Ensemble Effect

Let us consider why the ensemble effect works. Figure 2.1 shows the probabilities
that a specific number of agents give incorrect answers in a 5 agents system
where each individual agent has a probability of error 0.2 assuming that their
predictions are not correlated. We see that the probability of all the agents
answering the correct answer is (0.8)5 = 0.33, the probability of a single agent
making an error is 5 × (0.2 × (0.8)4) = 0.41, etc. Notice that if the individual
agents work as a committee (i.e. when they want to solve a problem, every agent
solves the problem, and the most voted solution is considered the final solution),
it is not needed that all the individual agents solve the problem correctly, only a
majority is needed. In this case with 5 agents, we only need that at least 3 agents
predict the correct solution. If we compute the probability of the committee of 5
agents of predicting the correct solution, we obtain: 0.33+0.41+0.20 = 0.94 (i.e.
the probability of all the agents giving the correct solution plus the probability
of 4 agents giving the correct solution plus the probability of 3 agents giving the
correct solution). Therefore, just by aggregating the predictions of 5 individual
agents whose individual error rate was of 20%, we have obtained a combined
predictor with an error rate of only 6%.

Notice that to compute the benefits of the ensemble effect in the previous
paragraph, we have assumed that the individual agents’ predictions are not cor-
related and this is not true in general. Studying the benefits of the ensemble
effect is specially relevant for multi-agent learning. Several studies have tried
to quantify the benefits that can be obtained by the ensemble effect. For in-
stance, Krogh and Vedelsby [Krogh and Vedelsby, 1995] found a decomposition
of the error E of an ensemble in two terms: E = Ē − Ā, where Ē is the mean
error of the individual classifiers and Ā is the ambiguity, a term that measures
the degree of correlation (the less correlation, the more ambiguity). The ob-
vious conclusion by looking at the formula is that the smaller the correlation,
the smaller the combined error. Therefore, to obtain the smaller classification
error, we need individual classifiers that have small classification error (to have
a small Ē), and that are not correlated (to have a great Ā). Unfortunately, it
is not possible to achieve both at the same time, and we have to find a trade-
off between individual accuracy and correlation. Other theoretical bounds on
the benefits of the ensemble effect can be found in [Koltchinskii et al., 2001],
[Tumer and Ghosh, 1996] and [Matan, 1996].

2.1.2 The Basic Ensemble Method

The ensemble effect has motivated several methods for combining classi-
fiers. The Basic Ensemble Method (BEM) was one of the first ones
[Perrone and Cooper, 1993]. BEM is a basic way to combine predictions made
with several neural networks by simply taking the average prediction among
all the outputs of the different networks. To build the collection of networks,
BEM proposed to train a set of networks with the same training data but using
different initial weights in each network.

14 Chapter 2. State of the Art

Assuming that the error of each individual network is not correlated with
the error of the rest of networks, and that the errors of the networks have zero
mean in average, it is possible to prove that BEM reduces the mean square error
by a factor of n (where n is the number of networks).

However, as these assumptions do not hold in general, an alternative formu-
lation of the BEM called Generalized Ensemble Method (GEM) is also presented.
GEM computes the best linear combination of all the networks in the ensemble.
Notice that both BEM and the best single network are special cases of GEM,
and therefore GEM will be always better or equal than BEM and than the best
individual network.

2.1.3 Reducing Error Correlation

The previous methods (BEM and GEM) relied on the unstability of the neural
networks in order to generate the different classifiers of the ensemble that were
not correlated. However, to create ensembles based on other learning methods
we need other ways to obtain individual classifiers that are not correlated.

Bagging was presented by Breiman [Breiman, 1996] as a general method to
build ensembles of classifiers with low error correlation. Bagging proposes to
generate several training sets drawn at random from the original training set,
and train each individual classifier with one of them. These new training sets
are not disjunct, i.e. there are cases that are present in various training sets.
The results of the classifiers are then averaged (as in BEM) for regression tasks
or combined using a voting scheme for classification tasks.

Notice that Bagging works if by training two classifiers with a modification
of the same training set, we can obtain radically different classifiers. However,
this is not true for all the learning methods. In fact, learning methods can
be grouped in two groups: global methods and local methods. Global methods
are those that create a single and global model from all the training data (e.g.
decision trees or neural networks). Global methods are very sensible to small
changes in the training set, and therefore methods like Bagging work well with
them. Local methods are those in which a small change in the training set do
not affect the global model, but only a small area of the model (e.g. nearest
neighbor methods, where a change in the training data only affects the area
surrounding the changes). Zheng [Breiman, 1996] and Bay [Bay, 1998] proposed
a different way to achieve low error correlation among the classifiers based on
making changes on the representation of the data instead of changing the train-
ing set. The changes in the representation can be achieved by allowing each
individual classifier to have access only to a reduced subset of all the attributes
of the training data. Using this method, local methods can also obtain benefits
from the ensemble effect. Zenobi and Cunningham [G. Zenobi, 2001] analyze
these kind of ensembles and define a strategy to build ensembles by creating
individual classifiers minimally correlated based on training them with different
feature subsets. They find that ensembles with low correlation work better than
those ensembles in which the individual classifiers are selected only for their
individual accuracy.

2.1. Ensemble Learning 15

Figure 2.2: Stacked Generalization combination method.

Finally, a third way to reduce error correlation is to modify the learning
method itself, i.e. give each individual classifier a different learning method.
This is applied for example by Ho [Ho, 1997] to the task of optical character
recognition and by Freitag [Freitag, 1998] to the task of information extraction.

Summarizing, we have seen that there are three basic ways to reduce cor-
relation among individual classifiers: changing the training sets, changing the
representation of the data or changing the learning methods. In this monograph
we will work with autonomous agents that have learned individually from differ-
ent training sets (i.e. they have collected experience individually). The degree of
correlation is an effect from the fact that the agents have individually collected
their experience (i.e. cases). Therefore, we do not use any method to explicitly
reduce the error correlation. We will assume that there is a given set of agents,
with given case bases, and we will try to define strategies in which those agents
can improve their performance with respect to working in isolation (sometimes
reducing their error correlation, see Chapter 9).

2.1.4 Aggregating the Classifiers’ Predictions

Until now, we have seen that the key in an ensemble to improve the classification
accuracy is to have individual classifiers with low error correlation. However,
there is another important issue: the way in which the individual classifiers’
predictions are aggregated. BEM simply used the average of all the individual
networks, and bagging uses the average or a simple voting scheme. However,
more complex combination methods can be defined.

Stacked Generalization [Wolpert, 1990] was presented by Wolpert as a general
method for combining classifiers. Given a set of classifiers {L0A1, ..., L0An},
stacked generalization creates a second level classifier L1A, that takes as input
the outputs of the collection of base classifiers and learns to predict the correct
solution. This second level classifier can be trained using the outputs of the base

16 Chapter 2. State of the Art

Figure 2.3: Cascade Generalization combination method.

classifiers or by enlarging the set of available attributes in the original training
data of the base classifiers with the predictions of the base classifiers (as shown
in Figure 2.2).

Cascade Generalization [Gama and Brazdil, 2000] is presented by Gama as
another general method for combining classifiers. Cascade Generalization is
similar to Stacked Generalization in having a set of base classifiers but with the
difference that they are run sequentially. At each step (i.e. after applying one
classifier), the original data set is expanded with new attributes. These new
attributes are the predictions given by the base classifiers as shown in Figure
2.3.

In general, both Stacked and Cascade Generalization fall in what it is
called Meta Learning. Meta learning is introduced by Chan and Stolfo
[Chan and Stolfo, 1995], who define three different combination strategies: the
combiner strategy, the arbitrer strategy and the hybrid strategy. The combiner
strategy is basically a reformulation of the stacking generalization, the arbitrer
strategy proposes to generate a meta classifier that is considered also a base
level classifier but whose output decides the solution class in case of a tie (when
voting). The hybrid strategy is a mix of both, and proposes to train a meta
classifier with just those training examples in which the base classifiers disagree
and that will work as a combiner. Notice that cascade generalization can be
seen as a sequence of combiner strategies with a single base classifier.

Finally, to complete the different ways to combine the predictions of several
classifiers. There’s a last category of methods based on model selection instead
of model combination. In model selection methods, for each new problem that
the ensemble has to solve, instead of aggregating the predictions of all the indi-
vidual classifiers, the most reliable prediction for the given problem is selected.
There are two basic ways to perform model selection: using a predefined rule
to select among the classifiers or learning a specific one. Ting [Ting, 1996] de-
fines a heuristic called Typicality that selects the most reliable classifier for each
problem. Typicality can be defined as follows:

Typicality(x) =
InterClassDistance(x)
IntraClassDiscante(x)

2.1. Ensemble Learning 17

i.e. those instances that are very close to other instances in the same class and
very far from instances of other classes are very typical, and those instances that
are close to instances of other classes are atypical.

Another approach to model selection is taken by Koppel and Engelson
[Koppel and Engelson, 1996]. For each base classifier, they propose to learn a
meta classifier that is able to predict whether the base classifier is likely to give
a correct solution or not for a given problem. In fact, this meta classifiers learn
the areas of expertise of the base classifiers. The most reliable base classifier’s
prediction (according to its meta classifier) is selected for each new problem.

This last family of combination methods (model selection) is specially inter-
esting in a multi-agent setting as the one we propose since it can allow individual
agents decide with which other agents in the system to collaborate by building
models of the areas of expertise of them. In fact, Chapter 4 shows how to ap-
ply this technique in order to determine competent agent committees to solve
specific problems.

2.1.5 Error Correcting Output Codes

We have seen that there are three ways to reduce error correlation (different
training sets, different data representation and different learning algorithm) and
three ways to combine the predictions (parallel combination, sequential combi-
nation and model selection). However, there is still another technique to build
ensembles of classifiers: training each individual classifier to learn a problem
different from the original learning task, but that when combined we can recon-
struct a solution for the initial learning task.

For instance Fürnkranz [Fürnkranz, 2002] proposed to build a committee
composed of individual classifiers where each classifier just learned to distinguish
between two classes. If there are K classes, there will be K × (K − 1) classifiers
in the ensemble (one per each possible pair of classes). This approach is called
Pairwise Classification or Round Robin classification.

A very related technique to Pairwise Classification is called the Error Cor-
recting Output Codes) (ECOC), and was presented by Dietterich and Bakiri
[Dietterich and Bakiri, 1995]. ECOC represent each solution class with a dif-
ferent codeword composed of several bits. Each bit of the codeword encodes
a binary classification task corresponding to a unique partition of the classes.
Each individual classifier of the ensemble learns to predict a specific bit of the
codeword. The output class is selected as the class with the closest codeword
to the codeword resulting of aggregating the bits predicted by the individual
classifiers.

2.1.6 Boosting

Finally, Boosting was presented by Freund and Schapire
[Freund and Schapire, 1996], and has been one of the most successful en-
semble methods. Boosting is a general method that attempts to “boost” the
accuracy of any given learning algorithm. The pseudocode of AdaBoost (the

18 Chapter 2. State of the Art

Function AdaBoost (T , N)
Initialize ∀k=1...#(T)T1(k) = 1/#(T).
For i = 1, ... , N:

Train a classifier Ai with the distribution Ti.
Compute the error ei of the classifier Ai.
wi = ei/(1− ei).
Compute the new distribution: Ti+1(k):

Increase the weight of the failed instances.
Decrease the weight of the correctly solved instances.

EndFor Return Ensemble(P) =
∑

i=1...N wiAi(P).
end-function

Figure 2.4: The AdaBoost algorithm. T is the training set, and N is the prede-
fined number of classifiers.

most common boosting algorithm) is shown in Figure 2.4. As we can see in
the figure, AdaBoost is an iterative algorithm with a predefined number of
rounds N . At each round i, AdaBoost will train a new classifier Ai with the
training set Ti. Moreover, each instance in Ti has a weight Ti(k). The learning
algorithm should give more importance to classify well those instances with
higher weights. AdaBoost increases the weight of those instances incorrectly
classified by the current classifiers in the ensemble. In that way, the new
classifiers created will focus in those areas of the problem space where the
current members of the ensemble fail to find the correct solution. Finally,
AdaBoost assigns a weight wi to each classifier of the ensemble computed
as a function of its classification error. Once the algorithm has finished,
in order to classify a new problem P all the classifiers solve P and their
predictions are aggregated using a weighted mean. AdaBoost assumes that the
classification task is binary (i.e. there are only two classes). However, it can
be extended to solve multiclass problems and there are multiple algorithms
proposed such as AdaBoost.M1 [Freund and Schapire, 1995], AdaBoost.M2
[Freund and Schapire, 1995], AdaBoost MH [Schapire and Singer, 2000] or
AdaBoost MR [Schapire and Singer, 2000].

Notice that since AdaBoost uses changes in the training set to reduce corre-
lation, it will only work with global methods and not with local methods.

The weak learning methods most often used with AdaBoost are decision
stumps. A decision stump is simply a decision tree consisting in a single node.
Decision stumps can be binary or bayesian, i.e. they can simply output a solution
class label (positive or negative) or output a solution class probability.

In addition, notice the parallelism between AdaBoost using bayesian decision
stumps and the naive bayesian classifier: both algorithms create a collection of
individual classifiers where each one predicts the solution class using a single
attribute. The difference lies just in the way in which those individual classifiers

2.1. Ensemble Learning 19

are created, and the way in which their predictions are aggregated. Therefore,
we can consider naive bayes as one of the first ensemble methods.

2.1.7 Summary

We have presented several ensemble methods, ad we can conclude that there are
only four different ways of reducing correlation:

• Varying the training set,

• Varying the representation (different feature subsets),

• Varying the learning method, and

• Varying the learning task (pairwise classification or ECOC).

and three different ways of combining multiple classifiers:

• Parallel combination,

• Sequential (cascade) combination, and

• Model selection.

Finally, we have presented Boosting, an ensemble algorithm that uses vari-
ations in the training set and parallel combination to achieve the maximum
possible accuracy given a learning algorithm and a training set.

In our experiments, the degree of error correlation among the individual
agents will be given by the fact that they have learned individually, and that
each one has collected experience on their own (i.e. they will have learned from
different training sets). Moreover, we will study parallel combination and model
selection techniques in order to aggregate the predictions of the individual agents.

One of the main differences between our approach and the ensemble methods
explained in this section is that, in our approach, we assume that each agent is
autonomous and that there is no centralized algorithm that can control them and
that the case bases of the individual agents are given (and not generated from a
single training set as in most ensemble methods). In the ensemble methods such
as boosting and bagging, there is a central algorithm that has access to the entire
data set, and that creates the ensemble, distributing the training set among the
individual classifiers and defining the way in which they collaborate. Moreover,
in our approach, no agent can be forced to collaborate with any other agent if
the agent is not willing to. The agents will only collaborate with other agents
if it is beneficial for them. Therefore, we can say that the existing ensemble
methods in machine learning study how to build ensembles, while we focus on
how can a given set of individual agents (classifiers) improve their performance
by working as an ensemble.

20 Chapter 2. State of the Art

Retrieve

R
e
u
se

New

Case

Problem

Solved

Case

Revise

R
e
ta
in

Revised

Case

Precedent
Case

Domain
Knowledge

New

CaseRetrieved

Case
Retrieved

Case

Figure 2.5: The Case Based Reasoning Cycle [Aamodt and Plaza, 1994].

2.2 Case Based Reasoning

Case Based Reasoning (CBR) is a specific kind of lazy learning. In contrast
to learning methods that construct a general, explicit description of the target
function when training examples are provided, learning in lazy learning meth-
ods consists of simply storing the training examples. Lazy learning techniques
construct local approximations to the target function that in most cases only ap-
ply in the neighborhood of the problem, and never construct an approximation
designed to perform well over the entire problem space [Mitchell, 1997].

The activity of case based reasoning can be summarized in the CBR cycle
[Aamodt and Plaza, 1994] as shown in Figure 2.5. The CBR cycle consists of
four stages: Retrieve, Reuse, Revise and Retain. In the Retrieve stage, the
system selects a subset of cases from the case base that are relevant to the
current problem. The Reuse stage adapts the solution of the cases selected
in the retrieve stage to the current problem. In the Revise stage, the obtained
solution is examined by an oracle, that gives the correct solution (as in supervised
learning). Finally, in the Retain stage, the system decides whether to incorporate
the new solved case into the case base or not.

Specifically, in this section we are going to focus in the Revise and Retain
stages. For the Revise stage, we are interested on techniques that allow a CBR
agent to build an explanation (to be presented to an human expert or to another
CBR agent) that endorses the solution of the new case. For the Retain stage,
we are interested in case retention strategies that permit a CBR agent to select
which cases to store in its local case base in order to obtain a compact competent
case base (i.e. a small case base that allows the agent to solve the largest range
of problems possible). Related to case retention is the machine learning subfield

2.2. Case Based Reasoning 21

of active learning. Active learning focuses on learning systems that have some
kind of control over which examples to learn from.

In the remainder of this section we are going to present an overview of these
two areas: selection of training examples (that includes both case retention and
active learning) and explanation generation.

2.2.1 Selection of Training Examples

There are two main approaches to the selection of training examples (or cases):
the CBR approach with the Retention process, and the active learning approach.
In this section we will present the most relevant work to our work in both
approaches.

2.2.1.1 Case Retention

While the goal of active learning is to avoid the labelling cost, CBR retention
focuses only on minimizing the size of the case base of a CBR system without
diminishing its performance. In earlier CBR systems, where small case bases
where used, it was found that the performance of the system increased as new
cases were added to the case base. However, in modern CBR systems, with large
case bases, it has been found that adding new cases into the case base is not
always beneficial. Smyth and Cunningham [Smyth, 1996] analyze this problem
and find that although lazy similarity-based methods (such as the ones typically
used in CBR) do not usually suffer from overfitting when adding new cases into
the case base, the efficiency of the system can degrade. The efficiency of the
system can be divided in two factors: the retrieval time and the reuse time.
While reuse time diminishes as the case base grows, retrieval time increases with
case base size. Therefore, by adding new cases into an already saturated cases
base, we only get the same problem solving performance, but with a reduced
efficiency.

There are two different approaches to CBR case retention:

• Case addition: where the system decides whether to add a new case or not
to the case base each time that a new case is received.

• Case deletion: the system always adds new cases to the case base, and
when a determined size is reached (or when an efficiency measure reaches
some threshold), some cases are decided to be deleted.

In the following we are going to present several strategies that fall in one of
these two approaches. However, several strategies can be used as case addition
or as case deletion strategies indistinctly.

Aha, Kibler and Albert [Aha et al., 1991] and later Aha [Aha,] propose sev-
eral algorithms for case based learning systems: CBL1, CBL2, CBL3 and CBL4.
For our interests, the comparison of CBL1 and CBL2 is specially interesting
(CBL3 and CBL4 only add robustness to noise and to irrelevant features):

22 Chapter 2. State of the Art

Algorithm CNN (C)
B = ∅
changes = true
While changes do

changes = false
For each c ∈ C do

If the system cannot solve c with the cases in B them
changes = true
Add c to B
Remove c from C

EndIf
EndFor

EndWhile
Return B

EndAlgorithm

Figure 2.6: The Condensed Nearest Neighbor (CNN) algorithm.

• CBL1: This is the base level algorithm, where all the cases are added to
the case base.

• CBL2: a case is added to the case base only it the system is not able to
solve it.

The intuition behind CBL2 is that if the system is able to correctly solve a
problem, that problem will not add any valuable information to the case base.
CBL2 is able to drastically reduce the amount of cases stored in the case base,
but suffers from several problems: it is very sensible to noise and to the order
in which the system receives new cases to be retained. CBL3 solves the noise
problem, but is still sensible to the order in which the new cases are presented to
the system. Moreover, notice that CBL2 is not an active learning strategy, since
it assumes that the correct solution of a case is known before deciding whether
to retain it or not.

Related to CBL2, Hart [Hart, 1967] presented the Condensed Nearest Neigh-
bor (CNN), that tries to obtain a smaller subset B of cases from a case base C
with the same problem solving power. CNN is outlined in Figure 2.6. Notice
that CNN is basically an algorithm that applies CBL2 with the cases in C that
are still not in B until all the cases in C can be solved with the new case base
B.

Smyth and Keane [Smyth and Keane, 1995] define several competence met-
rics for cases inside a case base that they later use to define case retention
policies. Specifically, they define the following concepts:

• The coverage of a case c in a case base C as the set of cases B ⊆ C that
can be solved successfully using c.

2.2. Case Based Reasoning 23

• The reachability set of a case c is the set of cases B ⊆ C with which the
case c can be successfully solved.

With these two concepts, they define 4 kinds of cases: pivotal cases are those
cases that whose reachability set is empty (i.e. those cases that cannot be solved
by any other case in the case base), spanning cases are those cases that link
together areas of coverage, support cases are a special case of spanning cases
and finally auxiliary cases are those cases whose coverage is subsumed by the
coverage of one of the cases in their reachability set (i.e. auxiliary cases do not
contribute at all in the coverage of the system). They propose a case deletion
policy called FootPrint deletion consisting on deleting first the auxiliary cases,
deleting only support cases if there are no auxiliary cases, only delete spanning
cases if there are no support cases, and only delete pivotal cases if all the cases
in the case base are pivotal.

Smyth and McKenna [Smyth and McKenna, 1999] try to solve one of the
shortcomings of the Condensed Nearest Neighbor (CNN) algorithm. As we
have said, CNN is very dependent of the order in which the cases are pre-
sented to the system. Smyth and McKenna define an ordering criterion based
on an improvement over the competence definitions done by Smyth and Keane
in [Smyth and Keane, 1995]. They define the concept of relative coverage, that
measures the contribution to the coverage of a single case (taking into account
how much of the coverage of a case is shared by its neighbors). They propose
the RC-FP (Relative Coverage Footprint) algorithm, that basically is the CNN
algorithm but ordering the cases of C in descending order of relative coverage
before presenting them to the system. In that way, cases with higher coverage
are presented earlier to the system and have higher chances of being retained.
In a later work, Smyth and McKenna [McKenna and Smyth, 2001] expand their
family of retention algorithms with: RFC-FP (that sorts cases in ascending or-
der of the reachability set), COV-FP (that sorts cases in descending order of the
coverage set).

Leake and Wilson [Leake and Wilson, 2000] have also expanded the family
of CNN related strategies presenting RP-CNN, that works as CNN but using a
measure called Relative Performance (RP) to sort the cases before presenting
them to the CNN algorithm. Relative performance is an utility measure that
takes into account the adaptation cost, i.e. the cost of adapting the solution of
a case to solve a problem.

Zhu and Yang [Zhu and Yang, 1999] propose a dual approach to that of
Smyth and Keane based on case addition instead of deletion. They formulate
the following problem: we want to obtain a subset of cases B of size k from a
case base C with the maximum coverage. To solve that problem, they propose
algorithm shown in Figure 2.7. They prove that this algorithm produces a new
case base that has at least a coverage of the 63% of the optimal reduced case
base, while the original algorithm of Smyth and Keane cannot ensure that result.

Salamó and Golobardes [Maria Salamó, 2003] propose two deletion policies
for CBR systems based on the rough set theory: Accuracy-Classification Case
Memory ACCM and Negative Accuracy-Classification Case Memory NACCM.

24 Chapter 2. State of the Art

Algorithm CaseBase Reduction (C)
Compute the Coverage of all the cases in C
Set B = ∅
While #(B) < k do

Select the case c ∈ C with maximum coverage and add it to B
EndWhile

EndAlgorithm

Figure 2.7: The Case Base reduction algorithm presented by Zhu and Yang.

Both ACCM and NACCM are able to keep classification accuracy at a very
high level (sometimes even improving the accuracy of the complete case base),
but the reduction of cases obtained is not as big as algorithms such as CBL2.
However, case bases obtained using CBL2 obtain much lower accuracies than
those obtained with ACCM or NACCM.

2.2.1.2 Active Learning

Active Learning is the subfield of machine learning that studies strategies for
a learner to select which examples are added to the training set to learn from.
In contrast to active learning, we have passive learning, that is the traditional
learning from examples framework where a learner simply accepts all the exam-
ples in the available training set. The goal of active learning is to minimize the
labelling cost, i.e. active learning focuses the scenario where it is cheap to obtain
unlabelled examples, but it is expensive to label them. This corresponds to many
real life scenarios where labelling an example implies asking a human expert or
running an expensive experiment in a production plant, etc. Specifically, there
are two types of active learning:

• Example construction: the learner can construct examples, and then ask
to a teacher/oracle to label them.

• Example selection: it is assumed that the learner cannot construct ex-
amples, but that has access to a large set of unlabelled examples. The
learner will examine the accessible unlabelled examples, and only select
those that appear to be the most informative. Then the learner asks the
teacher/oracle to label those examples.

Many strategies have been proposed for both types of active learning. For
instance, Cohn, Atlas and Ladner [Cohn et al., 1994] propose a technique called
selective sampling. Selective sampling requires the definition of a region of un-
certainty. The region of uncertainty is the region of the problem space where
the solution of the problems is still not defined given the known training data.
Figure 2.8 shows an example of the region of uncertainty for the version space al-
gorithm. Selective Sampling is an example construction active learning technique

2.2. Case Based Reasoning 25

0

0
0

0

0

0
0

0

0

11

1 1

1

Negative Region

Positive
 Region

Region of uncertainty

Figure 2.8: Region of uncertainty defined for a version space learning algorithm.

that proposes to construct examples only from inside the region of uncertainty,
since that region is where the problems that can make the learner reduce its
error lie all inside the region of uncertainty.

Selective sampling is able to improve the effectiveness of the learning process
given that the region of uncertainty can be computed. However, it is not easy
to compute the region of uncertainty for all machine learning methods. Cohn,
Atlas and Ladner also define a method to approximate selective sampling in
neural networks by assuming that the area where the output of a network is in
the interval [0.1, 0.9] is an approximation of the region of uncertainty. However,
that approximation only works once the network has been trained with an initial
(and representative) sample of examples.

Seung, Opper and Sompolinsky [Seung et al., 1992] propose that the Shan-
non information of an example can be a good active learning criterion and they
propose an algorithm called Query by Committee to estimate that information
value. Query by Committee works as follows: assume that the learner has al-
ready a training set T ; then k subsets of T are drawn randomly, and k different
classifiers are trained with each one of these subsets. Finally, the new example
is classified with each of the new classifiers: the degree of disagreement among
them is an approximation of the Shannon information of that example (given
that the learning task is binary). Moreover, they make experiments with a con-
crete version of Query by Committee consisting on creating only 2 classifiers,
and selecting those examples for which the two classifiers disagree. They show
that the information content of each new example retained is constant, while in
passive learning the information content of each new examples approaches zero
as the number of examples increase.

26 Chapter 2. State of the Art

Krogh and Vedelsby [Krogh and Vedelsby, 1995] define an active learning
policy for ensembles of classifiers. They decompose the error of the ensemble
in two terms: E = Ē − Ā (as explained in Section 2.1.1). The ambiguity
Ā is a measure of disagreement similar to that defined by Seung, Opper and
Sompolinsky. Krogh and Vedeslby propose to measure the ambiguity of the
ensemble for each new example, and add to the training set that with the highest
ambiguity.

Finally, Argamon-Engelson and Dagan [Argamon-Engelson and Dagan, 1999]
propose another method for active learning based on disagreements. They
propose a modified version of Query by Committee where the entropy of the
distributions of classifications voted for by the committee members is used as the
active learning criterion. The entropy takes value one when all the committee
members disagree, value zero when all agree, and intermediate values otherwise.
They propose two policies for active learning: the thresholded selection and the
randomized selection. In the thresholded selection, an example is selected if its
entropy value is above a threshold, and in the randomized selection the entropy
value is used as the probability to include the example into the training set.

Cohn, Ghahramani and Jordan [Cohn et al., 1995] propose an active learning
criterion based on the bias and variance [Kohavi and Wolpert, 1996] decompo-
sition. The bias and variance decomposes the error made by a learner in three
terms: the intrinsic error of the task (that cannot be eliminated), the learner
bias, and the learner variance. As they work with probabilistic classifiers, the
bias term is negligible (since the probabilistic classifiers being used can be con-
sidered unbiased). Therefore, the only term that can be decreased to reduce the
classification error is the learner variance. Thus, they propose to select those
examples that minimize the learner variance. The variance resulting of adding
a new example to the training set is computed, and the example that minimizes
the variance is selected. Moreover, although computing the variance term is
expensive for many learning algorithms, they show it is accurate and not as ex-
pensive for statistical methods such as mixture of gausians and Locally Weighted
Regression.

Lindenbaum, Markovich and Rusakov [Lindenbaum et al., 1999] propose
that the active learning process can be represented as a game where there are
two players: the learner and the teacher. The learner selects an example, and
the teacher labels it. This defines a game tree. If we define that the active
learning process finishes when a given number m of examples have been added
to the learner’s training set, the tree has depth 2n. At each leaf, the learner
has obtained a different training subset from the whole space of examples. The
goal of a good active learning strategy is to select those actions for the learner
that lead to the leaf where the expected classification accuracy of the learner is
maximal. They propose a 1-level lookahead search algorithm to deal with active
learning for nearest neighbor classifiers. Their method is more accurate, but has
an increased cost: while a standard active selection active learning strategy has
a cost N (where N is the size of the set of available unlabelled examples), the
1-level lookahead has cost N2.

2.2. Case Based Reasoning 27

2.2.2 Explanation Generation

Explanation is a key feature of CBR systems that can increase their reliability.
If a CBR system cannot provide an explanation of its answers, users can doubt
of the results provided by the system. Wooley [Wooley, 1998] makes an overview
of explanation methods for expert systems. Wooley talks about the following
uses of the explanations:

• Help systems used to describe how to use a specific product or command

• To increase user confidence in the results created by the systems

• Training or tutoring systems

Notice that explanation generation is always thought as a user-computer
interaction, i.e. the explanations are generated to be shown to a human user.
In our work, we are interested in agent to agent interactions, so that our CBR
agents will generate explanations to be shown to other agents. Anyway, this
section will provide a small overview of some existing techniques for explanation
generation.

Cawsey [Cawsey, 1992] presents a model of explanation generation for tu-
toring systems based on explanatory dialogues. Cawsey develops a model of
dialogues where the system has the dominant role. The system can ask ques-
tions to check the user’s knowledge, and the user can interrupt the system with
clarification questions.

Karsenty and Crezillion [Karsenty and Brzillon, 1994] present a framework
for cooperative problem solving and explanation. They argue that explanations
must be conceived of as part of a cooperative problem solving process, and not
just as a parallel phenomenon that does not modify the course of the reasoning.
They claim that usually the expert knowledge in expert systems is compiled, but
that in order to be able to explain its results, and expert system should make
explicit all his knowledge. Moreover, Karsenty and Crezillion also view the
explanation process as a dialogue between the human user and the computer as
Cawsey does, where both the user and the computer can ask questions to each
other in order to clarify the explanation or to know knowledge leaks of each
other.

Goel, Gómez, Grué, Murdok and Recker [Goel et al., 1997]use a Task-
Method-Knowledge (TMK) language to represent explanations. They present
a system called KRITIK, that can provide TMK explanations of the reasoning
process, including the retrieved cases from the case base, the adapted solution
and the intermediate steps in the adaptation process. The TMK language allows
the system to provide a general explanation of the complete process, that the
user can “unfold” to know more about specific issues.

Also related to explanations is the work on Explanation-Based Learning
(EBL) [Dejong and Mooney, 1986]. EBL tries to imitate the human learning
capability of generating new operational knowledge from domain knowledge and
a single example e. The goal of the system applying EBL is to prove that an

28 Chapter 2. State of the Art

example e belongs to a particular concept c. This prove is performed using do-
main knowledge, and the trace of the prove is considered the explanation of why
e belongs to that concept c. Once the explanation has been generated by the
system, it can be generalized in order to cover more examples (similar to e, but
not exactly equal). The purpose is to generalize as much as possible in order
to cover a larger amount of examples while maintaining the proof valid. This
explanation can be used in the future to determine if new examples belong to
the concept c. Notice that a property of the generalized explanations generated
by EBL is that they must be operational, i.e. the generalized explanation must
be expressed using only operational predicates. The main difference of EBL
and inductive learning is that EBL is deductive, i.e. the generalizations build
using induction may or may not be correct, but a generalization built by EBL
is always correct (assuming domain knowledge is correct). Moreover, it could
happen that domain knowledge is not complete, and therefore the system cannot
always build a proof. In EBL, the generalizations are used in order to obtain
“practical” knowledge from domain knowledge that can be used to solve prob-
lems, or to obtain knowledge that can speed up the problem solving process.
This is the main difference with our work on explanations, since in our work
the explanations are used to allow an agent to revise the solution obtained for a
given problem by some other agent by examining the explanation.

In our work, we are interested in a specific kind of explanations (that we will
call justifications). Namely, we are interested in symbolic justifications gener-
ated by CBR agents to justify the solutions that the agent find to solve prob-
lems. Therefore, we are interested in CBR methods that can provide such sym-
bolic justifications of the solutions. The LID(Lazy Induction of Descriptions)
method, presented by Armengol and Plaza [Armengol and Plaza, 2001b], is a
CBR method that uses a symbolic similarity term that can be used as a jus-
tification. LID builds the symbolic similarity term while solving a problem P
in the following way: initially, LID creates a void similarity term J; then the
most relevant feature f of the problem P is selected, and added to J. The set
of all the cases in the cases base that have the same value in the feature f as
the the problem P are called the discriminatory set. Once the discriminatory
set is computed, LID selects the next most relevant feature of P , adds it to J
and reduces the discriminatory set by removing the cases not having the same
value than P in the feature f . This process continues until all the cases in the
discriminatory set belong to a single solution class or until all the features in the
problem have been used or are irrelevant. Therefore, when LID solves a prob-
lem, builds a symbolic similarity term (J), that contains all the relevant features
contained both in the problem to solve and in the cases retrieved to solve the
problem. LID uses a heuristic measure to determine which are the most relevant
features to solve the problem; thus, the symbolic similitude term contains all
the relevant information common to the problem and to the retrieved cases (the
discriminatory set). Therefore, a symbolic similitude term J returned by LID
after classifying a problem P in a solution class Sk can be seen as a justification
of why LID has considered that the correct solution class for P was Sk.

2.2. Case Based Reasoning 29

2.2.3 Summary

In this section we have presented the related work of Case Based Reasoning and
Active Learning to our research. First, we have presented the active learning
and case retention techniques, that can be summarized as follows:

• Active Learning: tries to minimize the labelling cost of adding new exam-
ples to the training set. There are two types of active learning:

– Example construction: the learner generates examples and asks for
its label to the teacher.

– Example selection: the learner selects examples from a pool of unla-
belled examples.

• Case Retention: focuses on reducing the case base size in order to increase
the efficiency of the system, but without diminishing its problem solving
performance (i.e. tries to build competent and compact case bases). There
are two types of case retention strategies:

– Case addition strategies: most of them based on the CBL2 algorithm.

– Case deletion strategies: most of them based on the CNN (Condensed
Nearest Neighbor) algorithm.

In our work, we will present case base retention strategies for multi-agent
CBR systems inspired both in active learning and case retention techniques.
Specifically, we will present strategies inspired in example selection active learn-
ing, and in addition/deletion case retention strategies.

Moreover, we have also presented work related to explanation generation.
Most of the existing work on explanation generation focuses on generating ex-
planations to be presented to a human user. However, in our research, we are
interested on CBR agents that can provide explanations to be presented to other
CBR agents. We will call justifications to such explanations. Moreover, as in
some of the explanation generation techniques presented here, justifications will
play a main role in cooperative problem solving (being the novelty that we work
in cooperation between CBR agents and not between a CBR system and a hu-
man user).

We have seen that explanations are also used in EBL in order to obtain new
domain knowledge. The main difference between the use of explanations (or
justifications) in EBL and in our framework is that in EBL the explanations are
used to expand the domain knowledge while in our framework we use them to
allow an agent to revise the solution obtained by some other agent for a problem.

Finally, we have also seen that there are CBR methods, such as the LID
method, that are able to generate a justification of their answers. In our work
we are going to extensively make use of this kind of justifications in order to
improve the agent interaction in multi-agent CBR systems.

30 Chapter 2. State of the Art

Prey

Predator

Captured Prey

Figure 2.9: The predator prey domain.

2.3 Multi-Agent Learning

Multi-agent learning is the intersection between multi-agent systems and ma-
chine learning. In fact, we can say that any system where we have learning
and multiple agents is a multi-agent learning system. However, in the literature
multi-agent learning is usually not used to designate any multi-agent system
where learning is used but is restricted to that kind of learning that is possi-
ble only because several agents are present. Moreover, multi-agent learning is
a broad area and contains several subfields. An overview of learning in multi-
agent systems can be found in [Stone and Veloso, 2000], where Stone and Veloso
make a classification of multi-agent systems by increasing order of complexity
and explain the opportunities for applying machine learning techniques to each
kind of multi-agent systems.

In this section we will present an overview of only the main subfields of
multi-agent learning that are related to our work. Namely, we will talk about
multi-agent reinforcement learning (that is the most common machine learning
technique applied to multi-agent systems), genetic algorithms and CBR (Case
Based Reasoning). Moreover, we will also mention some isolated works that are
not contained in any of these subfields but are particularly interesting for our
work, i.e. those related to learning to solve classification tasks in multi-agent
systems.

2.3.1 Multi-Agent Reinforcement Learning

One of the main questions in multi-agent learning is whether individual agents
can benefit from collaborating with other agents in the system to increase their
performance, i.e. whether collaborative agents learn faster or better than iso-
lated agents. Tan [Tan, 1993] tried to answer this question by experimenting
with reinforcement learning in multi-agent systems. Specifically he performed

2.3. Multi-Agent Learning 31

experiments in the predator-prey scenario (also known as the pursuit problem),
where there are several predators with a single prey in a grid world and the goal
of the predators is to capture the prey (as shown in figure 2.9). Tan defined three
ways in which the learning agents can cooperate: sharing perceptions, sharing
episodic information (i.e., perception, action and reward) and sharing learned
knowledge. A group of agents that share perceptions has a better view of the
environment since what an agent cannot see maybe is observable by some other
agent, and therefore the learning process may speed up. When a group of agents
share episodic information or learned policies, all of them can potentially con-
verge to the same policy (since they all have the same episodic information from
where to learn), and the learning time is reduced by a factor of n (where n is the
number of agents in the system). Moreover, Tan explored what happens when
the individual agents have to learn to perform a joint task, i.e. a task where
several agents must coordinate their actions to reach a common goal. The re-
sult was that the agents taking into consideration other agents (and that shared
perceptions and episodes) learned better than independent agents.

Another early multi-agent reinforcement learning work is that of Mataric
[Mataric, 1994], who used reinforcement learning to learn social rules for a group
of autonomous robots. She defined three kinds of reinforcement: individual rein-
forcement (individual progress to goal), imitation reinforcement (if other agents
do the same actions that I do, that’s a positive reinforcement), and partner
reinforcement (if an action produces a direct positive reinforcement in another
agent, this is also a positive reinforcement). Using these three types of reinforce-
ment, the agents were able to outperform other agents that used only individual
reinforcement.

Both Mataric and Tan did not pay attention to the essential difference be-
tween single agent learning and multi-agent learning and applied standard re-
inforcement learning techniques to the multi-agent setting. The main theoret-
ical difference was not stated until the work of Littman [Littman, 1994]: In a
single agent scenario an agent can apply reinforcement learning hoping to con-
verge to an optimal policy since the environment is stationary. However, when
there are other agents in the environment (that can also be applying learning),
the optimal policy depends on the behavior of the other agents and the en-
vironment is not stationary anymore. Therefore, the convergence property of
single agent reinforcement learning does not apply. To overcome this problem,
Littman [Littman, 1994] proposed to model multi-agent reinforcement learning
as Markov games instead of using Markov decision processes (as it is in single
agent scenarios). Markov games extends the formalism of reinforcement learn-
ing to include multiple agents with interacting or competing goals. Moreover,
Littman proposed an algorithm called minimax-Q in order to find optimal poli-
cies in multi-agent scenarios. However, Littman’s work is restricted to zero-sum
games.

Hu and Wellman [Hu and Wellman, 1998] expanded Littman’s framework
to general-sum games. The notion of optimal policy loses sense in this more
general framework, and Hu and Wellman focused on finding Nash equilibriums

32 Chapter 2. State of the Art

[Nash, 1951]. In a Nash equilibrium, each agent’s choice is the best response to
the other agents’ choices.

Sen and Peng [Banerjee et al., 2001] also improved the minimax-Q algorithm
by proposing the minimax-SARSA that performs better than minimax-Q in
general-sum games.

Bowling and Veloso [Bowling and Veloso, 2002] defined two properties that
multi-agent reinforcement learning algorithms should met: rationality and con-
vergence. Rationality requires that if the other agents’ policies converge to sta-
tionary policies, then the learning algorithm should converge to a policy that is
the best response to the other agent’s policies; in addition, convergence requires
that the learner policy converges to a stationary policy. Bowling and Veloso
analyzed some of the previous multi-agent reinforcement learning approaches
and concluded that no previous algorithm (including minimax-Q and variants)
met both properties at the same time. Then, they presented the WoLF prin-
ciple (Win or Learn Fast) and an algorithm that uses it: WoLF-PHC (a hill
climbing algorithm). WoLF is a method for changing the learning rate of an
algorithm to encourage convergence. They proved that using WoLF, a ratio-
nal algorithm converges for a restricted class of iterated matrix games. More-
over, they empirically showed that WoLF-PHC is rational and converges on
a set of stochastic games. Bowling and Veloso also have designed GraWoLF
[Bowling and Veloso, 2003], a WoLF based algorithm that uses gradient ascend
specifically designed for multi-robot learning. Moreover, Banerjee and Peng
[Banerjee and Peng, 2003] proposed PDWoLF, an alternative version of WoLF
that dominates WoLF in performance (i.e. PDWoLF converges faster). Another
algorithm that tries to improve the convergence speed of is EXORL, presented
by Suematsu and Hayashi [Suematsu and Hayashi, 2002] and based on the ex-
tended optimal response principle.

Finally, Tumer et al. [Tumer et al., 2002] focus in a completely different
problem of multi-agent reinforcement learning: the “alignedness” of the rein-
forcement functions of the agents with their goal. In problems where the solu-
tion is a sequence of actions, individual actions have individual reinforcements:
if the positive reinforcement only arrives at the end of the sequence, the problem
can be difficult to learn. However, if the reinforcement of the individual actions
is also positive when the sequence of actions is leading the agent to the goal,
we can say that the individual action reinforcements are aligned with the goal.
In multi-agent settings this is even worse, since actions from several agents may
have to be combined in order to achieve a collective goal. Tumer et al. used de
Collective Intelligence (COIN) framework to address the problem of designing
reinforcement functions for the individual agents that are both aligned with the
global goal and that are learnable (i.e. the agents can see how their behavior
affects their reward).

2.3.2 Genetic Algorithms for Multi-Agent Systems

Genetic algorithms have been extensively used to autonomously evolve behavior
in agents. The work of Steels [Steels,] to evolve new functionalities in au-

2.3. Multi-Agent Learning 33

tonomous robots is an example. Moreover, there are also a number of authors
that have studied how to evolve coordination among autonomous agents using
genetic algorithms. Haynes et al. [Haynes et al., 1995] is an example of such
a work where they apply a particular genetic programming technique, Strongly
Typed Genetic Programming (STGP), to learn coordination strategies in the
predator/prey domain. STGP is a technique to restrict the search space, by
using it the resulting strategies are more human-readable than the strategies re-
sulting from standard genetic programming. In an extension of that work Haynes
and Sen [Haynes and Sen, 1995] address competitive co-evolution, where groups
of agents with competing goals evolve at the same time.

Competitive co-evolution was studied in detail by Rosin [Rosin, 1997], where
two populations with conflicting goals are evolved (the “hosts” and the “para-
sites”). Another work in co-evolution is that of Matos et al. [Matos et al., 1998],
where populations of agents (buyers and sellers) evolve different negotiation
strategies to maximize individual benefit.

Summarizing, we can say that genetic algorithms can be directly applied
to all those multi-agent scenarios where just an appropriate set of parameters
for each individual agent must be obtained (as in the case of the negotiation
strategies of Matos et al.[Matos et al., 1998]). However, if we want to evolve
non-parametric strategies (i.e. evolve programs), we need to use some technique
(such as STGP) to reduce the search space in order to obtain good results.

2.3.3 Multi-Agent Case Based Reasoning

Case Based Reasoning has also been applied in multi-agent systems to solve some
scenarios where reinforcement learning or genetic algorithms are typically used.
For instance, Haynes et al. [Haynes et al., 1998] applies CBR to the predator
prey problem where they allow each predator to learn cases of the behavior of
other agents. Using the stored cases, a predator can predict the movement of
the other predators, and coordination is greatly improved.

The first work in multi-CBR systems was presented by Prasad, Lesser and
Lander [Prassad et al., 1995]. They focus on a system where a set of individual
agents have collected experience by their own, and thus can have a local view
of each problem (i.e. each agent is just interested in a subset of features of each
case, and has just stored them). When an external user (or agent) wants to make
a query, maybe there is no single agent that has all the information required.
Prasad, Lesser and Lander present a decentralized “negotiated case retrieval”
technique that allows the group of agents to retrieve the appropriate information
from each individual case base and aggregate in order to answer a query.

Another perspective for cooperative CBR is the Federated Peer Learning
(FPL) framework presented by Plaza, Arcos and Martin [Plaza et al., 1997]. In
FPL each individual agent uses the same representation for the information
(therefore, no translation phase is needed), each individual agent is able to com-
pletely solve problems but as each agent has collected experience (i.e. cases)
individually, each agent may be specialized in some area of expertise. The dif-
ference with the work of Prasad, Lesser and Lander is that Plaza, Arcos and

34 Chapter 2. State of the Art

Martin assume that each individual agents has a complete view of each prob-
lem. Moreover, they explain two modes of cooperation in FPL: DistCBR and
ColCBR. In DistCBR an agent can send problems to other agents to be solved by
them, and each agent that receives a problem from another agent solves it using
its individual knowledge and problem solving methods. In ColCBR, an agent
can send problems to other agents and specify the concrete solution method that
has to be used. Notice that in ColCBR other agents are just an extension of
the agent’s memory. In our work, we will also follow the FPL framework but
with the difference that in FPL previous work, the retrieval is performed in a
distributed fashion while in our work the agents perform individual retrieval and
it is the reuse stage that is performed in a distributed way, i.e. in our framework,
each agent will individually solve a problem using only their local case bases,
but then, the all the solutions found by a group of agents will be aggregated to
obtain a final solution.

Soh and Luo [kiat Soh and Luo, 2003] deal also with a system composed of
several individual agents where each agent owns a private case base in a very
similar framework to FPL. When the case base of an agent does not contain
any good case to solve a given problem, maybe there’s another agent’s case base
that contains it. Soh and Luo propose a combination of individual learning and
cooperative learning: the agents solve problems only with the cases contained
in their local case bases, but keep some heuristics on the quality of each case.
When a case is found as having poor quality, a cooperative learning protocol is
engaged to obtain a better case from another agent to replace the old one. The
assumption behind Soh and Luo’s work is that cooperative learning is expensive,
and they try to engage it only when it is really needed. Moreover, they see
cooperative learning as an off-line problem, i.e. it is never engaged while solving
a problem.

Mc Ginty and Smyth [McGinty and smyth, 2001] present a framework called
Collaborative Case Based Reasoning (CCBR) that also can be viewed as FPL.
The main difference of Mc Ginty and Smyth’s work is that in CCBR an agent
maintains the problem solving authority by solving all the problems locally.
When an agent Ai has to solve a problem that falls outside his area of expertise,
the problem is sent to the other agents. If some of the other agents have relevant
cases to solve the problem, they are sent to Ai, who will then solve the prob-
lem using those cases retrieved from other agents. Notice that every agent is
responsible of evaluating whether a problem falls within its area of expertise and
that this approach is also focus on distributed retrieval. Mc Ginty and Smyth
successfully apply their CCBR framework to personalized route planning, where
each individual agent contains experience in solving plans for a specific user.

Leake and Sooriamurthi [Leake and Sooriamurthi, 2001,
Leake and Sooriamurthi, 2002b] present another framework, called multi-
case-base reasoning (MCBR), very similar to CCBR. MCBR deals with
distributed systems where there are several case bases available for the same
task. Moreover, each case base may not correspond to exactly the same problem,
or may reflect some different user preferences, etc. Therefore cases must be

2.3. Multi-Agent Learning 35

adapted to be moved from one case base to another. Leake and Sooriamurthi
explain that there are two different approaches to deal with multiple case bases:
an “eager” approach consisting on merging and standardizing all the case bases
in a single and centralized one, and a“lazy” one consisting on working with a
single local case base and only retrieving cases from external case bases when
needed. There is a common problem to the eager and the lazy approach:
cross-case base adaptation, i.e. how to modify one case belonging to an external
case base to fit in the local case base, while the lazy approach has an added
problem: case dispatching.

Leake and Sooriamurthi [Leake and Sooriamurthi, 2002a] present several
strategies to perform cross-case base adaptation: no adaptation, linear inter-
polation and local approximation (a case based adaptation technique). And two
strategies to perform case dispatching: threshold-based dispatching and case-
based dispatching. Later [Leake and Sooriamurthi, 2003] they show that by com-
bining the proper case dispatching and cross-case base adaptation techniques,
the lazy MCBR approach can outperform the eager MCBR approach since the
lazy system still keeps control of when solving problems using the local cases and
when solving problems using the external (and adapted) cases. Moreover, they
also show that the lazy approach is much less sensitive to noise in the external
case bases, since the dispatching policy can learn to to dispatch less cases to the
external case bases.

If we look back to the CBR cycle [Aamodt and Plaza, 1994] shown in Section
2.2, we can see that all the work presented in this section about multi-agent
case based reasoning focuses on distributing the Retrieval stage of the CBR
cycle. They all focus on a scenario where there exist a set of case bases (in
some frameworks each case base is owned by an individual agent), and the
main problem is to decide whether to retrieve cases locally, or dispatch the case
to another agent’s case base to retrieve cases there. But in all the scenarios
explained here, once the cases are retrieved from the external case base, they
are send to the agent that wanted to solve the case, and are reused by him.
This is the main difference with our work, in our work the Retrieval Stage is
performed locally, while it is the Reuse stage that is distributed, i.e. each agent
has only access to the case in his individual case base, and cannot retrieve cases
from an external agent’s case base. In Chapter 4 we will present this distributed
Reuse strategies in detail.

Finally, even in this exposition seems to picture Leake and Sooriamurthi and
Mc Ginty and Smyth’s work as previous to ours, it is not. It is contemporary
related work. In fact, we published our first works in multi-agent CBR systems
[Plaza and Ontañón, 2001, Ontañón and Plaza, 2001] in the year 2001, the same
year than the first works of Leake and Sooriamurthi and Mc Ginty and Smyth’s
work were presented.

2.3.4 Classification in Multi-Agent Systems

Some researchers have applied different learning methods than reinforcement
learning, genetic algorithms or case based reasoning to multi-agent systems to

36 Chapter 2. State of the Art

solve classification or regression tasks.
Modi and Shen [Modi and Shen, 2001] defined the distributed classification

task. Basically, the distributed classification task is similar to the scenario pre-
sented by Prasad, Lesser and Lander in [Prassad et al., 1995], where there are
a set of agents, each one with a local case base, and each agent has only access
to a subset of attributes of the problems. However, Modi and Shen assume that
all the agents have the same cases, and that each one only sees a subset of the
attributes. Moreover, they assume that there are unique identifiers for each case
shared by all the agents. Modi and Shen present two algorithms to solve the
distributed classification task: DVS (Distributed Version Space) and DDT (Dis-
tributed Decision Trees). DVS is a distributed version of the VS (Version Space)
algorithm, that converges to the same solution than VS without the agents re-
vealing the information contained in their case bases to the rest of agents. DDT
is a distributed decision tree learner that also keeps private the information of
the local case bases. The only information that DVS and DDT broadcast to the
other agents are the case identifiers. In our work we will also try to keep private
the information contained in each agent’s case base. However, we consider that
having unique identifiers for the cases too strong an assumption for many do-
mains, and therefore we will not support it. For this reason our agents cannot
make use of DVS or DDT.

2.3.5 Summary

Summarizing, we have seen that there are two main problems/approaches in
multi-agent learning:

1. Learning to behave in a society of learning agents, where the environment
is not stationary (since the other agents also have learning capabilities).

2. Learning to take benefit of the other agents in order to solve problems.

Most of the work in multi-agent reinforcement learning focuses on the first
one. Their main problem is that the scenario is not stationary, and they try
to find strategies for learning agents that converge and that converge to good
policies. Moreover, most work on genetic algorithms for multi-agent system also
focus on this kind of problems.

However, work on multi-agent case based reasoning focuses on the second
problem, i.e. we have a set of agents, each one with its local case base, and they
have to learn to obtain the highest benefit from the other agent’s case bases. The
work presented in this section deals with the problem of distributed retrieval,
i.e. how to know when the local case base is not competent enough and and it
would be better to retrieve cases from an external case base. An exception to
this rule is the work of Haynes et al. [Haynes et al., 1998], that attack the first
type of multi-agent learning problems using a case based approach.

In our work, we will focus on the second kind of multi-agent learning prob-
lems. Moreover, in our work, we do not perform distributed retrieval since each
agent has only access to its individual case base and does not have access to the

2.3. Multi-Agent Learning 37

cases of other agents. Instead, we focus on distributed reuse, where individual
agents solve a problem individually by CBR and then those predictions built by
the individual agents are aggregated to build one global prediction. Moreover,
notice the parallelism between this kind of multi-agent learning and ensemble
learning. In both frameworks, there are groups of problem solving agents (clas-
sifiers) that can collaborate to solve problems. However, the main difference is
that ensemble learning assumes centralized algorithms that have control over all
the individual classifiers, while in multi-agent learning, there is no such central-
ized control.

Chapter 3

A Framework for
Multi-Agent Learning

In this chapter we will introduce the multi-agent learning framework used
throughout this monograph. First we will present the specific multi-agent sys-
tem model used. Then, we present the formalization used to specify interaction
among agents. We will also present the knowledge representation that we have
chosen and how individual agents are implemented in our framework. After
that, we will define the notion of Multi-Agent Case Based Reasoning Systems
(MAC) as the kind of multi-agent systems we are interested with. Basically,
MAC systems are multi-agent systems where each individual agent uses Case
Based Reasoning (CBR) to solve problems and learn from experience. Inside
the framework of MAC systems, we will then introduce our approach to multi-
agent learning and which are our research goals inside this framework. Finally,
we present some capabilities that the CBR agents inside MAC systems need in
order to be able to apply the techniques that we will present in the following
chapters of this monograph.

3.1 Multi-Agent Systems

A multi-agent system (MAS) can be defined as a loosely coupled network of
problem-solving entities working together to find answers to problems that
are beyond the individual capabilities or knowledge of the isolated entities
[Durfee and Lesser, 1989].

One of the main features of multi-agent systems is autonomy. Individual
agents have their own goals and will not act against these goals. Therefore,
multi-agent systems will not follow the instructions provided by a distributed
algorithm but will take their own decisions. A major difference between dis-
tributed applications and multi-agent systems lies in the notion of goal. In a
distributed application the goal is given by that same application, and every
process in the application works following a distributed algorithm to achieve

39

40 Chapter 3. A Framework for Multi-Agent Learning

that goal. In a multi-agent system the goals are individual to each agent. The
”joint goals” emerge from their interaction following an interaction protocol.
Eventually a group of agents can join together and collaborate to solve a task if
and only if that is beneficial for each one of the individual agents.

Another basic feature of multi-agent systems is sociality, i.e. the capability
of agents to communicate with other agents (or with human users). For this
purpose, agents need both: an Agent Communication Language (ACL) and a
Knowledge Representation Language. Two agents can exchange messages only
if they share an ACL, and they can only communicate knowledge if they share
a knowledge representation language with which to represent it. Exchanging
messages allow the agents to communicate, coordinate and cooperate. Moreover,
when defining communication among agents, two situations can arise:

• That the individual agents share a common knowledge representation lan-
guage

• That each individual agent has, in general, a different knowledge represen-
tation language

In the first situation (where agents share a common knowledge representation
language), communication is easier, since both agents already share a common
language. If two agents do not use the same knowledge representation language,
then a common language must be defined and each agent must know how to
translate information from its internal language to the shared one and viceversa.

Moreover, sharing a knowledge representation language is not enough, since
the representation language only specifies the syntax with which knowledge is
represented, while concepts in a domain are defined by an ontology. An ontol-
ogy establishes a mapping between expressions in the knowledge representation
language and concepts of the domain. Therefore, two agents that share a com-
mon ontology can assign the same meaning to the messages coming from the
other agent. Communication between systems that have different ontologies is
an open problem and multi-agent system developers currently assume that a
common ontology exists for the application domain.

Environment awareness is also a requirement for an agent since an agent is
usually a situated entity inside an environment. In our framework, agents are
situated inside a social environment, not a physical one. The social environment
is composed basically by the rest of agents in the multi-agent system (and the
human users). Therefore, perception and action is equivalent to receive and send
messages from or to other agents or users. Such social environments are formally
studied in the field of electronic institutions [Esteva et al., 2001].

Moreover, it is important to note that our research focus on collaborative
multi-agent systems, where the individual agents do not compete against each
other, thus we will not consider competitive environments such as auctions in
our multi-agent learning framework.

Let us now define specifically how the interaction among agents works in our
multi-agent framework, the formalism that we are going to use to define agent

3.1. Multi-Agent Systems 41

Interaction Protocol

Collaboration Strategy

Decision PolicyDecision PolicyDecision Policy
Decision PolicyDecision PolicyDecision Policy

Decision PolicyDecision PolicyDecision Policy

CBR Agent CBR Agent CBR Agent

Figure 3.1: A collaboration strategy consists of an interaction protocol and a set
of individual decision policies.

interaction, and the knowledge representation language shared by the agents to
perform communication.

3.1.1 Collaboration Strategies

In our framework, all the interaction among agents is performed by means of
collaboration strategies.

Definition 3.1.1. A collaboration strategy 〈I,D1, ..., Dm〉 defines the way in
which a group of agents inside a MAC collaborate in order to achieve a common
goal and is composed of two parts (see Figure 3.1):

• an interaction protocol I

• a set of individual decision policies {D1, ..., Dm}.

The interaction protocol of a collaboration strategy defines a set of interaction
states, a set of agent roles, and the set of actions that each agent can perform in
each interaction state. Each agent use its individual decision policies to decide
which action to perform, from the set of possible actions, in each interaction
state. Moreover, instead of specifying specific decision policies {D1, ..., Dm}, a
collaboration strategy may specify generic decision policies that each individual
agent should personalize or simply impose some constraints in the specific indi-
vidual decision policies used by the agents. Each agent is free to use any decision
policy that satisfies those constraints.

Moreover, the agent communication language that we are going to use in our
framework is based in the speech act theory [Searle, 1969], i.e. that speaking
(communicating or sending messages) is acting. Therefore, each message (or
illocution) is composed of 4 elements:

42 Chapter 3. A Framework for Multi-Agent Learning

• Illocutionary particle: specifies the intention of the message, i.e. request-
ing, informing, etc.

• Sender: the agent sending of the message.

• Receiver: the agent receiving of the message.

• Content: the information that the sender wants to communicate to the
receiver with the intention specified in the illocutionary particle. The con-
tent is expressed in the shared knowledge representation language of the
agents.

For example, Request(Ai, Aj ,m) is a message where Request is the illocution-
ary particle, Ai is the sender of the message, Aj is the receiver of the message
and m is the content of the message.

Speech act theory suits the social environment in which the agents are situ-
ated in our framework (composed just by the rest of agents in the system and
by the human users), since the set of actions that an agent can perform in each
interaction state is in fact a set of possible messages that can be meaningfully
sent.

We have used the ISLANDER formalism [Esteva et al., pear] (also available
online at http://e-institutor.iiia.csic.es/bib/publications.php) to specify the inter-
action protocols in our framework. In the remainder of this section, we will
briefly summarize the ISLANDER notation (see [Esteva et al., pear] for a more
detailed explanation) and we will specify a basic agent interaction protocol using
this notation as an example.

3.1.2 Interaction Protocol Specification

In the ISLANDER notation, an interaction protocol is specified as a directed
graph, composed of four basic elements: States, Transitions (connecting two
states in an oriented way), Illocutions (containing a sender, the receivers, and
optionally some content parameters), and Conditions (specifying whether an
illocution is valid or not depending on some restrictions). In order to specify all
the above, the following notation is used:

An interaction state is noted wi (notice that an interaction state makes refer-
ence to the state of the protocol, and not to the internal state of the individual
agents taking part in it). An illocution is noted pi, and has the form: pi =
ip(sender, receiver,. . .) (where ip is an illocutionary particle). A Condition is
denoted as ci, and is composed of a set of constraints linked by conjunctive or
disjunctive relations.

Interaction states are linked by transitions. Each Transition is labelled by an
illocution and optionally a Condition (pi/cj). An illocution pi is only valid when
its Condition cj is satisfied. If a transition labelled with an illocution pi links
to states s1 and s2 means that when the illocution pi is sent, the protocol will
move from state s1 to state s2. Moreover, some Transitions are labelled with a
Timeout [!t] instead of an illocution, meaning that when the time t is reached

3.1. Multi-Agent Systems 43

:

:

w0 w1 w2

p1 p2

p1

p2

Request(?R, ?I, ?Q)

Inform(!I, !R, ?A)

Figure 3.2: Specification of a basic Request-Inform protocol.

after the arrival to the current state, the transition is in effect and the system
moves to the next state.

A variable is noted ?x. When we want to denote the value of a previously
bound variable, we write !x. And when we want to obtain the set of values that
a variable has taken we write: !wiwjx; this expression denotes the set of values
taken by the variable x during the last transition of the protocol from wi to wj .
And if we want to obtain the set of all the instantiations of a variable from the
beginning of the protocol, we write ∗!x.

In the remainder of this monograph, all the interaction protocols will be
specified using this notation.

3.1.2.1 Interaction Protocol Specification Example

Figure 3.2 shows the formal specification of a simple interaction protocol. The
interaction protocol specified is a basic Request-Inform protocol, where an agent
requests some information from another agent, and the requested information is
send back to the initial agent.

The protocol is composed of 3 interaction states: w0, w1, and w2. The
initial state is w0 and w2 is the final state. There are two agents taking part in
the protocol, the agent that request information (the requester) is referred by
variable R and the informer is referred by variable I. Notice that in message
p1 all the variables are preceded by a ? symbol, to indicate that they can take
any value: ?R and ?I will be instantiated to the requester and the informer
agents and ?Q will be instantiated with the content of the message sent from
the requester to the informer. Notice also that in message p2 variables !R and
!I are preceded by a ! symbol. This means that they must take the same value
taken in message p1 (i.e. the agent that receives message p1 must be the agent
that sends p2).

The three interaction states are connected by two transitions. The first
transition connects state w0 with w1, and is labelled with message p1. Therefore,
when the requester agent sends message p1 to the informer agent, the protocol
will move to the interaction state w1. In the same way, state w1 is linked
with state w2 with a transition labelled with message p2. Therefore, when the
informer agent sends message p2 to the requester, the protocol will move to the
interaction state w3 (that is a final state) and the protocol will end.

44 Chapter 3. A Framework for Multi-Agent Learning

Woman

Name

Father

Mother

Man

Name

Woman

Name

Rachel

Roy

Pris

Figure 3.3: Example of a simple feature term.

3.2 Knowledge Representation and Agent Plat-
form

In our work, we have chosen the feature terms formalism for knowledge repre-
sentation. All the cases and problems stored by the agents will be represented
as feature terms. Moreover, the agents have been implemented in the NOOS
[Arcos, 1997] agent platform, which supports feature terms. In this section we
are going to describe both feature terms and NOOS.

3.2.1 The Feature Terms Representation Language

Feature Terms (ψ-terms) are a generalization of the first order terms. The main
difference is that in first order terms the parameters are identified by position,
while in a feature term the parameters (called features) are identified by name.
A first order term has the form person(x1, x2, xn) (for example, an instantiation
of a first order term is person(rachel, roy, pris)), while a feature term has the
form person[name .= x1, father

.= x2,mother
.= x3].

Another difference is that feature terms have a sort hierarchy. For instance,
the previous example uses the sort person. These sorts can have subsorts (e.g.
man and woman are subsorts of person) creating a hierarchy of sorts. Formally,
we have a set of sorts Γ = {τ1, ..., τn}, where each sort τi is a symbol. Sorts
have an informational order relation ≤. The sort ⊥ ∈ Γ always exist and is the
smallest (i.e. the one that contains less information) sort. Notice that τ1 ≤ τ2
means that τ1 contains less information than τ2 (i.e. that τ1 is more general than
τ2). For instance, if we have the sorts person and woman (with the expected
meanings), we have that person ≤ woman.

The minimal element ⊥ is called any and represents the minimum informa-
tion; therefore, any is the top sort of the sort hierarchy: all the sorts are subsorts
of any. The values of the features of a feature term are also feature terms (with
their own sorts). When a feature has value ⊥ we say that the feature is unde-
fined. When a feature term has no defined features (i.e. all of its features have
value ⊥) it is called a leaf.

For instance, Figure 3.3 shows a graphical representation of a feature term.

3.2. Knowledge Representation and Agent Platform 45

Person

Father

Man

Name Roy

Woman

Name

Father

Mother

Man

Name

Woman

Name

Rachel

Roy

Pris

Man

Name

Father

Mother

Man

Name

Woman

Name

Rick

Roy

Pris

a)

b)

c)

Figure 3.4: Three feature terms: a) subsumes both b) and c).

Each box in the figure represents a node. Nodes are labelled by sorts, and on
the lower part, all the features that have a value different than any are shown.
The arrows mean that the feature on the left part of the arrow takes the node
on the right as value. In that example, the left-most node is the root node. We
will note by τ(ψ) the sort of the root node of a feature term ψ.

In Figure 3.3 the nodes labelled with Rachel, Roy and Pris are leaf nodes.
The left most node is the root node of ψ, and therefore τ(ψ) = woman.

From the ≤ relation among sorts an information order relation (v) between
feature terms, called subsumption, can be defined [Arcos, 1997]:

Definition 3.2.1. A feature term ψ1 subsumes another feature term ψ2, noted
as ψ1 v ψ2, if all the information in ψ1 is also present in ψ2, i.e. if the following
two conditions are met:

1. τ(ψ1) ≤ τ(ψ2).

2. For each defined feature fi = xi in ψ1, exists a feature fi = x′i in ψ2 such
that xi v x′i.

We can also say that ψ2 satisfies ψ1 or that ψ1 is a generalization of ψ2. For
instance, Figure 3.4 shows three feature terms, the feature term shown in Figure
3.4.a subsumes both feature terms in Figure 3.4.b and Figure 3.4.c because the

46 Chapter 3. A Framework for Multi-Agent Learning

sort of the root of 3.4.a is Person, that is more general than Woman and Man
and because every feature in 3.4.a subsumes the corresponding feature of 3.4.b
and 3.4.c. Moreover, notice that 3.4.a can be interpreted as “a person whose
father is called Roy”, and both 3.4.b and 3.4.c are two specific persons, one
called Rachel and the other called Rick, whose father is Roy.

See [Arcos and Plaza, 1996] for further detail in the feature term formalism.

3.2.2 The NOOS Agent Platform

The NOOS agent platform [Arcos, 1997] is an agent programming environment
that supports agents designed in the NOOS representation language to com-
municate, cooperate, and negotiate using FIPA standards and the method-
ology of Agent-Mediated Institutions [Plaza et al., 1998, Esteva et al., 2001,
Esteva et al., pear] developed at the IIIA-CSIC.

The NOOS language has been designed to implement machine learning meth-
ods using the feature term formalism to represent information, and specifically
to easily implement Case Based Reasoning (CBR) methods inside agents. See
Appendix B for a more detailed explanation on the NOOS agent platform and
a description of how MAC systems presented in this monograph have been im-
plemented.

3.3 Multi-Agent Case Based Reasoning Systems

In the previous section we have introduced multi-agent systems and the specific
assumptions that we make about multi-agent systems in our work. Moreover,
in the work presented in this monograph, we focus on applying lazy learning
techniques—and specifically Case Based Reasoning (CBR)— to multi-agent sys-
tems. For this purpose, we are going to define a specific type of multi-agent
systems: the Multi-Agent Case Based Reasoning Systems (MAC):

Definition 3.3.1. A Multi-Agent Case Based Reasoning System (MAC) M =
{(A1, C1), ..., (An, Cn)} is a multi-agent system composed of A = {Ai, ..., An}, a
set of CBR agents, where each agent Ai ∈ A possesses an individual case base
Ci.

Each individual agent Ai in a MAC is completely autonomous and each
agent Ai has access only to its individual and private case base Ci. A case base
Ci = {c1, ..., cm} is a collection of cases. Each agent has (in general) its own
CBR method(s) to solve problems using the cases stored in its individual case
base. Agents in a MAC system are able to individually solve problems, but the
can also collaborate with other agents to solve problem in a collaborative way.

In this framework, we will restrict ourselves to analytical tasks, i.e. tasks, like
classification, where the solution of a problem is achieved by selecting a solution
class from an enumerated set of solution classes. In the following we will note
the set of all the solution classes by S = {S1, ..., SK}. Moreover, we will note

3.4. Individual Problem Solving 47

the problem space by P, that contains all the problems that can be described in
a particular application domain. Therefore, a case can be defined as:

Definition 3.3.2. A case c = 〈P, S〉 is a tuple containing a case description
P ∈ P and a solution class S ∈ S.

Notice that case descriptions are defined over the problem space P. In the
following, we will use the terms problem and case description indistinctly. There-
fore, we can say that a case consists of a case description plus a solution class,
or that a case is a problem/solution pair.

We will use the dot notation to refer to elements inside a tuple. e.g., to refer
to the solution class of a case c, we will write c.S. Moreover, we will also use
the dot notation with sets, i.e. if C is a set of problems, C.P refers to the set of
problems contained in the cases in C, i.e. C.P = {c.P |c ∈ C}.

3.4 Individual Problem Solving

A CBR agent Ai in a MAC must be able to solve problems individually by using
the cases stored in its individual case base Ci. In general each agent is free to use
any CBR method to solve problems. In our experiments, we have used many
different methods to solve problems: Nearest Neighbor, K-Nearest Neighbor,
Decision Trees, and LID[Armengol and Plaza, 2001b] (See Section 2.2.2).

The only requirement on the CBR method that an agent in a MAC uses is
that after solving a problem P , and agent Ai must be able to build a Solution
Endorsement Record:

Definition 3.4.1. A Solution Endorsement Record (SER) is a tuple R =
〈S,E, P,A〉 where the agent A has found E (where E > 0 is an integer) cases
endorsing the solution S as the correct solution for the problem P .

If the CBR method of an agent can return more than one possible solution
class, then a different SER will be built for each solution. For example, if an
agent Ai is using a 5-Nearest Neighbor method, and when solving a problem P ,
the 5 nearest neighbors are the cases c1, c2, c3, c4, c5, where c1, c2 have S1 as the
solution class, and the rest have S2 as the solution class. Then, Ai will build the
following SERs: {〈S1, 2, P,Ai〉, 〈S2, 3, P,Ai〉}, i.e. agent Ai has found 2 relevant
cases to solve P that endorse the solution S1 as the correct solution, and 3 that
endorse solution S2. Any CBR method from which output a set of SERs can be
built is suitable to be used by a CBR agent in a MAC.

The SERs have the function of standardizing the way in which agents repre-
sent the outcome of the problem solving regardless of the CBR method used. In
this way, agents can communicate the individually found solutions for problems.

3.5 An Approach to Multi-Agent Learning

We are interested in studying certain kinds of multi-agent learning using the
MAC framework. In this monograph, we will work on cooperative settings,

48 Chapter 3. A Framework for Multi-Agent Learning

where the agents solve classification tasks. Our goal is to apply lazy learning
techniques to multi-agent systems in order to show that, through collaboration,
individual learning agents and multi-agent systems can improve their perfor-
mance (by improving performance, we understand increasing classification ac-
curacy, or reducing problem solving time). Both learning and collaboration are
ways in which an agent can improve individual performance. In fact, there is a
clear parallelism between learning a collaboration in multi-agent systems, since
they are ways in which an agent can deal with its shortcomings. Let us show
which are the main motivations that an agent can have to learn or to collaborate:

Motivations to learn:

1. Increase the quality of solutions (e.g. accuracy),

2. Increase efficiency,

3. Increase the range of solvable problems.

Motivations to collaborate:

1. Increase the quality of solutions (e.g. accuracy),

2. Increase efficiency,

3. Increase the range of solvable problems,

4. Have access to resources that only other agents can use.

Therefore, learning and collaboration are very related. In fact, with the ex-
ception of motivation to collaborate number 4 above, they are two extremes of a
continuum of strategies to improve performance. An agent can choose to increase
performance by learning, by collaborating ,or by finding an intermediate point
that combines learning and collaboration in order to improve performance. In
this work, we will present a framework in which both learning and collaboration
will be studied as ways to increase the performance of CBR agents. Specifically,
in this work we will focus on how can an individual learning agent improve its
performance by collaborating with other agents, how can a group of learning
agents improve group performance by collaborating among them, and finally
how can a learning agent decide whether it is better to work individually or to
work within a group.

In order to investigate how individual agents’ performance can be improved
by collaborating with other agents we will experiment with different collabora-
tion strategies that allow individual agents to improve their individual predic-
tions. For instance, we will define collaboration strategies that allow agents to
barter cases among them, so that an individual agent can improve the contents
of its local case base, thus leading to an improvement of individual prediction.
Information coming from other agents can also be useful in two situations: when
an agent has to decide whether a new case should be added to its local case base
or not; and when it has to decide whether a case should be deleted from its local

3.5. An Approach to Multi-Agent Learning 49

base base or not. Moreover, typically a CBR system does not add to the case
base every case it has access to, but has a retention policy (or a case base mainte-
nance policy) to decide which cases to add into (or to delete from) the case base.
In a MAC system, since cases discarded by some individual agent may be useful
to other agents, we will investigate collaboration strategies that take advantage
of this possibility in order to improve the quality of the cases retained and thus
improving future performance. Namely, we will study two families of strategies:
collaboration strategies for case retention and collaboration strategies for case
bartering. Retention strategies focus on how agent decide which cases to add to
the case base and Bartering strategies are strategies that allow agents in a MAC
system to barter cases so that every agent achieves a better individual case base.

Moreover, improving group performance is also one of our goals. We are
interested in collaboration strategies that allow groups of agents to benefit from
the ensemble effect (Section 2.1). In order to benefit from the ensemble effect,
agents in MAC systems will form committees. A committee is a group of peer
agents that work together in order to obtain a solution for a problem based
on the individual agents’ predictions for that problem. Our research is related
to ensemble learning since an agent in a committee can be considered as an
individual classifier in an ensemble, but it is worth noticing that committees
are different from ensembles in important aspects: ensemble learning techniques
typically consist of a centralized algorithm that has access to the entire data set,
that creates a set of classifiers, distributes the data set among them, and finally
defines the way in which those classifiers are coordinated and how the individual
predictions of the classifiers are aggregated.

In a MAC system, an agent that wants to form a committee cannot create
new agents, and has to work with the agents that are already in the MAC sys-
tem. Moreover, there is no single agent that has access to all the data: the data
is already distributed among the individual agents’ case bases and no agent can
individually decide how to redistribute data among the agents. Moreover, in
MAC systems agents are autonomous, and therefore no centralized algorithm
can force any agent to collaborate with other agents if they are not willing to.
Therefore, agents must coordinate in a decentralized way (by means of collabora-
tion strategies) in order to form committees. Notice that in MAC systems there
is a distinction between coordination and prediction aggregation: coordination
refers to how the information flows among agents and prediction aggregation
refers to the internal methods that the agents use in order to integrate the pre-
dictions coming from other agents. Coordination is specified in a collaboration
strategy in the form of an interaction protocol and prediction aggregation is
defined in the form of decision policies.

The main differences among ensemble learning and MAC systems are sum-
marized in Table 3.1. Moreover, one of the main goals of this work is to study
the ensemble effect under different conditions: namely, when data and control
are decentralized. We are interested in determining which are the conditions
for the ensemble effect to take place in committees of CBR agents, i.e. which
properties must the case bases satisfy and what strategies can the individual

50 Chapter 3. A Framework for Multi-Agent Learning

Ensemble Learning MAC Systems
Centralized control Decentralized control by means

of individual decisions
Can create classifiers Preexisting agents/classifiers

Preexisting data distribution,
Centralized distribution of data each agent has a local view

of the data
Centralized prediction aggregation Prediction aggregation defined

by individual decision policies

Table 3.1: Differences between ensemble learning and MAC systems.

agents follow in order to obtain the maximum benefit from the ensemble effect.
Specifically, this monograph will mainly focus in the following problems:

• How can individual agents obtain information from other agents in order
to improve individual predictions,

• When collaborating with other agents is beneficial (i.e. to form commit-
tees),

• How to decide which agents should join the committee,

• How the agents’ individual case bases characteristics affect the performance
of the committee,

• How to infer a global prediction by aggregating individual predictions of
autonomous agents agents (this aggregation issue is also present in ensem-
ble learning),

• How can agents improve individual case base by using retention and main-
tenance policies that profit from collaborating with other agents,

• How can all the above goals can be achieved in a decentralized way as a
result of the individually taken decisions of the agents in a MAC system.

In order to attack the previous problems, we will present several techniques
and collaboration strategies based on a number of agent capabilities. The re-
mainder of this section presents the extra capabilities of the agents in a MAC
must have in order to be able to use all the techniques and collaboration strate-
gies presented in this monograph. Specifically, we will present two capabilities:
competence assessment and justification generation. Finally, at the end of this
chapter we will present a CBR view of our approach, explaining how the tech-
niques that we will present in the rest of this monograph fit inside the CBR
framework.

3.5. An Approach to Multi-Agent Learning 51

3.5.1 Competence Models

The competence assessment capability is the ability of an agent to build com-
petence models. Moreover, in MAC systems where agents individually solve
problems, and can send problems to solve to other agents, competence models
are a must.

Definition 3.5.1. A competence model MA(P) → [0, 1] assesses the likelihood
that the prediction made by an agent (or a set of agents) A for a problem P is
going to be correct.

A competence model has several uses:

• An agent Ai can use a competence model MAi of itself to assess whether it
can solve a problem individually, or it needs help of other agents to solve
the problem together. A competence model MAi

of the agent Ai used by
Ai itself is called a self-competence model.

• Competence models can be used to decide which agent is more likely to be
helpful in solving a problem P .

• An agent can also use a competence model MAc of a committee of agents
Ac to assess whether that specific committee of agents is competent enough
to solve a problem.

In Chapter 4 we are going to explain in more detail how the ability to use
competence models can be exploited in MAC systems in order to build good
committees. Specifically, we will show that competence models are useful to
define the individual decision policies needed in some collaboration strategies.
Moreover, we are going to present a proactive learning technique that allows in-
dividual agents to learn competence models for specific collaboration strategies.

3.5.2 Justification Generation

In multi-agent systems, where the performance of an agent can depend on the
predictions provided by other agents, it would be desirable that each agent can
provide a justification of their predictions. For instance, if an agent Ai that
wants to solve a problem P decides (using its own competence model) that it
is better to ask another agent Aj to solve it, Ai completely depends on the
correctness of the solution provided by Aj for the problem P . In this situation,
it is desirable that Aj can provide Ai with a justification of its prediction. In this
way Ai could examine the justification provided and assess whether the solution
provided by Aj is reliable or not. Specifically, we can define a justification as:

Definition 3.5.2. A justification J built by an agent to solve a problem P
that has been classified into a solution class Sk is a description of the relevant
information of P used for predicting Sk as the solution class.

In our work, we have used two methods that are able to build justifications:
LID, and decision trees. Let us illustrate the meaning of a justification with two
examples.

52 Chapter 3. A Framework for Multi-Agent Learning

Sponge

External

features

Spiculate

skeleton
Spiculate

skeleton
Megascleres

External

features

Gemmules

Megascleres

Uniform length

Smooth form

No

No

Tylostyle

Figure 3.5: A symbolic justification generated by the LID CBR method in the
marine sponges classification domain.

3.5.2.1 Building a Justification with LID

As we have explained in Section 2.2.2, LID is a CBR method that builds a
symbolic similitude term J using the feature term formalism. Figure 3.5 shows
an example of a justification built using LID. This similitude term J contains
the relevant features in which the problem P is similar to the retrieved cases.
Therefore, we can say that the problem has been classified into a specific solution
class Sk because it had in common all the information present in J with the
retrieved cases, i.e. J is the justification of having classified P into the solution
class Sk. Specifically, the justification shown in Figure 3.5 has been built for
solving a problem in the marine sponges domain, where to solve a problem
implies classifying a marine sponge in its correct family. The justification shown
can be interpreted as: the Sponge has been classified in family Sk because “There
are no Gemmules in the External features of the sponge, the Smooth form of the
Megascleres of the Spiculate skeleton of the Sponge is of type Tylostyle, and the
Spiculate skeleton of the Sponge has not a Uniform length”.

Notice that a justification J built by LID will always subsume the problem
and the description of the retrieved cases, i.e. J v P and ∀i=1...nJ v ci.P
where c1, ..., cn is the set of retrieved cases. That is to say, a justification J
is a generalization of the problem and of the retrieved cases. Therefore since
lazy learning builds a local approximation of the target concept (Section 2.2),
a justification J can be seen as a symbolic local approximation built by LID to
solve the problem P .

3.5.2.2 Building a Justification with a Decision Tree

As we will show, decision trees can generate justifications in a very straightfor-
ward way. When a problem is solved using a decision tree, only one branch of
the tree is followed till a tree leaf l is found. The set of nodes of the tree in that
branch contain the conditions that the problem matches and that the decision
tree has used to classify the problem in the leaf l. Therefore, that is the infor-

3.5. An Approach to Multi-Agent Learning 53

Figure 3.6: Example of a justification generation by a decision tree in a toy
problem.

mation that should appear in the justification. Figure 3.6 illustrates the process
for a toy problem. In the figure we can see a problem (containing two features:
traffic light and cars crossing)), and a decision tree that predicts whether we
can cross a street or not. The problem is classified using the decision tree, and
only he attribute traffic light is used to decide that the problem belongs to the
class wait. Therefore, the justification will contain only the traffic light feature,
as shown in the right-most part of the figure. The interpretation is that “the
problem belongs to the class wait since traffic light has the value red ”.

Notice that standard decision trees algorithms (such as C4.5) cannot be di-
rectly used in CBR since a decision tree does not store the cases used to learn it.
However, decision trees can be used as indexing mechanism for CBR by storing
the cases in the leaves of the tree. Moreover, the method we have presented to
generate justifications is not restricted to any specific decision tree algorithm
and, for instance, lazy decision trees could also be used.

3.5.2.3 Justifications in MAC Systems

Justifications can enrich agent interaction in many ways, as we will show in the
remainder of this monograph. However, building a justification is not enough in
a MAC system: the agents need a way to communicate their justifications to
other agents. For this purpose, we define the Justification Endorsement Records.

Definition 3.5.3. A Justification Endorsement Record (JER) is a tuple J =
〈S, J, P,A〉 where an agent A considers the solution S as the correct solution for
the problem P endorsed by the justification J .

A JER defines a standard way in which an agent can communicate a justi-
fication to another agent (it is the equivalent of a solution endorsement record
(SER) when there is a justification involved). Section 7.2 provides an more in
detail analysis of justifications and its role in multi-agent CBR systems.

3.5.3 A CBR View of the Multi-Agent Learning Frame-
work

The CBR cycle consists of four processes [Aamodt and Plaza, 1994] (See Figure
3.7): Retrieve, Reuse, Revise and Retain. The Retrieve process selects a subset

54 Chapter 3. A Framework for Multi-Agent Learning

Retrieve

R
e
u
se

New

Case

Problem

Solved

Case

Revise

R
e
ta
in

Revised

Case

Precedent
Case

Domain
Knowledge

New

CaseRetrieved

Case
Retrieved

Case

Figure 3.7: The Case Based Reasoning Cycle [Aamodt and Plaza, 1994].

of cases from the case base that are relevant to the current problem. The Reuse
process generates the solution to the new problem (by some specific technique)
from the solutions of the retrieved cases. In the Revise process, the obtained
solution is examined by an oracle, that gives the correct solution (as in super-
vised learning). Finally, in the Retain process, the system decides whether to
incorporate the new solved case into the case base or not.

Reuse techniques can be based on adaptation of the solutions of all (or some
of) the retrieved cases or in voting schemes if the CBR system is solving classifi-
cation tasks. For instance, k-Nearest Neighbor (k-NN) methods can use a voting
mechanism among the retrieved cases to decide the final prediction. In general,
the k retrieved cases by a k-NN method have several different solution classes.
The reuse process of a k-NN method consists of an integration of the solution
classes of the k retrieved cases, a common way to perform this integration is
using a voting scheme. The most used method for reuse in k-NN is majority
voting, that consists of determining how many cases of each different solution
class have been retrieved, and the final prediction is the class with more cases.
However, more complex voting schemes can be defined.

In the MAC framework, the Retrieve process is performed individually,
since each agent has access to the contents of its individual case base but
not to that of other agents. Therefore, our framework does not have a
distributed Retrieve process (as other approaches do [Prassad et al., 1995,
Plaza et al., 1997, McGinty and smyth, 2001, Leake and Sooriamurthi, 2001,
Leake and Sooriamurthi, 2002b, Leake and Sooriamurthi, 2002a]). The result
of the Retrieve process performed by an agent in a MAC system is reified in
the form of a set of SERs (solution endorsement records) or JERs (justification
endorsed records).

3.6. Summary 55

Retrieve

R
euse

Revise

R
et
ai
n

Precedent
Case

Domain
Knowledge

Individual

Individual

Collaboration
Strategies

Collaboration
Strategies

Figure 3.8: Distributed and individual processes of the CBR cycle in the MAC
framework.

When several agents join a committee to solve a problem, each one performs
individually the Retrieve process, while the Reuse process is performed in a dis-
tributed way. In our framework we focus on classification tasks, and therefore
the Reuse process consists on selecting a specific solution class Sk ∈ S for the
problem. The selection of this solution class is performed in a committee by
means of a voting scheme. In the voting scheme, each agent will cast votes
endorsing different solution classes based on the result of the individually per-
formed Retrieve process. The resulting solution of the voting scheme will be
yielded as the final prediction for the problem.

During the Retain process, a CBR system incorporates new cases into the
case base. Every agent can have an individual retention policy to decide which
cases to incorporate to the case base and which cases to discard. As cases
discarded by some agents can be useful to other agents, in Chapter 8 we will
also define collaborative retention strategies that allow agents in a MAC system
to take more benefit of the cases they have access to.

Summarizing, in our multi-agent learning framework, from the four processes
in the CBR cycle, Retrieve and Revise are performed individually by each agent
in the system while Reuse and Retain are distributed processes performed fol-
lowing the collaboration strategies that we present in this monograph, as shown
in Figure 3.8. Namely, Chapters 4, 5 and 7 present collaboration strategies to
perform distributed Reuse and Chapters 8 and 9 present collaboration strategies
to perform distributed Retention.

3.6 Summary

The main goal of our research is to apply lazy learning methods (and specifically
CBR methods) to multi-agent systems where cooperation can take place. For

56 Chapter 3. A Framework for Multi-Agent Learning

this purpose, in this chapter we have introduced the framework for Multi-agent
Case Based Reasoning (MAC) systems. MAC systems offer a good framework
to study learning and collaboration in multi-agent systems. Learning in MAC
systems is achieved by having CBR agents that individually use CBR to solve
problems. Moreover, those CBR agents can cooperate following what we call
collaboration strategies (See Section 3.1.1).

A very related area to our research is ensemble learning. Specifically, we
are interested in the ensemble effect, responsible for the accuracy improvements
in ensemble learning. Inside MAC systems we will study committees, that are
groups of agents that join together to solve a problems in a similar way to
ensemble methods (that is, benefitting from the ensemble effect) but preserving
the autonomy of the CBR agents. We are interested on studying how CBR
agents in a MAC system can decide when to for committees and how agents
an decide which agents should join the committee in order to benefit from the
ensemble effect.

Committees allow CBR agents to improve performance by collaborating with
other agents. However, another way to improve individual performance of CBR
agents is by improving their individual case bases. Inside MAC systems we are
interested in studying collaboration strategies that improve the individual case
bases of the agents. Namely, we will study two families of strategies: collabora-
tion strategies for case retention and collaboration strategies for case bartering.
We are interested on studying case retention strategies that can improve the re-
tention process of CBR agents with respect to retention techniques that do not
perform collaboration. Another approach to improve individual case bases are
the case bartering strategies that are based on exchanging cases among agents.
We are interested in studying case bartering strategies that by redistributing the
cases among the individual case bases improve both individual and committee
performance.

Finally, we have analyzed MAC systems from the viewpoint of the CBR cy-
cle since we are specially interested in CBR techniques. A key characteristic of
collaboration to solve problems in MAC systems (i.e. committees) with respect
to other multi-agent CBR works is that the retrieve process is performed individ-
ually and collaboration takes place in the reuse process, i.e. committees are not
a technique to perform distributed retrieval. Moreover, collaborative retention
strategies and bartering strategies take place during the retention process of the
CBR cycle.

Chapter 4

Committee Collaboration
Strategies

In this chapter we are going to introduce the notion of committees. Basically, a
committee is a group of agents that join together in order to find the solution
of a given problem by means of a voting mechanism. Each individual agent
member of a committee individually gathers evidence about the solution of the
problem, and then a voting system is used to obtain a global prediction from
the individually gathered evidence. Specifically, we will present the Committee
Collaboration Strategy and empirically evaluate its performance.

4.1 Introduction

Committees provide a way in which individual agents can collaborate with other
agents in order to improve classification accuracy thanks to the ensemble effect
(see Section 2.1). One of the main goals of this chapter is to study the im-
provement on classification accuracy achieved thanks to the ensemble effect by
individual agents that collaborate by forming committees. We will study the
ensemble effect in several multi-agent scenarios, with the goal of determining
which are the conditions under which the ensemble effect takes place.

Although this approach is very related to the ensemble methods presented
in Section 2.1 there is a fundamental difference: while ensemble methods focus
on creating ensembles in order to improve the classification accuracy of a given
learning method, our approach focuses on the following scenario: given a set
of agents (that can be considered as the individual classifiers), how can they
collaborate in order to take benefit from the ensemble effect. Bagging or Boosting
are methods that specify the way in which the individual classifiers are generated.
In our approach we do not assume anything about the individual classifiers. Each
individual agent has individually collected its own case base, and we cannot
assume anything about them. Therefore, the difference can be summarized as
follows: ensemble methods build a set of classifiers to finally build an ensemble,

57

58 Chapter 4. Committee Collaboration Strategies

P

P

P

P

RA1

RA2

RA3

Ac

Not willing
to collaborate

Not willing
to collaborate

Ac

MAC

Figure 4.1: Illustration of a MAC system where an agent Ac is using CCS in
order to convene a committee to solve a problem.

while our approach focuses on defining collaboration strategies so that a given
set of agents can work as an ensemble without compromising their autonomy.

The remainder of this chapter is structured as follows: first, we present the
the Committee Collaboration Strategy. Then, we will present the voting system
used in the Committee Collaboration Strategy to perform the distributed Reuse
process. Finally, experiments in several scenarios are presented to evaluate the
performance of the Committee collaboration strategy under different situations
and using several voting systems.

4.2 The Committee Collaboration Strategy

This section presents the Committee Collaboration Strategy (CCS) that allows a
group of agents to benefit from the ensemble effect by collaborating when solving
problems. Let us first define what is a committee.

Definition 4.2.1. A Committee is a group of agents that join together to predict
the solution of a problem P . Each agent individually gathers evidence about the
solution of P and then contribute to the global solution by means of a voting
process.

When a committee of agents solves a problem, the sequence of operation
is the following one: first of all, an agent receives a problem to be solved and
convenes a committee to solve the problem; the problem is sent to all the agents
in the committee and every agent preforms the Retrieval process individually;
after that, instead of performing Reuse individually, each agent reify the evi-
dence gathered during the Retrieve process about the likely solution(s) of the

4.2. The Committee Collaboration Strategy 59

problem in the form of a collection of SERs. The Reuse process is performed in
a collaborative way by aggregating all the SERs to obtain a global prediction
for the problem using a voting process (see Section 4.3).

The Committee Collaboration Strategy allows the agent members of a MAC
system to act as a committee. Formally, let M be a MAC system composed on
a set A of agents and Ai ∈ A an agent that wants to solve a problem P using the
committee collaboration strategy. We will call Ai the convener agent, since it is
the one that receives a problem and convenes the committee. Since autonomy
is one of the main features of agents the convener agent cannot force the rest of
agents to join the committee. As a consequence, before convening a committee,
an agent Ai that wants to use the Committee Collaboration Strategy first has
to send an invitation to join the committee to the agents in the MAC system.
Each agent that accepts the invitation sends back to Ai an acceptance message.
Thus, the convener agent plus those accepting the invitation constitute the set
of agents Ac ⊆ A that effectively form the committee.

Specifically, the Committee Collaboration Strategy is composed by an inter-
action protocol and an individual decision policy:

Definition 4.2.2. The Committee Collaboration Strategy(CCS) is a collabo-
ration strategy 〈ICCS , DV 〉, where ICCS is the CCS interaction protocol shown
in Figure 4.2 and DV is a decision policy based on any voting system that can
be used to aggregate the evidence gathered by the individual agents into a global
prediction.

Notice that the protocol ICCS is completely defined by the Committee Col-
laboration Strategy while the decision policy DV is not. The Committee Col-
laboration Strategy only specifies that DV must be a voting system that can be
used to aggregate the evidence gathered by the agents into a global prediction.
In Section 4.3 we will specialize CCS with specific voting systems.

The interaction protocol ICCS is formally described in Figure 4.2 and applies
to a set of agents Ac that have committed to join a committee. The protocol
consists of five states and w0 is the initial state. When a user requests an agent
Ai to solve a problem P the protocol moves to state w1. When Ai broadcasts the
problem P to all the other agents in the system the protocol moves to state w2.
Then, Ai waits for the SERs coming from the rest of agents in Ac while building
its own SERs; each agent sends its SERs to Ai in the message p3. Figure 4.1
shows a MAC system where a set of agents Ac have accepted the invitation of a
convener agent to form a committee. Moreover, some of the agents in the MAC
system are unwilling to collaborate and have not accepted the invitation.

When the SERs from the last agent are received the protocol moves to w3.
In w3, Ai will apply the voting system defined in the individual decision policy
DV (with all the SERs received from other agents and the SERs built by itself)
to obtain an aggregate solution. Finally, the aggregate solution S will be sent
to the user in message p4 and the protocol will move to state w4 that is a final
state. Notice that the number of messages received by the convener agent is
controlled by conditions c1 and c2. c1 is satisfied when the number of messages
received from other agents have been less than #(Ac) − 2, i.e. that there are

60 Chapter 4. Committee Collaboration Strategies

w0 w1

w2

p1

p2

p3/c1

p3/c2
p4

w3w4

Request(?User, ?Ai, ?P)

Request(!Ai,A
c, !P)

Inform(?Aj , !Ai, ?R)/

Inform(?Aj , !Ai, ?R)/

p1

p2

p3/c1

p3/c2

p4

:
:
:

:

:

|!w0w1R| = #(Ac) − 2

|!w0w1R| < #(Ac) − 2

Inform(!Ai, !User, ?S)

Figure 4.2: Interaction protocol for the Committee collaboration strategy.

still more than one agent that have yet to submit their SERs (notice that the
total number of agents that need to submit SERs is #(Ac) − 1 since the SERs
built by the convener agent do not have to be sent). c2 is satisfied when exactly
#(Ac)−2 messages have been received, i.e. when there is exactly one agent that
has to send their SERs. Therefore, when condition c2 is met and a message p3

with SERs is received, all the SERs have been received and the protocol moves
to state w3.

From a CBR point of view, the Committee collaboration strategy is a
way to distribute the Reuse process (see Section 2.2). While Retrieve is per-
formed individually by each agent, the Reuse stage uses the voting system in
order to reach a global prediction in a collaborative way. As stated in Sec-
tion 2.3.3, this is one of the main differences with other distributed CBR ap-
proaches that perform Retrieve as a distributed process [Prassad et al., 1995,
Plaza et al., 1997, McGinty and smyth, 2001, Leake and Sooriamurthi, 2001,
Leake and Sooriamurthi, 2002b, Leake and Sooriamurthi, 2002a].

Next section presents the voting system that we will use in the rest of this
monograph to aggregate the SERs in a committee.

4.3 Bounded Weighted Approval Voting

In this section we are going to present a voting system called Bounded Weighted
Approval Voting (BWAV) that we will use in in the rest of the monograph. How-
ever, Section 4.5.4 defines several alternative voting mechanisms and empirically
compares them with BWAV.

The principle of the the BWAV voting system is that each agent votes for

4.3. Bounded Weighted Approval Voting 61

solution classes depending on the number of retrieved cases for each class. The
larger the number of retrieved cases endorsing a solution class, the stronger that
an agent will vote for that class. For this purpose we have defined BWAV, a
voting system where each agent has 1 vote that can be fractionally assigned to
several solution classes. For example, for a specific problem, an agent can vote
0.4 for a solution class and 0.6 for another solution class.

Formally, let Ac be a set of agents that have individually performed the
Retrieve process for P and want to aggregate their individual collections of SERs
using the BWAV voting system. Let Rc = {R1, ...,Rm} be the set of SERs built
by the n agents in Ac to solve the problem P . Notice that each agent is allowed
to submit one or more SERs (see Section 3.4): in fact, an agent will submit as
many SERs as different solution classes are present in the retrieved cases to solve
P . Let RAi

= {R ∈ Rc|R.A = Ai} be the subset of SERs of R created by the
agent Ai to solve problem P . The vote of an agent Ai ∈ Ac for a solution class
Sk ∈ S is the following:

V ote(Sk, P,Ai) =

{
R.E
c+N If ∃R ∈ RAi

|R.S = Sk,

0 otherwise.
(4.1)

where c is a normalization constant that in our experiments is set to 1 and
N =

∑
R∈RAi

R.E is the total number of cases retrieved by Ai. Notice that
if an agent Ai has not created a SER for a solution class Sk, then the vote of
Ai for Sk will be 0. However, if Ai has created a SER for Sk, then the vote is
proportional to the number of cases found endorsing the class Sk, i.e. R.E.

To understand the effect of the constant c we can rewrite the first case of
Equation 4.1 as follows (assume that R is the SER built by Ai for the solution
class Sk):

V ote(Sk, P,Ai) =
R.E
N

× N

c+N

Since N is the total number of cases retrieved by Ai, the first fraction rep-
resents the ratio of the retrieved cases endorsing solution Sk with respect to N
(the total number of cases retrieved by Ai). The second fraction favors the agent
that has retrieved more cases, i.e. if Ai has only retrieved one case, and it is
endorsing Sk, then the vote of Ai for Sk will be V ote(Sk, P,Ai) = 1

1+1 = 0.5;
moreover, if the number of retrieved cases is 3 (and all of them endorsing Sk),
then the vote is V ote(Sk, P,Ai) = 3

1+3 = 0.75. Notice that the sum of fractional
votes casted by an agent is bound to 1, but in fact it is always less than 1 and,
the more cases retrieved, the closer to 1. Finally, notice that if c = 0 the sum of
votes is always 1.

We can aggregate the votes of all the agents in Ac for one class by computing
the ballot for that class:

Ballot(Sk, P,Ac) =
∑

Ai∈Ac

V ote(Sk, P,Ai)

62 Chapter 4. Committee Collaboration Strategies

and therefore, the winning solution class is the class with more votes in total,
i.e.:

Sol(S, P,Ac) = arg max
Sk∈S

Ballot(Sk, P,Ac) (4.2)

This voting system is a variation of Approval Voting
[Brams and Fishburn, 1983]. In approval voting, each voter defines a sub-
set of preferred (approved) classes with respect to the rest of (non-approved)
classes. The set of approved classes are the classes that the voter votes for. All
the votes for the approved classes have the same weight, i.e. a voter cannot
assign weights to their votes (as in BWAV). Formally, Approval Voting can be
defined as:

ApprovalV ote(Sk, P,Ai) =

{
1 If ∃R ∈ RAi |R.S = Sk,

0 otherwise.
(4.3)

i.e. an agent votes for all the classes for which there is at least one case in the set
of retrieved cases with that class. Moreover, all the votes for the voted classes
have the same weight, 1.

There are two differences between Approval Voting and BWAV: the first one
is that in BWAV agents can weight the votes for each class, and the second one
is that in BWAV the sum of those weights, for any agent, has an upper bound
of 1.

We can now specialize the Committee Collaboration Strategy with the BWAV
voting system as follows.

Definition 4.3.1. The BWAV Committee Collaboration Strategy(CCSBWAV)
is a collaboration strategy 〈ICCS , DBWAV 〉, where ICCS is the CCS interaction
protocol shown in Figure 4.2 and DBWAV is the BWAV voting system used to
aggregate the evidence gathered by the individual agents into a global prediction.

The Committee Collaboration Strategy can be also specialized to be used
with any other voting system (such as Approval Voting). In the remainder of
this monograph we will use CCSBWAV to refer to the Committee Collaboration
Strategy using the BWAV system, CCSAV for the Committee Collaboration
Strategy using the Approval Voting system, and in general CCSV for any voting
system V that we can define. When we write simply CCS, we are referring to
CCSBWAV , since BWAV is the voting system that we have chosen to be used by
the agents in our experiments. However, we have also considered other voting
systems such as Approval Voting or Majority Voting. Section 4.5.4 defines several
voting systems that are experimentally compared with BWAV.

4.4 Characterizing Committees

One of the goals of our work is to determine when collaboration is beneficial,
i.e. when an individual agent can achieve a higher classification accuracy by

4.4. Characterizing Committees 63

convening a committee than working individually. The performance of a com-
mittee strongly depends on the case bases of the individual agent members of
the committee. One of the goals of our work is to study the relationship between
the content of the case bases of the individual agents in a committee and the
classification accuracy of the committee. For this purpose, in this section we will
present a characterization of individual case bases and then we will characterize
committees of CBR agents. This characterization will be useful in the experi-
ments section in order to find dependencies between committee characteristics
and classification accuracy

4.4.1 Individual Case Base Characterization

Let us start by characterizing the contents of the case base Ci of a single agent Ai.
A case base can be characterized by several measures, but we will concentrate
on two basic ones, namely Case Base Completeness and Case Base Bias.

4.4.1.1 Case Base Completeness

Case Base Completeness refers to the degree in which a problem space or a data
set is covered by the cases contained in a case base.

Before defining Case Base Completeness, let us clarify some concepts. A
problem space P is the (finite or infinite) space that contains all the problems
that can be described in a specific application domain. A data set D can be
described as a set of cases D = {c = 〈P, S〉|c.P ∈ P ′} that have been built by
labelling a sample of problems P ′ ⊆ P of a problem space with their respective
solutions. Moreover, we will write D.P to refer to the sample of problems from
which a data set has been constructed.

Case Base Completeness can be defined with respect to a data set D or with
respect to a problem space P.

Definition 4.4.1. Case Base Completeness C of a case base Ci with respect to
a data set D of size M is:

C(Ci) =
#(Ci)
M

where #(Ci) represents the number of cases in Ci.

When the case base contains all the cases in the data set C(Ci) = 1 and, as the
number of cases in the case base diminishes, Case Base Completeness approaches
0. Notice that when computing Case Base Completeness with respect to a data
set D, a case base cannot contain a case not belonging to the data set, i.e.
Ci ⊆ D.

Definition 4.4.2. Case Base Completeness C of a case base Ci with respect to
a problem space P and with respect to a similarity function s defined over P is:

C(Ci) = EP∈P(max({s(P, c.P)|c ∈ Ci}))

64 Chapter 4. Committee Collaboration Strategies

where s(P, c.P) is a similarity function between a problem P and a case c, and
EP∈P(x) represents the mathematical expectation of x over all possible problems
P in the problem space P.

The interpretation of this measure of Case Base Completeness for infinite
domains is “the expected similarity of the most similar case for an arbitrary
problem in the domain”. Specifically, Case Base Completeness with respect to
a problem space P measures the following: let P be a problem in the problem
space P, if we measure s′ = max({s(P, c.P)|c ∈ Ci}), we obtain the similarity
value of the most similar case in the case base Ci. If s′ is a value close to 1,
the closest case in Ci is very similar to P and we can say that the area of the
problem space P surrounding P is well covered. However, if s′ is a value close
to 0, the closest case in Ci is very different to P and we can say that there is a
“hole” in the case base Ci in the area of the problem space surrounding P since
there are no cases with high similarity to P in Ci.

Definition 4.4.2 computes the expectation of s′ over all the problem space,
i.e. the average similarity of the most similar case for all the problems in the
problem space. If Case Base Completeness has a value close to 1, the closest case
in Ci for any problem in the problem space is expected to have a high similarity
with the problem, and therefore we can say that all the problem space is well
covered. Lower values of Case Base Completeness indicate that there are areas
where the expected closest case in Ci has a lower similarity with the problem,
i.e. areas that have a “competence hole”. Case Base Completeness estimates the
size of the areas with competence holes (the lower the Case Base Competence,
the larger the competence hole areas).

Notice that if the similarity measure is defined to return values in the interval
[0, 1] the Case Base Completeness measure will also return values in [0, 1].

Moreover, since P may be an infinite or a very large problem space, com-
puting the exact value of the expectation may not be feasible. However, the
expectation can be approximated by taking a finite sample P ′ ⊆ P and comput-
ing the Case Base Completeness as follows:

C(Ci) ' EP∈P′(max({s(P, c.P)|c ∈ Ci}))

Moreover, if we consider that all the problems in the sample P ′ are equiproba-
ble, and therefore have probability 1

#(P′) , the previous expression can be reduced
to:

C(Ci) '
1

#(P ′)
∑

P∈P′
(max({s(P, c.P)|c ∈ Ci}))

i.e. the average of the similarities between each problem P ∈ P ′ and the most
similar case in the case base Ci.

Albeit both definitions (Definition 4.4.1 and Definition 4.4.2) are not equiva-
lent, the important thing is that Case Base Completeness represents the degree
in which the problem space is covered in a case base. Notice that Case Base
Completeness defined by Definition 4.4.1 defines the Case Base Completeness

4.4. Characterizing Committees 65

with respect to an finite data set, i.e. the completeness is 1 when a case base
contains all the examples in the data set. However, Definition 4.4.2 defines the
Case Base Completeness with respect to an infinite problem space (i.e. it defines
how well a problem space is covered by a case base) and depends on the specific
similarity measure s used.

In this monograph we will only always compute completeness with respect to
a concrete data set, so we will use the Definition 4.4.1 of Case Base Completeness.

4.4.1.2 Case Base Bias

Case base Bias refers to the degree in which a case base has some areas of the
problem space undersampled (while other parts may be oversampled).

Since Case Base Bias involves computing whether there are undersampled
or oversampled parts in the problem space, we will define the Case Base Bias
with respect to any given partition Π = {π1, ..., πm} of the problem space P,
such that ∪πi∈Ππi = P and ∀1≤k≤m,1≤j≤m,k 6=jπk∩πj = ∅. This partition can be
defined explicitly (where each part πi is an explicit list of examples) or implicitly
(where each part πi is defined by some property, i.e. πi is defined as the set of
problems that satisfy some property). The implicit definition is useful when the
problem space is infinite or too large and making an explicit partition of the
space is not feasible.

Definition 4.4.3. Case Base Bias B of a case base Ci with respect to a partition
Π of a data set D of size M is:

BΠ(Ci) =

√√√√k=1∑
m

(
#({c ∈ Ci|c.P ∈ πk})

#(Ci)
− #(πk)

M

)2

To define Case Base Bias with respect to a problem space P, we need to
substitute the ratio #(πk)

M (that cannot be computed directly if P is infinite) by
Prob(P ∈ πk), i.e. the probability that a random problem P belongs to a given
part πk.

Definition 4.4.4. Case Base Bias B of a case base Ci with respect to a partition
Π of a problem space P is:

BΠ(Ci) =

√√√√k=1∑
m

(
#({c ∈ Ci|c.P ∈ πk})

#(Ci)
− Prob(P ∈ πk)

)2

Notice that Case Base Bias is zero when the ratio of cases in each part is the
same in the case base Ci than in the problem space P.

Figure 4.3 shows the graphical interpretation of Case Base Bias for a partition
with 3 parts Π = {π1, π2, π3}. Two vectors are shown in the figure, one represents
the distribution of cases among the parts of a partition Π in a data set D and
the other one represents the distribution of cases in a case base Ci. Each axis
represents the number of cases in a part πi. The larger the number of cases

66 Chapter 4. Committee Collaboration Strategies

π1

π2

π3

#(π1)

M

#(π2)

M

#(π3)

M

#({c ∈ Ck|c.P ∈ π1})

#(Ck)

#({c ∈ Ck|c.P ∈ π2})

#(Ck)

#({c ∈ Ck|c.P ∈ π3})

#(Ck)

BΠ(Ci)

Π = {π1, π2, π3}

Figure 4.3: Graphical Visualization of Case Base Bias.

in Ci or in P in a part πi, the larger the component of its vector in the axis
representing the part πi will be. Notice that #({c∈Ck|c.P∈πk})

#(Ck) is exactly the

component in the axis of the part πk of the vector representing Ci and #(πk)
M

represents the component in the axis of the part πk of the vector representing D.
Therefore, Case Base Bias measures exactly the distance between the extremes
of these two vectors. Therefore, if m is the number of parts, Case Base Bias lies
in the interval [0,

√
m].

Moreover, Case Base Bias can be computed with respect to any partition Π,
but we will focus on a specific kind of Case Base Bias (BS) in which the partition
is defined by the correct solution class of the problems: ΠS = {π1, ..., πK}, where
πi contains all the problems with correct solution class Si and only problems with
correct solution class Si.

Definition 4.4.5. Case Base Bias with respect to the solution classes BS of a
case base Ci is the Case Base Bias of Ci computed with respect to the partition
ΠS .

Let us illustrate the concept of BS with an example. Imagine an artificial data
set consisting in 8 examples P = {P1, P2, P3, P4, P5, P6, P7, P8} with two possible
solution classes S = {S1, S2}, such that four problems have solution class S1

(P1, P2, P3, P4) and four problems have solution class S2 (P5, P6, P7, P8). The
partition based on solution classes is therefore ΠS = {π1 = {P1, P2, P3, P4}, π2 =

4.4. Characterizing Committees 67

Bias

m

0 Completeness

Figure 4.4: Space of possible different characterizations of individual case bases
using completeness and bias.

{P5, P6, P7, P8}}. Imagine now a case base C1 = {P1, P2, P5, P6} of an agent A1,
and a case base C2 = {P1, P5, P6, P7} of an agent A2. If we compute their BS
values, we obtain:

BS(C1) =

√(
2
4
− 4

8

)2

+
(

2
4
− 4

8

)2

= 0

BS(C2,) =

√(
1
4
− 4

8

)2

+
(

3
4
− 4

8

)2

=
√

0.125 = 0.354

The case base C1 has half of the cases with solution S1 an half of the cases
with solution S2 (as in the complete data set) and therefore has a Case Base
Bias of 0. However, in the case base C2 only one fourth of the cases have
solution S1 and three fourths have solution S2, while in the complete data set,
the distribution of cases per class is one half and one half. Therefore, the Case
Base Bias is different than zero, and it is in fact 0.354.

In the rest of this monograph we will use the term Case Base Bias to refer
to BS of Definition 4.4.5.

4.4.1.3 Case Base Characterization Space

Figure 4.4 shows the space of possible different characterizations of individual
case bases using the notions of completeness and bias. The grey area shows the
range of possible values that bias and completeness can take. Not all the possible
combinations of Completeness and Bias are possible, as Case Base Complete-
ness increases, Case Base Bias cannot take arbitrarily high values since if the
Completeness of a case base is high, the case base cannot have an arbitrarily low

68 Chapter 4. Committee Collaboration Strategies

sampled areas. Figure 4.4 shows the qualitative relationship between Case Base
Bias and Case Base Completeness.

Moreover, case bases with high completeness (i.e. that have a good coverage
of the problem space) and with low bias achieve higher classification accuracy
values. If a case base falls in the area painted with darker grey in Figure 4.4,
classification accuracy is expected to be high. However, it is not clear that
the best case base is that with Case Base Completeness 1 and Case Base Bias
0 (the bottom-right extreme in the figure) since, once a case base has a good
sample of the problem space, adding an arbitrarily large number of cases to
it (i.e. increasing even more the Completeness) does not necessarily increase
classification accuracy, while certainly reduces the efficiency of the CBR system
(see Section 2.2.1.1).

4.4.2 Committee Characterization

Let us now extend the definitions presented for individual case bases to charac-
terize committees of CBR agents. To characterize a committee of CBR agents,
we are going to introduce three new measures: Committee Completeness, Com-
mittee Bias and Committee Redundancy.

4.4.2.1 Committee Completeness

Committee Completeness is measured based on the idea that a case c belongs to
a committee Ac if at least one of the agents in the committee has c in its case
base. Let us call Cc to the collection of case bases of the agents in Ac. Therefore,
the collection of all the cases that belong to a committee is U c = ∪Ck∈CcCk.

Definition 4.4.6. The Committee Completeness of a committee Ac with respect
to a data set D of size M is:

C(Ac) =
#(U c)
M

Definition 4.4.7. The Committee Completeness of a committee Ac with respect
to a problem space P is:

C(Ac) = EP∈P(max({s(P, c.P)|c ∈ U c}))

In the rest of this monograph we will always measure Case Base Completeness
with respect to a specific data set, and therefore we will use Definition 4.4.6 for
Committee Completeness.

4.4.2.2 Committee Bias

Committee Bias is defined as the average Case Case Bias of the member agents
of the committee.

4.4. Characterizing Committees 69

Definition 4.4.8. The Committee Bias of a committee Ac with n agents with
respect to a partition Π of a problem space P is:

BΠ(Ac) =
1
n

∑
Ci∈Cc

BΠ(Ci)

Moreover, in the rest of this monograph we will focus in the Committee Bias
BS computed with respect to the partition ΠS induced by the solution classes:

Definition 4.4.9. Committee Bias with respect to the solution classes BS of a
committee Ac of n agents is the Committee Bias computed with respect to the
solution class partition ΠS .

4.4.2.3 Committee Redundancy

Committee Redundancy is a measure that only applies to committees and cannot
applied to individual case bases. Intuitively, redundancy measures the degree of
overlapping existing between the case bases of the agent members of a committee.
If the case bases of the individual agents are identical, redundancy is maximum
since the case bases of the individual agents are completely overlapped. When
the case bases of the individual agents are disjunct, i.e. there is no case shared
by two agents’ case bases, redundancy is zero.

Definition 4.4.10. The Committee Redundancy of a committee Ac with n
agents and with a collection of case bases Cc is:

R(Cc) =
(
∑

Ci∈Cc #(Ci))−N

N ∗ (n− 1)

where N = #(U c), i.e. the total number of different cases belonging to a com-
mittee Ac.

For example, imagine a committee composed of 2 agents Ac = {A1, A2}
with case bases: C1 = {c1, c2, c3} and C2 = {c2, c4, c5}. In order to compute the
Committee Redundancy we have that the total number of cases in the committee
is N = #(Cc) = #({c1, c2, c3, c4, c5}) = 5, and therefore:

R({C1, C2}) =
(#(C1) + #(C2))−N

N ∗ (n− 1)
=

(3 + 3)− 5
5 ∗ (2− 1)

= 0.2

The redundancy is different than zero since the case c2 is shared by the two
agents.

With these three measures (Committee Completeness, Committee Bias and
Committee Redundancy) we can now define the committee characterization
space.

70 Chapter 4. Committee Collaboration Strategies

Bias

Redundancy

1

1

m

0

Completeness

Figure 4.5: Ensemble Space: the space of possible committees characterized by
Committee Completeness, Committee Bias and Committee Redundancy.

4.4.2.4 Ensemble Space

Figure 4.5 shows the space of possible committees characterized by Committee
Completeness, Committee Bias and Committee Redundancy, that we call the
Ensemble Space. The grey space shows the possible values that the Committee
Completeness, Committee Bias and Committee Redundancy can take. If we
compute the Completeness, Bias and Redundancy of a specific committee we
will obtain a point in the Ensemble Space.

Notice in Figure 4.5 that not all the combinations of values are possible;
for instance, if Committee Redundancy and Committee Completeness are both
high, the value of Committee Bias cannot be arbitrarily high. The reason is that
a high Committee Completeness means that the problem space is well covered
with the cases belonging to the committee, and a high Committee Redundancy
means that there is a high overlapping among the agents’ case bases. Therefore,
for a committee to have high Committee Completeness and high Committee
Redundancy, each individual agent must also have high individual Case Base
Completeness, which implies that their individual Case Base Bias cannot be

4.5. Experimental Evaluation 71

arbitrarily high, and as the Committee Bias is the average of the individual
Case Base Bias values, the Committee Bias cannot be arbitrarily high either.

Moreover, we are interested in studying the relation between Committee
Completeness, Committee Bias and Committee Redundancy and the commit-
tee classification accuracy. While in the individual case base characterization
the area with high completeness and low bias achieves the higher classification
accuracy values, which area is optimal in a committee is not obvious. In the
following section we present experiments with committees that fall in different
parts of this Ensemble Space, and we analyze the achieved results to determine
in which regions of the Ensemble Space fall the committees that achieve higher
classification accuracy values.

4.5 Experimental Evaluation

In this section we are going to empirically evaluate the Committee Collabora-
tion Strategy (CCS). For this purpose, we are going to evaluate the classification
accuracy (i.e. the percentage of correctly solved problems) of agents using the
Committee Collaboration Strategy in several scenarios: using several CBR meth-
ods, several data sets, convening committees of several sizes, and committees
falling in several areas of the Ensemble Space. Moreover, the accuracy achieved
by CCS will be compared with the classification accuracy achieved by agents
solving problems individually (without using any collaboration strategy).

We have used three different data sets to evaluate the committee collabo-
ration strategy: soybean, a well known propositional data set, zoology, another
propositional data set from the UCI machine learning repository, and marine
sponges, a complex relational data set [Armengol and Plaza, 2001b] not present
in the UCI machine learning repository. Sponges have a complex structure,
making them amenable to build complex justifications. The soybean data set
consists of 307 examples, each one with 35 attributes (some of them with missing
values), and there are 19 possible solution classes. The zoology data set consists
of 101 examples, each one with 17 attributes and 7 solution classes. The sponges
data set consists of 280 examples, each one with between 10 and 50 attributes
(depending on its structure), and there are 3 solution classes.

In order to test the generality of the committee collaboration strategy, we
have performed experiments using various learning methods. Specifically, we
have made experiments with agents using LID Nearest Neighbor (1-NN) and 3-
Nearest Neighbor (3-NN). If we recall the classification of learning methods that
we made in Section 2.1.3, LID is a global method (and therefore is unstable),
and 1-NN and 3-NN are local methods (and therefore, stable methods). Thus,
we have made experiments with both type of methods to test the effect of the
Committee Collaboration Strategy in each class of methods.

Moreover, we never mix agents using different learning methods in our ex-
periments, i.e. during an experimental run all the agents use the same learning
method (although the committee collaboration strategy allows that each agent
use its own classification method as long as a SER can be built). The reason

72 Chapter 4. Committee Collaboration Strategies

is that by mixing agents with different learning methods the error correlation
among the agents will diminish, thus (expectedly) increasing the classification
accuracy of CCS. While this effect may improve overall accuracy, it will inter-
fere in our evaluation of the improvement obtained by the collaboration of the
members of a committee. Thus, we have decided not to mix different learning
methods in order to be sure that all the improvements achieved in the exper-
iments are due to CCS, and we will use agents with the same lazy learning
method in the experiments reported henceforth.

In an experimental run, training cases from a data set are randomly dis-
tributed among the agents. Once all the cases are distributed among the agents,
the test phase starts. During the test phase, for each problem P in the test cases
an agent Ai ∈ A is randomly chosen, and P is sent to Ai. Ai will then use the
Committee Collaboration Strategy to solve P .

All the results presented in this section are the average of 5 runs of a 10 fold
cross validation. Therefore, in each run, the 90% of the cases of a test set are
used as the training cases, and the other 10% are used as the test cases.

In order to evaluate the Committee Collaboration Strategy, we are going
to present four sets of experiments, presented in the following four sections.
The first set of experiments, presented in Section 4.5.1, will constitute the basic
experiments to evaluate CCS. In these experiments, we are going to evaluate
committees with Committee Completeness C = 1, Committee Bias BS = 0 and
Committee Redundancy R = 0, i.e. all the cases in the training set will be
distributed among the individual agents case bases without repetitions. When
we have a set of m training cases and MAC system composed of n agents, each
agent will receive m/n cases in average. Notice that as we increase the num-
ber of agents the individual case base size will decrease. Individual accuracy is
expected to diminish when the individual case base size diminishes (i.e. when
the number of agents in an experiment increases). Therefore, in the experiments
where we have used a large number of agents, classification accuracy is expected
to be lower because of our experimental settings. In the second and third sets of
experiments, presented in section 4.5.2 and 4.5.3, we will perform experiments
with committees having different Committee Redundancy and Committee Bias
in order to explore the Ensemble Space. The goal of these experiments is to
determine which areas of the ensemble space contain committees with higher
classification accuracy values. Finally, the fourth set of experiments, presented
in Section 4.5.4, defines several voting systems different from BWAV and exper-
imentally compares them.

4.5.1 Committee Evaluation under Uniform Conditions

In this section we are going to compare the classification accuracy of agents us-
ing the Committee Collaboration Strategy (CCS) and agents solving problems
individually under what we call uniform conditions, i.e. when Committee Com-
pleteness C = 1, Committee Bias BS = 0 and Committee Redundancy R = 0.
To perform these experiments, we have proceeded in the following way: to ex-
periment with a committee of n agents, we create a MAC system of n agents

4.5. Experimental Evaluation 73

LID - SPONGE

50

55

60

65

70

75

80

85

90

1 3 5 7 9 11 13 15

LID - SOYBEAN

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15

LID - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

Individual

Committee

Figure 4.6: [Classification accuracy using LID]Classification accuracy comparison
between agents using LID to solve problems individually and with the committee
collaboration strategy.

and randomly distribute the cases of the training set among the agents so that
C = 1, BS = 0, and R = 0. Then, to evaluate the accuracy of agents, test cases
arrive to a randomly chosen agent in the system, and then that agent solves
the problem. When CCS is used to solve the problem, a committee composed
of all the agents in the MAC is convened (since in our experimentation all the
agents agree to join the committee and therefore in a MAC system of n agent,
the committee convened is composed of exactly n agents).

Figures 4.6, 4.7 and 4.8 present the classification accuracy achieved by agents
both individually and using the Committee collaboration strategies for 3 lazy
learning methods (LID, 1-NN and 3-NN respectively).

Figure 4.6 shows the results for agents that use LID as lazy learning method.
The vertical axis shows the average classification accuracy, and the horizontal
axis shows the number of agents that compose the system. For each MAC sys-
tem two bars are shown, the left one shows the classification accuracy of agents
solving problems individually and the right one shows the classification accu-
racy for agents using CCS. In all the data sets and in all the MAC systems, we
can see that agents using CCS outperform agents solving problems individually.
The difference in classification accuracy is specially noticeable when the agents’
individual case bases sizes are small. For instance, in the sponge data set, indi-

74 Chapter 4. Committee Collaboration Strategies

Individual

Committee

NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

NN - SOYBEAN

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15

NN - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

Figure 4.7: Classification accuracy comparison between agents using 1-Nearest
Neighbor to solve problems individually and with the committee collaboration
strategy.

vidual agents in a MAC system composed of 15 agents achieve an accuracy of
about the 64% while agents using the committee collaboration strategy achieve
an accuracy of about 87%. Therefore, when data is very fragmented among the
individual agents, they have more incentive to collaborate by forming commit-
tees, since the difference in classification accuracy between the individual agents
and CCS is greater (as happens in the experiments with a greater number of
agents).

From this initial experiments we can draw two initial conclusions: the first
one is that the ensemble effect works since the accuracy of CCS is always higher
than the accuracy of the individual agents; and the second is that the gain in
classification accuracy achieved by CCS thanks to the ensemble effect varies,
since not all the committees of agents achieve the same accuracy gain. When
the case bases of the individual agents are small (i.e. in the experiments with
many agents), the difference in accuracy between CCS and the individual agents
is greater than when the case bases of the individual agents are large (i.e. in
experiments with few agents). This is because when agents have large case bases,
their individual accuracy is already high, and the ensemble effect cannot improve
much more that accuracy.

Notice that when each individual agent has very few cases (i.e. in the 11,

4.5. Experimental Evaluation 75

3-NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

3-NN - SOYBEAN

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15

3-NN - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

Individual

Committee

Figure 4.8: Classification accuracy comparison between agents using 3-Nearest
Neighbor to solve problems individually and with the committee collaboration
strategy.

13 and 15 agents MAC systems), the individual accuracies for the soybean and
zoology data sets decrease drastically: it is below 40% in the soybean data set
and below 60% in the zoology data set. The reason is that when the number of
agents in an experiment is large, their individual Case Base Completeness with
respect to the data set is low (notice that although the Committee Completeness
of all the committees evaluated in this section is C = 1, this has nothing to do
with the Case Base Completeness of the case bases of the individual agents).
For example, with a 15 agents MAC system in the soybean data set, each agent
has just 18.43 cases in average out of the 276 cases that the training set has for
the soybean data set (having an average individual Case Base Completeness of
C = 0.067). Individual agents need a good sample of cases from the data set
to have a good performance; therefore, when an individual case base is small
the individual sample worsens, and therefore the individual accuracy decreases.
Moreover, the global solution computed by a committee is computed as the
aggregation of the SERs built by the individual agents. The estimated error of an
ensemble (and therefore of a committee) [Krogh and Vedelsby, 1995] (presented
in Section 2.1.1) is: E = Ē − Ā (where Ē is the mean error of the individual
classifiers and Ā is the ambiguity, that increases as error correlation decreases).
Therefore, if the individual agents have a high classification error, Ē will be high

76 Chapter 4. Committee Collaboration Strategies

and, unless the ambiguity Ā is high enough to compensate the high Ē, the error
of the committee E will also be high.

Figure 4.7 shows the same experiments with agents that use a nearest neigh-
bor (1-NN) method to solve problems. The results obtained are analogous to
those of LID, and we can see that CCS always outperforms the individual agents.
Specially when the individual agents have small case bases.

Finally, Figure 4.8 shows the results with agents that use 3-nearest neighbor
(3-NN), again with the same results. Moreover, comparing the results obtained
with 1-NN and with 3-NN, we can see that 3-NN obtains much worse results
when the individual agents have small case bases. This is because k-NN methods
do not work well with small case bases. To exemplify this result, just imagine an
agent using 3-NN with a case base containing just 4 cases: two cases of class A,
one case of class B and one case of class C. Clearly, that agent will never output
class B or C as the solution for a problem, since there will never be a majority
of B or C cases in the three nearest neighbors.

To conclude, we can say that the Committee Collaboration Strategy can
help the agents in a MAC system to improve their accuracy results. We have
empirically demonstrated that the ensemble effect takes place in CCS since the
accuracy of CCS is systematically higher than the accuracy of individual agents.
Moreover, the increase between the classification accuracy of CCS and that of
the individual agents is greater in systems where the individual CBR agents
have small case bases and low individual accuracy. However, the classification
accuracy of a committee composed by a lot of agents with small case bases is
still lower than that of a committee composed of less agents but with larger case
bases. Moreover, the following sections of this chapter precisely explore under
which conditions the accuracy of a committee is high or low.

Moreover, the Committee Collaboration Strategy does not compromise the
autonomy of each individual agent since an agent can always refuse to join a
committee. Privacy conditions are also preserved, since cases are not shared
(recall that in CCS is a strategy that performs distributed reuse and not dis-
tributed retrieval). Therefore, CCS allows agroup of CBR agents to collaborate
for solving problems in a decentralized way, benefitting from the ensemble effect
and without compromising the autonomy of the agents.

The next section presents experiments in scenarios where the data is very
fragmented and each individual agent has very few cases.

4.5.1.1 Ensemble Effect with Inaccurate Agents

From the experiments reported in this section we can conclude that the smaller
the individual case bases of the agents, the larger the difference in classification
accuracy between the individual agents and CCS. We have performed further
experiments to analyze how the ensemble effect evolves when data is distributed
among a very large number of agents. For this purpose, we have performed
experiments with agents using the LID method to solve problems in the sponge
data set in MAC systems composed of 50, 100, 200 and 254 agents (in the 254
agents MAC system each agent only has one case in its case base).

4.5. Experimental Evaluation 77

Agents 50 100 200 254
CB size 5.08 2.54 1.27 1.00

Individual 48.23 40.76 37.28 34.85
CCS 80.50 67.00 52.45 41.78

Table 4.1: Case base size and classification accuracy of agents solving problems
individually and with CCS in very large MAC systems.

Table 4.1 shows the case base size and classification accuracy of agents solving
problems individually and with CCSfor systems composed from 50 to 254 agents.
Agents in a system composed of 50 agents (with an average of 5.04 cases per
agent) have an individual accuracy of 48.23% while the CCS accuracy is 80.5%.
On the extreme, agents in a system with 254 agents (where each agent has only
one case in its case base) have an average individual accuracy of 34.85% while
the committee accuracy is 41.78%, that is exactly the classification accuracy
of the basic hypothesis, i.e. predicting always the largest solution class (in the
sponge data set, the largest solution class is Sk = Hadromerida since the 41.7%
of the cases belong to that class).

These experimental results show that even in the extreme scenario with 254
agents, where each individual agent has only one case, the ensemble effect still
takes place. In Section 2.1 we stated that the preconditions for the ensemble
effect to take place were that the individual error of the classifiers must be lower
than 0.5 and that the individual error of the classifiers must be uncorrelated,
as stated by Hansen and Salamon [Hansen and Salamon, 1990]. Clearly, the
individual error of the agents in our experiments with more than 50 agents is
higher than 0.5 and the ensemble effect still takes place. The explanation is that
Hansen and Salamon considered only the scenario where there are 2 possible
solution classes. But in general, the average classification error of the individual
agents must be lower than 1/K where K is the number of possible solution
classes, i.e. they have to be more accurate than a random guesser. Notice
that, as in the previous experiments the average error of the individual agents is
always lower than 0.33 (and in the sponge data set that has 3 solution classes),
the ensemble effect still should (and does) take place.

The next sections present experiments concerning committees in different ar-
eas of the Ensemble Space in order to analyze the ensemble effect in committees.

4.5.2 Committee Evaluation with Case Redundancy

In this set of experiments,we are going to evaluate how the performance of the
Committee Collaboration Strategy is affected by the Committee Redundancy.
For this purpose, we are going to perform experiment with committees with
Committee Completeness C = 1, Committee Bias B = 0 and varying Committee
Redundancy from R = 0 to R = 1.

In order to test the effect of Committee Redundancy in the accuracy of CCS,
we have repeated all the experiments presented in the previous section, with a

78 Chapter 4. Committee Collaboration Strategies

Individual R=0.1

Individual R=0.0

Committee R=0.1

Committee R=0.0

LID - SOYBEAN

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15

LID - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

LID - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

Figure 4.9: Redundancy effect on the Classification accuracy in agents using
LID.

degree of Committee Redundancy R = 0.1. For instance, using the sponges data
set in a MAC system composed of 5 agents, each agent will have a case base with
an average of 50.8 cases if R = 0.0. However, for R = 0.1 each agent will have a
case base with an average of 71.12 cases. In the extreme, for R = 1.0 each agent
would have a case base with 254 cases, i.e. the whole training set. Moreover,
we have also performed a set of experiments with a committee composed of 9
agents in the sponge data set using LID as the problem solving method, where we
have measured the classification accuracy with Committee Redundancy values
varying from 0 to 1 in steps of 0.05.

Figure 4.9 shows the results for agents that use LID as lazy learning method.
The figure presents 4 different bars for each MAC system: individual agents
when the Committee Redundancy R = 0.0, individual agents when the Com-
mittee Redundancy R = 0.1, CCS with Committee Redundancy R = 0.0 and
CCS with Committee Redundancy R = 0.1. Notice that when we say “individ-
ual agents when the Committee Redundancy is R = x”, we mean the accuracy of
an individual agent member of a MAC system such that if all the agents of the
MAC system form a committee, the Committee Redundancy of that committee
is R = x. Figure 4.9 shows that in MAC systems with Committee Redundancy
R = 0.1 the classification accuracy is systematically higher both for individual
agents and for CCS. Specially in MAC systems where individual agents have

4.5. Experimental Evaluation 79

Individual R=0.1

Individual R=0.0

Committee R=0.1

Committee R=0.0

NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

NN - SOYBEAN

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

NN - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

Figure 4.10: Redundancy effect on the Classification accuracy in agents using
1-NN.

small case bases (i.e. MAC systems with many agents), the increment in classi-
fication accuracy due to increasing redundancy is very noticeable. For instance,
in a system composed of 15 agents in the sponges data set, individual agents
with R = 0.0 achieve a classification accuracy of 64.43% while with R = 0.1
the classification achieved is 77.85%. The accuracy of CCS of 15 agents in the
sponges data set is 86.45% with redundancy R = 0.0 while it increases to 87.48%
with R = 0.1. Moreover, notice that the greater improvements in classification
accuracy are achieved in the soybean and zoology data sets.

From this initial set of experiments we can draw an initial conclusion: in a
committee with some redundancy (R = 0.1) the individual agents have larger
case bases (and therefore a better data sample) than the agents in a committee
with no redundancy (R = 0.0). Therefore, individual agents in the committee
with R = 0.1 have a greater individual classification accuracy. Recall that the
decomposition of the error of a committee is E = Ē − Ā. The committee error
E is lower in the committee with R = 0.1 because the average individual agents’
error Ē is lower than with R = 0.0 and because the error correlation with R = 0.1
does not increase with respect to R = 0.0 (and therefore Ā does not decrease).

Figure 4.10 shows the results for agents that use 1-NN as learning method.
The figure shows that increasing the redundancy from R = 0 to R = 0.1 has the
same effect on 1-NN than on LID(as shown in Figure 4.9). MAC systems with

80 Chapter 4. Committee Collaboration Strategies

Individual R=0.1

Individual R=0.0

Committee R=0.1

Committee R=0.0

3-NN - SOYBEAN

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15

3-NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

3-NN - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

Figure 4.11: Redundancy effect on the Classification accuracy in agents using
3-NN.

Committee Redundancy R = 0.1 always achieve higher accuracy values (both
solving problems individually and with the Committee Collaboration Strategy)
thanMAC systems with Committee Redundancy R = 0. Moreover, the accuracy
increment is larger in systems with many agents. The reason is that agents in
a MAC system with R = 0.1 have larger case bases (and therefore a better
data sample than in a MAC system with R = 0.0); clearly, in MAC systems
where individual agents have few cases, improving their data samples can boost
individual classification accuracy (and therefore CCS accuracy).

Finally, Figure 4.11 shows the results for agents that use 3-NN as learning
method. The figure shows that the accuracy improvement for a committee with
R = 0.1 with respect to R = 0.0 is also larger in systems with many agents,
where each individual agent has smaller case bases, and specially in the zoology
data set. 3-NN performance is specially poor in the zoology data set, that is a
small data set consisting only of 101 cases, when the individual agents have very
small case bases.

As a summary of the previous results, we can say that with certain degree
of redundancy data samples of the individual agents are better, and therefore
individual classification accuracy is higher than in MAC systems without re-
dundancy. Moreover, a high redundancy could cause (in principle) an increase
in the error correlation among the individual agents and when error correlation

4.5. Experimental Evaluation 81

Redundance Effect on Classification Accuracy

70

72

74

76

78

80

82

84

86

88

90

92

0
0.
05 0.

1
0.
15 0.

2
0.
25 0.

3
0.
35 0.

4
0.
45 0.

5
0.
55 0.

6
0.
65 0.

7
0.
75 0.

8
0.
85 0.

9
0.
95 1

Figure 4.12: Redundancy effect in the classification accuracy of individual agents
and in the Committee.

increases, the ensemble effect diminishes. However, as we have seen for the ex-
perimental results, with Committee Redundancy R = 0.1 the error correlation is
not much greater than the error correlation with R = 0.0 and the ensemble effect
still works. Moreover, in order to determine what happens with accuracy and
correlation as Committee Redundancy takes higher values, we have performed
further experiments to analyze the effect of redundancy on the classification
accuracy.

Figure 4.12 shows how the classification accuracy varies with Committee Re-
dundancy values from 0 to 1 in a MAC system composed of 9 agents of both the
individual agents and of CCS for the sponges data set. The accuracy of a single
agent with the whole case base is 89.5% (represented as an horizontal black line).
Figure 4.12 shows that, as the Committee Redundancy grows from 0 to 1, the
individual agents’ accuracy systematically grows from 75.35% with Committee
Redundancy R = 0.0 to 89.5% with Committee Redundancy R = 1.0. Notice
that if R = 1.0 all the agents in the system have all the cases in their case bases,
and therefore their individual classification accuracy is identical and equal to
that of a single agent with all the cases. The evolution of the CCS accuracy
shows a more interesting behavior: when the degree of Committee Redundancy
is not very high (R < 0.4), the CCS accuracy also grows as the redundancy in-
creases. Then, the accuracy of CCS remains stable until the redundancy reaches
high values (R ≈ 0.6), and then the accuracy decreases again. When the redun-
dancy is maximum, R = 1.0 , the classification accuracy of CCS is identical to
that of the individual agents, since all the agents are equivalent, i.e. all of them

82 Chapter 4. Committee Collaboration Strategies

Sponge Soybean Zoo
Low Committee Bias 0.00 0.00 0.0

Medium Committee Bias 0.32 0.12 0.22
High Committee Bias 0.45 0.17 0.32

Table 4.2: Committee Bias values used in the experiments.

have all the cases.
Notice that for Committee Redundancy values between R = 0.2 and R = 0.65

(Figure 4.12) the classification accuracy of CCS is higher than the accuracy of
a single agent with all the cases.

In order to explain this effect, let us recall again the decomposition of the
error of a committee [Krogh and Vedelsby, 1995]: E = Ē − Ā. Increasing Com-
mittee Redundancy has two opposite effects: decreasing individual agents error
that decreases the committee error, and increasing the correlation that increases
the committee error. Figure 4.12 shows that when Committee Redundancy takes
low values, the decrease of the committee error due to the decrease of the indi-
vidual error compensates the (smaller) increase in error correlation. Moreover,
when a certain degree of Committee Redundancy is reached, the increase on error
correlation and the reduction of individual error reach an equilibrium where one
compensates the other and the CCS error stabilizes. Indeed, it is in this plateau
that the CCS accuracy surpasses that of a centralized single agent approach.
Finally, when the Committee Redundancy approaches 1, the error correlation
among the individual agents is too high and the ensemble effect decreases until
reaching the accuracy of the individual agents when R = 1.0).

The conclusion is that a certain degree of Committee Redundancy has a
positive effect in the CCS accuracy. For low Committee Redundancy values,
increasing Committee Redundancy also increases CCS accuracy. Moreover, at a
certain value of Committee Redundancy, the CCS accuracy stabilizes and does
not increase more as Committee Redundancy increases. For these Committee
Redundancy values (where CCS accuracy is stabilized) the accuracy of CCS
is higher than the accuracy of a single agent owning all the cases. However, as
Committee Redundancy reaches the highest values (approaching 1), the accuracy
of CCS decreases again, converging to the accuracy of a single agent owning
all the cases. Therefore, in order to maximize the classification accuracy of a
committee, a moderate degree of Committee Redundancy (not too high and not
too low) is advisable.

4.5.3 Committee Evaluation with Case Base Bias

In this set of experiments, we will evaluate how the performance of the Commit-
tee Collaboration Strategy is affected by the Committee Bias. For this purpose,
we have repeated the experiments presented in Section 4.5.1 with varying Com-
mittee Bias values. The classification accuracy achieved by the individual agents
and CCS is presented.

4.5. Experimental Evaluation 83

LID - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

LID - SOYBEAN

50

55

60

65

70

75

80

85

90

1 3 5 7 9 11 13 15

LID - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

High Bias

Medium Bias

Low Bias

Figure 4.13: Bias effect on the CCS classification accuracy in agents using LID.

A certain Committee Bias B = β does not have the same meaning in a data
set than in another data set. Therefore, in the experiments presented in this
section, we have used different Committee Bias values for each data set. For
each data set we have chosen three values of Committee Bias representing three
situations: low bias, medium bias and high bias. The values that we have chosen
are shown in table 4.2. To choose those Committee Bias values, we have taken
into account that the more solution classes that a data set has the more parts the
solution class partition (with which Committee Bias is computed) has. Moreover,
the larger the number of parts, the more difficult to obtain Committees with high
Committee Bias. Therefore, in the soybean and zoo data sets, that have a higher
number of solution classes than the sponge data sets, the Committee Bias values
chosen are lower than those chosen for the spongers data set.

Figure 4.13 shows the classification accuracy for agents that use LID as learn-
ing method using CCS. This figure presents 3 different bars for each MAC sys-
tem: The left most bar shows the classification accuracy when Committee Bias
B is low, the middle bar when B is medium, and the right most bar when B
is high. Figure 4.13 shows a clear tendency of the CCS accuracy to decrease
as Committee Bias increases. Although in some MAC systems (like in the 5
agents system in the soybean data set or the 9 agents system in the zoo data
set) accuracy has increased with Committee Bias, the global tendency is to de-
crease. Moreover, Figure 4.13 shows that the decrease in accuracy produced by

84 Chapter 4. Committee Collaboration Strategies

High Bias

Medium Bias

Low Bias

NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

NN - SOYBEAN

50

55

60

65

70

75

80

85

90

1 3 5 7 9 11 13 15

NN - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

Figure 4.14: Bias effect on the CCS classification accuracy in agents using 1-NN.

Committee Bias does not depend on the number of agents in the committee,
since the accuracy drop is present in all the MAC systems experimented with.
Moreover, notice that all the experiments presented in this section have been
made with Committee Completeness C = 1; therefore, in the 1 agent system,
the Committee Bias is always B = 0.0 since the agent owns all the cases in the
training set.

Figure 4.14 shows the CCS results for agents that use 1-NN as learning
method. The figure shows that CCS classification accuracy also decreases as
Committee Bias increases. 1-NN has poorer results than LID under biased con-
ditions in the sponge data set as we can see for the results in the 3 and 7 agents
MAC systems.

Finally, Figure 4.15 shows the CCS results for agents that use 3-NN as learn-
ing method. The figure shows that CCS classification accuracy also decreases
as Committee Bias increases, but that 3-NN is perhaps the method that is less
affected by Committee Bias. Except for the 3 and 7 agent MAC systems in the
sponge data set, accuracy reductions due to the increase of Committee Bias are
smaller than those suffered by 1-NN or LID.

We can conclude that classification accuracy generally decreases as Commit-
tee Bias increases. Moreover, we have only presented the accuracy of the agents
using the Committee Collaboration Strategy. In order to have a better intuition
of the reasons of for which the accuracy diminishes, we will also present the

4.5. Experimental Evaluation 85

High Bias

Medium Bias

Low Bias

3-NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

3-NN - SOYBEAN

50

55

60

65

70

75

80

85

90

1 3 5 7 9 11 13 15

3-NN - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

Figure 4.15: Bias effect on the CCS classification accuracy in agents using 3-NN.

average classification accuracy of the individual agents that take part in those
committees.

Figure 4.16 shows the classification accuracy for individual agents that use
LID as learning method. This figure presents three accuracy bars for each MAC
system: for low Committee Bias B (left bar), for medium B (medium bar) and for
high B (right bar). Notice that although individual accuracy is being measured
we still use the term Committee Bias because we are measuring the individual
accuracy in a MAC system where the Committee Bias would have certain value
if all the agents join together in a committee. Figure 4.16 shows that individual
accuracy decreases as Committee Bias increases in almost all the MAC systems
presented and in all the data sets. Moreover, comparing the decrease in indi-
vidual accuracy with the decrease of the accuracy of CCS in Figure 4.13 we can
see that individual accuracy is much more affected by bias than the committee
accuracy.

Figure 4.17 shows the classification accuracy for individual agents that use
1-NN as learning method. Committee Bias has the same effect in 1-NN than in
LID, the individual accuracy diminishes. Moreover, as with LID, the decrease in
individual accuracy due to Committee Bias is greater than the decrease in the
accuracy of CCS (shown in Figure 4.14).

Figure 4.18 shows the classification accuracy for individual agents that use
3-NN as learning method with the same results as LID or 1-NN.

86 Chapter 4. Committee Collaboration Strategies

High Bias

Medium Bias

Low Bias

LID - SOYBEAN

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15

LID - ZOOLOGY

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15

LID - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

Figure 4.16: Bias effect on the Classification accuracy in agents using LID to
solve problems individually.

The experimental results presented in this section show that as the Commit-
tee Bias increases, the individual accuracy of the agents in a committee decreases.
Moreover, the classification accuracy of the committee also decreases (albeit at a
slower pace than the individual accuracy). This effect can be again explained in
terms of the decomposition of the error of a committee: E = Ē− Ā (where Ē is
the mean error of the individual classifiers and Ā is the ambiguity, that increases
as correlation decreases). The classification error of the committee does not in-
crease as fast as the individual error because by increasing Committee Bias, the
Case Base Bias of the individual agents increases. If Committee Completeness is
C = 1.0 and Committee Redundancy is R = 0.0 (as in our experiments) and the
Case Base Bias of all the individual agents in a committee is high, then clearly
the type of Case Base Bias that each individual agent has is not the same, i.e.
if an agent Ai has a high bias because has a lot of cases of a certain class Sk,
the rest of agents in the system will have less cases of class Sk than Ai in aver-
age. Therefore, a high value of Case Base Bias with Committee Completeness
C = 1.0 and Committee Redundancy R = 0.0 implies that the case bases of
the individual agents a have different individual biases, leading to a decrease in
the error correlation of the individual agents, i.e. an increase in the ambiguity
Ā. This decrease in the error correlation compensates a little the increase in
classification error of the individual agents Ē, but not enough to maintain the

4.5. Experimental Evaluation 87

High Bias

Medium Bias

Low Bias

NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

NN - SOYBEAN

40

45

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

NN - ZOOLOGY

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15

Figure 4.17: Bias effect on the Classification accuracy in agents using 1-NN to
solve problems individually.

committee error E at the same level of accuracy achieved by MAC systems with
no Committee Bias.

Summarizing, the effect of Committee Bias both in the Committee Collabo-
ration Strategy and in the individual agents is to decrease classification accuracy
In order to address this problem Chapter 9 introduces a technique (Case Bar-
tering) capable of improving the performance of committees in the presence of
bias.

4.5.4 Voting System Comparison

The Committee Collaboration Strategy strongly depends on the aggregation
mechanism used to obtain an aggregated prediction from the predictions built
by the individual agents. Therefore, in this section, we are going to test the
performance of the committee using different voting systems. Specifically, we
have made experiments using 4 different voting systems:

• BWAV,

• Approval Voting (AV),

• Majority Voting (MV), where each individual agent will just vote for a
single solution (the solution with more endorsing cases),

88 Chapter 4. Committee Collaboration Strategies

High Bias

Medium Bias

Low Bias

3-NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

3-NN - SOYBEAN

35

40

45

50

55

60

65

70

75

80

85

90

1 3 5 7 9 11 13 15

3-NN - ZOOLOGY

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15

Figure 4.18: Bias effect on the Classification accuracy in agents using 3-NN to
solve problems individually.

• Cases as Votes (CaV), where the cases retrieved by an individual agent
will be considered as votes (i.e. each retrieved case equals to one vote, e.g.
if an agent retrieves 3 cases supporting a certain solution class, then it will
case 3 votes for that solution class).

Let us now define MV and CaV (since BWAV and AV have already been
defined in Section 4.3). In MV, an agent only votes for that class for which more
endorsing cases have been retrieved. Specifically, the vote of an agent Ai for a
class Sk is:

MajorityV ote(Sk, P,Ai) =


1 If ∃R ∈ RAi

|R.S = Sk∧
6 ∃R′ ∈ RAi

|R′.E > R.E,
0 otherwise.

(4.4)

When an agent Aiuses the CaV voting system, each retrieved case endorsing
a class Sk will be considered a vote. Specifically:

CasesV ote(Sk, P,Ai) =

{
R.E If ∃R ∈ RAi |R.S = Sk,

0 otherwise.
(4.5)

In order to test the performance of each voting system we have made exper-
iments with the three data sets (sponge, soybean and zoology). However, only

4.5. Experimental Evaluation 89

LID - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

LID - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

LID - SOYBEAN

50

55

60

65

70

75

80

85

90

1 3 5 7 9 11 13 15

AV

BWAV

CaV

MV

Figure 4.19: Classification accuracy comparison between agents using LID to
solve problems individually and with the committee collaboration strategy.

results using LID and 3-NN learning methods are presented here since all the
voting systems are identical when using 1-NN.

Figure 4.19 shows the results for agents that use LID as learning method.
The vertical axis shows the average classification accuracy, and the horizontal
axis shows the number of agents in the committee. For each committee four
bars are shown, representing classification accuracy using (from left to right)
BWAV, AV, MV and CaV voting systems. Figure 4.19 shows that BWAV and
AV achieve clearly better results than MV and CaV both in the soybean and in
the zoology data sets. Only in the sponge data set MV achieves higher accuracy
values. Comparing BWAV with AV, BWAV achieves higher accuracies in the
sponge data set, while AV wins in the other two data sets.

Figure 4.20 shows the same experiments than Figure 4.19 but with agents
using 3-NN as learning method. BWAV and CaV obtain higher accuracies than
AV or MV in most scenarios. MV performs clearly worst than the rest in all
the data sets except in the sponge data set. CaV works well with a 3-Nearest
Neighbor method, since as the number of retrieved cases is always three, the
maximum number of votes that a solution class can have is bound to three, and
therefore CaV behaves similarly to BWAV.

The interpretation of these results is the following: MV loses a lot of informa-
tion that the agents can provide, since each agent only votes for a single solution

90 Chapter 4. Committee Collaboration Strategies

AV

BWAV

CaV

MV

3NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

3NN - SOYBEAN

45

50

55

60

65

70

75

80

85

90

1 3 5 7 9 11 13 15

3NN - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

Figure 4.20: Classification accuracy comparison between agents using 3-Nearest
Neighbor to solve problems individually and with the committee collaboration
strategy.

class no weight is assigned to the votes. CaV uses more information than MV
(since it uses the number of retrieved cases for each solution class), but is very
sensible to the number of cases retrieved. It works well with methods where
the number of retrieved cases is bounded (such as k-Nearest Neighbor), but has
problems with methods that do not have any limit in the number of retrieved
cases (such as LID). AV and BWAV use also more information than MV and are
not as sensible to the number of cases retrieved as CaV is. We have shown that
both BWAV and approval voting (AV) are the stronger voting systems. How-
ever, BWAV is a more informed voting system than AV since agents can weight
the votes they case for each solution. As we will show in the next chapter, this
information can be useful in order to learn competence models, so in the rest of
this monograph BWAV will be used as the voting system of choice.

4.6 Ensemble Space Redux

In this chapter we have presented a characterization of committees based on
three measures, namely: Committee Completeness, Committee Redundancy and
Committee Bias. Those three measures represent different aspects of commit-
tees. In the experiments section, we have performed several experiments in

4.6. Ensemble Space Redux 91

Bias

Redundancy

1

1

m

0

Completeness

Figure 4.21: Ensemble Space: the space of possible committees characterized by
Committee Completeness, Committee Bias and Committee Redundancy. The
dark area contains the committees with higher accuracy.

order to determine how each one of the measures in the committee characteriza-
tion affects classification accuracy of a committee and therefore determine how
individual case base characteristics affect the performance of a committee. In
Section 4.5.2 we have presented experiments showing that classification accuracy
increases if Committee Redundancy is moderate, even outperforming centralized
single agent scenarios that work with the same data. Moreover, in Section 4.5.3
we have presented experiments showing that, as Committee Bias increases, clas-
sification accuracy of the committee decreases. Finally, although we have not
performed any experiment to test if the accuracy increases or decreases with
different values of Committee Completeness, it is obvious that committee (and
individual) accuracy will increase as Committee Completeness decreases.

Therefore, the area of the Ensemble Space marked in Figure 4.21 in dark grey
contains committees with high accuracy (the area with low Committee Bias,
high Committee Completeness and moderate Committee Redundancy). In the
experiments section we have seen that certain committees in this area can achieve
classification accuracy values higher than a centralized approach where a single

92 Chapter 4. Committee Collaboration Strategies

agent owns all the cases. Finally, we would like to remark that these results have
a direct relation with ensemble learning such as Bagging. Notice that Bagging
creates individual classifiers by selecting random subsets of the training set with
replication, i.e. adding some redundancy. Therefore, the resulting ensemble of
a Bagging process will be the equivalent of a committee falling in the dark grey
area shown in Figure 4.21.

4.7 Conclusions

This chapter has presented the Committee Collaboration Strategy (CCS), that
allows groups of individual CBR agents to collaborate by forming committees
in order to solve problems without compromising their autonomy. Committees
allow a group of agents to solve problems taking benefit from the ensemble
effect and therefore solving them with a higher classification accuracy than if
the problems were solved individually. We have experimentally compared the
classification accuracy of CCS with respect the classification accuracy of the
individual agents, and obtained that CCS achieves always higher classification
accuracy than the individual agents, specially when there is a large number of
agents with small case bases.

Moreover, CCS requires a voting system in order to aggregate the predictions
coming from the individual agents of the committee. In this chapter we have
presented the BWAV voting system and compared it with other voting systems
such as Approval Voting (AV), Majority Voting (MV) or Cases as Votes (CaV).
The comparison between the classification accuracy of CCS with different voting
systems yielded that BWAV and AV are the stronger voting systems. Moreover,
BWAV is a more informed voting system than AV since agents can weight the
votes they cast for each solution. As we will show in the next chapter, this
information can be useful in order to improve the collaboration of agents and
therefore BWAV will be the voting system of choice in the rest of this monograph.

The classification accuracy of CCS strongly depends on the case bases of the
individual agents that compose a committee. In order to analyze this depen-
dency, we have presented a characterization of committees based on three mea-
sures, namely: Committee Completeness, Committee Redundancy and Commit-
tee Bias. These three measures characterize the distribution of cases among the
agents in a committee. Moreover, we have performed experiments to see how
each measure affects classification accuracy of CCS. The conclusions extracted
from those experiments is that committees that have high Committee Com-
pleteness, low Committee Bias and moderate Committee Redundancy achieve
the highest classification accuracy. It is interesting to note that a committee
satisfying the previous conditions can outperform a centralized approach where
single agent owns all the cases in terms of classification accuracy.

Chapter 5

Dynamic Committees

In the previous chapter we have shown that convening committees can effectively
help individual agents to increase their classification accuracy. In this chapter we
are going to present several collaboration strategies aimed at deciding when to
convene a committee and which agents invite to join a committee. Specifically,
we are going to present two collaboration strategies, namely Peer Counsel Col-
laboration Strategy and Bounded Counsel Collaboration Strategy, and empirically
evaluate them.

5.1 Introduction

We have shown that the Committee Collaboration Strategy (CCS) can effectively
improve the problem solving performance of the agents in a MAC system with
respect to agents solving problems individually. However, when an agent uses
CCS, no policy is used to select which agents are invited to join the committee,
and all the agents in a MAC system are invited each time that an agent wants
to use CCS. Moreover, it is not obvious that forming a committee with all
the available agents is the best option for all the problems: possibly smaller
committees have an accuracy comparable (or indistinguishable) to that of the
complete committee. Furthermore, possibly some problems could be confidently
solved by one agent while others could need a large committee to be solved with
confidence.

In this chapter we will study different collaboration strategies that do not
invite always all the agents to join the committee. The goal of these strategies
is to study whether it is possible to achieve similar accuracies than the Commit-
tee Collaboration Strategy without convening always the complete committee.
Moreover, some application domains may require smaller committees than oth-
ers. We are interested in studying whether it is possible to provide agents with
strategies that convene large committees only when the application domain re-
quires it, and convene smaller ones when there is no need for large ones.

This chapter will focus on solving two main problems:

93

94 Chapter 5. Dynamic Committees

w0 w1

w2

p1

p2

p3/c1

p3/c2
p4

w3w4

Request(?User, ?Ai, ?P)

Request(!Ai,A
c, !P)

Inform(?Aj , !Ai, ?R)/

Inform(?Aj , !Ai, ?R)/

p1

p2

p3/c1

p3/c2

p4

:
:
:

:

:

p4

|!w0w1R| < #(Ac) − 2

|!w0w1R| = #(Ac) − 2

Inform(!Ai, !User, ?S)

Figure 5.1: Interaction protocol for the Peer Counsel collaboration strategy.

1. Deciding when an individual agent can solve a problem individually and
when it is needed to convene a committee,

2. Deciding, when a committee is being convened, how many agents and
which agents should be invited to join the committee.

A collaboration strategy that convenes a different committee in function of
the current problem is called a Dynamic Committee collaboration strategy.

In this chapter we will present three dynamic committee strategies, namely
the Peer Counsel Collaboration Strategy (P-CCS) and the Bounded Counsel Col-
laboration Strategy (B-CCS) that are intermediate points between CCS and solv-
ing problems individually.

All the strategies presented in this chapter use competence models (see Section
3.5.1) in order to decide the number of agents in a committee. Both P-CCS and
B-CCS use predefined competence models.

The structure of the chapter is as follows. First, we will present the Peer
Counsel Collaboration Strategy. Them, the Bounded Counsel Collaboration
Strategy will be presented. Finally, we will experimentally evaluate both collab-
oration strategies.

5.2 Peer Counsel Collaboration Strategy

The intuition behind the Peer Counsel Collaboration Strategy (P-CCS) is that a
committee only needs to be convened for difficult problems. Easy problems can
be solved individually. To accomplish that, an agent Ai using P-CCS will use

5.2. Peer Counsel Collaboration Strategy 95

the following strategy: each time that Ai has to solve a problem P , the problem
will be first solved individually; Ai will then use a competence model of itself that
assesses the confidence of the individually predicted solution: if this confidence
is high, the individual solution is kept; otherwise a committee will be convened.
In the case that a committee has to be convened, Ai will proceed exactly as in
CCS.

The Peer Counsel Collaboration Strategy is composed of an interaction pro-
tocol, and a decision policy:

Definition 5.2.1. The Peer Committee Collaboration Strategy(P-CCS) is a
collaboration strategy 〈IP−CCS , DPC , DV 〉, where IP−CCS is the P-CCS inter-
action protocol shown in Figure 5.1, DPC is the Peer Counsel decision policy
used to decide when to convene a committee, and DV is a decision policy based
on any voting system that can be used to aggregate the evidence gathered by the
individual agents into a global prediction.

Figure 5.1 shows the formal specification of the IP−CCS interaction protocol.
Notice that the protocol is similar to the CCS protocol (Figure 4.2), except that
now there is a connection between states w1 and w2: the protocol will move from
state w1 to w2 when the agent Ai decides (by using the DPC decision policy)
that the problem can be solved individually.

The DPC decision policy is used in state w1 of the P-CCS interaction pro-
tocol. Notice that in state w1, the convener agent has two possible messages to
send: p2 to convene a committee or p4 to solve the problem individually. The
DPC decision policy uses a Self-Competence model in order to decide whether
the agent itself is competent enough to solve a problem P without external help.
A Self-Competence model for an agent Ai takes as input RAi

(the set of SERs
built by an agent Ai to solve a problem P) and returns a confidence value in
the interval [0, 1], that represents the confidence on Ai for having individually
found the correct solution for P (0 represents the minimum confidence and 1
represents the maximum confidence):

Definition 5.2.2. (Self-Competence Model)

Self-Competence(RAi
) =

{
1
MBallot(Sol(S, {Ai}), {Ai}) If N > 1,
Ballot(Sol(S, {Ai}), {Ai}) If N = 1.

where M =
∑

Sk∈S Ballot(Sk,Ac), is the sum of all the votes casted by the agent.
and N = #({Sk ∈ S|Ballot(Sk,Ac) 6= 0}), is the number of different classes for
which the agent has voted for.

That is to say, if agent Ai has built only one SER for a single solution
(N = 1), the Self-Competence model will return the ballot for that solution
(i.e. the votes for that solution). The intuition is that the higher the ballot,
the larger the number of cases retrieved endorsing the predicted solution class,
and therefore the higher the confidence on having predicted the correct solution
class. Moreover, if agent Ai has built SERs for more than one solution (and

96 Chapter 5. Dynamic Committees

therefore N > 1), the Self-Competence model will return the fraction of votes
that that are given to the most voted solution Sol(S, {Ai}). The intuition here
is that the larger the fraction of votes for the predicted solution class, the larger
the fraction of retrieved cases endorsing that solution class, and therefore the
higher the confidence on having predicted the correct solution class.

Using this competence model, we can now define the DPC decision policy
for an agent Ai as a boolean decision policy that decides whether to solve a
problem individually or not. When DPC(RAi) = true the problem will be
solved individually, otherwise a committee will be convened:

Definition 5.2.3. (Peer Counsel Decision Policy)

DPC(RAi
) = (Self-Competence(RAi

) ≥ η)

where η is a threshold parameter.

The intuition behind the DPC decision policy is that when the confidence
on solving a specific problem individually is high enough, Ai does not need to
convene a committee since the individual prediction is very likely to be correct
and convening a committee is useless. However, if the individual confidence is
low, it is better to convene a committee in order to confirm that the predicted
solution class was correct or to predict another solution class that is more likely
to be correct. Moreover, in our experiments, we have set the threshold η = 0.75.

Section 5.4 presents the experimental results evaluating P-CCS. The next
section presents the Bounded Counsel Collaboration Strategy that, in addition of
trying to convene the complete committee only when needed (as P-CCS), also
tries to reduce the number of agents in the committee.

5.3 Bounded Counsel Collaboration Strategy

While the idea of P-CCS is to convene a committee only for difficult problems,
the Bounded Counsel Collaboration Strategy (B-CCS) is designed to study if
smaller committees can reach accuracy values comparable to that of the the
complete committee. We want to study when smaller committees can be con-
vened without losing classification accuracy, and how can an agent decide how
many agents need to be invited to join the committee.

We propose an incremental approach to determine the size of the committee
needed to solve a problem. In the incremental approach, the convener agent first
solves the problem individually. Then, a competence model is used to determine
whether there is enough confidence on the individually predicted solution. If
there is not enough confidence, then a committee is convened in an incremental
way: a new agent Aj is invited to join the committee; the committee of two
agents solve the problem and a competence model is used again to determine
whether there is enough confidence on the solution predicted by that committee.
If there is not enough confidence a new agent is invited, and so on. When the
competence model estimates that a solution has enough confidence, the process

5.3. Bounded Counsel Collaboration Strategy 97

P

P

P
RA2

RA3

Ac

Not willing
to collaborate

Not willing
to collaborate

MAC

Candidates to be invited

Agents willing to collaborate

Current committee

Figure 5.2: Illustration of B-CCS where 3 agents have already been invited to
join the committee, forming a committee of 4 agents.

terminates and the solution predicted is returned. Figure 5.2 illustrates this
process: from all the agents in the MAC system that have agreed to collaborate,
some of them have already joined the committee, and some of them are can-
didates to be invited if the confidence in the solution predicted by the current
committee is not high enough. Moreover, notice that some agents in the MAC
system could be unwilling to participate in B-CCS, thus are not candidates to
be invited to join the committee.

The Bounded Counsel collaboration strategy is composed by an interaction
protocol and two decision policies:

Definition 5.3.1. The Bounded Committee Collaboration Strategy(B-CCS) is
a collaboration strategy 〈IB−CCS , DH , DAS , DV 〉, where IB−CCS is the B-CCS
interaction protocol shown in Figure 5.3, DH is the Bounded Counsel Halting
decision policy (used to decide when to stop inviting agents to join the com-
mittee), DAS is the Bounded Counsel Agent Selection decision policy (used to
decide which will be the next agent to be invited to join the committee) and DV

is a decision policy based on any voting system that can be used to aggregate the
evidence gathered by the individual agents into a global prediction.

Figure 5.3 shows the formal specification of the IB−CCS interaction protocol.
The protocol consists of 4 states: w0 is the initial state, and, when a user requests
an agent Ai to solve a problem P , the protocol moves to state w1. The first
time the protocol is in state w1 the convener agent decides whether convening a
committee is needed or not. If Ai wants to invite another agent, then message p2

is sent to another agent Aj containing the problem P and the protocol moves to
state w2. In state w2 Ai waits until Aj sends back message p3 containing its own

98 Chapter 5. Dynamic Committees

w0

w1 w2

p1
p2

Request(?User, ?Ai, ?P)p1

p2

p4 :

:

:
:

p4

p3

w3

p3

Request(!Ai, ?Aj , !P)

Inform(!Aj , !Ai, ?R)

Inform(!Ai, !User, ?S)

Figure 5.3: Interaction protocol for the Bounded Counsel collaboration strategy.

prediction for the problem P , then the protocol will move back to state w1. In
state w1 the convener agent assesses the confidence of the current solution and
uses the DH decision policy to decide whether another agent has to be invited
to join the committee or not. If Ai decides to invite more agents, then message
p2 will be send to another agent, repeating the process of inviting another agent;
if Ai decides that no more agents need to be invited to join the committee the
voting system will be used to obtain an aggregate solution S. Finally, Ai will
send the result to the user with message p4, and the protocol will move to the
final state w3.

B-CCS requires two individual decision policies: the Bounded Counsel Halt-
ing decision policy DH , that decides whether inviting more agents to join the
committee is needed, and the Bounded Counsel Agent Selection decision policy
DAS , that decides which agent Aj to invite to join the committee. Notice that
the order in which the agents are invited to join the committee may be impor-
tant if the goal of Ai is to invite to the minimum number of agents. However,
in our experiments, the DAS policy randomly selects an agent from the set of
agents in A that have not been still convened into the committee. In Chapter 6
we will present a more informed way of selecting the next agent to invite.

The DH decision policy uses the Committee-Competence model that mea-
sures the confidence in a solution predicted by a committee to be correct. The
Committee-Competence model takes as input Rc (the set of SERs built by a
committee of agents Ac to solve a problem P) and returns a confidence value
in the interval [0, 1], that represents the confidence on the committee for having
found the correct solution for P (0 represents the minimum confidence and 1
represents the maximum confidence):

5.4. Experimental Evaluation 99

Definition 5.3.2. (Committee-Competence Model)

Committee-Competence(Rc) =

{
1
MBallot(Sol(S,Ac),Ac) If N > 1,
min(Ballot(Sol(S,Ac),Ac), 1) If N = 1.

where M =
∑

Sk∈S Ballot(Sk,Ac), is the sum of all the votes casted by the agents
and N = #({Sk ∈ S|Ballot(Sk,Ac) 6= 0}), is the number of different classes for
which the agents have voted for.

That is to say, if the agents in Ac have built SERs for a single solution (N =
1), the Committee-Competence model will return the ballot for that solution.
Moreover, notice that the ballot for a solution when there are more than one
agent in Ac can be greater than 1. Therefore we take the minimum between
the ballot and 1 to ensure that the competence models output confidence values
within the interval [0, 1]. The intuition is that the higher the ballot, the larger
the number of cases retrieved by the agents endorsing the predicted solution
class, and therefore the higher the confidence on having predicted the correct
solution class. Moreover, if the agents in Ac have built SERs for more than one
solution (and therefore N > 1), the Committee-Competence model will return
the fraction of votes that that are given to the most voted solution Sol(S, {Ai}).
The larger fraction of votes for the predicted solution, the larger the number of
agents that have voted for the predicted solution class or the larger the number
of cases that each individual agent has retrieved endorsing the predicted solution
class, and therefore the higher the confidence on having predicted the correct
solution class.

Using this competence model, we can now define theDH as a boolean decision
policy that decides whether the convener agent can stop inviting agents to the
committee; if DH(Rc) = true, no more agents will be invited to the committee.

Definition 5.3.3. (Bounded Counsel Halting Decision Policy)

DH(Rc) = (Committee-Competence(Rc) ≥ η)

where η is a threshold parameter.

The intuition behind the DH decision policy is that if the confidence on
the solution predicted by the current committee is high enough, there is no
need for inviting more agents to join the committee. Notice that when Ai is
alone (and can be considered as a committee of 1) this decision is equivalent to
choose between solving the problem individually or convene a committee. In our
experiments we have set η = 0.75.

The next section presents an experimental evaluation of P-CCS and B-CCS
collaboration strategies, and compares them with the Committee Collaboration
Strategy.

5.4 Experimental Evaluation

In this section we are going to empirically compare the performance of the Peer
Counsel and Bounded Counsel collaboration strategies with the Committee Col-

100 Chapter 5. Dynamic Committees

LID - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

LID - SOYBEAN

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15

LID - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

B-CCS

Individual

CCS

P-CCS

Figure 5.4: Classification accuracy comparison between agents using LID to solve
problems with several collaboration strategies.

laboration Strategy (CCS) and with agents working in isolation. In order to
evaluate the performance of a collaboration strategy we will measure two fea-
tures: the classification accuracy and the size of the committees convened.

We used the same scenarios than in previous chapter, i.e. MAC systems
consisting of 3, 5, 7, 9, 11, 13 and 15 agents using 1-NN, 3-NN, and LID as
learning methods. The data sets used are also sponges, soybean and zoology.
The results presented are also the average of 5 runs of a 10 fold cross validation.

5.4.1 Accuracy Evaluation

Figures 5.4, 5.5 and 5.6 present the classification accuracy achieved by agents in
several MAC systems using the dynamic collaboration strategies presented so
far.

Figure 5.4 shows the results for agents that use LID as learning method.
The Committee Collaboration Strategy (CCS) has achieved the higher accuracy
values in almost all the experiments and agents solving problems individually
achieve the lowest accuracy in all the experiments. The Bounded Counsel Col-
laboration Strategy and the Peer Counsel Collaboration Strategy have an inter-
mediate accuracy value between CCS and individual agents: they achieve no-
ticeably higher accuracy than agents working individually but without reaching

5.4. Experimental Evaluation 101

NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

NN - SOYBEAN

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15

NN - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

B-CCS

Individual

CCS

P-CCS

Figure 5.5: Classification accuracy comparison between agents using Nearest
Neighbor to solve problems with several collaboration strategies.

the accuracy of CCS. For instance, in a MAC system of 9 agents in the zoology
data set, agents working individually achieve an accuracy of 65.54% while CCS
achieves an accuracy of 80.79%; B-CCS achieves an accuracy of 76.04% and P-
CCS an accuracy of 78.41%. Comparing Bounded Counsel with Peer Counsel,
Peer Counsel usually achieve higher accuracy values than Bounded Counsel, but
the difference is very small.

Figure 5.5 shows the results for agents that use 1-NN as learning method.
Notice that P-CCS is equivalent to CCS when the learning method is 1-NN since
the Peer Counsel decision policy DPC always decides to convene the complete
committee if the number of retrieved cases is only 1 (as happens to be in 1-
NN). Therefore, we will only consider the comparison among individual agents,
B-CCS and CCS. Figure 5.5 shows that the accuracy of B-CCS is again between
individual agents and CCS in the sponge and soybean data sets. However, with
1-NN, B-CCS is able to achieve the same level of accuracy than CCS in the
zoology data set. Moreover, the difference between B-CCS and CCS is smaller
using nearest neighbor than using LID. For instance, in a 9 agents MAC system
in the soybean data set, individual agents achieve an accuracy of 58.89%, B-CCS
an accuracy of 75.44% while P-CCS and CCS has an accuracy of 77.39%.

Figure 5.6 shows the results for agents that use 3-NN as learning method.
Notice that using 3-NN the accuracy of B-CCS and P-CCS is much closer to

102 Chapter 5. Dynamic Committees

B-CCS

Individual

CCS

P-CCS

3NN - SOYBEAN

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15

3NN - ZOOLOGY

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15

3NN - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

Figure 5.6: Classification accuracy comparison between agents using 3-Nearest
Neighbor to solve problems with several collaboration strategies.

the accuracy of CCS than using LID and 1-NN. In fact, CCS achieves higher
accuracy than B-CCS and P-CCS in 10 experiments, P-CCS outperforms CCS
and B-CCS in 7 experiments, and B-CCS achieves the highest accuracy in 6
experiments. In the three experiments where the MAC systems are composed
of a single agent, all the strategies achieve the same accuracy since they are
equivalent.

Summarizing, on average, the Committee Collaboration Strategy achieves
the highest accuracy values, the Peer Counsel Collaboration Strategy and the
Bounded Counsel Collaboration Strategy follow close, and agents working in-
dividually achieve very low classification accuracy when the data is very frag-
mented. The difference between P-CCS and B-CCS lies in the size of the con-
vened committees. Let us now analyze the experimental results in terms of
committee sizes.

5.4.2 Committee Size Evaluation

Figures 5.7, 5.8, and 5.9 present the average number of agents in the commit-
tees convened for solving problems in several MAC systems using the dynamic
collaboration strategies presented so far. One of the reasons for studying the
size of the committees convened by the different collaboration strategies is that

5.4. Experimental Evaluation 103

P-CCS

B-CCS

LID - ZOOLOGY

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

LID - SOYBEAN

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

LID - SPONGE

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

Figure 5.7: Committee size comparison between agents using LID to solve prob-
lems with several collaboration strategies.

1 3 5 7 9 11 13 15
100% 89.0% 77.0% 72.1% 69.0% 69.81% 64.25% 63.1%

Table 5.1: Percentage of problems solved individually by agents using P-CCS in
the sponge data set using LID.

in many application domains, convening committees may have a cost, and that
cost is surely related to the number of agents that join the committee.

Figure 5.7 shows the average size of the committees convened by the differ-
ent collaboration strategies when agents use LID as learning method. We have
considered that when the agents work individually, they form a committee of
only one agent. When the agents use the Committee Collaboration Strategy,
all the agents in the system are invited to join the committee and, since in our
experiments agents never reject to join a committee, therefore the size of the
committees convened by CCS is exactly the number of agents in the MAC sys-
tem. P-CCS and B-CCS lie between these two extremes. The average size of
the committees convened by P-CCS and B-CCS grows as the number of agents
increase, but it never reaches the size of the committees convened by CCS. More-
over, Figure 5.7 shows that the average committee size achieved by B-CCS is
always lower than that of P-CCS. The reason is that only a reduced number

104 Chapter 5. Dynamic Committees

P-CCS

B-CCS

NN - ZOOLOGY

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

NN - SOYBEAN

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

NN - SPONGE

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

Figure 5.8: Committee size comparison between agents using Nearest Neighbor
to solve problems with several collaboration strategies.

of agents join the committee convened by B-CCS for each problem. Moreover,
notice that the committees convened by B-CCS and P-CCS in the sponge data
set are smaller the committees convened in the soybean or zoology data sets. For
instance, the average size of a committee convened by B-CCS in a MAC system
composed of 15 agents in the sponge data set is 15.26% of the agents while it
is 52.06% in the soybean data set. Moreover, the average size of a committee
convened by P-CCS in a MAC system composed of 15 agents in the sponge
data set is 41.13% of the agent while it is 74.13% in the soybean data set. The
conclusion is that both P-CCS and B-CCS are adaptive, since depending on
the data set the number of agents in a committee varies because the number of
agents convened that are needed to achieve a high confidence in the solution is
different for each data set.

Moreover, Table 5.1 shows the percentage of times that an agent using P-
CCS solves a problem individually in the sponge data set and using LID. The
figure shows that when the individual agent has a large case base (in our exper-
iments, when the MAC system contains few agents) the agents solve problems
individually more often, e.g. a 89.0% of the problems in the 3 agents system. As
the case base size of the agents decrease (in experiments with a large number of
agents), the agent convenes committees more often since the confidence in the
individually predicted solutions decreases.

5.4. Experimental Evaluation 105

P-CCS

B-CCS

3NN - SOYBEAN

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

3NN - ZOOLOGY

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

3NN - SPONGE

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

Figure 5.9: Committee size comparison between agents using 3-Nearest Neighbor
to solve problems with several collaboration strategies.

Figure 5.8 shows the average committee size when agents use 1-NN as learn-
ing method. As we have seen in the accuracy evaluation, P-CCS is equivalent to
the CCS with the Peer Counsel decision policy DPC that we have used. There-
fore, the average committee size convened by P-CCS is equal to that of CCS.
The committees convened by B-CCS have a size between those of CCS and the
individual agents. Moreover, we can also observe committees convened for solv-
ing a problem in the soybean and zoology data sets are larger than committees
convened for solving a problem in the sponge data set.

Finally, Figure 5.9 shows the average committee size when agents use 3-NN
as learning method. The situation is very similar to that shown in Figure 5.9: P-
CCS convenes smaller committees than CCS, and B-CCS convenes even smaller
committees than P-CCS. Moreover, we also observe that committees convened
to solve a problem in the sponge data set are, as before, smaller than those
convened to solve problems in the other two, thus showing again the adaptive
behavior of P-CCS and B-CCS.

Summarizing, we can draw the following conclusions: using a collaboration
strategy (CCS, P-CCS or B-CCS) is beneficial for individual agents in terms of
classification accuracy. CCS is the collaboration strategy that achieves the high-
est classification accuracy in average, but also convenes the largest committees.
Both P-CCS and B-CCS achieve much higher accuracies than individual agents

106 Chapter 5. Dynamic Committees

and convene committees with an average size smaller than the those convened
by CCS. Comparing P-CCS to B-CCS, B-CCS seems better, since it achieves
a very similar accuracy (in fact, the difference in accuracy between P-CCS and
B-CCS is very seldom statistically significant) and convenes smaller committees.
Moreover, B-CCS and P-CCS have the advantage with respect to CCS that they
can decide when an agent can solve the problem individually (by using the Self-
Competence model or the Committee-Competence model). Finally, B-CCS and
P-CCS are able to reach high accuracy values (close to that of CCS) and with
smaller committees. However, the accuracy achieved by CCS is still higher than
that of B-CCS or P-CCS.

5.5 Conclusions

In this chapter we have introduced the idea of dynamic committee collabora-
tion strategies. A dynamic committee strategy is a collaboration strategy that
convenes a different committee for each different problem that an agent wants
to solve. Specifically, we have presented two dynamic committee collaboration
strategies: Peer Counsel Collaboration Strategy (P-CCS) and Bounded Counsel
Collaboration Strategy (B-CCS). The goal of the dynamic committee strategies
is to reduce the number of agents involved in the solution of each problem: if
an agent has a high confidence on the individually predicted solution for a prob-
lem, then it is not needed to convene a committee. Furthermore, if the solution
predicted by a small committee of agents has a high confidence, then there is no
need for convening a larger committee.

All the dynamic committee collaboration strategies use the information pro-
vided by competence models to make decisions. Specifically, competence models
allow individual agents to assess when problems can be solved individually, or
when convening a committee to solve them is needed. Moreover, competence
models can be also used to assess the competence of a committee and to decide
whether more agents have to be invited to join the committee or not. Although
in this chapter we have used predefined competence models the next chapter
will show that competence models can be automatically learnt by the individual
agents.

Both collaboration strategies presented in this chapter, B-CCS and P-CCS,
have been empirically compared against the Committee Collaboration Strategy
(CCS) and against agents solving problems individually. Concerning individual
accuracy, B-CCS, P-CCS, and CCS have shown to achieve higher classification
accuracy values than agents solving problems individually. Moreover, concerning
committee classification accuracy, CCS achieves the highest classification accu-
racy but convening larger committees. P-CCS and B-CCS achieve a classification
accuracy lower (but very close) than CCS and convening smaller committees.

The dynamic committees approach is also related to the MCBR approach
by Leake and Sooriamurthi [Leake and Sooriamurthi, 2003]. In the MCBR ap-
proach, when a CBR system solves a problem, it has to decide whether to retrieve
cases from the local cases base or to dispatch the problem to an external case

5.5. Conclusions 107

base where cases with a higher similarity to the target problem may be found.
The main difference from the dynamic committee approach is that in the MCBR
approach, the retrieve process of the CBR cycle is distributed while in the dy-
namic committee approach, the retrieve process is performed individually (thus
preserving the privacy and autonomy of each individual agent) and the reuse
process is distributed.

As a general conclusion, we have shown that dynamic committee collabora-
tion strategies are useful collaboration strategies that can greatly improve the
classification accuracy of an individual agent and that can be used without the
high cost of using Committee Collaboration Strategy. Specifically, in a real sys-
tem with a very large number of agents the dynamic committee strategies are
preferable to the Committee Collaboration Strategy. Moreover, both B-CCS
and P-CCS have shown that they are able to convene small committees for easy
problems and convene large committees only for difficult problems. However,
notice that both B-CCS and P-CCS have parameters in their decision policies
that can modify their behavior. Those parameters need to be hand tuned in
order to achieve the desired behavior. The next chapter presents a proactive
learning strategy with which each agent will be able to acquire its individual
competence models to be used in their decision policies. This proactive learning
strategy avoids the need of hand-tuning the decision policy parameters in order
to achieve the desired behavior.

Chapter 6

Proactive Learning for
Collaboration

This chapter presents a proactive learning approach with which agents in aMAC
system can learn their own competence models. Then, the Proactive Bounded
Counsel Collaboration Strategy (PB-CCS), a dynamic committee collaboration
strategy that uses those learnt competence models, is presented. Finally, PB-
CCS is empirically compared with CCS, B-CCS, and P-CCS.

6.1 Introduction

The previous chapter has introduced two dynamic committee collaboration
strategies that use competence models in order to decide when to solve prob-
lems individually and when to convene a committee and also to decide how many
agents will be invited to join the committee in the case that one has to be con-
vened. Decision policies based on predefined Self-Competence and Committee-
Competence competence models have parameters that need to be hand tuned
and that can only be tuned by experimentation. Moreover, such hand tuned
decision policies cannot be expected to automatically work well in every appli-
cation domain or for every configuration of a MAC system: the decision policy
should be adapted to the specific application domain, to the degree of expertise
that the agents in the MAC system have, etc.

In this chapter we are going to present a proactive learning technique that
will allow the individual agents to learn their own competence models to be
used in the collaboration strategies, both to decide when to convene committees
and to decide which agents to convene. Decision policies that use these learnt
competence models do not need to be hand tuned for each application domain.
Our goal is to study whether it is possible that individual agents learn their own
specific competence models adapted to their specific application domain. More-
over, we will also define the Proactive Bounded Counsel Collaboration Strategy
(PB-CCS), that uses the competence models learnt by this proactive learning

109

110 Chapter 6. Proactive Learning for Collaboration

technique.
PB-CCS is a dynamic committee collaboration strategy based on the

Bounded Counsel Collaboration Strategy. When an agent uses PB-CCS a com-
mittee of agents will be convened iteratively by inviting agents to join the com-
mittee one at a time. Therefore, at each iteration, an agent using PB-CCS to
convene a committee must take two decisions:

1. The first decision to be made is whether it is needed to invite more agents
to join the committee or not.

2. If more agents are needed, the agent has to decide which agent to invite
next.

The iterative process of taking this two decisions is equivalent to deciding
when to collaborate with other agents, and with which agents to collaborate. In
this section we will show that, using a proactive learning technique, agents are
able to learn by themselves how to take the previous two decisions. Specifically,
the agents will learn competence models to be used in their individual decision
policies.

Specifically, at each iteration t the set of agents A in the MAC system that
have agreed to collaborate with the convener agent can be divided in two sets
of agents: A = Ac

t ∪ Ar
t , where Ac

t contains the agents that have joined the
committee at round t, and Ar

t contains the rest of the agents. At round t = 0,
Ac

t = {Ac}, i.e. only the convener agent is in the committee. The set Ar
t are the

agents that are candidates to be invited to join the committee at a round t+ 1.
Figure 6.1 illustrate all these sets of agents, where we can see a MAC system
composed of 10 agents: one of them is using PB-CCS to solve a problem P , 3
agents have not accepted to collaborate and 6 agents have agreed to collaborate
(A); from the 6 agents that have agreed to collaborate, 3 of them have already
been invited to join the committee (Ac

t), and 3 of them are still not in the
committee (Ar

t).
The structure of this chapter is as follows. First, Section 6.2 introduces

the concepts related to competence models. Section 6.3 explains the proactive
learning technique used to learn competence models; then, Section 6.4 presents
the Proactive Bounded Counsel Collaboration Strategy (PB-CCS), a dynamic
committee collaboration strategy that uses learnt competence models. Finally,
PB-CCS is empirically evaluated at Section 6.5, comparing it with Commit-
tee Collaboration Strategy, the Peer Counsel Collaboration Strategy and the
Bounded Counsel Collaboration Strategy.

6.2 Competence Models

In this section we are going to introduce the concepts needed to explain the
proactive learning technique and the competence models that are to be learnt.

A competence model (see Definition 3.5.1) is a function that assesses the
likelihood that the prediction made by an agent (or by a set of agents) for a

6.2. Competence Models 111

RA1

Ac

t

Ac

Ar

t

A

RA2

RA3

MAC

Not willing
to collaborate

Not willing
to collaborate

Not willing
to collaborate

P

Figure 6.1: Illustration of PB-CCS at a round t.

given problem P is correct. In the dynamic committee collaboration strategies,
competence models are used to decide when is better to invite new agents to join
a committee, and which agents to invite. Therefore, competence models will be
used for two purposes:

• To assess the competence of a given committee and decide whether inviting
more agents to join the committee could improve performance.

• To assess the competence of agents that still have not been convened in
order to decide which of them should be invited to join the committee.

A central issue for those decisions is to assess the competence of a set of
collaborating agents Ac, including the special case of a committee composed of
a single agent (the convener agent), that corresponds to assessing the confidence
of a single agent individually solving a problem.

Therefore, a competence model must assess the competence of an agent or
group of agents given a voting situation, i.e. a situation in which committee
has been convened and the convener agent is ready to apply a voting system
to obtain a final prediction for the problem. Given the voting situation, the
competence models will be used to decide the next action (invite more agents
or not). Notice that the collection of SERs RAc casted by the agent members
of a committee Ac completely characterizes a voting situation (since from RAc

we can obtain which agents are members of the committee and which have been
their votes).

Definition 6.2.1. A voting situation RAc is a set of SERs sent by a committee
of agents Ac to the convener agent (including the SERs of the convener agent
Ac) built to solve a problem P .

112 Chapter 6. Proactive Learning for Collaboration

For each voting situation we can define the candidate solution of a voting
situation as the solution that the committee will predict if no more agents join
the committee. Moreover, we can also define the individual candidate solution
of an agent Ai in a committee as the solution that Ai individually predicts for
the problem:

Definition 6.2.2. The candidate solution Sc of a voting situation RAc is the
outcome of the voting system Sc = Sol(S), P,RAc ,.

Definition 6.2.3. The individual candidate solution Sc
Ai

of an agent Ai in a
voting situation RAc is the outcome of the voting system using only the SERs
provided by Ai: Sc

Ai
= Sol(S, P,RAi

), where RAi
= {R ∈ RAc |R.A = Ai}.

Specifically, a competence model take as input a voting situation RAc and
outputs a confidence value in the interval [0, 1] (Definition 3.5.1). The output
represents the confidence that the candidate solution of the voting situation is
correct. If the competence model is modelling the competence of a single agent
Ai, then the output represents the confidence that the individual candidate
solution of Ai is correct. Therefore, learning a competence model of an agent or
a group of agents means constructing a mapping between voting situations and
confidence values in [0, 1].

Let us assume an agent Ai member of a MAC system composed of n agents,
A = {A1, ..., An}. In order to use PB-CCS, Ai needs to learn several competence
models, namely MAi = {Mc,MA1 , ...,MAi−1 ,MAi+1 , ...,MAn}, where Mc is a
Committee-Competence Model and MAj are Agent-Competence Models.

Definition 6.2.4. A Committee-Competence Model Mc is a competence model
that assesses the likelihood that a committee Ac will predict the correct solution
in a given voting situation R.

The Committee-Competence models Mc assesses the confidence in the solu-
tion predicted by a committee in a specific voting situation R for a problem P ,
and is used to decide whether the current committee Ac

t is competent enough to
solve the problem P or it is better to invite more agents to join the committee.

Definition 6.2.5. An Agent-Competence Model MAj is a competence model
that assesses the likelihood that an agent Aj will predict the correct solution in
a given voting situation R.

The Agent-Competence models MAj assess the confidence of an agent Aj to
correctly solve a problem P given the current voting situation R. Thus, let us
consider an agent Aj ∈ Ar, i.e. an agent that has not yet been invited to join the
committee and thus it is a candidate to be invited to join Ac. MAj

is useful for
the convener agent to estimate to which degree Aj is a “good candidate”, in other
words, the degree of confidence in that inviting Aj will increase the likelihood
that the enlarged committee will predict the correct solution. Therefore, the
convener agent can use the Agent-Competence models to select which agent Aj

is the best candidate to be invited to join the committee by selecting the agent

6.3. Proactive Learning of Competence Models 113

Aj for which its competence model predicts the highest confidence to find the
correct solution for P given the current voting situation R.

The next section presents the proactive learning process used by the agents
to learn the competence models.

6.3 Proactive Learning of Competence Models

This section presents a proactive learning technique with which an agent Ai in
a MAC system can learn the competence models MAi

to be used in PB-CCS.
In order to learn these competence models, agents need to collect examples from
where to learn. This section presents the way in which an agent can proactively
collect those examples and how can a competence model be learnt from them.

The proactive learning technique consists of several steps: first, an agent Ai

that wants to learn a competence model obtains a set of cases with known solu-
tion (that can be taken from its local case base), and those cases are transformed
to problems (by removing their solutions); the agent sends then those problems
to other agents and obtains their individual predictions for the problems; with
the predictions made by the other agents for all the problems sent, Ai will con-
struct a set of voting situations; finally, these voting situations will be the input
of a learning algorithm from which the competence models will be learnt.

Moreover, in order to apply standard machine learning techniques, we need
to characterize the voting situations by defining a collection of attributes in order
to express them as attribute-value vectors.

Definition 6.3.1. The characterization of a voting situation RAc
t

is a tuple
〈A1, ..., An, S

c, V c, V r, ρ〉, where:

• The attributes A1, ..., An are boolean. Ai = 1 if Ai ∈ Ac
t (i.e. if Ai is a

member of the current committee), and Ai = 0 otherwise.

• Sc = Sol(S, P,RAc
t
) is the candidate solution.

• V c = Ballot(Sc,Ac) are the votes for the candidate solution.

• V r = (
∑

Sk∈S Ballot(Sk,Ac)) − V c is the sum of votes for all the other
solutions.

• ρ = V c

V c+V r is the ratio of votes supporting the candidate solution.

Notice that the values of most features are computed from the votes cast
by each agent. Therefore, the values of this characterization depend on the
voting system used. Notice also that, as we have said in Section 4.5.4, BWAV
provides more information than Approval Voting, and therefore characterizations
of voting situations built using BWAV contain more information.

Induction will be used to learn the competence models MAi
of an agent Ai

from voting situations. Thus, a competence model M ∈ MAi
will be learnt

by collecting a set of examples to form a data set and inducing the competence

114 Chapter 6. Proactive Learning for Collaboration

Case Base

Pi

Sk

Ci :

Case with Known solution

Pi

Pi

Pi

SERSERSERSER

Voting Situation

SERs for Pi

voting S
′

k

Voting Situation

M-examples

Competence
Model Learning

Acquisition of M-examples

ω Ok?

Figure 6.2: Detailed graphical representation of the proactive learning technique
to learn competence models.

model from them. We will call an example collected to learn a competence model
M an M -example.

Definition 6.3.2. An M -example m derived from a case c is a pair m =
〈〈A1, ..., An, S

c, V c, V r, ρ〉, ω〉, where 〈A1, ..., An, S
c, V c, V r, ρ〉 is the characteri-

zation of a voting situation RAc
t

according to Definition 6.3.1 and ω represents
the “prediction correctness” of the voting situation, such that ω = 1 if the candi-
date solution of the voting situation RAc

t
was the correct one (i.e. if Sc = c.S)

and ω = 0 otherwise (if Sc 6= c.S).

Competence models can be learnt by collecting sets of M -examples. More-
over, in order to learn the competence models MAi , an agent Ai must collect
a set of M -examples for each competence model M ∈ MAi

, i.e. a set of Mc-
examples, a set of MA1-examples, and so on. In the rest of this section, we will
present the proactive learning technique that the agents in a MAC system use in
order to acquire all the needed M -examples, and learn from them the required
competence models.

Figure 6.2 presents a scheme of the proactive learning process that will be ex-
plained in the remaining sections of this chapter. Specifically, the steps involved
in the proactive learning process are the following ones:

1. An agent that wants to learn a competence model M , obtains a set of cases
with known solution by taking cases from its local case base.

2. Those cases are transformed into problems by removing their solution and
are sent to other agents in the MAC system in order to obtain their indi-
vidual predictions.

6.3. Proactive Learning of Competence Models 115

3. Voting situations are then built from these individual predictions (Defini-
tion 6.3.3). And from these voting situations, M -examples are constructed
(Definition 6.3.6).

4. Finally, with the collection of M -examples, a competence model is learnt
using an inductive algorithm.

These four steps will be presented in detail in the rest of this section. Then,
an exemplification of the process will be presented in Section 6.3.3. After that,
Section 6.4 presents the Proactive Bounded Counsel Collaboration Strategy. Fi-
nally, PB-CCS is experimentally evaluated in Section 6.5.

6.3.1 Acquisition of M-examples

In this section we are going to present the proactive process that an agent follows
in order to acquire M -examples from where to learn the competence models.

Since an agent Ai needs the competence models MAi
, a different training

set TM will be needed to learn each competence model M ∈ MAi
. We will call

TAi = {TMc , TMA1
, ...TMAi−1

, TMAi+1
, ..., TMAn

} to the collection of training sets
needed by an agent to learn the competence models.

For example, when Ai is building a competence model Mc of the committee,
Ai sends a problem c.P to the rest of agents in the MAC system. After receiving
their predictions, Ai builds the voting situation resulting of putting together all
the SERs built by the agents. Then, Ai uses the voting system to determine
whether the candidate solution of that voting situation is correct or not. If
the candidate solution for the problem c.P is correct, then Ai can build an
Mc-example with ω = 1, and if the prediction is incorrect, Ai can build an
Mc-example with ω = 0.

Notice that the output of a confidence model is a number in the interval [0, 1],
but the ω values in the M -examples are only 1 or 0. The reason is that when
an M -example is built there are only two possible situations: that the agent (or
set of agents) have predicted the correct solution or not.

Although the proactive learning technique can be applied to learn each indi-
vidual competence model one at a time, this is not necessary since all competence
models can be learnt at the same time. Specifically, an agent Ai that wants to
obtain the collection of training sets needed to learn the competence models
proceeds as follows.

Definition 6.3.3. Acquisition of Individual Predictions:

1. Ai chooses a subset of cases Bi ⊆ Ci from its individual case base.

2. For each case c ∈ Bi:

(a) Ai uses ICCS (the interaction protocol of CCS) to convene a commit-
tee of agents Ac to solve the problem c.P . After this, Ai has obtained
the SERs built by all the rest of agents in Ac for problem c.P .

116 Chapter 6. Proactive Learning for Collaboration

(b) Ai solves c.P using a leave-one-out method, i.e. it solves c.P using
as case base Ci − c and creates its own set of SERs RAi .

(c) With the set RAc of SERs obtained (that includes all the SERs from
the other agents obtained in step (a) and the SERs of Ai computed in
(b)), Ai builds voting situations from where to construct M -examples
(as explained below in Definition 6.3.6).

Notice that Ai can build more than one voting situation from the collection
RAc of SERs in Step 2.(c). For instance, the set of SERs built by Ai, RAi

⊆ RAc

corresponds to a voting situation where only agent Ai has cast votes. The set of
SERs built by Ai and any other agent Aj , (RAi

∪ RAj
) ⊆ RAc corresponds to

a voting situation where Ai and Aj have cast their votes. In the following, we
will write RA′ to refer to the set of SERs built by a set of agents A′.

Definition 6.3.4. A Valid Voting Situation RA′ for an agent Ai and a problem
c.P is a voting situation where Ai has casted its votes, i.e. a set of SERs built
by a set of agents A′ that at least contains Ai. Specifically, RA′ ⊆ RAc such
that A′ ⊆ Ac and Ai ∈ A′.

Intuitively, a valid voting situation for an agent Ai is one in which Ai itself is
a member of the committee. In other words, a valid voting situation can be built
by selecting the set of SERs built by any subset of agents A′ ⊆ Ac (such that
Ai ∈ A′). We can define the set of all the possible subsets of agents of A that
contain at least Ai as A(Ai) = {A′ ∈ P(A)|A1 ∈ A′}, where P(A) represents
the parts of the set A (i.e. the set of all the possible subsets of A). Now, it is
easy to define the set of all the possible Valid Voting Situations for an agent Ai

that can be constructed from RAc as follows:

Definition 6.3.5. The Set of Valid Voting Situations for an agent Ai is:
V(Ai) = {RA′}A′∈A(Ai), where RA′ represents the set of SERs built by the set
of agents A′.

Using the previous definitions, we can decompose Step 2.(c) above in three
sub-steps: first, a sample of all the possible valid voting situations that can be
built from RAc is taken, then each one of the selected valid voting situations are
characterized and finally M -examples from each of them are built.

Definition 6.3.6. Acquisition of M -examples:

1. Ai takes a sample of all the possible Valid Voting Situations that can be
built: V′ ⊆ V(Ai) (see Section 6.3.1.2).

2. For every voting situation R ∈ V′, the agent Ai determines the characteri-
zation of the voting situation 〈A1, ..., An, S

c, V c, V r, ρ〉 following Definition
6.3.3.

3. With this characterization Ai can build M -examples. Specifically, Ai will
build one M -example for each competence model M ∈ MAi

(see Section
6.3.1.1).

6.3. Proactive Learning of Competence Models 117

Section 6.3.1.1 presents the process of building specific M -examples for each
competence model M ∈ MAi . Then, Section 6.3.1.2 presents the sampling
technique used to take a sample of Valid Voting Situations.

6.3.1.1 Constructing M-examples from Voting Situations

Let us focus now on how M -examples are constructed for each specific compe-
tence model M ∈ MAi

. Depending on whether the M -example is built for the
competence model Mc (that models the competence of the committee) or for a
competence model MAj (that models the competence of an agent Aj), an agent
Ai proceeds as follows in order to build an M -example from a voting situation
R:

• To build an Mc-example, Ai determines the candidate solution Sc =
Sol(S, c.P,RA′ ,) obtained by applying the voting system to all the SERs
in RA′ . If Sol(S, c.P,RA′) = c.S, then the following Mc-example is built

m = 〈〈A1, ..., An, S
c, V c, V r, ρ〉, 1〉

where ω = 1 because theM -example characterizes a voting situation where
the predicted solution is correct.

If Sc 6= c.S, then the following Mc-example is built

m = 〈〈A1, ..., An, S
c, V c, V r, ρ〉, 0〉

where ω = 0 because theM -example characterizes a voting situation where
the predicted solution is not correct.

• To build an MAj
-example, Ai determines the individual candidate solution

yield by Aj , i.e. Sc
Aj

= Sol(S, c.P,RAj). If Sc
Aj

= c.S (i.e. the prediction
of Aj is correct), then the following MAj -example is built:

m = 〈〈A1, ..., An, S
c, V c, V r, ρ〉, 1〉

and if Sc
Aj
6= c.S (i.e. the prediction of Aj is incorrect), then the following

MAj
-example is built

m = 〈〈A1, ..., An, S
c, V c, V r, ρ〉, 0〉

6.3.1.2 Bounded Sampling of M-examples

Notice that with each voting situationR ∈ V′, anM -example can be constructed
for each different competence model in MAi

. Therefore, the larger the size of
V′ ⊆ V(Ai), the larger the number of M -examples that can be constructed. The
size of V(Ai) (that is equivalent to the size of A(Ai) depends on the number
of agents in the committee convened to solve each of the problems c.P (where

118 Chapter 6. Proactive Learning for Collaboration

Size 1 2 3 4 5 6 7 8 9
Total 1 8 28 56 70 56 28 8 1

Random (100) 0 3 11 22 28 22 11 3 0
Bounded (100) 1 8 17 17 16 16 16 8 1

Table 6.1: Number of different subsets of Ac of different sizes.

c ∈ Bi ⊆ Ci). In fact, the size of V(Ai) grows exponentially with the size of
the set of convened agents: there are 2n−1 different Valid Voting Situations for
a MAC system with n agents. Therefore, building all the M -examples that can
be derived from all possible valid voting situations in V(Ai) may be unfeasible
or impractical. Thus, an agent using the proactive learning technique to learn
competence models will take a sample V′ ⊆ V(Ai) from where to build M -
examples.

The number of M -examples that an agent builds for each competence model
M is about #(Bi) × #(V′). In our experiments we have imposed the limit of
at most 2000 M -examples for each competence model. Therefore, the agents
in our experiments will take subsets V′ ⊆ V(Ai) to have at most 2000/#(Bi)
voting situations. Moreover, in our experiments, an agent Ai using the proactive
learning technique uses all the case base Ci as the set Bi (i.e. Bi = Ci) (in order
to maximize the diversity in the set of voting situations built), and therefore the
size of V′ will be at most 2000/#(Ci).

Notice that the agents need a sampling method to compute a specific subset
V′ ∈ V(Ai). This section presents the Bounded Sampling technique that we have
used in our experiments.

A random selection of subsets of agents of Ac is a possible sampling method,
but we will show that some problems arise. Let us illustrate these problems
with an example: Let us assume a MAC system composed of 9 agents A =
{A1, ..., A9}. The agent A1 has selected a case c ∈ Bi ⊆ Ci, and has convened
a committee to solve problem c.P . With the SERs received from the agents
convened in the committee and from the SERs built by A1 itself using a leave-
one-out method A1 has constructed the set RAc of SERs. Assume that all the
agents in the MAC system have agreed to join the committee, and that Ac

contains 9 agents. Notice that there is only 1 subset of Ac of size 1 containing
A1, 8 subsets of size 2, 28 of size 3, and so on. The first row on Table 6.1 shows
how many subsets of each different size can be drawn from Ac. If A1 takes a
random sample of subsets, it is very likely that a large number of subsets have
size 4, 5, or 6, and very few of them have size 1, 2, 3, 7, 8, or 9. This means
that the M -examples generated will mostly represent situations where 4, 5 or
6 agents have cast votes. Therefore, the competence models learnt from these
M -examples will be highly biased towards these situations.

A way to overcome the previous problem is performing Bounded Sampling of
subsets. Bounded Sampling will try to balance the number of subsets of each
size taken from Ac. In this section we will present a sampling algorithm that
will take a sample of subsets of agents of Ac. From this sample of subsets of

6.3. Proactive Learning of Competence Models 119

Function Bounded Sampling(Ac , m):
A′ = ∅;
While #(A′) < m, do:

For k = 1 to #(Ac), do:
If there are still subsets of Ac of size k that are not in A′

Then select a subset A′ ⊆ Ac of size k at random and
A′ := A′ ∪ {A′};

Otherwise, do nothing;
End For;

End While;
Return A′;

End Function

Figure 6.3: Algorithm to take a bounded sample of the subsets of Ac

agents, the sample of Valid Voting Situations will be built, i.e. the Bounded
Sampling algorithm will built a sample A′ ⊆ A(Ai); then the sample of Valid
Voting Situations will be built as V′ =

⋃
A′∈A′{RA′}. The Bounded Sampling

algorithm that makes a bounded sample A′ of size m is shown in Figure 6.3.
For example, let us assume that we take a random sample of size m = 100

in the previous example of 9 agents. The most probable distribution of subsets
of different sizes is shown in the second row of Table 6.1, where we can see the
high number of subsets with 4, 5, and 6 agents. Third row in Table 6.1 shows
the distribution of subsets of different sizes obtained with the bounded sampling
algorithm with m = 100. As the table shows, the number of subsets of each size
is now more balanced.

From each subset of Ac selected, A1 can build a Valid Voting Situation from
where to create an M -example for each competence model in MAi

.
The result of the process explained in this and the previous sections is a

collection of M -examples for each competence model M ∈ M, i.e. a collection
of training sets. The next section explains how to learn a competence model from
these training sets. After that, an exemplification of the process of collecting
M -examples and learning competence models is presented.

6.3.2 Induction of the Competence Models

Once an agent Ai has collected enough M -examples, good competence models
can be learnt. In our experiments we have used an induction algorithm based
on decision trees but with several considerations:

1. Numerical attributes are discretized. Each numeric attribute a is dis-
cretized to have just 2 possible values. The discretization is performed by
computing a cutpoint κ. Left branch of the decision tree will have the M -
examples with value(a) ≤ κ and in the right branch all the M -examples
whith value(a) > κ.

120 Chapter 6. Proactive Learning for Collaboration

d

1 : al
0 : bl

d’

Root node

intermediate node

d

pl
-

pl
pl

+

d’

Root node

intermediate node

leaf
leaf

a) b)

Figure 6.4: a) A decision tree holding the number of M -examples with each
confidence value in each leaf. b) Confidence tree computed from the decision
tree shown in a).

2. Error-based pruning of the tree is used to avoid overfitting.

3. As M -examples do not have many attributes, each leaf of the tree there
will likely have a mix of examples with different confidence values. Figure
6.4.a shows a schematic view of a decision tree such that in each leaf l,
the number of M -examples with confidence 1 and with confidence 0 is
shown: al represents the number of M -examples with confidence 1 and bl
represents the number of M -examples with confidence 0.

Since the decision tree learnt has to be used to assess confidence values (i.e.
real numbers in the interval [0, 1]), we will generate a confidence tree from the
decision tree learnt. This confidence tree will be the one able to assess the
confidence values.

Definition 6.3.7. A confidence tree is a structure consisting on two types of
nodes:

• A decision node, that contains a decision d. For each possible answer to
the decision d, the decision node points towards another confidence tree
(The top decision node is called the root node, and the rest are called the
intermediate nodes),

6.3. Proactive Learning of Competence Models 121

ρ > 0.70

1 : 457
0 : 29

1 : 57
0 : 21

1 : 150
0 : 95

1 : 4
0 : 1

1 : 7
0 : 23

1 : 6
0 : 14

S
c

V
c

> 1.63

V
r

> 1.13

AX AS HA

ρ > 0.70

0.93
0.94
0.95

0.68
0.73
0.78

0.58
0.61
0.64

0.66
0.80
1.0

0.16
0.23
0.3

0.20
0.30
0.39

S
c

V
c

> 1.63

V
r

> 1.13

AX AS HA

a) b)

Figure 6.5: a) Decision tree learnt as the competence model Mc in a MAC
system composed of 5 agents. b) Confidence tree computed from the decision
tree shown in a). For the numerical attributes, the right branches of each node
contain the M -examples that match the condition in the node. AS, AS and
HA are the possible solution classes in S. The left figure shows the number of
M -examples with each confidence value that have fallen in each tree, and the
right figure shows the estimation of the confidence in each leaf.

• or a leaf node l, that contains three real numbers: p−l , pl, and p+
l (such that

p−l ≤ pl ≤ p+
l). Where pl is the expected confidence of a voting situation

that is classified in leaf l, and p−l and p+
l are respectively, the pessimistic

and optimistic estimations of that confidence.

Confidence trees are generated from decision trees in the following way (Fig-
ure 6.4.b illustrates this process):

• Decision nodes are preserved without changes.

• Each leaf node l in a confidence tree contains 3 values, computed from the
values al and bl of the corresponding leaf node of the decision tree:

– pl = (1/(al + bl)) ∗ (1 ∗ al + 0 ∗ bl) is the expected confidence of an
M -example classified in leaf l.

– p−l : the pessimistic estimation of the confidence of the confidence of
an M -example classified in that leaf l (see below).

– p+
l : the optimistic estimation of the confidence of the confidence of

an M -example classified in that leaf l (see below).

Figure 6.5 shows an example of the conversion from a decision tree (on the
left) to a confidence tree (on the right). On each leaf l of the confidence tree,

122 Chapter 6. Proactive Learning for Collaboration

the three values p−l , pl, and p+
l (such that p−l ≤ pl ≤ p+

l) are shown. Notice
that pl is the expected confidence of a voting situation that is classified in leaf
l. However, since pl is just an estimation of the confidence, if the number of
M -examples in the leaf node l is small then pl may be a poor estimator of
the confidence of the voting situations classified on the leaf l. The greater the
number of M -examples in leaf l, the better the estimation of the confidence.
To solve this problem, instead of computing a single value as the confidence
estimation, the agents will compute an interval, [p−l , p

+
l], that ensures with 66%

certainty that the real confidence value is in that interval. This interval depends
on the number of examples in leaf l: the greater the number of M -examples, the
narrower the interval will be (see Appendix C for a detailed explanation on how
to compute this interval). In Figure 6.5.b, p−l and p+

l are shown above and below
pl respectively. For instance, if we look at the right most leaf in Figure 6.5 (the
one with 457 M -examples with confidence 1 and 29 M -examples with confidence
0), we can see that the estimated pl is 0.94 and the interval is [0.93, 0.95], a very
narrow interval since there are a lot of M -examples to compute the estimation
of the confidence.

Moreover, since the tree shown in Figure 6.5 corresponds to the Mc compe-
tence model, the confidence pl in each leaf has to be interpreted as follows: if a
voting situation RAc is classified in a leaf l by the competence model Mc, the
expected confidence of the committee prediction for a problem in the voting sit-
uation represented by RAc is pl. p−l and p+

l are respectively the pessimistic and
optimistic confidence estimation. The interpretation of the expected confidence
pl of a prediction is that the pl × 100% of the times that prediction should be
correct.

For the purposes that competence models will have in the dynamic com-
mittee collaboration strategies, pessimistic estimation is more safe than any
other estimation (expected pl or optimistic p+

l). Using pessimistic estimations
of the confidence the convener agent will always underestimate the confidence
on the predictions of the committee, and therefore will tend to decide to invite
more agents to the committee more often than if the estimation is optimistic.
Therefore, the worst that can happen is that the committee convened to solve a
problem is larger than in should be. However, if we make a more optimistic es-
timation of the confidence, (using the expected pl or optimistic p+

l estimations)
the convener agent may stop inviting agents too early, thus failing to correctly
solve a problem more often. Therefore, since confidence trees will be used as
competence models the output of a confidence tree can be defined as:

Definition 6.3.8. The output of a confidence tree M for a given voting situation
RAc is M(RAc) = p−l , where l is the leaf of the confidence tree in which RAc

has been classified.

For instance, imagine that an agent is using the confidence tree shown in
Figure 6.5.b to assess the confidence on the prediction made by a committee in
a voting situation characterized by RAc . If the number of votes for the candidate
solution is larger than 70% of the total number of votes in RAc will be classified
in the right most leaf, containing the confidence values (0.93, 0.94, 0.95). Thus,

6.3. Proactive Learning of Competence Models 123

the confidence value assessed for the prediction of the committee characterized
by RAc will be 0.93.

The next section presents an exemplification of the proactive learning tech-
nique used to learn the confidence trees that will be used as the competence
models in the Proactive Bounded Counsel Collaboration Strategy.

6.3.3 Exemplification

In order to clarify the M -example acquisition process, we will describe an exem-
plification with a system composed of 3 agents A = {A1, A2, A3}. The agent A1

is collecting M -examples to learn the competence models needed in the Proac-
tive Bounded Counsel Collaboration Strategy. A1 should learn three competence
models: MA1 = {Mc,MA2 ,MA3}.

For that purpose, A1 has selected a subset B1 ⊆ C1 of cases from its indi-
vidual case base C1. All the cases in B1 will be used to acquire M -examples.
For instance, A1 selects one of these cases c ∈ B1 with solution c.S = S1,
and convenes a committee to solve the problem c.P . Both A2 and A3 ac-
cept to join the committee, and send the following SERs to A1: A2 sends
R2 = 〈S1, 3, c.P,A2〉 and A3 sends R3 = 〈S2, 1, c.P,A3〉. Finally, A1 has
built the SER R1 = 〈S1, 2, c.P,A1〉 using a leave-one-out method. Therefore,
A1 has collected the set of SERs RAc = {R1,R2,R3} from the set of agents
Ac = {A1, A2, A3}.

There are 4 possible subsets of Ac that contain A1, namely A(A1) = {{A1},
{A1, A2}, {A1, A3}, {A1, A2, A3}}. Assume that the agent A1 chooses the col-
lection A′ = {{A1}, {A1, A2}, {A1, A3}} of subsets of agents to build voting
situations from where to construct M -examples.

From the first subset of agents A′ = {A1}, the following voting situation
R′ = {R1} is built. A1 computes the attributes that characterize the voting
situation R′: (1, 0, 0, S1, 0.66, 0.00, 1.00). From this voting situation, the three
following M -examples can be built:

• An Mc-example: 〈(1, 0, 0, S1, 0.66, 0.00, 1.00), 1〉, since the candidate solu-
tion S1 is the correct one.

• An MA2-example: 〈(1, 0, 0, S1, 0.66, 0.00, 1.00), 1〉, since the SER of agent
A2 endorses the correct solution class S1. It is important to understand
that this MA2-example characterizes a situation where A1 has voted, the
candidate solution of the current committee (containing only A1) is S1 and
A2 has still not joined the committee. A confidence value ω = 1 means
that in this situation A2 has predicted the correct solution class S1.

• An MA3-example: 〈(1, 0, 0, S1, 0.66, 0.00, 1.00), 0〉, since the SER of agent
A3 endorses an incorrect solution class S2. As in the previous situation, it
is important to understand that this MA3-example characterizes a situa-
tion where A1 has voted, the candidate solution of the current committee
(containing only A1) is S1 and A3 has still not joined the committee. A

124 Chapter 6. Proactive Learning for Collaboration

confidence value ω = 0 means that in this situation A3 has predicted an
incorrect solution class.

From the second subset of agents A′ = {A1, A2}, the following voting situa-
tion R′ = {R1, R2} is built. The characterization is (1, 1, 0, S1, 1.41, 0.00, 1.00),
and the M -examples that can be built are:

• An Mc-example: 〈(1, 1, 0, S1, 1.41, 0.00, 1.00), 1〉, since the candidate solu-
tion S1 is the correct one.

• An MA3-example: 〈(1, 1, 0, S1, 1.41, 0.00, 1.00), 0〉, since the SER of agent
A3 endorses an incorrect solution class S2.

Notice that no MA2-example is built from this voting situation, since A2 is a
member of the committee corresponding to the characterized voting situation.

Finally, from the third subset of agents A′ = {A1, A3}, the following voting
situation R′ = {R1, R3} is built. The characterization is (1, 0, 1, S1, 0.66, 0.50,
0.57), and the M -examples that can be built are:

• An Mc-example: 〈(1, 0, 1, S1, 0.66, 0.50, 0.57), 1〉, since the candidate solu-
tion S1 is the correct one.

• An MA2-example: 〈(1, 0, 1, S1, 0.66, 0.50, 0.57), 1〉, since the SER of agent
A2 endorses the correct solution class S1.

Therefore, with just a single case c ∈ Bi, the agent Ai has built 3 Mc-
examples, 2 MA2-examples and 2 MA3-examples. After A1 has collected M -
examples using all the cases in Bi, 3 training sets will be built: TMc

, TMA2
,

and TMA3
. From these 3 training sets, A1 can now induce the corresponding

confidence trees to be used as the competence models Mc, MA2 , and MA3 .
Similarly, agents A2 and A3 can also use the same technique to acquire their
respective competence models if they need them. Notice that each agent in a
MAC system is free to use the collaboration strategies and decision policies that
it prefers. Therefore, if A1 uses the proactive learning technique to learn its own
competence models, A2 and A3 are not forced to use it. Each agent will acquire
its competence models as it prefers.

6.4 Proactive Bounded Counsel

In this section we are going to define the Proactive Bounded Counsel Collabora-
tion Strategy (PB-CCS), that uses the competence models learnt by the proac-
tive learning technique presented in Section 6.3.

Using PB-CCS, an agent tries to convene a committee that maximizes the
confidence of correctly solving a concrete problem P . Moreover, selecting such a
committee is a difficult task, and we are going to present an iterative approach
where the convener agent will select agents one by one (as in B-CCS) trying to
convene a committee that is competent enough to solve P . Notice that all the

6.4. Proactive Bounded Counsel 125

agents in the MAC system could have used the proactive learning technique to
learn the competence models. Therefore, any agent in the MAC system can act
as the convener agent. Moreover, we must bear in mind that, as in the other
collaboration strategies, the convener agent has polled the agents in the MAC
system to know the set of agents A that are willing to collaborate with him
before starting PB-CCS.

In order to use PB-CCS the convener agent must be able make two decisions:
when to stop inviting agents to join the committee, and which agent to invite
at each round of PB-CCS. Therefore, the convener agent needs two individual
decision policies, namely a Halting decision policy and an Agent Selection deci-
sion policy. Moreover, the convener agent also needs a voting decision policy in
order to aggregate all the individual predictions.

Definition 6.4.1. The Proactive Bounded Committee Collaboration Strat-
egy (PB-CCS) is a collaboration strategy 〈IPB−CCS , DH , DAS , DBWAV 〉, where
IPB−CCS is the PB-CCS interaction protocol shown in Figure 6.7, DH is
the Proactive Bounded Counsel Halting decision policy, DAS is the Proactive
Bounded Counsel Agent Selection decision policy and DBWAV is the voting de-
cision policy based on BWAV (see Section 4.3).

When an agent Ai wants to solve a problem P using PB-CCS proceeds as fol-
lows: first Ac solves the problem individually; then, Ac uses its Halting decision
policy DH to decide whether the confidence in the individually found solution is
high enough and no committee needs to be convened, or if the confidence is not
high enough, and a committee must be convened to solve P . If a committee has
to be convened, Ai uses its Agent Selection decision policy DAS to decide which
is going to be the first agent Aj1 to invite. When Aj1 joins the committee, it
solves the problem P , and sends its prediction to Ai, who uses BWAV in order
to aggregate both predictions. Then, DH is used again to decide whether more
agents have to join the committee or not. This process is repeated until DH

decides that the confidence on the prediction found by the current committee is
high enough.

Since PB-CCS is an iterative collaboration strategy consisting in a series of
rounds, we will use t to note the current round of the protocol, Ac

t to note the
subset of agents of A that have joined the committee and Ar

t to note the subset
of agents of A that have still not been invited to join the committee. Finally,
we will note RAc

t
the set of all the SERs submitted to the convener agent by all

the agents in Ac
t (included the SERs built by the convener agent Ac itself) for

the problem P , i.e. RAc
t

represents the voting situation at round t.
In the following sections we will present both the decision policies and the

interaction protocol used in the Proactive Bounded Counsel Collaboration Strat-
egy.

6.4.1 Proactive Bounded Counsel Policies

This section presents the two decision policies DH and DAS , since DBWAV

is the Bounded Weighted Approval Voting voting system already presented in

126 Chapter 6. Proactive Learning for Collaboration

Section 4.3. In order to implement those two decision policies an agent Ai uses
the competence models MAi = {Mc,MA1 , ...,MAi−1 ,MAi+1 , ...,MAn}, that are
exactly those learnt during the proactive learning process.

Using those competence models, we can define the Proactive Bounded Coun-
sel Halting decision policy DH as a boolean decision policy that decides whether
the convener agent can stop inviting agents to the committee at a round t; i.e.
if DH(RAc

t
) = true, no more agents will be invited to join the committee.

Definition 6.4.2. (Proactive Bounded Counsel Halting Decision Policy)

DH(RAi
) =

(
Mc(RAc

t
) ≥ η1

)
∨

(
maxAj∈Ar

t
(MAj (RAc

t
)) < η2

)
where η1 and η2 are threshold parameters.

The DH decision policy checks if one of two conditions is met: that the con-
fidence in the solution predicted by the current committee is high enough or
that there is a low confidence on the agents that have not yet joined the com-
mittee. If the confidence in the solution predicted by the current committee is
high enough, i.e. Mc(RAc

t
) ≥ η1, there is no need to invite more agents since the

current solution has a very high likelihood to be the correct one. Moreover, if
the confidence on an agent Aj ∈ Ar that is not in the committee is very low, i.e.
MAj

(RAc
t
) < η2, invitingAj to join the committee is not advisable (since the pre-

diction of that agent will very likely be incorrect and thus increases the chances
of the committee prediction of being also incorrect). Therefore, if the maximum
confidence of every agents in Ar

t is very low, i.e. maxAj∈Ar
t
(MAj

(RAc
t
)) < η2,

inviting any of these agents to join the committee is not advisable.
The two threshold parameters η1 and η2 have the following interpretation:

• η1 represents the minimum confidence required for the candidate solution
of the current voting situation, i.e. the convener agent will stop invit-
ing agents when the confidence on the candidate solution of the current
committee is above η1.

• η2 represents the minimum confidence required in the prediction of an
individual agent to allow that agent to join the committee. Thus, those
agents whose predictions have a confidence value lower than η2 will not be
invited to join the committee.

Notice that by varying η1 and η2, the behavior of PB-CCS can be changed.
If we set a high value for η1, the convener agent will tend to convene larger
committees (since a high confidence is required to stop inviting agents), and if
we set a low value for η1, the convener agent will stop inviting agents earlier,
since a lower confidence is required. Moreover, by setting a high value for η2,
the convener agent will be very selective with the agents allowed to join the
committee, and only those agents with a confidence higher than η2 will be allowed
to join. On the other hand, a low value of η2 will make the convener agent to be
very permissive, and any agent can potentially be invited to join the committee.

6.4. Proactive Bounded Counsel 127

Mcmt MA1
MAn

R
c

t

PBC-H-Policy PBC-AS-Policy

Aj
Stop/Continue

Figure 6.6: Relation among the competence models and the Proactive Bounded
Counsel decision policies.

In fact, if η1 = 0.0, an agent will always solve problems individually, and
if the parameters are set to η1 = 1.0 and η2 = 0.0 the resulting collaboration
strategy will convene always all the available agents in the MAC system, and
therefore achieve the same results than the Committee Collaboration Strategy.
Furthermore, by increasing η2 (leaving η1 = 1.0) we can obtain a collaboration
strategy that invites all the agents to join the committee except those that have
a confidence level lower than η2. Therefore, η1 and η2 allow us to define a range
of different strategies to build committees.

The second decision policy is the Proactive Bounded Counsel Agent Selection
decision policy DAS , that is defined as a function that takes as input a voting
situation RAi

and a set of candidate agents to be invited to the committee and
returns the name of the agent that has the highest confidence on finding the
correct solution for a given problem:

Definition 6.4.3. (Proactive Bounded Counsel Agent Selection Decision Policy)

DAS(RAi
,Ar

t) = argmaxA∈Ar
t
(MA(RAc

t
))

.

That is to say, DAS selects to invite the agent Aj ∈ Ar
t that has the highest

confidence MAj
(RAc

t
) on predicting the correct solution.

Figure 6.6 shows the relations among the competence models and the decision
policies in PB-CCS. The figure shows that in each voting situation where the
policies have to be used, the confidence assessments given by the competence

128 Chapter 6. Proactive Learning for Collaboration

w0

w1 w2

p1
p2

Request(?User, ?Ai, ?P)p1

p2

p4 :

:

:
:

p4

p3

w3

p3

Request(!Ai, ?Aj , !P)

Inform(!Aj , !Ai, ?R)

Inform(!Ai, !User, ?S)

Figure 6.7: Interaction protocol for the Proactive Bounded Counsel collaboration
strategy.

models are used by the decision policies. Moreover, notice that the competence
models are used in each round of PB-CCS, since at each round there is a new
agent in the committee and therefore the voting situation is different.

6.4.2 Proactive Bounded Counsel Protocol

Figure 6.7 shows the IPB−CCS interaction protocol used in PB-CCS. Notice
that IPB−CCS is exactly the same as the protocol of the Bounded Counsel
Collaboration Strategy (see Section 5.3).

Figure 6.7 shows that the states w1 and w2 of the protocol form the main
loop of the protocol. Thus, PB-CCS is composed of a series of rounds. We will
use the letter t to note the current round. The first round t = 0 starts the first
time that the protocol reaches state w1, and each time that the protocol changes
from state w2 to w1 a new round t+ 1 starts.

The protocol works as follows: the protocol is initiated when an agent receives
a problem P from the user in message p1. This agent will act as the convener
agent Ac and the protocol moves to state w1. The first time that the protocol
reaches state w1, the convener agent Ac solves the problem P individually. Then,
the decision policy DH is used to assess the confidence of the individually pre-
dicted solution. If DH determines that the solution has not enough confidence,
a new agent must be invited to join the committee. DAS is used to select which
agent Aj ∈ Ar

t will be invited, and Ac sends an invitation message p2 to Aj . Aj

individually solves problem P and replies to Ac with message p3 containing its
individual prediction for problem P . At this point, Ac uses again the decision
policy DH to assess the confidence of the current committee prediction. If DH

determines that the candidate solution predicted by the current committee has

6.5. Experimental Evaluation 129

enough confidence, message p4 is sent to the user containing the final solution
predicted by the committee, and the protocol ends.

Next section presents an experimental evaluation of PB-CCS, comparing it
with CCS, P-CCS, and B-CCS.

6.5 Experimental Evaluation

This section presents the experimental evaluation of the performance of PB-CCS.
To evaluate the behavior of the PB-CCS using the learnt competence models,
we have compared the behavior of agents that use PB-CCS with agents that
use the Committee Collaboration Strategy (CCS) and with agents that use the
Bounded Counsel Collaboration Strategy (B-CCS). We have made experiments
with MAC systems composed of 3, 5, 7, 9, 11, 13, and 15 agents. In these
experiments, we have only used agents using 3-NN as learning method in the
sponges data set. Moreover, in order to investigate whether the PB-CCS can
adapt to different circumstances thanks to the proactive learning of competence
models, we have performed experiments in three different scenarios: the uniform
scenario, the redundancy scenario, and the untruthful agents scenario.

In the uniform scenario each individual agent receives a random sample of
the data set with Committee Redundancy R w 0.0 and with Committee Bias
B = 0.0 (see Section 4.4). That is to say, in the uniform scenario the case bases
of the individual agents are disjunct (i.e. there is no case shared by two agents’
case bases), and the individual case bases have an average Case Base Bias of 0
(i.e. the ratio of cases of each class in the individual case bases is nearly the
same than in the complete data set).

In the redundancy scenario each individual agent receives a random sample
of the data set with redundancy R = 0.1 and with Committee Bias B = 0.0.
That is to say, in the redundancy scenario, there is a number of cases that are
present in more than one agents’ case bases. For instance, with a Committee
Redundancy R = 0.1 in a MAC system composed of 5 agents working in the
sponges domain each agent will have an average of 71.12 cases while with Com-
mittee Redundancy R = 0.0 they will have only about 54.00 cases. The goal
of performing experiments in the redundancy scenario is to test the behavior of
PB-CCS in different areas of the ensemble space (see Section 4.4).

Finally, in the untruthful agents scenario some of the individual agents in the
MAC system are untruthful. When an untruthful agent Ai joins a committee
sometimes lies, i.e. it will vote for a solution different from the individual pre-
diction Ai itself makes. Nevertheless, untruthful agents only lie when they are
not the convener agents of a committee. In our experiments we have used 1, 2,
3, 4, 5, 6, and 7 untruthful agents for the 3, 5, 7, 9, 11, 13, and 15 agents MAC
systems respectively. Untruthful agents lie 50% of the times in the experiments
we report hereafter. Performing experiments in the untruthful agents scenario
has two goals: the first is to test the robustness of PB-CCS in the presence of
malicious agents, and the second one is to verify that the learnt competence
models are adequate in the sense that they are able to learn that there are some

130 Chapter 6. Proactive Learning for Collaboration

agents that should have a low confidence (the untruthful agents) and that those
agents shouldn’t be invited to join a committee.

The goal of performing experiments in these scenarios is to test whether the
individually learnt competence models are useful to decide when to stop inviting
agents to join the committee and which agents to invite under different condi-
tions. The uniform scenario is the basic scenario, where each individual agent
has a different sample of the training set. The redundancy scenario has been
designed to test how PB-CCS performs in a different area of the ensemble space
(where the performance of the individual agents is different and the ensemble
effect changes) and to test whether it is possible to learn competence models
adequate to work in different points of the ensemble space. Since each agent
has more cases in the redundancy scenario than in the uniform scenario, it is
expected that each individual agent has a greater individual accuracy. There-
fore, we expect that the number of times an agent solves a problem individually
without needing to convene a committee increases in the redundancy scenario.
Moreover, the average number of agents needed to solve a problem should de-
crease for the same reason.

Finally, the untruthful agents scenario models a situation in which not all
the agents of the system can be trusted. We have designed this scenario to test
whether the learnt competence models can detect which agents in the system can
be trusted and which cannot. In this scenario, we expect that the performance
of the committee decreases with respect to the uniform scenario. Moreover, by
using competence models, the proactive bounded counsel collaboration strategy
should be able to detect untruthful agents and very seldom invite them to join the
committee; consequently we expect the performance of PB-CCS not to decrease
as much as the performance of CCS, thus showing a more robust behavior.

6.5.1 PB-CCS Evaluation in the Uniform Scenario

Figure 6.8 shows the classification accuracy and average committee size for
agents using 3-NN as learning method to solve problems in the sponge data
set. The left hand plot of Figure 6.8 shows the classification accuracy and the
right hand plot shows the average committee size. MAC systems with 1, 3, 5,
7, 9, 11, 13 and 15 agents are tested. For each MAC system results for agents
using CCS, B-CCS, and PB-CCS are presented. Moreover, two different pa-
rameter settings have been evaluated for PB-CCS: the first one with η1 = 0.9
and η2 = 0.5 and the second one with η1 = 0.95 and η2 = 0.5. In the first
parameter settings the convener agent will request a confidence of at least 0.9 in
order to stop inviting agents to join the committee, and in the second parameter
settings, the convener agent will request a confidence of at least 0.95. There-
fore, the expected behavior is that in the second parameter settings both the
convened committees and the classification accuracy would be larger. Moreover,
both parameter settings request that all invited agents have at least a confidence
of 0.5 of predicting the correct solution for the current problem.

Figure 6.8 shows that the classification accuracy of PB-CCS is very close to
that of CCS. In fact, with η1 = 0.95 the difference in classification accuracy

6.5. Experimental Evaluation 131

B-CCS

PB-CCS (0.9)

PB-CCS (0.95)

CCS

COMMITTEE SIZE

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

CLASSIFICATION ACCURACY

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

Figure 6.8: Classification accuracy and average committee size for agents using
CCS, B-CCS, and PB-CCS in the sponges data set and using 3-NN in the uniform
scenario.

between PB-CCS and CCS is not statistically significant. Moreover, the classi-
fication accuracy of PB-CCS (both with η1 = 0.9 and η1 = 0.95) is higher than
the classification accuracy of B-CCS in all of the MAC systems except in the 9
agents system (where the difference is not statistically significant).

The right hand plot of Figure 6.8 shows the average size of the committees
convened by PB-CCS and B-CCS expressed as the percentage of the agents in
the MAC system convened in average (we do not show the size of the committees
convened by CCS that is 100% always since CCS invites all the agents to join the
committee). The figure shows that the average size of the committees convened
by PB-CCS is smaller than the committees convened by CCS and specially in
MAC systems with a large number of agents. The figure also shows that the
average size of the committees convened by PB-CCS is larger than in B-CCS.
Furthermore, PB-CCS convenes larger committees than B-CCS, but we can
conclude that PB-CCS invites more agents to join the committee when needed
(since PB-CCS has a higher classification accuracy than B-CCS). Moreover, the
threshold parameter η1 affects the average size of the committee: if η1 = 0.95
the size of the committees tends to be larger than with η1 = 0.9, as expected.

Both the left and right hand plots of Figure 6.8 show that there is a tradeoff
between committee size and classification accuracy. If η1 takes lower values, the
committee size is smaller and the classification accuracy approaches that of the
individual agents; if η1 takes large values, the committee size is larger and the
classification accuracy is higher.

Figure 6.8 shows that PB-CCS achieves a better tradeoff of accuracy and
committee size than CCS since the classification accuracy achieved by PB-CCS
with η1 = 0.95 is undistinguishable of the accuracy of CCS while the average
size of a committee convened by PB-CCS is much smaller than 100% (the size
of a committee convened by CCS).

132 Chapter 6. Proactive Learning for Collaboration

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

0% 25% 50% 75% 100%

3 Agents

5 Agents

7 Agents

9 Agents

11 Agents

13 Agents

15 Agents

a)

c)

b)

Figure 6.9: Percentage of times that the convener agent has convened committees
of different sizes in the uniform scenario (a), the redundancy scenario (b) and in
the untruthful agents scenario (c).

Figure 6.9.a shows the percentage of times that the convener agent has con-
vened committees of different sizes with η1 = 0.9. An horizontal bar is shown
for each MAC system (one for the 3 agents system, another for the 5 agent sys-
tem, and so on). Each bar is divided in several intervals: the leftmost interval
represents the percentage of times that the convener agent has solved the prob-
lem individually; the second interval represents the percentage of times that a
committee of 2 agents has been convened, and so on. The right most interval
represents the percentage of times that a committee containing all the agents in
the system has been convened. Figure 6.9.a shows that in the 3 agents system,
about 40% of the times the convener agent solves the problem individually with-
out the need of convening a committee. However, this percentage is reduced in
the MAC systems with more agents; this is an expected result since in systems
with more agents individual case bases are smaller and thus individual accuracy
is lower (as we have seen in the experiments of Section 4.5.1); consequently, the
Proactive Bounded Counsel Halting decision policy DH decides more often to
convene a committee. However, even for a 15 agents system, more than 25%
percent of the times an agent can solve problems individually without compro-
mising the overall MAC performance. Moreover, for all the MAC systems in the
experiments, more than 30% of the problems are solved with at most 2 agents.

6.5. Experimental Evaluation 133

Figure 6.10: Distribution of the error among different convened committees for
a 5 agents system (a) and a 9 agents system (b).

This shows that even with a large number of agents (where each agent has a
small case base) the decision policies are able to detect that there are problems
that can be solved individually without reducing the classification accuracy.

In order to get a better insight of the behavior of PB-CCS Figure 6.10 shows
the error distribution among different sizes of dynamic committees for two MAC
systems: a system composed of 5 agents and a system composed of 9 agents with
η1 = 0.9. The horizontal axis shows the different committee sizes: from 1 to 5
in the 5 agents system and from 1 to 9 in the 9 agents system. A committee
size of 1 corresponds to the convener agent solving problems alone. The vertical
axis shows the average error made when a committee of a given size has been
convened. Both the left and right hand plots of Figure 6.10 show the same
behavior: the agents make very few errors when solving problems alone and
when all the agents have joined the committee; most of the errors are made
when the convened committee contains most but not all of the agents in the
committee. Notice that this is an expected behavior since the DH decision policy
only decides to solve problems with a committee of one agent (i.e. alone) when
the confidence on the individually predicted solution is very high. Notice also
that this expected behavior only takes place if the learnt competence models
are adequate. Therefore, we can conclude that the learning process produces
adequate competence models since they have the expected behavior. Moreover,
a large number of agents is invited to join the committee for problems for which
there is a low confidence on the predicted solution and it is in these problems
(when the confidence on the predicted solution is low) where a large number of
errors are expected. Finally, when the convener agent invites all the agents to
join the committee, the classification accuracy is that of CCS.

Summarizing, PB-CCS in the uniform scenario can achieve a classification
accuracy undistinguishable to that of CCS but convening smaller committees.
Moreover, the decision policies (using the learnt competence models) can ef-
fectively detect when the convener agent can solve the problem individually as
Figure 6.10 shows (since the error when the committee has only one agent is very
low). Consequently we can conclude that the proactive learning process is pro-

134 Chapter 6. Proactive Learning for Collaboration

B-CCS

PB-CCS (0.9)

CCS

NN3 - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

NN3 - SPONGE

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

Figure 6.11: Classification accuracy and average committee size for agents us-
ing CCS, B-CCS, and PB-CCS in the sponges data set and using 3-NN in the
redundancy scenario.

ducing adequate competence models (since they exhibit the expected behavior).
Moreover, we have seen that varying parameters η1 and η2 have the expected
result in the behavior of PB-CCS. Specifically, we have seen that by setting
η1 = 0.95 the accuracy achieved is higher than setting η1 = 0.9 as expected.
The next section analyzes the behavior of PB-CCS in a different scenario.

6.5.2 PB-CCS Evaluation in the Redundancy Scenario

In the previous section we have seen that PB-CCS performs well in the uniform
scenario. We are interested on performing experiments in the redundancy sce-
nario to test the performance of PB-CCS in other areas of the ensemble space
with different features than the uniform scenario. Specifically, in the redundancy
scenario the case bases of the agents are not disjunct as in the uniform scenario,
but have some overlapping, i.e. there are cases that are present in more than
one agents’ case base. This can potentially interfere in the proactive learning
process, since if two agents have a large intersection between their case bases
the competence models that they learn about each other could be overestimating
their real confidence.

In our experiments we have used a degree of redundancy R = 0.1 (See Sec-
tion 4.4.2). Therefore, agents will have larger individual case bases than in the
uniform scenario: for instance, using the sponges data set in a MAC system
composed of 5 agents, each agent will have a case base with an average of 50.8
cases if R = 0.0 while for R = 0.1 each agent will have a case base with an
average of 71.12 cases. Moreover, we have used η1 = 0.9 and η2 = 0.5 for all the
experiments in the redundancy scenario.

Figure 6.11 shows the classification accuracy and average committee size for
agents using 3-NN as learning method to solve problems in the sponge data

6.5. Experimental Evaluation 135

set. The left hand plot of Figure 6.11 shows the classification accuracy and the
right hand plot shows the average committee size. MAC systems with 1, 3, 5,
7, 9, 11, 13, and 15 agents are tested, and for each MAC system results for
agents using CCS, B-CCS, and PB-CCS are presented. The left hand plot in
Figure 6.11 shows that the classification accuracy of PB-CCS, B-CCS, and CCS
are very similar, and their accuracy values are higher than those achieved in
the uniform scenario. In fact, the difference in classification accuracy is only
statistically significant in the 11 and 13 agents systems where B-CCS achieves a
lower classification accuracy than PB-CCS and CCS. Therefore, PB-CCS is as
proficient as CCS.

In terms of committee size, PB-CCS convenes much smaller committees than
the 100% committee of CCS as the right hand plot of Figure 6.11 shows. Again,
this is specially noticeable in MAC systems with a large number of agents. For
instance, in a MAC system with 13 agents, less than the 30% of the agents
are convened in average, while CCS always convenes the 100% of the agents.
Moreover B-CCS also convenes larger committees in average than PB-CCS this
time while having a lower accuracy as well.

Comparing the behavior of the three collaboration strategies in the redun-
dancy scenario with their behavior in the uniform scenario, it would be desirable
that the collaboration strategies convene smaller committees in the redundancy
scenario since individual agents have higher classification accuracy; PB-CCS
shows exactly this behavior, i.e. it convenes smaller committees in the redun-
dancy scenario. However, B-CCS convenes larger committees in the redundancy
scenario than in the uniform scenario. This happens because the competence
models used by B-CCS are fixed, and do not change from one scenario to the
other. Therefore those fixed competence models do not behave well in the redun-
dancy scenario, where the agents have higher individual classification accuracy.
This shows that learning competence models, as PB-CCS does, instead of using
predefined ones, as B-CCS does, is a clear advantage. Moreover, another effect
that we expect is that the classification accuracy of the collaboration strategies
is higher in the redundancy scenario since the accuracy of the individual agents
is higher. Comparing figures 6.8 and 6.11 we can observe that the three col-
laboration strategies show this behavior and their accuracy in the redundancy
scenario is higher than in the uniform scenario.

Finally, Figure 6.9.b shows the percentage of times that the convener agent
has convened committees of different sizes in the redundancy scenario. Fig-
ure 6.9.b shows that in the redundancy scenario, agents using PB-CCS solve
problems individually more often than in the uniform scenario (shown in Fig-
ure 6.9.a). This shows that the proactive learning process has obtained good
competence models, since the behavior of PB-CCS is the expected one, i.e. con-
vene smaller committees in the redundancy scenario since since if the individual
accuracy is higher, the agents will individually solve problems correctly more
often, and therefore, a committee has to be convened less often (and if there is
the need to convene one, it can be convened with a smaller number of agents).
Specifically, in MAC systems composed of 9 agents or less, agents solve prob-

136 Chapter 6. Proactive Learning for Collaboration

lems individually between a 40% and a 50% of the times and in systems with
11 agents or more, in the 50% of the times no more than 2 agents are invited to
join the committee, while in the uniform scenario more agents were needed in
average.

Concluding, from the experiments in the redundancy and uniform scenarios
we can say that PB-CCS achieves a classification accuracy undistinguishable to
that of CCS both in the uniform and redundancy scenario while B-CCS achieves
lower accuracy values in some experiments. Moreover, PB-CCS convenes com-
mittees much smaller than those convened by CCS. Therefore, PB-CCS is better
than CCS since PB-CCS achieves the same classification accuracy and conven-
ing a smaller number of agents. Moreover, PB-CCS is also better than B-CCS
for two reasons: first of all, PB-CCS achieves higher classification accuracy than
B-CCS, and second PB-CCS uses learnt competence models that can be more
adequate to the specific MAC system in which the convener agent is working.

6.5.3 PB-CCS Evaluation in the Untruthful Agents Sce-
nario

The untruthful agents scenario has two goals: the first one is to evaluate the
robustness of PB-CCS to the presence of malicious agents (that is equivalent to
evaluate the robustness of PB-CCS to noise) i.e. that the performance of PB-
CCS is independent (or is “more” independent than CCS) with respect to the
perfect cooperation assumption (i.e. that all the agent can be trusted and will
do their best to cooperate); the second goal is to evaluate whether the proactive
learning process produces adequate competence models, i.e. competence models
that can detect that there are some agents that have a very low confidence (the
untruthful agents) and that shouldn’t be invited to join the committee.

Specifically, we have prepared a scenario where some agents in the MAC
system will lie in their predictions when forming part of a committee. These
untruthful agents will tell their individually predicted solution truthfully when
they are convener agents, but will sometimes lie when they are not the convener
agents. In our experiments we have set a probability of the 50% that an un-
truthful agent lies about its individual prediction. Specifically, there will be 1, 2,
3, 4, 5, 6 and 7 untruthful agents in the 3, 5, 7, 9, 11, 13 and 15 agents systems
respectively. Moreover, in this scenario we expect that the Proactive Bounded
Counsel Agent Selection decision policy, DAS , is able to effectively decide which
agents have a high confidence and which ones have a low confidence, so that
untruthful agents are very seldom invited to join a committee.

In the presence of the untruthful agents, it is expected that the classification
accuracy of all the collaboration strategies is lower than in the uniform or redun-
dancy scenarios since there are less agents with high confidence in the system
that can be invited to join the committee. Figure 6.12 shows the classification
accuracy and average committee size for agents using 3-NN as learning method
to solve problems in the sponge data set. The threshold parameters are η1 = 0.9
and η2 = 0.5. The figure shows that in this scenario the classification accuracy

6.5. Experimental Evaluation 137

B-CCS

PB-CCS (0.9)

CCS

NN3 - SPONGE

50

55

60

65

70

75

80

85

90

95

1 3 5 7 9 11 13 15

NN3 - SPONGE

0 10 20 30 40 50 60 70 80 90 100

1

3

5

7

9

11

13

15

Figure 6.12: Classification accuracy and average committee size for agents us-
ing CCS, B-CCS, and PB-CCS in the sponges data set and using 3-NN in the
redundancy scenario.

achieved by CCS and B-CCS is lower than the accuracy achieved by PB-CCS (in
fact, the accuracy of CCS is even lower than the accuracy achieved by B-CCS).
Moreover, comparing the accuracy achieved by the three collaboration strate-
gies in the untruthful agents scenario with that achieved in the uniform scenario
(shown in Figure 6.8) we see that they all achieve lower classification accuracy
in the untruthful agents scenario (as expected). This reduction in classification
accuracy is specially severe in CCS. For instance, the classification accuracy of
CCS drops from 81.71% to 66.80% in the 15 agents scenario. Thus, we can
conclude that CCS is not roust when there are agents that cannot be trusted.
The accuracy of B-CCS also drops severely, but the classification of B-CCS in
the untruthful agents scenario is slightly higher than that of CCS. Finally, Fig-
ure 6.12 shows that the classification accuracy of PB-CCS drops much less than
B-CCS and CCS. For instance, in the 15 agents scenario, the classification accu-
racy drops from 81.00% to 75.62%: PB-CCS drops 4.38 points in the 15 agents
system, while CCS drops 14.91 points and B-CCS drops 9.23 points. This shows
that PB-CCS is much more robust in the presence of untruthful agents than
CCS and B-CCS.

Concerning the committee sizes, Figure 6.12 shows on the right hand side
that the average committee size convened by PB-CCS is clearly smaller than the
size of the committees convened by CCS(100%), specially in systems with many
agents. Moreover, in this scenario, the average size of the committees convened
by PB-CCS is also smaller than those convened by B-CCS. As the number of
agents increase, the difference in size of the committees convened by B-CCS
and PB-CCS increases. The explanation is that B-CCS uses a random decision
policy to determine which agents are invited to join the committee, and therefore,
untruthful agents are regularly invited to the committee. An untruthful agent

138 Chapter 6. Proactive Learning for Collaboration

Agents 3 5 7 9 11 13 15
Standard 47.57% 44.14% 43.63% 31.0% 32.0% 32.75% 31.8%
Untruthful 5.07% 9.03% 6.82% 7.14% 9.14% 11.57% 11.08%

Table 6.2: Average number of times that standard and untruthful agents are
invited to join a committee.

that joins a committee will not likely contribute to increase the confidence of the
predicted solution, and more agents will need to be invited, thus increasing the
average committee size. In contrast, PB-CCS uses learnt competence models in
the DAS decision policy to select which of the other agents is the best one to
be invited to join the committee. Results concerning classification accuracy and
average committee size in Figure 6.12 prove that this decision policy is useful and
that effectively helps to convene a better committee than those convened using
B-CCS or CCS. Consequently, this proves that the proactive learning process
produces adequate competence models since the decision policy that uses them
behaves as we would expect.

Figure 6.9.c shows the percentage of times that the convener agent has con-
vened committees of different sizes in the untruthful agents scenario. Specifically,
we see that agents using PB-CCS in the untruthful agents scenario tend to con-
vene smaller committees than in the uniform scenario (Figure 6.9.a). Notice
that in the redundancy scenario smaller committees were convened due to an in-
creased individual classification accuracy, and therefore agents solved problems
individually more often. This is not the case of the untruthful agents scenario,
since the committees convened in the untruthful agents scenario are smaller not
because the individual agents have higher classification accuracy but because
there are less agents with a high confidence that can be invited to join the com-
mittee. In fact, agents in the untruthful agents scenario should solve problems
individually (without convening a committee) with the same frequency than
agents in the uniform scenario, but convene smaller committees because there
is a subset of agents (the untruthful agent, that are almost half of the agents in
our experiments) that will be detected as having low confidence and will very
seldom be invited to join the committee. For instance, in the 15 agents scenario,
never more than 10 agents are convened in a committee. Moreover, Figure 6.9
shows that agents in the untruthful agents scenario solve problems individually
with more or less the same probability than in the uniform scenario except in the
3 agents system. Therefore, in the untruthful agents scenario agents solve prob-
lems individually with about the same probability than in the uniform scenario,
but they tend to stop inviting agents earlier (this is the cause of the small ac-
curacy reduction of PB-CCS from the uniform scenario to the untruthful agents
scenario).

For the purpose of assessing the degree in which the Proactive Bounded
Agent Selection decision policy DAS is able to detect the untruthful agents, the
number of times that each agent has been invited to join a committee has been
counted, and Table 6.2 summarizes these results. For each MAC system, two

6.6. Conclusions 139

values are shown: the average number of times that a standard agent has been
convened to a committee and the average number of times that an untruthful
agent has been convened to a committee. For instance, in the 3 agents MAC
system, each one of the two standard agents is invited to join a committee a
47.57% of the times that a problem is solved while the only untruthful agent is
only invited to join a committee a 5.07% of the times. This clearly shows that
DAS selects a truthful agent in most of the cases. In fact, the degree to which
DAS is able to detect the untruthful agents depends of the threshold parameter
η2. In these experiments we have set η2 = 0.5, but if we set a higher value
(e.g. η2 = 0.6) untruthful agents will be invited even less often. Notice that the
decision of choosing η2 = 0.5 is made in order to match one the preconditions of
the ensemble effect, namely that the individual error of the classifiers must be
lower than 0.5 (see Section 2.1).

Moreover, another effect we can observe in Table 6.2 is that untruthful agents
are invited more often in the systems with many agents than in systems with
a smaller number of agents. There are two main reasons of this: the first one
is that in systems with many agents the individual case bases are small and
therefore, an agent has a small amount of cases that can be used for collecting
M -examples, leading to less accurate competence models. However, even with
the small amount of cases of the 15 agents system (where each agent has an
average of only 16.9 cases), untruthful agents are invited less often than truthful
agents. The second reason is that inMAC systems with many agents, where each
individual agent has a very low classification accuracy and where the estimated
confidence of the current committee is very low, having an agent that may help
you 50% of the times (such as the untruthful agents) is not that bad. Therefore,
in systems where the individual agents have a very low classification accuracy,
an agent that lies the 50% of the times may sometimes (when there are no
other agents that can be invited) help to increase the confidence of the current
committee.

The conclusion that we can draw form the experiments in the untruthful
agents scenario is that PB-CCS is more robust than CCS and that B-CCS when
the perfect collaboration assumption does not hold, i.e. when not all the agents
can be trusted. The result is that PB-CCS achieves a higher classification accu-
racy than both CCS and B-CCS and also convening smaller committees.

6.6 Conclusions

In this chapter we have presented a proactive learning technique with which
agents in a MAC system can learn their own competence models. We have also
presented the Proactive Bounded Counsel Collaboration Strategy (PB-CCS), a
dynamic committee collaboration strategy that allows an agent to use the learnt
competence models to decide when to invite more agents to join a committee
and which agents to invite. Basically, PB-CCS uses learnt competence models
(instead of predefined ones) and uses individual decision policies that are able
to use all the information that the learnt competence models can provide.

140 Chapter 6. Proactive Learning for Collaboration

In order to evaluate the performance of PB-CCS we have compared it against
CCS and B-CCS in three different scenarios: the uniform scenario, the redun-
dancy scenario and the untruthful agents scenario. The results of the exper-
iments show that PB-CCS achieves always accuracy values that are undistin-
guishable or higher than those of CCS. Specifically, PB-CCS achieves undis-
tinguishable accuracy than CCS in the uniform and redundancy scenarios and
higher accuracy values in the untruthful agents scenario. Moreover, the experi-
mental results also show that PB-CCS always convenes smaller committees than
those convened by CCS and that the agent using PB-CCS solves problems indi-
vidually without needing any other agent in the MAC system for a considerable
percentage of the problems.

PB-CCS also has been compared with respect to B-CCS in all the three
scenarios. The results show that PB-CCS achieves higher classification accuracy
values than B-CCS in all three scenarios. About the size of the committees
convened, B-CCS convened smaller committees in the uniform scenario and PB-
CCS convened smaller committees in the other two scenarios. The reason is that
the fixed competence models of B-CCS are not adequate for the redundancy or
the untruthful agents scenario.

We have seen that although the PB-CCS decision policies have two param-
eters (η1 and η2), their meaning is clear (η1 is the required confidence in the
solution of the committee and η2 is the required confidence of an individual
agent to be invited to join a committee). Moreover, these parameters allow us
to define a range of different desired behaviors. For instance, η1 = 0 makes the
convener agent to work always individually; η1 = 1 and η2 = 0 prescribes the
exact behavior of CCS, η1 = 1 and η2 = 0.5 defines a committee strategy that
convenes only those agents that have a confidence higher than 0.5 (i.e., convenes
a committee with all the minimally competent agents in the system). Therefore,
PB-CCS gives us freedom to define a range of behaviors we want a multi-agent
system to have.

The conclusions that we can draw from the previous results are the following
ones:

• First of all, PB-CCS has shown to be more robust than CCS and B-CCS
since it can achieve high classification accuracy values in a wider range
of scenarios than CCS and B-CCS. Specifically, PB-CCS has shown to
be robust to the presence of untruthful agents (that is equivalent to the
presence of noise in the system) while CCS and B-CCS experiment a huge
reduction of classification accuracy in this scenario.

• Second, PB-CCS convenes in average smaller committees than CCS while
achieving the same levels of accuracy. As a consequence, we can say that
PB-CCS correctly decides when to stop inviting agents, since the classifica-
tion accuracy is not affected by the reduced number of agents. Moreover,
since the convener agent solves the problem individually a significant num-
ber of times, we can also conclude that PB-CCS correctly decides when an
agent can solve problems individually without compromising classification
accuracy.

6.6. Conclusions 141

• Third, PB-CCS behaves as expected in all of the three scenarios, i.e. it
achieves a high classification accuracy, convenes smaller committees in the
redundancy scenario than in the uniform scenario and very seldom con-
venes untruthful agents to join the committee. In fact, PB-CCS should
perform well given that the following conditions are met: a) the agents
have a minimum amount of cases (needed to collect M -examples), b) the
agents do no change their behavior radically (otherwise the competence
models will not be useful), and c) there are at least some minimally com-
petent agents in the system (if all the agents in the system have a very low
confidence, no collaboration strategy can perform well since the ensemble
effect would fail to take place).

• Fourth, since PB-CCS has learnt adequate competence models in all three
scenarios we can conclude that the proactive learning process is successful,
in the sense that the learnt competence models are good predictors of the
confidence of the committee and of the individual agents. The experimen-
tal section provides evidence for this fact:

1. PB-CCS can adequately decide when the convener agent can solve a
problem individually (and this cannot be done unless the competence
models are adequate);

2. PB-CCS convenes less agents in the redundancy scenario than in the
uniform scenario (thus, the competence models are able to exploit the
fact that the individual agents have a higher classification accuracy
in the redundancy scenario and therefore less agents are needed in a
committee to achieve a comparably high accuracy);

3. PB-CCS is able to reduce the number of times that an untruthful
agent is convened into the committee (and this would have been im-
possible unless the competence models of the individual agents cap-
ture which agents have a low confidence and which a high confidence);

4. finally PB-CCS as shown to achieve the same classification accuracy
(or higher) than CCS with a reduced number of agents (thus the
competence model of the committee effectively models the confidence
of the committee and helps PB-CCS to decide when to stop inviting
agents).

Finally, we can compare the proactive learning technique with the meta learn-
ing approach [Chan and Stolfo, 1995] in Machine Learning. Some of the compe-
tence models predict the confidence of an individual agent to predict the correct
solution. These competence models can be compared with meta learning, an
approach that builds building models of the individual classifiers in an ensemble
in order to select which is the best classifier to send a problem to. However, the
meta learning approach is a centralized one, where a set of individual classifiers
have been built, and a centralized algorithm computes a competence model of
each classifier. In our framework there is no such a centralized algorithm, and
each agent is responsible of building its own competence models. Moreover, in

142 Chapter 6. Proactive Learning for Collaboration

the meta learning approach, each problem is solved only by one classifier and
the models are used to decide which classifier is going to solve the problem.
In our approach we do not force a single agent to solve each problem, but the
agents use the competence models to build committees whose solution has a high
confidence.

Chapter 7

Justification Endorsed
Collaboration

This chapter presents the Justification Endorsed Collaboration (JEC). Specifi-
cally, this chapter explores how the ability of the agents to provide justifications
(Section 3.5.2) of their predictions can be exploited for different purposes. For
instance, we will present the Justification Endorsed Committee Collaboration
Strategy (JE-CS) in which agents members of a committee will use justifications
of individual predictions in order to improve the voting system used to reach an
aggregated prediction.

7.1 Introduction

Chapter 4 presented a collaboration strategy called the Committee Collaboration
Strategy (CCS) that allows a group of agents solve a problem in a collaborative
way and achieve higher classification accuracy than when the problem is solved
individually by an agent in the system. Using the Committee Collaboration
Strategy the individual predictions made by each individual agents are aggre-
gated by means of a voting system. The voting system presented in Chapter 4
assumes that each agent in the committee is equally important, i.e. every agent
has the same weight in the voting. However, this may not always be the best
way to aggregate the individual predictions, since not all agents are equally good
solving all the different kinds of problems. Therefore, depending on the specific
problem, some agents are more likely to predict the correct solution than others.
Ideally, those agents should have a higher influence in the voting.

This chapter presents a new kind of collaboration called Justification En-
dorsed Collaboration (JEC), that tries to exploit the ability of the individual
agents to provide justifications (Section 3.5.2) for their individual predictions.
In JEC, when individual agents are requested to solve a problem, they provide
a justified prediction (that consists of the individual prediction of the agent plus
the justification of the prediction) instead of a simple prediction. Specifically,

143

144 Chapter 7. Justification Endorsed Collaboration

d = 0.68

d = 0.92

d = 0.81

Retrieved
cases

X

Y

P

Figure 7.1: Illustration of the retrieval process using a numerical similarity mea-
sure for a two dimensional problem space.

we will present the Justification Endorsed Committee Collaboration Strategy (JE-
CS), a specific collaboration strategy that allows the agents to determine which
agents should have a higher influence in the voting system by analyzing the
justified predictions provided by each agent. In this way, each individual jus-
tified prediction can be weighted properly in the voting system assigning lower
weights to the weakly-assessed justified predictions and higher weights to the
strongly-assessed justified predictions.

The chapter is structured as follows. Section 7.2 presents and analyzes the
notion of justifications. After that, Section 7.3 presents the JE-CS collaboration
strategy. Then, sections 7.4 and 7.5 explain the two decision policies needed
in JE-CS, namely the Justification Examination and the Justification Endorsed
Voting decision policies. After that, JE-CS is illustrated with an exemplification.
Section 7.7 empirically evaluates JE-CS in three scenarios. The chapter ends
with a conclusions section.

7.2 Justifications in CBR Systems

In this section we are going to refine the notion of justifications presented in
Section 3.5.2, relating it to the notion of symbolic similarity. Therefore, symbolic
similarity is first presented and then justifications are formally defined.

7.2. Justifications in CBR Systems 145

c4
c3
c2
c1

Case

WaitNoRed
WaitYesRed
CrossNoGreen
WaitYesGreen

ActionCars_crossingTraffic_light Traffic_light

Cars_crossing

redgreen

yesno

c3, c4

c1c2

Figure 7.2: Case base and decision tree built to index the cases for a simple
problem.

Traffic_light

Cars_crossing

redgreen

yesno

c3, c4

c1c2

Similarity

Action: Wait

Traffic_light: red

P

Traffic_light: red
Cars_crossing: yes

Figure 7.3: The problem P is solved using the cases in the corresponding leaf of
the tree. The solution and the symbolic similarity built are shown.

7.2.1 Symbolic Similarity Measures

Case Based Reasoning systems use similarity measures to retrieve cases from the
case base to solve a problem. Typically these similarity measures are numerical,
i.e. the system computes the similarity between the current problem and the
cases in the case base and the resulting values are real numbers (in the interval
[0, 1] if the similarity is normalized); then, the case (or cases) that have obtained
the highest similarity value(s) are retrieved following the specific criteria defined
by the CBR system. An example of a retrieval process using numerical similarity
is illustrated in Figure 7.1, where the three most similar cases are selected for
retrieval. However, some CBR systems can use symbolic similarity measures.

Definition 7.2.1. A symbolic similarity among two or more cases c1, ..., cn is
a set of conditions J that all the cases c1, ..., cn satisfy.

Let us illustrate this with an example. Figure 7.2 shows a case base for a toy
problem with two symbolic features: Traffic light and Cars crossing. There are
two possible solution classes: Wait or Cross. In order to index the four cases
in the case base some CBR systems use a decision tree, as shown in Figure 7.2.
Imagine now that the problem P = 〈Traffic light = red, Cars crossing = yes〉

146 Chapter 7. Justification Endorsed Collaboration

X

Y

Figure 7.4: Simple problem with two numerical attributes and two classes.

needs to be solved. The decision tree is used to retrieve cases by classify-
ing the problem in one of the leafs of the decision tree as shown in Figure
7.3. All the cases in that leaf are the retrieved cases (in this example c3
and c4). The symbolic similarity among the problem and these two cases is
built by using the branch of the decision tree that has classified the problem:
J = {Traffic light = red}. Notice that not all the features in the problem
are contained in the symbolic similarity. Using a numerical similarity measure,
the case c3 would be the most similar case with a similarity value of 1.0 (since
it is identical to the problem). However, using a symbolic similarity measure,
the CBR system (by using the decision tree) has determined that if the feature
Traffic light has value red, the value of the feature Cars crossing is irrelevant.
Therefore, since Cars crossing does not help on finding the correct solution for
the problem, it does not appear in the symbolic similarity.

Moreover, symbolic similarities are not only applicable to problems with
symbolic features. Problems with numerical attributes can also be solved by
CBR methods using symbolic similarity measures. Let us illustrate this with an
example where a decision tree is used to generate a symbolic similarity measure.
Figure 7.4 shows a classification problem where there are two classes and where
instances have just two numeric attributes, X and Y . Using the instances shown
in Figure 7.4 the decision tree shown in Figure 7.5 is learnt. Notice that the
decision tree is used to index the cases in the case base, i.e. each leaf contains a
list of cases.

The decision tree in Figure 7.5 induces the partition over the problem space
shown in Figure 7.6. Now imagine that we want to solve the problem P =

7.2. Justifications in CBR Systems 147

Y > 0.23

X > 0.22 BLUE

Y < 0.81 BLUE

X < 0.78 BLUE

RED BLUE

Figure 7.5: Decision tree learnt for the problem shown in Figure 7.4.

〈X : 0.44, Y : 0.83〉. In order to solve the problem P the decision tree is used
to retrieve cases from the case base. First, the problem P is classified into a
leaf of the tree as shown in Figure 7.7. All the cases in that leaf are the set
of retrieved cases, and the symbolic similarity measure among the problem and
the retrieved cases is built by taking the branch of the tree used to solve P
in Figure 7.7. In this example, the symbolic similarity contains the conditions
that appear in the nodes of the tree: J = {Y > 0.23, X > 0.22, Y > 0.81}.
However, since Y > 0.81 is more specific than Y > 0.23, the symbolic similarity
measure is simply J = {X > 0.22, Y > 0.81} as shown in Figure 7.7. Notice
that the similarity description contains conditions and not the concrete values
of the problem: P has not been classified into the blue class because the value
of its features are specifically X = 0.44 and Y = 0.83 but because those values
satisfy the conditions in the nodes of the branch of the tree used to solve the
problem. Therefore, the similarity description contains the conditions satisfied
by the problem and the retrieved cases, and not the concrete values that the
problem has in its features. Figure 7.8 shows graphically the set of cases retrieved
for problem P .

7.2.2 Symbolic Local Approximation and Symbolic Simi-
larity

Learning methods can be classified in two groups: eager methods and lazy meth-
ods. Eager learning methods have the property of building a global approxima-
tion (or model) of the target function; in contrast, lazy learning methods build

148 Chapter 7. Justification Endorsed Collaboration

X

Y

0.22 0.81

0.23

0.78

Figure 7.6: Partition induced over the problem space by the decision tree shown
in Figure 7.5.

local approximations of the target function during problem solving time centered
on the problem at hand.

A symbolic local approximation built by a lazy learning method is a gener-
alization of the cases located in the neighborhood of the problem that we want
to solve (i.e. the retrieved, most similar cases) and of the problem at hand.
Moreover, such local approximation is a description of the information that the
retrieved cases and the problem have in common (since it is a generalization of
them).

The symbolic description of the similarity (symbolic similarity) contains in-
formation that is shared among the problem P and the retrieved cases. More-
over, it only contains the shared information that has been considered relevant
by the CBR system. Therefore, the CBR system concludes that the problem
P should have a solution equal to that of the retrieved cases (since they share
relevant information with P). The symbolic similarity contains the information
considered relevant by the CBR system to classify P into a specific solution
class. Therefore, the symbolic similarity can be seen as the justification of why
a problem P has been classified into a specific solution class, as required by the
Definition 3.5.2.

Intuitively, when an agent makes a justified prediction saying that a problem
P belongs to a solution class Sk and gives a justification J , the meaning is “P
belongs to the class Sk, and the reason is that P satisfies J and my case base
has n cases that also satisfy J and belong to the class Sk”.

7.2. Justifications in CBR Systems 149

Y > 0.23

X > 0.22 BLUE

Y < 0.81 BLUE

X < 0.78 BLUE

RED BLUE

Selected Leaf

X = 0.44
Y = 0.83

P

Similarity

Solution: BLUE

X > 0.22
Y > 0.81

Figure 7.7: The problem P is solved using the cases in the corresponding leaf of
the tree. The solution and the symbolic similarity built are shown.

7.2.3 Counterexamples and Endorsing Cases

Since a symbolic similarity is a term that generalizes the retrieved cases and
the problem at hand, a justification (that is a local approximation) subsumes
both the problem and the retrieved cases (since it is a generalization of them).
This is a very important property of justifications and will allow us to define the
concept of counter examples and of endorsing cases.

To define counter examples and endorsing cases it is important to remem-
ber that when a CBR agent Ai is requested to solve a problem P providing a
justification (i.e. it is requested to provide a justified prediction), a justifica-
tion endorsement record (JER) (Definition 3.5.3) J = 〈Sk, J, P,Ai〉 is built. A
JER contains the predicted solution class J.S, the justification J.J , the problem
solved J.P and the agent who has solved the problem J.A. Moreover, a JER
J = 〈Sk, J, P,Ai〉 induces a partition of any set of cases C in two sets:

• The cases subsumed by the justification J.J , i.e. {c ∈ C|J.J v c.P}.

• The rest of the cases, i.e. {c ∈ C|J.J 6v c.P}.

The set of subsumed cases by the justification J.J are those cases that are
similar to the problem J.P since the justification J.J is a symbolic similarity
description. Moreover, we can further divide the set of subsumed cases into two
subsets of cases: counterexamples and endorsing cases.

Definition 7.2.2. The set of counterexamples of a JER J from a case base C is
CE(J, C) = {c ∈ C|J.J v c.P ∧c.S 6= J.S}, i.e. the set of cases c ∈ C subsumed
by the justification J.J that do not belong to the predicted solution class J.S.

150 Chapter 7. Justification Endorsed Collaboration

X

Y

0.22 0.81

0.23

0.78

P

X > 0.22
Y > 0.81

Similarity

Retrieved
cases

Figure 7.8: Set of retrieved cases by the similarity description presented in Figure
7.7.

Definition 7.2.3. The set of endorsing cases of a JER J from a case base C is
EC(J, C) = {c ∈ C|J.J v c.P ∧c.S = J.S}, i.e. the set of cases c ∈ C subsumed
by the justification J.J that do belong to the predicted solution class J.S.

The set of endorsing cases are those subsumed by the justification (and there-
fore are those that are considered to be similar enough to the problem J.P to
be retrieved) that belong to the predicted solution class J.S, i.e. those cases
endorse that J.S is the correct solution for the problem because they share the
same solution. Moreover, the counterexamples are those cases that are consid-
ered similar to the problem J.P because are subsumed by the justification J.J ,
but that do not endorse the solution J.S as the correct one (since they belong
to a different solution class). In summary, a counterexample is a case that is not
consistent with an agent’s justified prediction and an endorsing case is a case
that is consistent with an agent justified prediction.

Figure 7.9 illustrates the concepts of counterexamples and endorsing cases.
The figure shows a problem space consisting of two numerical features. An
agent Ai has learnt the decision tree shown in Figure 7.5. When the problem
P = 〈X : 0.44, Y : 0.83〉 is solved by Ai using that decision tree to retrieve cases
from the case base, the solution found is blue and the justification provided
is J1 = {X > 0.22, Y > 0.81}. Therefore, the JER built by the agent Ai is
J = 〈blue, J1, P,Ai〉. Figure 7.9 shows cases subsumed by the justification J1

as a dashed area, in which we can find a set of counterexamples and a set of
endorsing cases: two cases (shown in red) are counterexamples of problem P
because they are subsumed by J1, but they belong to the red class instead to the

7.3. Justification Endorsed Committee Collaboration Strategy 151

X

Y

0.22 0.81

0.23

0.78

Counterexamples

Endorsing Cases

P

X > 0.22
Y > 0.81

Similarity

Figure 7.9: Counterexamples and endorsing cases for a given justification.

predicted one (blue); the other 9 cases (shown in blue) are endorsing cases since
they endorse the justified prediction made by Ai (that the problem belongs to
the blue solution class).

The next section presents the Justification Endorsed Committee Collabora-
tion Strategy, that uses justifications in order to improve the performance of a
committee of agents in terms of classification accuracy.

7.3 Justification Endorsed Committee Collabo-
ration Strategy

This section presents the Justification Endorsed Committee Collaboration Strat-
egy (JE-CS), that allows a committee of agents Ac to improve the classification
accuracy (as we will show in the experiments section). JE-CS benefits from
the ability of the individual agents to provide justifications of their individual
predictions. The basic idea of JE-CS is that every agent in the committee pro-
vides a justified prediction of the problem at hand, that contains the predictions
plus a justification of the predictions. Those justified predictions are distributed
among the rest of agents in the committee in the form of Justification Endorse-
ment Records (JERs). Then, each agent individually examines each justified
prediction and those examinations are used to compute an overall confidence
estimation of each justified prediction. Finally, the justified predictions are ag-
gregated by the convener agent Ac by means of a weighted voting system that
uses the overall confidence estimations as weights for the votes.

152 Chapter 7. Justification Endorsed Collaboration

Definition 7.3.1. The Justification Endorsed Collaboration Collaboration
Strategy (JE-CS) is a collaboration strategy 〈IJE−CS , DJE , DJEV 〉, where
IJE−CS is the JE-CS interaction protocol shown in Figure 7.12. DJE is the
Justification Examination decision policy used to compute the confidence values
of the Justification Endorsement Records built by the agents, and DJEV is the
Justification Endorsed Voting used to aggregate the individual predictions using
the confidence values computed with DJE.

The next sections present the two decision policies used in JE-CS (DJE and
DJEV) and the interaction protocol (IJE−CS).

7.4 Examination of Justifications

This section presents the DJE policy used by the individual agents to assess the
confidence of an agent concerning a justified prediction made by another agent.

Justification examination always involves two CBR agents: the justifier, the
agent that justifies a prediction, and the examiner, the agent that examines that
justification. The process of examination is basically performed in the following
way: the examiner tests whether the justification is consistent with its case base
and as a result estimates the degree of confidence that the examiner has in the
justified prediction provided by the justifier.

When an agent Ai solves a problem P , Ai may predict one or more possible
solutions for P . Therefore, an agent may provide one or more justified predic-
tions, and each one of them is expressed as a JER (see Section 3.5.2.3). Thus,
when solving a problem, an agent may provide one or more JERs. Moreover,
each JER J contains the justification J.J that Ai has found that endorses J.S
as the solution for P . Therefore, if an agent builds more than one JER, each
JER will be examined separately by the examiner.

Let Ae be the examiner agent intending to examine a justified prediction
expressed as a JER J built by the justifier agent Aj . The justification J.J
contains the relevant information that Aj has used for predicting J.S as the
solution for P . In order to assess the confidence on the justification J.J , Ae

retrieves from its individual case base Ce all the cases that are subsumed by J.J ,
i.e. all the cases that satisfy that justification. Let CJ.J

e = {c ∈ Ce|J.J v c.P}
be the set of cases retrieved from Ce such that they satisfy J.J .

In general, the set of retrieved cases CJ.J
e will contain both counterexamples

and endorsing cases. The set of counterexamples CE(J, Ce) ⊆ CJ.J
e are the cases

that are not consistent with the justification, since they satisfy the justification
but do not have J.S as solution class. Therefore, the more counterexamples
in the set of retrieved cases, the less consistent is the justified prediction with
respect to the case base Ce. The set of endorsing cases EC(J, Ce) ⊆ CJ.J

e are
the set of cases that are consistent with the justification and, the more endorsing
cases the more consistent is the justifier prediction with respect to Ce.

In order to assess the confidence of a JER J, the examiner agent will count the
number of counterexamples and of endorsing cases in the set of cases retrieved by

7.4. Examination of Justifications 153

P

c1 = 〈P1, S1〉

J = 〈S1, J, P, A1〉

A1

A2

C2

c2 = 〈P2, S1〉

c3 = 〈P3, S2〉

c4 = 〈P4, S3〉

c5 = 〈P5, S1〉

subsumes

endorsing cases

counterexample

X = 〈J, 2, 1, A2}

Figure 7.10: Agent A2 examines the justification endorsement record provided
by A1 after solving the problem P .

the justification J.J from its case base Ce. Specifically, let Y = #(EC(J, Ce))
be the number of endorsing cases in Ce (those consistent with the justified pre-
diction) and let N = #(CE(J, Ce)) be the number of counterexamples in Ce

(those not consistent with the justified prediction).
With the numbers N and Y computed, an agent Aj can compute the confi-

dence of a JER J as follows:

C(J) =
Y

Y +N

Notice that when all the cases are consistent with the justification (N = 0),
the confidence takes value 1, and when all the cases are counterexamples (Y = 0
and N > 0), the confidence takes value 0.

Finally, all the information obtained during the examination process of a
justified prediction expressed as a JER J is stored in an Examination Record:

Definition 7.4.1. A Examination Record (XER) is a tuple X = 〈J, Y,N,A〉
where an agent J is a JER, Y = #(EC(J, Ce)) is the number of endorsing cases
found by A for the justification J.J , and N = #(CE(J, Ce)) is the number of
counterexamples cases found by A for the justification J.J .

Examination Records allow agents to communicate the results of examining
a JER against a case base, as we will explain in next section. Figure 7.10 shows
an agent A2 examining a Justification Endorsement Record built by an agent
A1. Specifically, the agent A1 has build a JER J = 〈S1, J, P,A1〉 after solving a
problem P . To examine J, the agent A2 retrieves all the cases from its case base
C2 that are subsumed by J.J , namely c1, c2 and c3. From these cases, c1 and
c2 are endorsing cases, since their solutions are c1.S = c2.S = S1, exactly the
solution predicted by A1 in the JER J; c3 is a counterexample since its solution
c3.S = S2 is different from the one predicted by A1. Therefore, in the example

154 Chapter 7. Justification Endorsed Collaboration

P
A2

A3

Ac = A1

P

P
J4 = 〈S3, J4, P, A3〉

J3 = 〈S2, J3, P, A3〉

J2 = 〈S1, J2, P, A2〉

J1 = 〈S1, J1, P, A1〉 JA1
= {J1}

JA2
= {J2}

JA3
= {J3,J4}

JAc = {J1,J2,J3,J4}Ac
= {A1, A2, A3}

Figure 7.11: Each agent can generate one or more JERs for a problem P .

shown in Figure 7.10, A2 builds the examination record X = 〈J, 2, 1, A2〉, since
there are two endorsing cases and one counterexample.

During JE-CS each agent will examine all the examinations provided by the
agents in a committee Ac. Let us call JAc to the set of JERs provided by a
committee of agents Ac for a problem P .

With the previous definition of an Examination Record, we will now define
the Justification Examination decision policy used to examine the Justification
Endorsement Records in JE-CS by an examiner agent Ae:

Definition 7.4.2. Given a set JAc of JERs submitted by the agents in a com-
mittee Ac, the Justification Examination decision policy used by an agent Ae

consists in constructing an XER XJ for each JER J ∈ JAc :

DJE(JAc) = {XJ = 〈J, Y,N,Ae〉}J∈JAc

The next section presents the voting system used by the convener agent to
aggregate the individual predictions using the confidence values computed using
DJE .

7.5 Justification Endorsed Voting System

This section presents the Justification Endorsed Voting decision policy (DJEV)
used by the convener agent to aggregate the individual justified predictions of
all the agents in the committee to obtain a global prediction. DJEV is based on
the Justification Endorsed Voting system (JEV).

The JEV voting system assumes that each individual agent may provide
several JERs (as long as they contain different solution classes, i.e. an agent
cannot provide two JERs with the same solution class). Figure 7.11 shows that
each agent in a committee can provide one or more JERs for a given problem
P . Let JAi

be the collection of JERs built by an agent Ai and let JAc be the
collection of JERs built by a committee of agents Ac. Figure 7.11 illustrates
these concepts with a committee formed by three agents.

7.5. Justification Endorsed Voting System 155

Each JER contains a solution class endorsed by a justification, and is con-
sidered as a vote. Each one of these votes has a different weight assigned in
function of the examinations built for that JER by the agents in the committee.
The weight of each vote is a real number in the interval [0,1], that corresponds
to the confidence of that JER. The overall confidence of J can be computed as
follows:

Definition 7.5.1. The Overall Confidence of a Justification Endorsement
Record J computed by aggregating the Examination Records computed by a com-
mittee of agents Ac is:

CAc(J) =

∑
Ai∈Ac XAi .Y∑

Ai∈Ac XAi .Y + XAi .N

where XAi is the examination record build by Ai for the justification endorsement
record J.

Notice that in order to compute the overall confidence an agent has also to
provide a self-examination, i.e. an agent also constructs examination records for
its own justification endorsement records.

Using the overall confidence definition, we can define the Justification En-
dorsed Vote (JVote) of an agent Ai for a given solution class Sk as the sum of
the weight of the JER provided by Ai with solution Sk:

JV ote(Sk, P,Ai) =

{
CAc(J) if ∃J ∈ JAi

: J.S = Sk ,

0 otherwise.
(7.1)

We can aggregate the votes of all the agents in Ac for one class by computing
the ballot for that class:

JBallot(Sk, P,Ac) =
∑

Ai∈Ac

JV ote(Sk, P,Ai) (7.2)

and therefore, the winning solution class is the class with more votes in total,
i.e.:

JSol(S, P,Ac) = arg max
Sk∈S

JBallot(Sk, P,Ac) (7.3)

Notice that using this voting system, the number of votes that an agent is
able to cast is only limited to the number of different JERs it can provide (since
an agent can provide a JER for each different solution class, the number of votes
an agent can cast is limited by the number of solution classes). However, if those
JERs have poor justifications, they will have low confidence and therefore will
have a low influence in the outcome of the voting.

Using the JEV voting system we can define the Justification Endorsement
Voting decision policy used to aggregate the individual agents’ predictions into
an overall prediction:

156 Chapter 7. Justification Endorsed Collaboration

w0 w1 w2

p1

p1

:

:

:

:

p3

w3

p2/c1

p2/c2

p4/c3

p4/c4
w4

p2/c1

p2/c2

p3

:

:

p4/c3

p4/c4

Inform(?Aj , !A
c, ?J)/

|!w0w1J| = #(Ac) − 2

|!w0w1J| < #(Ac) − 2
Inform(?Aj , !A

c, ?J)/

Request(?Ac, ?Ac, ?P)

Request(!Ac, !Ac, ?J(P))

|w2w3X| < #(Ac) − 2

|w2w3X| = #(Ac) − 2

Inform(?Aj , !A
c, ?XAj

(P))/

Inform(?Aj , !A
c, ?XAj

(P))/

Figure 7.12: Interaction protocol for the JE-CS collaboration strategy.

Definition 7.5.2. The Justification Endorsement Voting decision policy used
by the convener agent in order to aggregate the individual predictions into an
overall prediction is:

DJEV (S, P,Ac) = JSol(S, P,Ac)

where S is the set of all the possible solution classes.

The next section presents the Justification Endorsed Committee Collabora-
tion Strategy (JE-CS) that can be used by a committee of agents to improve
their classification accuracy.

7.6 Justification Endorsed Committee Interac-
tion Protocol

Figure 7.12 presents the interaction protocol used in the JE-CS collaboration
strategy. Let Ac an agent that has convened a committee of agents Ac to solve
a problem P . The protocol works as follows:

1. The initial state of the protocol is w0. The convener agent Ac broadcasts
the problem P (with message p1) to the rest of agents in Ac and the
protocol moves to w1.

2. In the state w1, every agent Ai ∈ Ac in the committee solves the problem
individually and builds JAi

(as shown in Figure 7.11 for a system composed

7.6. Justification Endorsed Committee Interaction Protocol 157

A2

A3

Ac = A1

JAc = {J1,J2,J3,J4}Ac
= {A1, A2, A3}

J1

J2

J3

J4

J1

J2

J3

J4

J1

J2

J3

J4

X1 = 〈J1, Y1, N1, A1〉
X2 = 〈J2, Y2, N2, A1〉
X3 = 〈J3, Y3, N3, A1〉
X4 = 〈J4, Y4, N4, A1〉

X5 = 〈J1, Y5, N5, A2〉
X6 = 〈J2, Y6, N6, A2〉
X7 = 〈J3, Y7, N7, A2〉
X8 = 〈J4, Y8, N8, A2〉

X9 = 〈J1, Y9, N9, A3〉
X10 = 〈J2, Y10, N10, A3〉
X11 = 〈J3, Y11, N11, A3〉
X12 = 〈J4, Y12, N12, A3〉

XA1
= {X1,X2,X3,X4}

XA2
= {X5,X6,X7,X8}

XA3
= {X9,X10,X11,X12}

XAc = {X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12}

Figure 7.13: Each agent in the committee generates an examination record for
every justification endorsement record in JAc .

of 3 agents), and sends JAi
to the convener agent Ac with message p2. The

convener agent also solves the problem individually and locally stores its
own set of JERs.

3. When the convener agent has received the JERs from all the agents in the
committee, the protocol moves to state w2. The convener agent has col-
lected the JERs JAc = ∪A∈AcJA (that includes also its own JERs). Then
the convener agent broadcasts JAc to all the other agents with message p3

and the protocol moves to state w3.

4. In state w3, every agent in the committee has JAc , the collection of all
JERs . Each agent Ai in the committee uses their individual DJE decision
policy to generate the examination endorsement records for the JERs in
JAc :

(a) For each JER J ∈ JAc , agent Ai examines the justification J.J of the
JER against its case base,

(b) after contrasting the justification against the local case base, Ai builds
a XER X = 〈J, Y,N,Ai〉 (Figure 7.13 illustrates this step for a system
composed of 3 agents),

(c) Agent Ai builds a XER for each justification in JAc and the result is
a collection of XERs XAi .

(d) Ai sends the collection of XERs XAi to the convener agent Ac (except
if Ai is the convener agent itself).

5. When the convener agent receives the examination records of all the agents
in the committee, the protocol moves to step w4 (a final state). We will

158 Chapter 7. Justification Endorsed Collaboration

call XAc

= ∪Ai∈AcXAi the set of all the XERs built by all the agents in
Ac (as illustrated in Figure 7.13). The convener agent Ac can now perform
a weighted voting system on the solution classes using its DJEV decision
policy, i.e. the convener agent uses the JEV voting system presented in
section 7.5 to compute an aggregate solution.

We have just presented the JE-CS collaboration strategy, including its two
individual decision policies and its interaction protocol. Before presenting the
experimental results, the next section will show that the examination process of
the JERs is not sensitive to the distribution of cases among the agents.

7.6.1 Confidence Estimation Robustness

We will now show that the examination process of the JERs is not sensitive to
the distribution of cases among the agents (i.e. the examination process is not
affected by Committee Bias, see Section 4.4) or to the number of agents in the
system while maintaining the same collection of cases. In other words, given a
JER J, the overall confidence value C(J) computed will not change if we com-
pletely redistribute the cases among the agents. C(J) also remains unchanged if
we change the number of agents while maintaining the same collection of cases.
This strong result ensures that the confidence measures computed are robust and
that they are always computed taking advantage of all the information available
in the system. However, the confidence values estimated indeed depend on the
degree of Committee Redundancy of the system.

To prove the previous statements, we just have to prove two things:

1. That moving one case from one agent’s case base to another agent’s case
base the overall confidence estimation CAc(J) doesn’t change (since we can
and obtain any case distribution by transferring cases one by one), and

2. that adding/removing an agent with an empty case base the overall confi-
dence estimation CAc(J) does not change either.

Let us assume that in a committee consisting of n agents: Ac = {A1, ..., An},
with case bases C1, ..., Cn, the JER to be examined is J. After the examination
process, every agent Aj ∈ Ac has computed the number of endorsing cases and
of counterexamples, XAj .Y and XAj .N , where XAj is the examination record
build by Aj for the justification endorsement record J. Now, if we transfer a case
c ∈ Ci to Cj we obtain the following case base C∗i = Ci−{c} and C∗j = Cj +{c},
and three situations may arise:

1. J.J 6v c.P : In this situation, since the case c is not subsumed by the
justification, the new values XAi

J .Y ∗, XAi

J .N∗, XAj

J .Y ∗ and XAj

J .N∗ com-
puted for agents Ai and Aj are the same than the previous XAi

J .Y , XAi

J .N ,
XAj

J .Y and XAj

J .N (The asterisk is notes the values computed using case
bases C∗i and C∗j). Thus, CAc(J) does not change.

7.6. Justification Endorsed Committee Interaction Protocol 159

2. J.J v c.P and J.S = c.S: In this situation, the new value XAi

J .Y ∗ com-
puted by Ai is equal to XAi

J .Y − 1 and XAj

J .Y ∗ computed by Aj is equal
to YXAj

J .Y + 1. The confidence will be then:

CAc(J) =

∑
Aj∈Ac XAj

J .Y ∗∑
Aj∈Ac XAj

J .Y ∗ + XAj

J .N∗
=

(
∑

Aj∈Ac XAj

J .Y) + 1− 1

(
∑

Aj∈Ac XAj

J .Y + XJAj .N) + 1− 1
=

CAc(J) =

∑
Aj∈Ac XAj

J .Y∑
Aj∈Ac XAj

J .Y + XAj

J .N

Therefore, the value of C(J) remains unchanged.

3. J.J v c and J.S 6= c.S: In this case, the proof is the same than in the
previous situation, but the changed values are XAi

J .N and XAj

J .N .

Therefore the confidence estimation does not depend on the distribution of
cases among the agents.

The second proof we need is showing that the estimation of the confidence
remains also unchanged if we change the number of agents while maintaining
the same collection of cases. For this purpose, we just have to consider what
happens if we add/remove an agent Ai to/from the system with an empty case
base: as the numbers XAi .Y and XAi .N computed by this agent will equal
zero, adding or removing this agent from the system will not modify the value
of C(J). Therefore, as redistributing cases among the agents doesn’t modify
the confidence estimate, removing an agent by first transferring all its cases to
other agents, and then removing it also do not modify the confidence estimate.
Similarly, adding an agent with an empty case base and transferring some cases
to it from another agent’s case base does not modify the overall confidence
estimation CAc(J) of any JER J. Therefore we have proven that the overall
confidence estimations are not dependent on the case distribution among the
agents nor the number of agents in the system.

Notice, however, the overall confidence estimations indeed depend on the
degree of redundancy, i.e. if we duplicate one case, the confidence estimate will
change. Nonetheless, for a fixed degree of redundancy, changing the distribution
or the number of agents, the overall confidence estimation will remain unchanged.

The next section presents an exemplification of the JE-CS collaboration strat-
egy.

160 Chapter 7. Justification Endorsed Collaboration

Sponge

External

features

Spiculate

skeleton
Spiculate

skeleton
Megascleres

External

features

Gemmules

Megascleres

Uniform length

Smooth form

No

No

Tylostyle

Figure 7.14: Justification J1 generated by agent A1 after solving the problem P .

7.6.2 Exemplification

Let us show how the JE-CS collaboration strategy works by means of an example.
Let M be a MAC system composed of three agents, namely A = {A1, A2, A3}.
The agent A1 wants to solve the problem P (thus, A1 will play the role of
convener agent). P is a problem of marine sponge classification, and therefore
the possible solution classes are S = {Hadromerida,Axinellida,Astrophorida}.

First, A1 convenes a committee composed of agents Ac = {A1, A2, A3},
then A1 sends the problem P to the other members of the committee, namely
to A2 and to A3. All three agents try to solve the problem individually using
LID [Armengol and Plaza, 2001b] as the CBR method, and build their justified
predictions expressed as JERs as explained in Section 3.5.2.1.

After solving the problem P using LID, A1 has found that the solu-
tion class for the problem P is Hadromerida and the justification is the one
shown in Figure 7.14. Therefore, A1 builds a justified endorsement record
J1 = 〈Hadromerida, J1, P, A1〉, where J1 is the justification shown in Fig-
ure 7.14. Then, J1 is sent to A2 and A3. Analogously, A2 builds J2 =
〈Axinellida, J2, P,A2〉 and A3 builds J3 = 〈Hadromerida, J3, P,A3〉, and sends
them to the other agents (notice that each agent could generate more than one
JER if Ji covers cases in more than one solution class).

At this point, each agent (A1, A2, and A3) has the set JAc = {J1,J2,J3},
containing all the JERs built by all the agents in the committee. It’s time to
build the examination records.

When A2 starts examining J1 coming from the agent A1, all the cases
in the case base of A2 that are subsumed by the justification J1.J are re-
trieved: 13 cases, 8 cases belonging the Hadromerida solution class, and 5
cases belonging to Astrophorida. That means that A2 knows 5 counterexam-
ples (i.e. cases that completely satisfy the justification J1.J , but that do not
belong to the Hadromerida class). Therefore, A2 builds the examination record
X1 = 〈J1, 8, 5, A2〉. Then, A2 continues by examining the next JER, J2 (its
own JER), and finds only 3 cases belonging the Axinellida class. Therefore, A2

builds the following XER: X2 = 〈J2, 3, 0, A2〉 (in fact, when an agent examines

7.6. Justification Endorsed Committee Interaction Protocol 161

its own JERs, it is not needed to perform the full examination process, since
the agent already knows which are the endorsing cases and counterexamples for
that JER). Finally, A2 also builds the XER for J3: X3 = 〈J3, 5, 1, A2〉. Those
three XERs are sent to the convener agent A1. In the same way, A3 also builds
its own XERs and sends them to A1. The convener agent A1 also builds its own
XERs.

At this point of the protocol, the convener agent has the set of XERs built by
itself and the ones that has received from the other agents. Specifically, the con-
vener A1 has the XERs X1, X2, and X3 (previously mentioned), and also the rest
of the XERs built by the agents: X4 = 〈J1, 7, 0, A3〉, X5 = 〈J2, 2, 5, A3〉, X6 =
〈J3, 10, 0, A3〉, X7 = 〈J1, 15, 0, A1〉, X8 = 〈J2, 1, 4, A1〉, X9 = 〈J3, 6, 1, A1〉.
With all those examination records, A1 builds the set XAc

= {X1, ...,X2, X3,
X4, X5, X6, X7, X8, X9}. Then, A1 computes the overall confidence measures
for each justification endorsement record in the set JAc using Definition 7.5.1.
For instance, for the JER J1, the confidence measure will be obtained from the
XERs X1, X4 and X7 (the XERs that refer to J1):

CAc(J1) =
8 + 7 + 15

8 + 5 + 7 + 0 + 15 + 0
= 0.85

In the same way, the confidence C(J2) = 0.40 will be computed from X2,
X5 and X8 and the confidence C(J3) = 0.91 from X3, X6 and X9. Notice
how the weakest JER (J2) has obtained the lowest confidence, while stronger
justifications obtain higher confidence values.

Once all the confidence measures of the JERs have been computed the Jus-
tification Endorsing Voting can be used in order to obtain an overall solution.
For instance, the votes for agent A1 are:

• JV ote(Hadromerida,A1) = 0.85,

• JV ote(Axinellida,A1) = 0.0,

• and JV ote(Astrophorida,A1) = 0.0.

Notice that A1 has provided only one JER, that endorses the solution class
Hadromerida as the solution for the problem P , therefore its votes for the rest
of the classes are zero.

The JVotes of A2 and A3 are computed similarly and then the votes of all
the agents are aggregated as ballots:

• JBallot(Hadromerida, P,Ac) = 0.85 + 0.91 = 1.76,

• JBallot(Axinellida, P,Ac) = 0.40,

• JBallot(Astrophorida, P,Ac) = 0.0.

Finally, the outcome of the voting system is the class with the highest ballot,
namely JSol(S, P,Ac) = Hadromerida.

162 Chapter 7. Justification Endorsed Collaboration

7.7 Experimental Evaluation

In this section the performance of the Justification Endorsed Collaboration Col-
laboration Strategy (JE-CS) will be empirically evaluated and compared with
the performance of the Committee Collaboration Strategy (CCS) and with the
performance of individual agents. We have made experiments with MAC sys-
tems consisting in 3, 5, 7, 9, 11, 13, and 15 agents. The data sets used are
sponges, soybean and zoology, and the results presented are the average of 5
runs of a 10 fold cross validation. In order to test the generality of the JE-CS
strategy, we present experiments using LID and decision trees as the learning
methods. Moreover, decision trees have only been tested with the soybean and
zoology data sets since the sponge data set is not a propositional data set and
decision trees cannot directly manage it. Moreover, we have made experiments
in three different scenarios (as in the previous chapters): the uniform scenario,
the redundancy scenario, and the biased scenario.

In the uniform scenario each individual agent receives a random sample of
the data set with Committee Redundancy R w 0.0 and with Committee Bias
B = 0.0 (see Section 4.4). That is to say, in the uniform scenario the case bases
of the individual agents are disjunct (i.e. there is no case shared by two agents’
case bases), and the individual case bases have an average Case Base Bias of 0
(i.e. the ratio of cases of each class in the individual case bases is nearly the
same than in the complete data set).

In the redundancy scenario each individual agent receives a random sample
of the data set with redundancy R = 0.1 and with Committee Bias B = 0.0.
That is to say, in the redundancy scenario, there is a number of cases that are
present in more than one agents’ case bases. For instance, with a Committee
Redundancy R = 0.1 in a MAC system composed of 5 agents working in the
sponges domain each agent will have an average of 71.12 cases while with Com-
mittee Redundancy R = 0.0 they will have only about 54.00 cases. The goal of
performing experiments in the redundancy scenario is to test if the justification
examination process is sensible to committee redundancy.

In the biased scenario each individual agent receives a random sample of
the data set with Committee Redundancy R w 0.0 and with Committee Bias
B > 0.0. Specifically, we have set B = 0.45 for the sponge data set, B = 0.17
for the soybean data set, and B = 0.32 for the zoology data set. In this way,
each agent will receive case bases that are not representative of the training
set, and therefore, each individual agent has a low classification accuracy (as we
showed in Section 4.5.3). In this scenario, we want to evaluate whether JE-CS
can compensate the reduced classification accuracy of the individual agents and
achieve a higher classification accuracy than CCS.

7.7.1 JE-CS evaluation in the uniform scenario

Figure 7.15 shows the classification accuracy for agents using LID as learning
method in the three data sets (sponge, soybean and zoology). The figure shows
classification accuracy for agents using JE-CS, CCS and for agents solving prob-

7.7. Experimental Evaluation 163

JE-CS

CCS

LID - SPONGE

50

55

60

65

70

75

80

85

90

95

3 5 7 9 11 13 15

LID - SOYBEAN

30

40

50

60

70

80

90

3 5 7 9 11 13 15

LID - ZOOLOGY

40

50

60

70

80

90

100

3 5 7 9 11 13 15

Individual

Figure 7.15: Classification accuracy comparison between agents using LID to
solve problems with JE-CS, CCS, and individually in the uniform scenario.

lems individually. The first thing that Figure 7.15 shows is that agents using
JE-CS achieve higher classification accuracy values in almost all the systems
than agents using CCS, and specially in the soybean data set.

The difference in classification accuracy between JE-CS and CCS is specially
significative in systems with many agents. For instance, in the 15 agents system
for the sponge data set, the classification accuracy achieved with CCS is 86.45%
while with JE-CS it is 90.00% . This can be explained by the fact that in systems
with many agents, each individual agent has a lower classification accuracy (as
shown in Figure 7.15), and therefore there are more chances to detect low con-
fidence predictions. The fact that JE-CS increases the accuracy more in these
situations proves that indeed the predictions with low confidence are detected
and their influence in the voting system is diminished accordingly. Moreover,
this result also reinforces the fact that the overall confidence estimations are not
affected by the fragmentation of data.

Notice however that the benefits of JE-CS over CCS are small in the zoology
data set. The explanation is that the zoology data set is very small (consists on
just 101 cases) and the cases have only a few attributes. In fact, the cases have
just 16 attributes: 15 of them are binary and the other one is numerical and can
take the values 2, 4, 6 and 8. Moreover, there are 7 possible solution classes.
Thus, in a 15 agents system, each agent will have an average of 6.06, that is less

164 Chapter 7. Justification Endorsed Collaboration

JE-CS CCS Individual

ID3 - SOYBEAN

30

40

50

60

70

80

90

3 5 7 9 11 13 15

ID3 - ZOOLOGY

40

50

60

70

80

90

100

3 5 7 9 11 13 15

Figure 7.16: Classification accuracy comparison between agents using decision
trees to solve problems with JE-CS, CCS, and individually in the uniform sce-
nario.

than 0.87 cases in average per solution class. Therefore the individual agents
have very few information with which to build interesting justifications. Notice
that in the soybean and sponge data sets the larger benefits (comparing to CCS)
where achieved in systems with many agents, where each agent has a small case
base. That is because in a system with many agents, many agents will provide
a weakly justified prediction, but some of them will provide a strongly justified
prediction. However, in the zoology data set, as each agent has so few cases, the
most probable situation is that all of them provide a weakly justified prediction,
and in this case JE-CS can do little to improve classification accuracy. Thus,
a requisite of JE-CS to work is that there are at least some strongly justified
predictions among the predictions provided by the agents in a committee (that
will be the ones that will be assigned higher overall confidence estimations). If
all the justified predictions are weak, then JE-CS converges to CCS.

Nevertheless, notice that even in this data set where the agents are not able
to build very interesting justifications JE-CS is able to achieve most of the times
slightly better results than CCS.

Figure 7.16 shows the classification accuracy for agents using decision trees
as learning method in the soybean and zoology data sets. The figure shows that,
although the differences are not as large as using LID, agents using JE-CS achieve
higher classification accuracy values than agents using CCS. In the soybean data
set, agents using JE-CS achieve an accuracy that is always about a 2% above
of that achieved by agents using CCS. Specifically, in the 9 agents system the
accuracy of JE-CS is 74.92% while the accuracy of CCS is 72.96%. Notice also
that the gains achieved in the zoology data set are smaller than those achieved in
the soybean data set. The explanation is the same than for the LID method, and
again we see that although the gains are small, JE-CS achieves usually higher
accuracy than CCS.

Summarizing, JE-CS achieves higher classification accuracy values than CCS

7.7. Experimental Evaluation 165

JE-CS

CCS

Individual

LID - SPONGE

50

55

60

65

70

75

80

85

90

95

3 5 7 9 11 13 15

LID - SOYBEAN

30

40

50

60

70

80

90

3 5 7 9 11 13 15

LID - ZOOLOGY

40

50

60

70

80

90

100

3 5 7 9 11 13 15

Figure 7.17: Classification accuracy comparison between agents using LID to
solve problems with JE-CS, CCS, and individually in the redundancy scenario.

in all the data sets both using LID and decision trees. In those data sets where
justifications are richer (sponge and soybean) the difference in classification accu-
racy between JE-CS and CCS is larger, and in those data sets where justifications
contain less information (such as the zoology data set where the individual agents
have very few cases) JE-CS approaches CCS. Finally, we have seen agents using
LID obtain more benefits using JE-CS than agents using decision trees. The
explanation is that LID is a lazy learning method that explicitly uses a symbolic
description of the similarity among cases, decision trees however are learnt us-
ing an eager learning algorithm and do not have any explicit representation of
the similarity among cases; we use the tree path that classifiers a problem as
its justification but, since the tree has been generated using an eager learning
method, the justification is not specific to the problem at hand as it is in LID.

7.7.2 JE-CS evaluation in the redundancy scenario

In the redundancy scenario there are cases that are present in more than one
agent’s case base. As we have shown in Chapter 4, redundancy is expected
to increase the individual and CCS classification accuracy. However, as we
explained in Section 7.6.1 the overall confidence estimation process is sensible
to case redundancy. Therefore, it is not obvious that JE-CS will also increase

166 Chapter 7. Justification Endorsed Collaboration

JE-CS CCS Individual

ID3 - SOYBEAN

30

40

50

60

70

80

90

3 5 7 9 11 13 15

ID3 - ZOOLOGY

40

50

60

70

80

90

100

3 5 7 9 11 13 15

Figure 7.18: Classification accuracy comparison between agents using decision
trees to solve problems with JE-CS, CCS, and individually in the redundancy
scenario.

its classification accuracy values. The goal of performing experiments in this
scenario is to test if redundancy affects JE-CS positively or negatively.

Figure 7.17 shows that the classification accuracy values achieved by JE-CS
are higher than those achieved by CCS. Again, the increase of classification accu-
racy is more significant in systems with many agents. Comparing the results with
the uniform scenario, we see that CCS has increased its classification accuracy
values (as expected), and that JE-CS has also increased its classification accu-
racy values. This shows that although the overall confidence estimation process
may be affected by redundancy, JE-CS is robust and experiments an increase
in classification accuracy with redundancy. The larger increase has taken place
in the soybean data set for the 15 agents system, where JE-CS and CCS had
achieved an accuracy of 68.99% and 61.1% in the uniform scenario, while they
have achieved an accuracy of 83.77% and 79.02% respectively in the redundancy
scenario.

Figure 7.18 shows the classification accuracy for agents using decision trees
as learning method in the soybean and zoology data sets in the redundancy
scenario. Figure 7.18 confirms that JE-CS is affected positively by redundancy,
and thus the classification accuracy of JE-CS in the redundancy scenario is higher
than in the uniform scenario. Moreover, the classification accuracy achieved by
JE-CS is higher than that achieved by CCS for both data sets.

Again, we can observe that the gains achieved in the zoology data set are not
al large as in the other data sets, but that JE-CS is still able to achieve usually
higher classification accuracy values than CCS. Moreover, in the situations where
JE-CS is not able to improve CCS if converges to CCS.

Summarizing, we have seen that CCS improves its classification accuracy
with redundancy. This could cancel the improvement achieved by JE-CS in
principle. However, experiments have shown that this is not the case and JE-
CS still achieves higher classification accuracy values than CCS given that the

7.7. Experimental Evaluation 167

JE-CS

CCS

Individual

LID - SPONGE

50

55

60

65

70

75

80

85

90

95

3 5 7 9 11 13 15

LID - SOYBEAN

30

40

50

60

70

80

90

3 5 7 9 11 13 15

LID - ZOOLOGY

40

50

60

70

80

90

100

3 5 7 9 11 13 15

Figure 7.19: Classification accuracy comparison between agents using LID to
solve problems with JE-CS, CCS, and individually in the biased scenario.

agents can provide interesting justifications.

7.7.3 JE-CS evaluation in the biased scenario

Chapter 4 has shown that the accuracy achieved by CCS is reduced in the
presence of case base bias. In a committee of agents where each individual agent
has a biased case base, each agent may provide individual predictions that are
less reliable since they are made using a biased case base. Using the overall
confidence estimation process, JE-CS tries to solve this problem by computing a
confidence estimation of each individual justified prediction made by the agents
in a committee. The goal of making experiments in the biased scenario is to
confirm that JE-CS is more robust in the presence of bias than CCS.

Figure 7.19 shows the classification accuracy for agents using LID as learning
method in the three data sets (sponge, soybean and zoology) in the biased
scenario. Figure 7.19 shows that the accuracy achieved by agents using JE-
CS is clearly higher than the accuracy of agents using CCS in the soybean and
sponge data sets. Moreover, this difference is more noticeable in the experiments
with many agents and specially large in the soybean data set. For instance, in
the 15 agents system in the soybean data set, JE-CS achieves an accuracy of
70.13% while CCSonly a 59.00%. In the zoology data set, the accuracy gain is

168 Chapter 7. Justification Endorsed Collaboration

JE-CS CCS Individual

ID3 - SOYBEAN

30

40

50

60

70

80

90

3 5 7 9 11 13 15

ID3 - ZOOLOGY

40

50

60

70

80

90

100

3 5 7 9 11 13 15

Figure 7.20: Classification accuracy comparison between agents using decision
trees to solve problems with JE-CS, CCS, and individually in the biased scenario.

not so significant.
Moreover, comparing the accuracy achieved in the biased scenario (Figure

7.20) with the accuracy achieved in the uniform scenario (Figure 7.16), we can
see that the accuracy of CCS is lower in the biased scenario (as expected).
However, in the sponge and soybean data sets the classification accuracy of JE-
CS has remained practically unchanged from the uniform scenario to the biased
scenario (this effect cannot be seen in the zoology data set for the same reasons
explained in the previous scenarios). Therefore, the experiment shows that the
accuracy achieved by JE-CS is not affected by case base bias.

Figure 7.20 shows the classification accuracy for agents using decision trees
as learning method in the soybean and zoology data sets in the redundancy
scenario. The figure shows that JE-CS achieves clearly higher classification
accuracy values than CCS in the soybean data set. Classification accuracy values
achieved using CCS decrease with respect to the uniform scenario but accuracy
values achieved using JE-CS do not in the soybean data set. In fact, classification
accuracy of agents using JE-CS is higher for some systems in the biased scenario
than in the uniform scenario in the soybean data set. However, agents working
with the zoology data set again do not obtain such a great improvements as
agents working with the soybean data set and they perform just slightly better
than using CCS.

We can conclude that JE-CS is robust with respect to case base bias provided
that the agents can construct interesting justifications (as in the sponge and
soybean data sets).

7.8 Conclusions

In this chapter we have developed the notion of justifications presented in chapter
3. A justification is the explanation that an agent gives for having made a specific

7.8. Conclusions 169

prediction for a problem. Moreover, the notion of justification has allowed us to
define justified predictions, with which we have defined a new kind of committees
where the agents can justify their individual predictions. Moreover, we have
presented a method with which a committee of agents can assess the confidence
of a justified prediction made by an agent by means of aggregating individual
examinations made by the agents of a committee. Finally, we have presented a
collaboration strategy named JE-CS, that uses justifications in order to increase
the classification accuracy achieved by the Committee Collaboration Strategy
presented in Chapter 4.

In order to evaluate JE-CS, we have compared it with CCS in several scenar-
ios and using different data sets and learning methods. The results show that
JE-CS achieves higher classification accuracy than CCS in all the scenarios and
data sets (although in one data set, zoology, the accuracy gain is very small).
Specifically, we have shown that JE-CS is specially useful when the individual
predictions may not be reliable. For instance, in systems where the individual
agents have small case bases or where there is some degree of committee bias,
justifications are useful to assess the confidence on each individual prediction.
In that way, predictions that are not endorsed by strong justifications will have
small impact on the voting system and therefore on the overall prediction made
by the committee.

We have shown that JE-CS is more robust than CCS. Specifically, CCS has
problems when the degree of committee bias increases (as shown in Chapter 4),
while the accuracy achieved by JE-CS in the presence of bias is the same than
where there is no bias. However, we have seen that JE-CS achieves larger in-
creases in classification accuracy over CCS in domains where the agents can build
complex justifications (such as in sponge and soybean in our experiments); in
simple domains (such as zoology) where agents cannot build interesting justifica-
tions the gains achieved by JE-CS over CCS are not that large. We can conclude
that while the requisites of CCS to work is that every individual prediction of
the agent members of a committee is reliable (and that they are uncorrelated),
the requisites of JE-CS to work are that there have to be at least some of the pre-
dictions of the agent members that are reliable and that the justifications build
by the agents have to contain enough information for the agents to assess the
confidence of each individual prediction. The previous conclusion is consistent
with all the experiments presented in this section:

• in the soybean and sponge data sets, the agents can build rich justifi-
cations and thus is where JE-CS achieves higher benefits; in the biased
scenario there are more chances that some individual agents provide weak
predictions, thus CCS performs bad, and JE-CS outperforms it;

• in systems with many agents there are also more chances of agents provid-
ing weak predictions and thus CCS performs worse than JE-CS;

• finally, in the zoology data set, agents cannot build rich justifications and
thus JE-CS cannot assess which justified predictions are weak and which
are strong. Therefore, JE-CS does not perform much better than CCS.

170 Chapter 7. Justification Endorsed Collaboration

As a final conclusion we can say that justifications are an interesting tool that
provide useful information that can be exploited in several ways. In this chapter
we have exploited the information contained in the justifications to assess the
confidence of the predictions made by individual agents, but they can have many
other uses as we will see in Chapters 8 and 9.

Chapter 8

Case Retention
Collaboration Strategies

In this chapter we are going to introduce collaboration strategies for case reten-
tion. The goal of the case retention strategies presented in this chapter is to
achieve compact and competent case bases, i.e. case bases with a small number
of cases and that have a high classification accuracy. Specifically, we are going
to present strategies for case retention different from previously proposed reten-
tion strategies in that they are specifically designed for multi-agent systems or
they are based on justifications in order to decide what is to be retained or not.
Finally, the performance of the retention strategies is empirically evaluated.

8.1 Introduction

The performance of case based reasoning strongly depends on the contents of
the case base. For that reason, building and maintaining compact and com-
petent case bases has become a main topic in Case Based Reasoning research.
Empirical results have shown that storing every case into the case base does
not automatically improve classification accuracy [Smyth, 1996]. In fact, adding
cases to an already saturated case base does not increase classification accuracy
but decreases problem solving performance (since the retrieve process cost in-
creases as the number of cases in the case base increases). Therefore, it would be
desirable that a case base is compact and competent, i.e. that the case base has
a small number of cases (in order to have a high problem solving efficiency) and
that the case base is competent (in order to have a high classification accuracy).

All the collaboration strategies presented in this chapter are designed to
work during the last process of the CBR cycle (as Figure 8.1 shows): the Retain
process. During the Retain process, a CBR agent incorporates new cases into
its case base. The collaboration strategies presented in this chapter have the
goal of taking benefit of the fact that the CBR agents are in a multi-agent
system in order to improve the performance of the Retain process. To see that

171

172 Chapter 8. Case Retention Collaboration Strategies

Retrieve

R
euse

New

Case

Problem

Solved

Case

Revise
R

et
ai

n

Revised

Case

Precedent
Case

Domain
Knowledge

New

CaseRetrieved

Case
Retrieved

Case

Case Retention
Strategies

Figure 8.1: Case Retention strategies are designed to work during the last process
of the CBR cycle: Retain

collaboration can have an important role in case retention, consider the following
situation: we have a MAC system composed of two agents A1 and A2; agent A1,
because of the conditions of the environment in which it is working, can very
easily have access to new cases with a certain solution class S1; and agent A2 can
very easily have access to new cases with solution class S2; if both agents reach
an agreement so that A1 cedes some cases with solution S1 (that would have
been discarded otherwise) to A2 and viceversa their case bases may be better
(in the sense of achieving a higher classification accuracy) than the case bases
they could have by working in isolation.

Moreover, collaboration strategies for case retention are not different to in-
dividual case retention strategies only because the agents may have access to
cases discarded by other agents. Individual retention strategies are designed
to maximize the performance of an individual CBR system, while collaboration
strategies for case retention may have the goal of maximizing the performance of
a committee. In this case, the retention strategy must have in mind that in order
to improve the performance of committee the individual classification accuracy
is not the only important factor: as we have explained in previous chapters, com-
mittees rely on the ensemble effect and it is a requisite of the ensemble effect
that the errors made by the individual agents are not correlated. Thus, a collab-
oration strategy for case retention has at least two goals: increasing individual
accuracy and maintaining (or decreasing) error correlation.

In this chapter we are going to present strategies for case retention that differ
from the currently available case retention strategies (see Section 2.2.1.1) because
they are collaborative case retention strategies or because they are based on jus-
tifications. Specifically, in this chapter we are going to present three different
case retention collaboration strategies: Section 8.2 presents several variations of
the multi-agent case retention collaboration strategy (MAR-CS) that is a reten-
tion strategy that takes into account the multi-agent aspect of case retention;

8.2. Multi-agent Case Retention Strategies 173

then Section 8.3 presents the Justification-based Selection of Training Examples
(JUST) strategy, that is an individual case retention strategy that uses justifi-
cations in order to select which cases to retain; finally, Section 8.4 presents the
Collaborative Case Bargaining collaboration strategy, that is a retention strat-
egy that combines both justifications and the multi-agent aspect of retention.
The chapter ends with a conclusions section.

8.2 Multi-agent Case Retention Strategies

CBR case retention strategies are in charge of deciding which new cases to incor-
porate into the case base. This decision takes place after the Revise Process (see
Figure 8.1). Thus, the CBR approach to case retention consists on the following:
given a new problem the decision of whether to retain it or not is taken after
revising it. However, this is not the only possible approach to case retention. A
main issue on machine learning is to select which are the examples of the target
problem to learn from. Each time a learning system receives a new example, it
has two options: use the example to learn (retain) or discard it. When a learner
retains every example it observes, we are talking of passive learning. But when
the learner has some strategy to select which are the examples that it is going to
learn from, we are talking of active learning [Cohn et al., 1994]. The basic idea
in active learning is that the learner receives a set of unlabelled examples and
decides which of them are interesting to learn from; then the teacher labels the
examples that the learner has found interesting and only then they are used for
learning. The main goal of active learning is to minimize the number of solved
examples (labelled examples) needed to learn any task without appreciably de-
grading the performance. Thus, we see a fundamental difference between the
active learning, and the CBR approach:

• Active learning tries to minimize the number of questions to the teacher,
i.e. active learning tries to select which are the interesting examples before
knowing their solution, to avoid the cost associated with labelling them
(asking for the right solution from a teacher, or running the revise process
in the case of CBR).

• CBR assumes that this solution is known, since the retain process is per-
formed after the Revise process in the CBR cycle, and thus CBR case
retention does not try to avoid the cost of labelling the cases.

In this section, we are going to present individual decision policies inspired on
both approaches. Specifically, we are going to present a collaboration strategy
that has two individual decision policies: the Individual Case Retention decision
policy (DICR) and the Case Offering decision policy (DO). The Individual Case
Retention decision policy is in charge of deciding whether a new case will be
retained individually or not, and the Case Offering decision policy is in charge
of offering cases to other agents. In the following section we are going to present
Individual Case Retention decision policies inspired both in CBR case retention

174 Chapter 8. Case Retention Collaboration Strategies

p1

p2

p4

:

:

:

:

:

w2w1 w3w0

w4

p1

p2

/c1

p4
p5

p3p2

p2/c1

p3 :

p5

Request(?Ac, all, ?c)

Inform(?Aj , !Ac, true/false)

Inform(?Aj , !Ac, true/false)

|!W1w1Aj | =!(n − 1)

Inform(!Ac, ?Aj , !c)

Inform(!Aj , !Ac, ok)

Inform(!Ac, all, termination)

Figure 8.2: Interaction protocol for the Multi-agent Retention collaboration
strategy.

and in active learning, and also several Case Offering decision policies. Then, we
will analyze the resulting collaboration strategies of using several combinations
of individual decision policies. Let us start by defining the collaboration strategy:

Definition 8.2.1. The Multi-agent Retention Collaboration Strategy(MAR-
CS) is a collaboration strategy 〈IMAR−CS , DIR, DO〉, where IMAR−CS is the
MAR-CS interaction protocol shown in Figure 8.2, DIR is the Individual Case
Retention decision policy used to decide whether to retain cases individually or
not, and DO is the Case Offering decision policy used to decide when to offer
cases to the other agents.

Figure 8.2 shows the IMAR−CS . However, before using the protocol an agent
Ai using MAR-CS performs a series of actions: when an agent Ai ∈ Ac has the
opportunity the retain a new case c and has to decide whether to retain c or not,
Ai uses its own DIR to decide whether to individually retain c or not. Then, the
DO is used to decide whether to offer c to other agent or not. If DO decides that
the case will not be offered, the protocol is not engaged, and the collaboration
strategy ends. But if DO decides that the case will be offered to other agents,
the protocol IMAR−CS is started.

The interaction protocol IMAR−CS applies to a set of agents Ac and works
as follows:

• In state w0, Ai broadcasts the new case c to the rest of agents in Ac with
message p1.

8.2. Multi-agent Case Retention Strategies 175

• In state w1, the agents that have received the case c use their Individual
Case Retention decision policies DIR to decide if they are interested on
the case or not. Then, they answer to Ai expressing if they are interested
in c or not with message p2. Once every agent that has received c has
answered Ai, the protocol moves to state w2. Let interested(c,Ac) ⊆ Ac

be the set of agents interested on case c.

• In state w2, Ai uses its Case Offering decision policy DO to decide which
agent or agents form the set of agents A ⊆ interested(c,Ac) that will
receive the case c. Then, Ai sends a message p3 to each agent Aj ∈ A
telling them that they can retain case c, and waits for their confirmation
messages p4. Once all the agents in A have answered, Ai broadcasts a
termination message p5 and the protocol goes to state w4 that is a final
state.

• In state w3, the agents that receive the message p3 retain the case c and
once the case has been retained send a confirmation message p4 to Ai.

• State w4, is a final state and thus the protocol ends.

Notice that in state w1 every agent could retain case c without permission
of Ai, however, we are going to assume that the agents are collaborative, that
the individual agents will follow the rules of the protocol, and only retain cases
when they receive the permission to do so with message p3. Moreover, in Section
8.2.5 we will show that agents in fact have a motivation to follow the protocol,
since by doing so the performance of the committee increases.

In the following sections, we are going to present several Individual Case
Retention decision policies inspired in CBR case retention in Section 8.2.1 and
in active learning in Section 8.2.2. Then we present several Case Offering decision
policies 8.2.3 and, finally, retention strategies will be presented in Section 8.2.4.

8.2.1 CBR Case Retention Decision Policies

In this section we are going to present three decision policies that an agent can
use as its DIR decision policy. All the decision policies presented in this section
are in fact boolean predicates that return true when the new case should be
retained and false otherwise.

Definition 8.2.2. The Never Retain Individual Case Retention decision policy
consists on never retaining any case and is defined as follows:

DNR−IR(c) = false

Definition 8.2.3. The Always Retain Individual Case Retention decision policy
consists on retaining every received case into the case base and is defined as
follows:

DAR−IR(c) = true

176 Chapter 8. Case Retention Collaboration Strategies

Definition 8.2.4. The On-Failure Retain Individual Case Retention decision
policy consists on retaining only those cases that cannot be solved correctly using
the current case base. DOFR−IR(c) is defined for an agent Ai as follows:

DOFR−IR(c) =

{
true If c.S 6= Sol(S, c.P, {Ai}),
false otherwise.

where Sol(S, c.P, {Ai}) is the solution class predicted by Ai for the problem c.P
before retaining it (as defined by Equation 4.2).

Notice that the first two decision policies presented in this section (Never
Retain and Always Retain) are only defined for comparison purposes. More-
over, the interesting decision policy (On-Failure Retain) is inspired in the CBL2
technique presented in Section 2.2.1.1.

8.2.2 Active Learning Decision Policies

The main difference of the active learning decision policies with the CBR case
retention policies is that the active learning ones take the decision of retaining
or not new cases without having access to the correct solution of them.

The idea of the example selection in active learning is to identify a region
of uncertainty inside the problem space that corresponds to the region of the
problem space where the learner (in our framework the CBR agent) cannot
provide predictions with a high confidence (as we explained in Section 2.2.1.1).
Once the region of uncertainty is defined, it is recommended to retain only cases
belonging to that region. QbC is one of those example selection techniques
that uses a querying mechanism to determine the region of uncertainty (as we
explained in Section 2.2.1.2).

In this section we are going to present a decision policy called Informa-
tive Disagreement Individual Case Retention (DID−IR), inspired in the Query
by Committee (QbC) modification proposed by Argamon-Engelson and Dagan
[Argamon-Engelson and Dagan, 1999]. The main difference is that Informative
Disagreement focus in measuring disagreement in a committee of agents. The
main steps of the Informative Disagreement decision policy (for an agent Ai that
has received a case c to retain) are the following ones:

1. Ai convenes a committee of agents Ac.

2. Each agent in Ac individually solves the problem and sends its individual
prediction to Ai.

3. Ai then measures the agreement among the individual agents’ predictions:
if most of the agents agree on the solution class of the new case c, it
is assumed that the new case does not fall in the region of uncertainty,
and therefore it is not retained. However, if there is a large amount of
disagreement among the agents (i.e. most of them predict different solution
classes), the case is considered to be in the region of uncertainty, and it is
retained.

8.2. Multi-agent Case Retention Strategies 177

Notice that the idea behind Informative Disagreement is that those cases for
which there is a large amount of agreement are considered cases that the commit-
tee already can solve with a high confidence, and therefore are non-interesting
cases that are not worth being retained. However, those cases for which there is
a high disagreement are cases with low confidence of being solved correctly, and
thus they can contribute to improve the performance of the committee.

Let us first provide a measure of the disagreement among the predictions
made by a set of agents:

Diagreement(c,Ac) =
Vr

(K − 1) ∗ Vw
(8.1)

where:

• K is the number of solution classes,

• Vw = Ballot(Sol(S,Ac),Ac) is the sum of votes for the most voted solution
class,

• Vr =
∑

Sk∈{S−Sol(S,Ac)}Ballot(Sk,Ac) is the sum of votes for the rest of
solution classes.

In other words, the disagreement is measured dividing the votes for the least
voted solutions by the votes for the most voted solution (and applying a normal-
izing factor K − 1). Notice that when all the agents vote for the same solution
class the disagreement is 0 and if each agent votes for a different solution class
the disagreement is 1.

Using this disagreement measure we can define now the Informative Dis-
agreement decision policy as a threshold based procedure:

Definition 8.2.5. The Informative Disagreement Individual Case Retention de-
cision policy consists on retaining only those cases for which the disagreement
about their correct solution class is above a threshold d0:

DID−IR(c,Ac) = (Disagreement(c,Ac) > d0)

Notice that in order to use the Informative Disagreement decision policy, an
agent has to convene a committee (for instance using the Committee collabora-
tion strategy) before deciding whether to retain the case or not.

Finally, notice that once a high disagreement is detected (and thus the case
is considered interesting) we can distinguish between two groups of agents in
the committee Ac: those that had solved c correctly and those that have not.
Clearly, the agents that have not solved c correctly are those that have a higher
need of retaining c. We will use this distinction later when we combine this
decision policy with other Case Offering decision policies.

178 Chapter 8. Case Retention Collaboration Strategies

8.2.3 Case Offering Decision Policies

In this section we are going to define three basic decision policies that the agents
can use as their DO decision policy.

Notice that the DO is a complex policy that consists of two parts: first, DO

is used to decide whether to initiate the IMAR−CS protocol, and then it is used
in state w2 of the same protocol to decide which agents are going to retain the
case at hand. All the decision policies defined in this section will consist on two
parts (D1

O and D2
O), the first part is defined as a boolean predicate, and the

second one is a function that returns the set of agents that will retain the case
c.

Definition 8.2.6. The Never-Offer Case Offering decision policy consists of
never offering any case to the rest of agents and is defined as follows:

D1
NO−O(c,Ac) = false

D2
NO−O(c,Ac) = ∅ (8.2)

Definition 8.2.7. The Always-Offer Case Offering decision policy consists on
always offering those cases that the agent has decided not to retain individually
to the rest of agents, but only allowing a single agent to retain one case (in
order to not increase the redundancy in the system). The first part is defined as
follows:

D1
AO−O(c,Ac) = ¬DICR(c,Ac)

i.e. only offer a case when it os not individually retained. The second part is
defined as follows:

D2
AO−O(c,Ac) =

{
∅ If interested(c,Ac) = ∅,
random(interested(c,Ac)) otherwise.

where interested(c,Ac) is the set of agents that answered in state w1 of the
protocol saying that they were interested on retaining the case c. Moreover,
random(interested(c,Ac)) is a function that returns a set consisting on a single
agent randomly selected from the set of interested agents.

Definition 8.2.8. The Always-Offer-Copy Case Offering decision policy con-
sists of always offering the received cases to the rest of agents and allowing as
many agents as are interested to retain the case. It is defined as follows:

D1
AOC−O(c,Ac) = true

D2
AOC−O(c,Ac) = interested(c,Ac) (8.3)

Notice that the Never-Offer decision policy has only been defined for compar-
ison purposes, while the Always-Offer and the Always-Offer-Copy decision poli-
cies are more interesting. The main difference between them is that in Always-
Offer, the Committee Redundancy (see Section 4.4.2) will not increase, while in

8.2. Multi-agent Case Retention Strategies 179

the Always-Offer-Copy decision policy, the Committee Redundancy will increase
since more than one agent in the committee is allowed to retain the same case.

In the following section we will analyze the possible combinations of the Indi-
vidual Case Retention decision policies with the Case Offering decision policies.

8.2.4 Case Retention Strategies

In the previous sections we have defined four different Individual Case Retention
decision policies (DNR−IR, DAR−IR, DOFR−IR andDID−IR) and three different
Case Offering decision policies (DNO−O, DO−O and DOC−O). In order to use
MAR-CS, an agent requires one decision policy of each kind. Thus, we have 12
possible combinations (although not all of them make sense). In this section we
are going to present all the interesting combinations (those that will be tested
in the experiments section).

• Never Retain - Never Offer (NR-NO): This is the MAR-CS collaboration
strategy using DNR−IR and DNO−O as individual decision policies. No
cases are retained nor offered, thus a MAC system composed of agents
using this collaboration strategy is equivalent to a MAC system where
the agents have no learning capabilities. Moreover, notice that in order to
be coherent in notation we should call this collaboration strategy MAR-
CSNR−NO, but we will simply refer to it as NR-NO for short; the same
comment applies to the rest of versions of MAR-CS presented in this sec-
tion.

• Always Retain - Never Offer (AR-NO): uses the DAR−IR and DNO−O

individual decision policies. This collaboration strategy is equivalent to
agents working individually, since they retain all the cases they receive
and never offer them to the rest of agents.

• On-Failure Retain - Never Offer (OFR-NO): this collaboration strategy
uses the DOFR−IR and DNO−O individual decision policies. This collabo-
ration strategy is also equivalent to agents working individually (since they
retain all the cases they receive and never offer them to the rest of agents)
but where the individual agents only retain those cases that they cannot
solve correctly.

• On-Failure Retain - Always Offer (OFR-AO): uses the DOFR−IR and
DO−O individual decision policies. In this collaboration strategy agents
individually retain the cases that they cannot correctly solve, and the rest
of cases are offered to the other agents. In some of the other agents are
interested in the case, one of them will retain it.

• Informative Disagreement - Never Offer (ID-NO): uses the DID−IR and
DNO−O individual decision policies. This collaboration strategy is equiv-
alent to agents working individually (since they retain all the cases they
receive and never offer them to the rest of agents) where the individual

180 Chapter 8. Case Retention Collaboration Strategies

agents actively select which cases to retain using the Informative Disagree-
ment decision policy (i.e. convening a committee and measuring the degree
of disagreement among the individual predictions). Notice that this is a
selfish collaboration strategy, since a committee is convened in order to
obtain the information needed to decide retention, but after that only the
convener agent has the option to actually retain the case.

• Informative Disagreement - Always Offer (ID-AO): uses the DID−IR and
DAO−O individual decision policies. In this collaboration strategy DID−IR

is used to decide wether c is interesting or not: if the case is considered not
interesting, it is not retained nor offered to any other agent (since the other
agents will also consider it non interesting if they also use DID−IR); if the
case is considered interesting to be retained, Ai will only retain c if Ai is
one of the agents that have failed to solve c correctly in the committee
convened to measure the disagreement. Otherwise, one of the agents of
the committee that have failed to solve it correctly (and there must be at
least one since there has been disagreement) will retain it.

• On-Failure Retain - Always Offer Copy (OFR-AOC): uses the DOFR−IR

and DAOC−O individual decision policies. In this collaboration strategy
agents individually retain the cases that they cannot correctly solve. Then,
regardless of whether the case has been retained or not, c is offered to the
rest of agents, and all the agents interested in the case will retain a copy
of c.

• Informative Disagreement - Always Offer Copy (ID-AOC): uses the
DID−IR and DAOC−O individual decision policies. In this collaboration
strategy DID−IR is used to decide whether c is interesting or not: if the
case is considered not interesting, c is not retained nor offered to any other
agent (since the other agents will also consider it non interesting if they
also use DID−IR); if the case is considered interesting to be retained, all
the agents that have failed to solve c correctly in the committee convened
to measure the disagreement will retain a copy of c.

Moreover, notice that there are some combinations of decision policies not
listed above. For instance, we haven’t defined Always Retain - Offer, since it
is equivalent to Always Retain - No Offer; we haven’t defined Always Retain -
Offer Copy either, since with that combination every agent will retain every case
and they will all end with identical case bases (if we assume that every agent
in the MAC system uses the same collaboration strategy). Finally, we haven’t
defined any collaboration strategy using Never Retain with Offer or Offer Copy
since they will be equivalent to NR-NO (if we make the same assumption as
before).

8.2.5 Experimental Evaluation

In this section we are going to empirically evaluate the versions of the MAR-CS
collaboration strategies. Specifically, we are going to compare the classification

8.2. Multi-agent Case Retention Strategies 181

accuracy of agents solving problems individually and using the Committee col-
laboration strategy for a MAC system composed of 5 agents. Moreover, we are
also going to discuss results concerning the characteristics of case bases achieved
using each one of the different collaboration strategies (including case base size,
completeness, redundancy, and bias).

In order to test the generality of the collaboration strategies we are going to
present results using three data sets: sponge, soybean and zoology. Moreover, in
all the experiments reported in this section agents use LID as the learning method
and all the presented results are the average of five 10-fold cross validation runs.

In an experimental run the data set is divided into two sets: the training set,
containing the 90% of the cases in the data set and the test set, containing the
remaining 10% of the cases in the data set. At the beginning of the experiment,
a 10% of the cases of the training set are distributed among the agents. Then,
the rest of the cases in the training set are sent to the agents one by one (each
case is only sent to one agent). Each time an agent receives a case of the training
set, it applied its retention strategy to decide retention. From time to time, the
test set is solved by the agents to evaluate their classification accuracy. The
experiment ends when all the cases in the training set have been sent to the
agents. Moreover, in order to test the retention strategies, we have set up the
worst scenario for a retention strategy: the cases in the training set are not
randomly sent to the agents but are sent with a high degree of bias, i.e. some
agents have a very high probability of receiving cases of certain classes and a
very small probability of receiving cases of other classes. Thus, if the individual
agents simply retain all the cases they receive without performing any filtering
or collaboration, they will end up with a very biased case base. Specifically we
have induced a Case Base Bias of B = 0.45 for the sponge data set, B = 0.4 for
the zoology data set, and B = 0.24 for the soybean data set, that are very high
biases for those data sets (see Section 4.5.3). Moreover, we have set the threshold
d0 = 0.1 (used in the ID-IR decision policy) for the sponge data set, d0 = 0.04
for the zoology data set, and d0 = 0.03 for the soybean data set. Those values
have been chosen as appropriate values for each data set: Since the number
of solution classes K appears in the divisor of the disagreement formula (see
Equation 8.1) committees working in data sets with a lower number of possible
solution classes tend to have higher values of disagreement while committees
working in data sets with a higher number of solution classes tend to have lower
values of disagreement. Therefore, we have set a high threshold value for d0 in
the sponge data set that has only three solution classes, and a low value of d0 for
the soybean and zoology data sets that have a larger number of solution classes.

We will first present experimental results concerning classification accuracy,
and after that we will analyze the obtained case bases with the different retention
strategies.

8.2.5.1 Classification Accuracy Evaluation

Figure 8.3 shows the classification accuracy evolution of the agents in a MAC
system composed of 5 agents using the different retention strategies in the sponge

182 Chapter 8. Case Retention Collaboration Strategies

NR-NO

AR-NO

OFR-NO

ID-NO

OFR-AO

ID-AO

OFR-AOC

ID-AOC

Sponge - Committee LID

40

45

50

55

60

65

70

75

80

85

90

95

10 20 30 40 50 60 70 80 90 100

Sponge - Individual LID

40

45

50

55

60

65

70

75

80

85

90

95

10 20 30 40 50 60 70 80 90 100

Figure 8.3: Classification accuracy comparison between agents using the different
MAR-CS collaboration strategies in the sponge data set.

data set. Both individual and committee classification accuracy is shown: the
right hand side plot shows the individual classification accuracy and the left hand
side plot shows the committee classification accuracy. For each collaboration
strategy, a plot is shown, representing the evolution of classification accuracy in
the test set as the cases in the training set are sent to the agents (the horizontal
axis represents the percentage of cases of the training set that have been sent to
the agents). From the eight collaboration strategies shown, two of them should
be considered as the baselines for comparison, namely, NR-NO and AR-NO.
NR-NO corresponds to a CBR agent that does not perform case retention (i.e.
it only has in its case base the cases that has received from the initial 10% of
the training set), and AR-NO corresponds to a CBR agent that simply retains
every case it receives.

8.2. Multi-agent Case Retention Strategies 183

NR-NO

AR-NO

OFR-NO

ID-NO

OFR-AO

ID-AO

OFR-AOC

ID-AOC

Soybean - Committee LID

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

Soybean - Individual LID

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

Figure 8.4: Classification accuracy comparison between agents using the different
MAR-CS collaboration strategies in the sponge data set.

The main result that Figure 8.3 shows is that strategies that offer cases to
other agents (OFR-AO, ID-AO, OFR-AOC, and ID-AOC) clearly outperform
any of the strategies that do not offer cases to the other agents (OFR-NO, ID-
NO, AR-NO, and NR-NO). The right hand side plot in Figure 8.3 shows us that
agents using retention strategies that offer cases achieve a classification accuracy
in the range of the 80%-85%, while agents using non offering retention strate-
gies achieve classification accuracy values below the 70%. In the sponge data
set, the retention strategies that achieved the lowest classification accuracy are
OFR-NO and ID-NO, with an individual classification accuracy of 63.14% and
62.00% respectively and a committee classification accuracy of 84.07% for both.
The best strategy is not very clear, considering the individual classification accu-
racy, OFR-AOC and ID-AOC achieved the highest classification accuracy values

184 Chapter 8. Case Retention Collaboration Strategies

Zoology - Committee LID

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Zoology - Individual LID

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

NR-NO

AR-NO

OFR-NO

ID-NO

OFR-AO

ID-AO

OFR-AOC

ID-AOC

Figure 8.5: Classification accuracy comparison between agents using the different
MAR-CS collaboration strategies in the sponge data set.

(85.21% and 83.64% respectively), but considering the committee classification
accuracy, all the retention strategies that offer cases to other agents achieve very
similar classification accuracy (above 90%), being ID-AOC the strategy that
achieved the highest accuracy (91.29%) by a small difference. In order to fur-
ther compare the results of the different collaboration strategies we have to look
at the size of the case bases (as the next section does).

Figure 8.4 shows the classification accuracy evolution of the agents in the
soybean data set. In the soybean data set we can observe again that all the col-
laboration strategies that offer cases to other agents achieve higher classification
accuracy values than the non offering collaboration strategies. Moreover, in the
soybean data set we can see that OFR-AOC achieved clearly the highest classi-
fication accuracy values, achieving 82.61% for individual agents and 86.97% for

8.2. Multi-agent Case Retention Strategies 185

Individual CCS CB size C R B
NR-NO 42.29% 55.57% 5.00 0.10 0.00 0.45
AR-NO 68.00% 87.21% 50.4 1.00 0.00 0.45

OFR-NO 63.14% 84.07% 18.28 0.36 0.00 0.43
ID-NO 62.00% 84.07% 17.78 0.35 0.00 0.44

OFR-AO 83.07% 90.71% 34.24 0.68 0.00 0.17
ID-AO 79.14% 90.50% 29.20 0.58 0.00 0.19

OFR-AOC 85.21% 90.93% 55.94 0.56 0.25 0.13
ID-AOC 83.64% 91.29% 47.36 0.45 0.27 0.14

Table 8.1: Case Base properties comparison between agents using the different
MAR-CS collaboration strategies in the sponge data set.

the committee. The other three offering strategies (ID-AOC, OFR-OC, and ID-
OC) achieved lower classification accuracies than OFR-AOC, but higher than
any of the non offering strategies. Moreover, in the soybean data set, we can
clearly see that strategies based on DOFR−IR clearly achieved higher accuracy
values than strategies based on DID−IR (this wasn’t so clear in the sponge data
set).

Figure 8.5 shows the classification accuracy evolution of the agents in the
zoology data set. Results for the zoology data set are very similar to those
obtained in the soybean and sponge data sets: offering strategies achieve higher
accuracy values than non offering strategies (except ID-AO in that achieves a
slightly lower committee accuracy than AR-NO and that ID-NO), and strategies
based on DOFR−IR achieve usually higher classification accuracy values than
strategies based on DID−IR(except OFR-NO that achieves lower classification
accuracy than ID-NO). The strategy that achieved the highest classification
accuracy is again OFR-AOC.

Summarizing, the conclusions that we can draw from the classification accu-
racy results are: offering strategies achieved higher classification accuracy than
non offering strategies; strategies that allow copies of cases (based on DAOC−O)
achieve higher individual classification accuracy values; and in the soybean and
zoology data sets strategies based on DOFR−IR achieve higher classification ac-
curacy values. Let us now compare the properties of the case bases achieved by
the CBR agents after using the different collaboration strategies.

8.2.5.2 Case Base Evaluation

Table 8.1 shows the case base properties of the CBR agents at the end of the
experimental runs for the sponge data set. Each row of the table shows the
results for a different collaboration strategy. The columns correspond to the
following properties of the case base: the accuracy achieved by individual agents,
the accuracy achieved by the committee of agents (using CCS), the average size of
individual case base, and the average Committee Completeness (C), Committee
Redundancy (R) and Committee Bias (B).

186 Chapter 8. Case Retention Collaboration Strategies

Let us first consider case base size. As we have seen in the previous sec-
tion, the offering collaboration strategies (OFR-AO, ID-AO, OFR-AOC, and
ID-AOC) achieve higher classification accuracy values than the non offering col-
laboration strategies; Table 8.1 shows that offering strategies end with larger case
bases. For instance, an agent using OFR-NO ends with a case base with an aver-
age of 18.28 cases, while an agent using OFR-AO ends with an average of 34.24
cases. The only non offering collaboration strategy that ends with large case
bases is AR-NO (that retains all the cases that the agent receives). Comparing
the non offering collaboration strategies, AR-NO achieves the highest accuracy,
but with the largest case bases, while OFR-NO and ID-NO achieve lower ac-
curacy values, but with about one third of the cases than AR-NO. Comparing
now the offering collaboration strategies, we see that OFR-AOC and ID-AOC
achieve the highest classification accuracy values, but with very large case bases
(55.94 and 47.36 respectively). In contrast, OFR-AO and ID-AO achieve nearly
the same accuracy values than OFR-AOC and ID-AOC with smaller case bases
(34.24 and 29.20 cases respectively). Moreover, we can see that strategies based
on DID−IR retain less cases in general than strategies based in DOFR−IR while
achieving the same classification accuracy values. Thus, in the sponge data set,
we can conclude that the best collaboration strategy is either ID-AOC if we only
care about classification accuracy, or ID-AO if we consider also the size of the
individual case bases.

Let us analyze now the collaboration strategies in terms of the ensemble space
(see Section 4.4). In general terms, Table 8.1 shows that offering strategies are
able to decrease bias and to increase case base completeness (not taking AR-NO
into account), both good effects. Moreover, strategies that allow copies of cases
increase redundancy (that, as we saw in Chapter 4, is good if redundancy is
not increased too much) and decrease bias even more. Concerning the individ-
ual classification accuracy, only case base completeness and case base bias are
important. As we said in Section 4.4, the best individual case bases are those
with a high completeness and a low bias; Table 8.1 shows that the results com-
pletely confirm that statement: for instance, OFR-AOC and ID-AOC achieve
the lowest case base biases and high case base completeness, thus they achieve
the highest individual classification accuracy values. AR-NO achieves the max-
imum completeness (1.00), but also with a large case base bias (0.45), and thus
does not reach high accuracy levels. Concerning committee classification accu-
racy we have to take redundancy into account. OFR-AOC and ID-AOC achieve
the maximum individual classification accuracy values (having accuracy values
larger than OFR-AO and ID-AO respectively), but they achieve almost the same
committee accuracy values than OFR-AO and ID-AO respectively. The reason
is that, although OFR-AOC and ID-AOC increase committee redundancy (that
is good till a certain degree), they reduce committee completeness; these two
effects cancel each other and the classification accuracy does not increase much
from OFR-AO to OFR-AOC or from ID-AO to ID-AOC.

Table 8.2 shows the case base properties of the CBR agents at the end of the
experimental runs for the soybean data set. The analysis that we can make is

8.2. Multi-agent Case Retention Strategies 187

Individual CCS CB size C R B
NR-NO 19.02% 26.58% 5.40 0.10 0.00 0.25
AR-NO 52.70% 78.34% 55.26 1.00 0.00 0.25

OFR-NO 49.77% 74.88% 28.99 0.52 0.00 0.22
ID-NO 48.27% 74.66% 28.20 0.51 0.00 0.22

OFR-AO 69.38% 81.04% 48.05 0.87 0.00 0.12
ID-AO 60.00% 80.85% 40.12 0.73 0.00 0.17

OFR-AOC 82.61% 86.97% 85.94 0.62 0.38 0.10
ID-AOC 73.55% 80.39% 60.90 0.39 0.46 0.11

Table 8.2: Case Base properties comparison between agents using the different
MAR-CS collaboration strategies in the soybean data set.

Individual CCS CB size C R B
NR-NO 21.98% 39.21% 1.80 0.10 0.00 0.40
AR-NO 67.92% 88.12% 18.18 1.00 0.00 0.40

OFR-NO 64.75% 84.36% 7.13 0.39 0.00 0.38
ID-NO 65.15% 88.12% 7.16 0.39 0.00 0.40

OFR-AO 85.35% 89.61% 10.86 0.60 0.00 0.23
ID-AO 80,79% 86.73% 9.76 0.54 0.00 0.26

OFR-AOC 92.28% 92.87% 16.51 0.37 0.37 0.24
ID-AOC 88.32% 88.91% 13.67 0.31 0.36 0.23

Table 8.3: Case Base properties comparison between agents using the different
MAR-CS collaboration strategies the zoology data set.

similar to that made in the sponge data set. However, recall that in the soybean
data set (unlike the sponge data set), OFR-AOC outperforms the rest of collabo-
ration strategies; this can be explained by looking at Table 8.2: OFR-AOC is the
collaboration strategy that has achieves the lowest bias, and has achieved large
completeness and low redundancy compared to ID-AOC. Therefore, OFR-AOC
is the collaboration strategy that has achieved a point inside the ensemble space
that is better than the points achieved by the other collaboration strategies.

Finally Table 8.3 shows the case base properties of the CBR agents at the end
of the experimental runs for the zoology data set showing similar results than in
the sponge and soybean data sets: offering strategies reduce bias and increase
completeness and strategies that allow copies of cases increase redundancy.

Summarizing all the experimental results presented in this section, the main
conclusion is that collaborating with other agents can greatly improve case re-
tention (since offering strategies outperform non offering strategies). Moreover,
we can also draw other conclusions: allowing multiple copies of cases during re-
tention (as strategies based on the DAOC−O decision policy do) increases Com-
mittee Redundancy and decreases Committee Completeness, there fore they are
not always better than collaboration strategies that do not allow multiple copies

188 Chapter 8. Case Retention Collaboration Strategies

of cases (multiple copies has been better in the soybean and zoology data sets,
but not in the sponge data set). It remains as future work to explore collabora-
tion strategies that try to keep a controlled degree of Committee Redundancy.
Moreover, there is also no clear winner between strategies based on DID−IR and
strategies based on DOFR−IR: DID−IR has worked better in the sponge data
set and DOFR−IR has worked better in soybean and zoology data sets.

8.3 Justification-based Case Reduction

In this section we are going to present JUST(Justification-base Selection of
Training Examples), a case base reduction method that uses justifications in
order to assess the utility of the cases in a case base. JUST is not a collabora-
tion strategy, but an individual method that any agent in a MAC system can
use in order to reduce the size of its case base while maintaining the same level
of classification accuracy. Thus, JUST can be applied not only to CBR agents
but to any CBR system. Therefore, in the remainder of this section we will talk
about a CBR system and not about CBR agents.

The novelty of JUST resides in using justifications to assess the utility of
cases. Specifically, JUST uses a case utility function called Justification-based
Case Utility (JCU) to select which are the cases that should be kept in the case
base and which are the cases that can be discarded.

In this section we are first going to present how justifications can be used to
assess the utility of a case for a CBR system, thus Section 8.3.1 will present the
JCU case utility function, while JUST will be presented in Section 8.3.2.

8.3.1 Justification-based Case Utility

The Justification-based Case Utility (JCU) is a function that uses justifications
to estimate the utility of a set of cases CA that are being considered to be added
into the case base. JCU tries to predict if the set of cases CA can reduce the
number of errors that the CBR system will make in the future. The more errors
that the cases in CA can prevent, the highest their JCU utility. Moreover, notice
that JCU considers all the cases in the set CA as a whole, so it does not evaluate
the individual utility of the cases in CA, but the overall utility for a specific set
of cases.

JCU requires two sets of cases: CA and CE . CA is the set of cases for which
JCU is going to measure the utility, and CE is a set of cases that are not present
in the case base and that we will call the examination cases. The utility value
returned by JCU is an estimation of how many of the errors that the CBR
system will make while solving the problems in CE could have been prevented
if the cases in CA would have been in the case base. Notice that if CE is a good
sample of the problem space, then JCU is a good estimator of the utility of the
set of cases CA.

Before defining JCU, let us introduce the notion of valid counterexample that
refines the definition of a counterexample given in the previous chapter:

8.3. Justification-based Case Reduction 189

Definition 8.3.1. The set of valid counterexamples of a JER J from a set of
cases CA is V CE(J, CA) = {c ∈ CA|J.J v c.P ∧ c.S 6= J.S ∧ c.S = SJ.P }, i.e.
the set of cases c ∈ CA subsumed by the justification J.J that do not belong to
the predicted solution class J.S and that belong to the correct solution class SJ.P

of the problem J.P for which the JER J was constructed.

Notice that to build the set of valid counterexamples of a JER J, the correct
solution class of the problem J.P for which the JER has been built must be
known.

Let us define how JCU works for a CBR system that has a case base Ci

and wants to evaluate the utility of a set of cases CA using the examination
cases in CE . Let us call the exam E = {c.P |c ∈ CE} the set of problems in the
examination cases. In order to compute the utility, the CBR system proceeds
as follows:

1. Ai solves all the problems in E, providing a justified prediction for each
one expressed as a set of JERs. Thus, Ai builds the set JE = {J|J.P ∈ E}
containing the JERs built for solving all the problems in the exam.

2. Since the exam E has been constructed using the problems of the cases
in CE , Ai knows which is the correct solution for each problem. Thus, Ai

can determine which problems in E have been solved correctly and which
not. Let J−E = {J ∈ JE |J.S 6= SJ.P } be the set of JERs that Ai has built
for the incorrectly solved problems in E (where SJ.P represents the correct
solution for the problem J.P).

3. Next, Ai counts how many JERs in J−E have at least one valid counterexam-
ple (see Section 7.2.3) among the cases in CA. We will call this number nE ,
and represents the predicted number of errors that the cases in CA would
have prevented if they would have been present in the case base while solv-
ing the problems in the exam E, i.e. nE = #({J ∈ J−E |V CE(J, CA) 6= ∅}).

4. The JCU utility value for the cases in CA computed with respect to the
examination cases CE is:

JCU(CA, CE) =
nE

#(CE)

Notice that step 3 is the key step in JCU. The idea behind nE is that if a
case c is a counterexample of a JER J and it is present in the case base of the
CBR system, it is very unlikely that the system will provide a justification for
which there is a counterexample in its own case base. Therefore, JCU assumes
that by adding a counterexample of a JER J to the case base of the system, the
system will not provide the same incorrect justification again. Moreover, JCU
requires that the counterexample belongs to the correct solution class of the
problem J.P for which the incorrect JER was generated (i.e. that it is a valid
counterexample). This assumes that, if the case c is added to the case base, it

190 Chapter 8. Case Retention Collaboration Strategies

X

Y

X

Y

0.23 0.75

0.26

0.68

Figure 8.6: Artificial data set to show the behavior of JCU.

is likely that the next time the system has to solve a problem similar to J.P , it
will provide a correct justified prediction.

Finally, JCU returns the estimated number of errors that the set of cases CA

can prevent normalized by the number of examination cases to ensure that the
utility value is in the interval [0, 1]. If the cases in CA are predicted to fix no
errors, JCU will predict an utility value of 0; and if the system has incorrectly
solved all the problems in the exam, and the cases in CA can make that the
system can solve all the problems correctly if they are added to the case base,
then the predicted utility value is 1. As a final remark, remember that JCU
computes the utility of the set of cases CA as a whole, and not of the individual
cases in CA. However, the utility of a single case can also be computed by
creating a set of cases CA that contains only a single case.

8.3.1.1 Exemplification

In this section we will present an exemplification in order to illustrate how JCU
works. The left hand side of Figure 8.6 shows the set of cases that are present in
the case base of a CBR agent Ai for a domain where the cases have only two real
valued attributes (X and Y), and in which cases can have two possible solution
classes: red or blue (in this example we talk about a CBR agent, but recall that
JCU is applicable to any CBR system). On the right hand side of Figure 8.6,
we show the model that Ai has built of the data. In this example, the CBR
agent uses a decision tree to index the cases in the case base (as in the example
presented in Section 7.2), and right hand of Figure 8.6 shows the different areas
in which the learnt decision tree partitions the problem space.

Ai is interested on evaluating the utility of a set of cases CA = {c1, c2}, shown
in the left hand side of Figure 8.7 surrounded by a thick white line. In order to
evaluate the utility, Ai will use JCU using the set of examination cases shown
in the figure surrounded by a thick black line CE = {e1, e2, e3, e4, e5, e6, e7}.

8.3. Justification-based Case Reduction 191

X

Y

0.23 0.75

0.26

0.68

Examination cases

Cases to evaluate

c1 c2

X

Y

0.23 0.75

0.26

0.68

Falied problems

e1 e2

e3 e4

e5

e7
e6

Figure 8.7: Cases CA = {c1, c2} are going to be evaluated using the set of ex-
amination cases shown. On the right hand side, the incorrectly solved problems
of the exam are crossed.

The first step in JCU consists on solving each one of the problems in the
exam E = {e1.P, e2.P, e3.P, e4.P, e5.P, e6.P, e7.P}, providing a justified predic-
tion for each problem expressed as a set of JERs. Ai does that obtaining the
corresponding JERs JE = {J1,J2,J3,J4,J5,J6,J7}.

The second step consists on finding the JERs for those problems incorrectly
solved. As the right hand side of Figure 8.7 shows, 5 problems have not been
solved correctly. Specifically, the 5 incorrect JERs are: J−E = {J1,J2,J3,J4,J6}
(recall that a JER is a record containing a solution class, a justification, a prob-
lem and the agent who has generated it):

• J1 = 〈blue, 〈X > 0.23 ∧ Y > 0.68〉, e1.P,Ai〉

• J2 = 〈blue, 〈X > 0.23 ∧ Y > 0.68〉, e2.P,Ai〉

• J3 = 〈blue, 〈X ≤ 0.24〉, e3.P,Ai〉

• J4 = 〈blue, 〈X > 0.75 ∧ Y ≤ 0.68〉, e4.P,Ai〉

• J6 = 〈blue, 〈X > 0.23 ∧X ≤ 0.75 ∧ Y ≤ 0.26〉, e5.P,Ai〉

The next step in JCU is counting how many incorrect JERs have at least one
valid counterexample among the cases in CA. As the left hand side of Figure 8.8
shows, both c1 and c2 are counterexamples of J1 and J2 since they satisfy the
justification 〈X > 0.23 ∧ Y > 0.68〉 and do not belong to the predicted solution
class blue. Moreover, since c1 and c2 have red as their solution class (that is
precisely the solution class of cases e1 and e2) they are valid counterexamples.
Therefore nE = 2, and Ai can compute the JCU utility value of CA:

JCU(CA, CE) =
2
7

= 0.2857

192 Chapter 8. Case Retention Collaboration Strategies

X

Y

0.23 0.75

0.26

0.68

Cases c1 and c2 are counterexamples of
the justification provided for e1 and e2.

c1 c2

X

Y

0.23 0.75

0.26

0.78

c1 c2

Figure 8.8: Cases C = {c1, c2} are counterexamples of the justification given for
two exam problems. On the right and side we show that effectively if cases in C
are added to the case base, those two problems are now correctly solved.

Finally, the right hand side of Figure 8.8 shows the effect of adding c1 and c2
to the case base of Ai. Notice that since c1 and c2 are valid counterexamples of
the JERs built for e1.P and e2.P , JCU predicts that by adding c1 and c2, both
problems (e1.P and e2.P) would have been solved correctly. Figure 8.8 confirms
that: notice that by adding c1 and c2 to the case base, the red area has grown
towards the positive Y axis direction covering now both problems e1.P and e2.P
(shown with a wide white line surrounding them). Thus, if the CBR agent tries
to solve again e1.P and e2.P , the predicted class will be red, that is the correct
one.

Notice that JCU tries to predict how the classification accuracy of the case
base will improve when adding new cases into the case base. An alternative
to use JCU could be the following one: solve the exam using the current case
base Ci, then add the new cases CA into the case base and solve the problem
again; comparing the results obtained with and without the cases in CA, the
CBR agent can measure if the cases in CA can prevent any errors to be made
in the exam. However, if an agent Ai has to compare the utility of a collection
of sets of cases to decide which of them has a higher utility, the problems in the
exam would have to be solved for each different set of cases in order to evaluate
which of them is can prevent more errors. Using JCU we can compute the utility
of several sets of cases solving only once the problems in the exam. This is a
great advantage, and two of the strategies presented in this chapter (JUST and
CCB-CS) take benefit of it.

8.3.2 Justification-based Selection of Training Examples

In this section we are going to present the Justification-based Selection of Train-
ing Examples (JUST) strategy. JUST is a case retention strategy that considers

8.3. Justification-based Case Reduction 193

the case base as a whole and whose goal is to reduce the number of cases in a
case base while maintaining (within some error margin) the classification accu-
racy of the original case base. In fact, JUST is not a collaboration strategy, but
an individual strategy that any CBR system can use (including CBR agents).

JUST is an iterative strategy that selects cases from a case base C and adds
them to another (reduced) case base Cr, until certain termination criterion T is
met. The termination criterion could be any property of the new case base Cr,
but we will focus on these two:

• TM : terminate for a case base Cr with at most M cases,

• Tα: terminate for a case base Cr with an accuracy level α.

At each round t, the case base C is divided on two sets of cases: Cr
t (the

reduced case base) and Cu
t (the set of unseen cases). Initially, at round t = 0,

Cr
0 = ∅ and Cu

0 = C, and at each round, JUST selects a subset of cases Bt of Cu
t

to be added to Cr
t forming Cr

t+1 = Cr
t ∪Bt (and also updating Cu

t+1 = Cu
t −Bt).

The main idea of JUST is that at each round t, the minimum subset of cases
of Cu

t with the maximum JCU utility is added to Cr
t . In order to achieve that,

at each round t, JUST creates an exam Et consisting on a subset of cases of
Cu

t . The exam will be used to evaluate the JCU utility of the potential sets of
cases to add. Then, the minimum subset of cases Bt ⊆ Cu

t with the highest JCU
utility will be selected and added to the reduced case base.

Notice that selecting the minimum subset of cases Bt ⊆ Cu
t with the highest

JCU utility can be prohibitive since there are 2n possible subsets of Cu
t (where

n is the size of Cu
t), and the utility of each different subset should be computed.

Therefore, in this section we are going to present an efficient way to select the
minimum subset of cases with the highest utility.

We will introduce some necessary concepts and notation before presenting
JUST. We will call Et to the exam generated by JUST at round t. Moreover,
at each round t the problems in an exam Et are solved by the system using the
cases in the reduced case base Cr

t and the result is a justified prediction (in the
form of a JER) for every problem P ∈ Et. We will note by JEt

the set of JERs
for the problems in the exam Et, and J−Et

to the subset of incorrect JERs from
JEt

(i.e. those JERs that predict an incorrect solution class).
For each incorrect JER J ∈ J−E produced in a round t, we can define its

refutation set, as follows:

Definition 8.3.2. The refutation set RJ
t of an incorrect JER J at a round

t is defined as the set of cases of Cu
t that are valid counterexamples of J, i.e

RJ
t = V CE(J, Cu

t)

The cases in the refutation set RJ
t for an incorrect JER J are the cases in

Cu
t that can potentially prevent the system of making the same error again, and

therefore they are candidates to be added to the reduced case base.
Therefore, at each round t, we can define the collection of refutation sets

Rt = {RJ
t |J ∈ J−Et

}. Finally, we can also define the belying set:

194 Chapter 8. Case Retention Collaboration Strategies

Function JUST (C, T ,m)
t = 0; Cr

0 = ∅; Cu
0 = C;

Do
Et = select-exam(Cu

t ,m);
JEt

= build-JERs(Et);
J−Et

= {J|J ∈ JEt ∧ J.S 6= SJ.P };
Rt = build-refutation-sets(J−Et

, Cu
t);

Bt = build-belying-set(Rt);
Cr

t+1 = Cr
t ∪Bt; Cu

t+1 = Cu
t −Bt; t = t+ 1;

While(not T);
Return(Cr

t);
End-Function

Figure 8.9: The JUST algorithm, where C is the initial case base, T is the
termination criterion and m is the exam size.

Definition 8.3.3. The belying set Bt ⊆ Cu
t is the minimum set of cases from

Cu
t that contains at least one case of each refutation set in Rt, i.e.:

Bt ⊆ Cu
t ∧ ∀RJ

t∈Rt
Bt ∩RJ

t 6= ∅
6 ∃B′

t ⊆ Cu
t |#(B′

t) < #(Bt) ∧ ∀RJ
t∈Rt

B′
t ∩RJ

t 6= ∅ (8.4)

Notice that the belying set is the minimum set of cases that, if added to the
reduced case base Cr

t , can potentially prevent all the errors made while solving
the exam Et. Thus, the belying set is the minimum subset of cases from Cu

t

with the maximum JCU utility. Therefore, the cases in the belying set Bt are
the cases that will be added to Cr

t at round t.
Figure 8.9 presents the algorithm of JUST in detail. JUST receives always

three parameters: the case base to reduce C, the termination criterion T , and
the exam size m. Initially (at round t = 0) JUST initializes the reduced case
base Cr

0 = ∅ and the set of unseen cases Cu
0 = C. As we have previously said,

JUST can use any termination criteria, but we will focus on two specific ones:
TM and Tα.

JUST starts each iteration by generating the exam Et. An exam is generated
by taking a random subset CE

t ⊆ Cu
t of m cases from the set of unseen cases and

taking the problems in those cases: Et = {c.P |c ∈ CE
t } (if Cu

t contains less than
m cases, then all the cases in Cu

t are used as the exam). Then, each problem
in the exam Et is solved and the set containing the justified predictions JEt is
generated. Now, since the CBR system knows which is the correct solution of
each problem in the exam (since the exam has been generated from cases of Cu

t),
the set of incorrect JERs J−Et

is selected from JEt
. The next step is to generate

the refutation sets for all the JERs in J−Et
, forming the collection of refutation

sets Rt. Finally, the belying set Bt is created by selecting the minimum subset
of cases of Cu

t that has at least one case of each refutation set in Rt. The cases in

8.3. Justification-based Case Reduction 195

Bt are added to the reduced case base Cr
t and are removed from the set of unseen

cases Cu
t . At the end of each round the termination criterion T is checked, and

JUST either ends or starts a new round. When the termination criterion decides
that no more rounds are needed, Cr

t is returned as the reduced case base, while
all the cases in Cu

t are discarded.
As a final remark, notice that the computation of the belying set (that in-

volves computing the refutation sets) is equivalent to the following: find a min-
imum subset Bt ⊆ Cu

t that maximizes JCU(Bt, C
E
t). Thus, the core idea of

JUST is to add at each iteration the minimum set of cases with highest utility
(JCU utility) for the case base, while the refutation sets and the belying set are
just an efficient way to find such a minimum set of cases with maximum utility.

Moreover, as in the definition of JCU, the exams are a key element in order
to properly determine the utility of cases. If an exam is a good sample of the
data, then JCU will be a good approximation of the case utility. Notice that
JUST takes the size of the exams m as a parameter: if we set a large exam
size, JUST will assess the utility of the cases with a better accuracy (assuming
that the larger the exam, the better the sample of the data), and therefore the
reduction of the case base achieved will be larger. However, the computational
cost will be higher. If we set a small exam size, JUST requires less execution time
(since at each round, the size of the exam the system has to solve is smaller),
but the reduction of the case base achieved with JUST will not be as large as it
could have been. In the experimental section, we will present an analysis of the
performance of JUST for several exam sizes.

8.3.2.1 The Termination Criterion

In our experiments we have used two different termination criteria T :

• TM : terminate for a case base Cr with at most M cases,

• Tα: terminate for a case base Cr with a certain accuracy level α.

When using the termination criterion TM JUST will finish once Cr
t has

reached the size M . In fact, JUST yields Cr
t−1 when it detects at round t

that size(Cr
t) > M .

When using the termination criterion Tα (in our experiments, α takes values
around 90%) JUST uses the answers of the exams as an estimation of the current
classification accuracy. However, depending on the size of the exam, this estima-
tion may be more or less reliable. If the size of the exam is large, the accuracy
obtained by that exam is a good estimation of the classification accuracy of the
CBR system; thus, when the accuracy obtained by the system in a large exam is
above α, JUST can terminate. However, if the size of the exam is small, JUST
needs more than one exam to have a good estimate of the accuracy. The number
of exams needed to have a good estimation can be determined assuming that
the correctness of an answer can be modelled as a binomial distribution. The
binomial distribution model tells us that, for estimating accuracy values around
α = 90% (having a certainty of 66% of having an error lower than the 4%) at

196 Chapter 8. Case Retention Collaboration Strategies

least 60 answers are required (see Appendix C for a detailed explanation). For
an exam size m = 20, 3 exams are enough to be 66% sure that the accuracy of
the CBR system does not differ more than a 4% from the estimated one. Thus,
if the average accuracy α′ of 3 consecutive exams of size m = 20 is higher than
α, JUST can terminate with a 66% certainty that the accuracy of the CBR sys-
tem is in a ±4% margin around α′. For an exam size of m = 10, 6 consecutive
exams are needed for the same result. Summarizing, the termination policy is
the following: if the average accuracy in the last 60/m exams is above α, JUST
will stop.

In the experiments section, we will present results using both termination
criteria.

8.3.2.2 Exemplification

In this section we are going to present an exemplification of JUST using the
two dimensional data set shown in Figure 8.6. The goal of JUST will be to
build a case base with a reduced number of cases, that has the same expected
classification accuracy than the original case base. The original case base has 64
cases: 37 cases with solution class blue and 27 cases with solution class red.

Figures 8.10 and 8.11 show the execution of JUST for the mentioned case
base round by round. JUST has needed 6 rounds (from 0 to 5) in order to
achieve the final reduced case base. For each round, 2 pictures are shown: the
left hand side shows the 10 problems used as the exam (and which of them have
been failed), and the right hand one shows the cases that have been incorporated
to the reduced case base (the belying set) to fix the errors made in the exam.
The problems in the the exam are shown using a thick black line around them,
and the new problems added to the reduced case base at each round are shown
using a thick white line around them.

Let us analyze the process round by round:

• In round t = 0 the reduced case base Cr
0 is empty, and thus all the 10

problems in the exam E0 are solved incorrectly. Moreover, since the sys-
tem cannot provide any justifications for the predictions made in the exam
(since it has no cases), all the cases in Cu

0 of class blue are valid counterex-
amples of all the blue problems in the exam, and all the red cases in the
exam are valid counterexamples of all the red problems in the exam. Thus,
any subset of cases of Cu

0 composed of a red case and a blue case is a bely-
ing set. Therefore, a random red case and a random blue case are selected
and added into the reduced case base (as shown in the right hand picture
of round t = 0).

• In round t = 1, 6 problems of the exam are solved incorrectly (as shown
in the left hand side of Figure 8.10 for round t = 1). The justification
given for the failed red problems is 〈X < 0.5〉, thus, any red case in Cu

1

with a value for the feature X lower than 0.5 is a valid counterexample of
those three cases. For the three incorrectly solved blue problems, any case
in Cu

1 with a value for the feature X higher or equal than 0.5 is a valid

8.3. Justification-based Case Reduction 197

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

t = 0

t = 1

t = 2

Figure 8.10: Three first rounds of the execution of JUST for a two dimensional
case base.

198 Chapter 8. Case Retention Collaboration Strategies

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

t = 3

t = 4

t = 5

Figure 8.11: Rounds 3 to 5 of the execution of JUST for a two dimensional case
base.

8.3. Justification-based Case Reduction 199

counterexample. Thus, two more cases are added into the reduced case
base: a red case with X < 0. and a blue case with X ≥ 0.5 (as shown in
the right hand side of Figure 8.10 for round t = 1).

• In round t = 2 only four blue problems are incorrectly solved in the exam,
and all of them have the same justification: 〈Y < 0.77〉. Thus, any blue
case in CU

2 satisfying such justification is a valid counterexample of all
those incorrect justifications. One is randomly selected, and added into
the reduced case base as shown in the picture. Notice that in just three
steps and with just 5 cases, the reduced case base already has detected
that the top and left parts of the problem space contain blue problems.

• In round t = 3, again four blue problems are incorrectly solved in the exam.
All of them have again the same justification: 〈X ≥ 0.22 ∧ Y < 0.77〉. A
belying set consisting of only one blue case satisfying that justification is
enough, as shown in the right hand picture for round t = 3.

• In round t = 4, only three blue problems are incorrectly solved. Again a
belying set consisting of a single blue case is enough, as shown in the right
hand side picture for round t = 4.

• In round t = 5, only two red problems are incorrectly solved. Both of them
have the same justification: 〈X ≥ 0.22 ∧X < 0.80 ∧ Y < 0.41〉. A single
red case satisfying that justification is enough. The right hand picture
for round t = 5 shows the reduced case base at the end of round t = 5,
consisting of only 8 cases, 3 red ones and 5 blue ones.

No more rounds are shown, since with that 8 cases, all the problems in the
original case base can be correctly solved, and thus no more cases are added.
Therefore, JUST has achieved a reduction from 64 cases to just 8 cases in this
domain.

8.3.3 Experimental Evaluation

This section presents experimental results comparing the performance achieved
by a CBR system after using the JUST case base reduction strategy with the
performance of the system without reducing the case base.

We have used the sponge, soybean and zoology data sets as our test bed.
Moreover, we have made experiments comparing the JUST technique with three
base strategies: a base CBR system that does not use any case base reduction
technique, a CBR sytem that uses the CBL2 [Aha,] case base reduction tech-
nique, and a CBR system that uses the CNN [Hart, 1967] case base reduction
technique (see Section 2.2.1.1 for a small explanation of these two methods). In
an experimental run, a 10% of the cases are separated from the rest and will be
used as the test set. The other 90% of the cases is used as the system case base.
Then, the case reduction technique is applied and the classification accuracy is
measured using the test set.

200 Chapter 8. Case Retention Collaboration Strategies

Sponges Soybean Zoo
Accuracy CB size Accuracy CB size Accuracy CB size

JUST 88.12% 32.34% 88.59% 55.00% 95.44% 38.86%
CBL2 82.14% 22.71% 81.00% 28.62% 95.24% 18.59%
CNN 86.36% 33.57% 84,40% 43,87% 95.30% 18.19%
CB 88.21% 100.00% 88.50% 100.00% 95.45% 100.00%

Table 8.4: Comparison of the classification accuracy and case base size of JUST
(using an exam size m = 20) against CB2 and with the complete case base (CB).

Table 8.4 shows the results obtained by three CBR systems, one using the
JUST case base reduction technique, another using the CB2 case base reduction
technique and the third one using the complete case base for the three datasets
(sponges, soybean and zoo). We have used JUST with an exam size of m = 20,
and a termination criterion of reaching an accuracy of about α = 90% for the
sponges and soybean data sets, and of about α = 96% in the zoo data set (we
have chosen those parameters as slightly greater values than the accuracy values
of the complete case bases).

Table 8.4 shows that JUST has been able to reduce the size of the case
bases to the 32.34% of the total number of cases in the sponges case base, to
the 55.00% in the soybean case base and to the 38.86% in the zoo case base.
This reduction is achieved without losing classification accuracy: notice that the
accuracy for JUST in the sponges data set is 88.12% while the accuracy without
case reduction is 88.21%, the difference being not statistically significant. For
the soybean data set, JUST has achieved a classification accuracy of 88.59%
while the CBR system without case reduction achieves a 88.50% of classification
accuracy; again the difference is not statistically significant. In the zoo data
set, the accuracy achieved by JUST is 95.44%, and the accuracy achieved with
the complete case base is 95.45%. Moreover, the termination criterion of JUST
requested case bases with a 90% of classification accuracy in soybean and sponges
and 96% in the zoo data set. Notice that JUST has stopped before reaching
that accuracy in all the case bases. The reason is that the termination criterion
used in our experiments has a margin of error of ±4% (see Section 8.3.2.1). A
termination criterion with a lower margin of error could be used if need be.

Comparing JUST with CB2 in Table 8.4, notice that CB2 obtains reduced
case bases that are even smaller than the achieved by JUST: 22.71% in the
sponges data set, 28.62% in the soybean data set and 18.59% in the zoo data set
versus 32.34%, 55.00% and 38.86% achieved with JUST. However, CB2 reduces
the case base without preserving the classification accuracy in two of the three
data sets; CB2 has been able to keep the degree of accuracy of the complete case
base only in the zoo data set, in the other two data sets, the accuracy achieved
by CB2 is appreciably lower than that of the complete case base: 82.14% in the
sponges data set and 81.00% in the soybean data set. JUST, however, maintains
the accuracy of the complete case base, namely 88.12% and 88.59% respectively.
CB2 has problems in two data sets because cases are discarded in a very eager

8.3. Justification-based Case Reduction 201

LID - SPONGE

70

72

74

76

78

80

82

84

86

88

90

0 10 20 30 40 50 60 70 80 90 100

m=all

m=20

m=10

m=5

m=1

Figure 8.12: Comparison of the accuracy evolution in the reduced case bases for
several exam sizes in the sponges dataset using JUST.

way. JUST, however, has a broader view of the problem and never discards any
case until termination is decided. Thus, JUST is able to discard a considerable
number of cases while maintaining the accuracy levels of the complete case base.

Finally, comparing JUST to CNN, we see that although CNN is more robust
than CBL2 (since it achieves higher classification accuracy values than CBL2 in
the sponge and soybean data sets) it achieves lower classification accuracy values
than JUST. Moreover, the case base reduction achieved by CNN is an interme-
diate between JUST and CBL2. Summarizing, CBL2 achieves the higher case
base reduction, but at the cost of losing classification accuracy; CNN achieves
higher classification accuracy values than CBL2, since it does not discard cases
as eagerly as CBL2; finally JUST is even more robust than CNN since it sys-
tematically achieves higher classification accuracy values than both CBL2 and
CNN while still reducing significantly the size of the case base. In fact, the
classification accuracy values achieved by JUST are undistinguishable to that of
using the complete case base.

In order to test the effects of the size of the exams in JUST we have exper-
imented with several exam sizes: 1, 5, 10, 20 and unlimited (when exam size is
unlimited, the whole set of cases Cu

t is used as the exam). Figures 8.12, 8.13 and
8.14 show the accuracy results for JUST in the sponges, soybean and zoology
data sets respectively for several exam sizes. The plot where the exam size reads
m = all represents a system where all the cases in Cu

t are used as the exam (i.e.
an unlimited exam size). These experiments are performed using the case base
size termination criterion TM (see Section 8.3.2.1) for sizes 10%, 20%, and so on,
up to 100% percentage of the complete case base. Figures 8.12, 8.13 and 8.14
plot the accuracy achieved by JUST varying the desired size of the reduced case
base. For each exam size, a different plot is shown.

Figure 8.12 shows that as the exam size increases, JUST is able to reach
higher accuracies with smaller case bases. For instance, reaching an accuracy
higher than 85% with an exam size m = 1, JUST needs a case base of the 40% of

202 Chapter 8. Case Retention Collaboration Strategies

LID - SOYBEAN

45

50

55

60

65

70

75

80

85

90

95

0 10 20 30 40 50 60 70 80 90 100

m=all

m=20

m=10

m=5

m=1

Figure 8.13: Comparison of the accuracy evolution in the reduced case bases for
several exam sizes in the soybean dataset using JUST.

LID - ZOOLOGY

70

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80 90 100

m=all

m=20

m=10

m=5

m=1

Figure 8.14: Comparison of the accuracy evolution in the reduced case bases for
several exam sizes in the zoology dataset using JUST.

the size of the complete case base, while with the exam size is m = 5, only a 30%
of the original cases are needed. In the extreme, when the exam size is unlimited
(i.e. all the cases in Cu

t are used as the exam at each iteration), only a 20% of the
cases are needed. This is because when the exam size is larger, JUST can obtain
a more accurate estimation of the utility of the cases to be added. Moreover,
notice that when the termination criterion is to obtain a case base with more
than the 70% of all the cases, there is no difference in the classification accuracy
by varying the exam size. Notice also that in some experiments JUST has been
able to obtain case bases that reach a higher accuracy than the complete case
base. For instance, when the exam size is unlimited, the accuracy achieved with
a case base with the 50% of the cases of the complete sponges case base is 89.00%
while the accuracy of the complete case base is 88.21% (more on this later).

Figure 8.13 shows the experiments using the soybean data set. Notice that as

8.3. Justification-based Case Reduction 203

the exam size increases, as before, the accuracy achieved by JUST also increases.
Moreover, the accuracy achieved by JUST in the soybean data set with an
unlimited exam size is much higher than the accuracy with smaller exam sizes.
For instance, with a case base containing the 40% of the cases in the complete
case base, JUST with an unlimited exam size achieves an accuracy of 90.88%
while the complete case base accuracy is 88.50%. This means that the exam size
needed by JUST in the soybean data set to achieve a good performance is larger
than the exam size needed in the sponges data set. The reason seems to be that
the soybean data set has 19 solution classes and the sponges data set only 3.
The larger the number of classes, the larger the exams should be in order to
obtain representative information of the weak points of the reduced case base.

Figure 8.14 shows the experiments using the zoology data set. Notice that
the same results observed in sponge and zoology are also observed in the zoology
data set: the larger the exam size, the less cases that JUST needs to achieved a
high level of classification accuracy.

The overall conclusion is that the larger the exam size, the higher the perfor-
mance of JUST, i.e. as we increase the exam size, we will obtain reduced case
bases that are smaller and more accurate. This confirms the expected result
that using larger exams JCU provides better estimations of the utility.

However, as we increase the exam size, we also increase the computational
cost of JUST. Let us analyze JUST in computational cost as the number of
retrievals performed during the case base reduction process. The cost of JUST
can be divided in two costs: the cost of solving the exams, and the cost of
building the belying sets. Let T be the number of iterations that JUST has
executed, n the number of cases in the complete case base C, and m the exam
size. The cost of solving the exams is at most T ×min(m,n) retrievals, and the
cost of building the belying set is also at most T ×min(m,n). Therefore, the
complexity of JUST is of order T ×min(m,n). As explained in Section 8.3.2,
the maximum number of iterations is n, the number of cases in the complete
case base C. Therefore, the worst case complexity is n×min(m,n), i.e. O(n2).

We have also performed an empirical evaluation of the JUST complexity
varying the exam size in the soybean data set, as the following table shows
(where the number of iterations and the number of retrievals needed by JUST
in the soybean data set):

m 1 5 10 20 all
retrievals 256.8 713.0 458.0 1158.0 1627.7
iterations 256.8 142.6 45.8 57.9 8.2

The termination criterion used to perform those experiments is to reach an
accuracy of the 90%. We see that the number of retrievals increases as the exam
size increases (as predicted by the theoretical complexity of n × min(m,n)).
However, the practical complexity is much lower than the theoretical complexity,
specially for large exam sizes, where the number of iterations is much smaller
than the theoretical maximum n. This result shows that JUST can be used with
large exam sizes without having to pay a high computational cost. Notice that

204 Chapter 8. Case Retention Collaboration Strategies

the practical cost for an unlimited exam size, is 1,627.7 retrievals in average,
while the theoretical bound is n2 = 276 × 276 = 76,176 retrievals, since in the
soybean data set the complete case base C has 276 cases (the other 10% is
reserved as the test set). We can conclude that if the computational cost is not
a problem in our CBR system an unlimited exam size should be used in order to
obtain the maximum benefit from JUST. Moreover, although the cost of JUST
with large exam sizes is not prohibitive (as we have seen in our experiments),
smaller exam sizes may be used in order to reduce the computational cost if need
be.

Summarizing the results, we have seen that JUST is a effective case base
reduction method. By varying the exam size m, we can modify the behavior of
JUST: with small exam sizes we can obtain moderate case base reductions at
a low cost, and with large exam sizes we can obtain large case base reductions,
but at a higher computational cost. This is clearly an advantage with respect to
other case base reduction methods that are not parametric, since JUST can be
adapted to several CBR systems that have different size and computational time
restrictions. Moreover, JUST can accept another parameter: the termination
criterion. By changing the termination criterion, we can request JUST to obtain
reduced case bases that satisfy any desired conditions. Moreover, we have seen
in the experiments section that there are reduced case bases that achieve higher
accuracies than the complete case base. For instance, in Figure 8.13 the optimal
point (with an unlimited exam size) is to build a reduced case base with the 40%
of the original cases (since this is where the maximum accuracy was reached).
Therefore JUST allows to manually select the best point in the plot, however it
remains as future work to automatically find this optimal accuracy point.

8.4 Collaborative Case Bargaining

In this section we are going to present the Collaborative Case Bargaining (CCB-
CS) collaboration strategy. CCB-CS is a collaboration strategy that combines
the two approaches already presented in this chapter: it takes into account the
multi-agent aspect of case retention (as MAR-CS), and it uses justifications (and
specifically JCU) in order to assess the utility of new cases (as JUST).

Moreover, with CCB-CS we will introduce the idea of delayed retention. A
delayed retention strategy is one where cases that are candidates to be retained,
instead of being considered for retention, are stored in a buffer: the Pool of
Delayed Retention Cases (often called the pool, for short). When the pool of a
CBR agent is full, all the cases in the pool will be examined to decide which of
them retain. The main advantage of delayed retention is that it allows the CBR
agents to consider cases in batches instead of one by one (and this is beneficial,
as we will show later). Moreover, in the remained of this section we will note by
Bi the pool of cases of an agent Ai. Figure 8.15 shows a MAC system composed
of three agents with their respective pools.

The basic idea of CCB-CS is that when an agent Ai in a MAC system has
its pool Bi full, Ai will convene a committee of agents Ac. The agents will share

8.4. Collaborative Case Bargaining 205

A1

B1

C1

c1 c2 c3 c4 c5 c6 c7

A2C2

B2 B3

A3C3

c8

B̂ = {c1, c2, c3, c4, c5, c6, c7, c8}

Figure 8.15: Agents using delayed retention need to have a pool de delayed
retention cases.

the cases in their pools, and a bargaining process will start to decide which agent
will retain each case. During bargaining, JCU will be used to assess the utility
of the cases that are being bargained for. Moreover, the bargaining protocol
ensures that cases are retained by the agent that most needs them (i.e. by the
agent for which each case the highest utility).

Thus, CCB-CS combines three ideas: it is a delayed retention strategy since
the agents do not consider cases one by one; it is a multi-agent collaboration
strategy for case retention and uses a bargaining mechanism to distribute cases
among the agents; and finally the agents use justifications (and specifically JCU)
to assess the utility of the cases they are bargaining for.

Let us introduce some definitions and notation before presenting CCB-CS in
detail.

We will note by B̂ =
⋃

iBi the union of the cases present in each one of
the pools of all the agents taking part in CCB-CS; e.g. Figure 8.15 shows B̂
for a MAC system composed of three agents. Moreover, CCB-CS is an iterative
collaboration strategy, and at each round t one case will be retained by an agent
in Ac. Thus, each case will be retained by a single agent to avoid increasing the
Committee Redundancy (see Section 4.4.2). We will call B̂t to the set of cases
that at a round t have not yet been retained by any agent (initially B̂0 = B̂).

At each round t, every agent in Ac will provide an utility record for each case
in B̂t:

Definition 8.4.1. An utility record U = 〈A,C, V 〉 is a tuple containing the
utility value V estimated by the agent A for the case C.

Thus, at each round t, each agent Ai will provide a set of utility records
UAi

t . Once all the agents have provided their utility records, the utility record
Ut with the highest utility value is selected, and the agent Ut.A will be the one
that will retain in round t the case with maximum utility Ut.C. Then, that case
is removed from the set B̂t of cases to retain and a new round t+ 1 starts. This
process is repeated until no agent is interested in any case, or until there are no
more cases to bargain.

Let us now define CCB-CS formally:

206 Chapter 8. Case Retention Collaboration Strategies

p1

p2

p4

:

:

:

:

:

:

Inform(!Ac, all, termination)

p3/c1

p6

p7 :

Request(?Ac, all, start)

Inform(?Aj , !Ac, ?Bj)

|w1w1Bj | =!(n − 1)

Inform(!Ac, all, ?B =
⋃

j

Bj)/

Inform(?Aj , !Ac, ok)

Request(!Ac, all, utility)/

|w2w2?Aj | =!(n − 1)

p5/c2

p5/c3

Inform(?Aj , !Ac,U
Aj

t)

Inform(!Ac, all,Umax

t
)

: Request(!Ac, all, utility)/
|w4w4Aj | =!(n − 1)

p8 :

w3w1 w4w0

w5

p1

p2

/c1

p8

p7p3 w2

p4

/c2p5

/c3p5

p4p6

Figure 8.16: Interaction protocol for the CCB-CS collaboration strategy.

Definition 8.4.2. Collaborative Case Bargaining (CCB-CS) is a collaboration
strategy 〈ICCB−CS , DU 〉, where ICCB−CS is the CCB-CS interaction protocol
shown in Figure 8.16 and DU is a utility assessment decision policy capable of
estimating the utility of a case for an individual agent.

The following section presents the ICCB−CS interaction protocol, and after
that, a DU decision policy based on JCU is presented.

8.4.1 Collaborative Case Bargaining Protocol

In this section we are going to explain the ICCB−CS interaction protocol (shown
in Figure 8.16) for a committee of agents Ac that has been convened by a con-
vener agent Ac.

When a group of agents A in a MAC system want to use CCB-CS as their
case retention strategy, each individual agent is required to store all the cases
they receive as candidates to be retained in their local Pools of Delayed Retention
Cases. Thus, the procedure that each agent follows is: store each case in the local
pool; when the pool Bc of an agent Ac is full, then Ac convenes the committee
Ac and the protocol ICCB−CS starts. Specifically ICCB−CS works as follows:

1. The protocol starts when the convener agent Ac broadcasts a message p1 to

8.4. Collaborative Case Bargaining 207

all the other agents in Ac asking for the contents of their pools of delayed
retention cases (notice than an agent starts the ICCB−CS protocol when
its pool is full). The protocol moves to state w1.

2. In state w1 every agent Aj that has received message p1 answers a message
p2 to Ac with the contents of its pool Bj .

3. When Ac has received the contents of the pools of all the other agents,
they are aggregated on a set B̂ =

⋃
j Bj that contains the cases from the

pools of all the agents in Ac. Then, Ac broadcasts B̂ to all the other agents
with message p3 and the protocol moves to state w2.

4. In state w2 every agent Aj that has received message p3 answers sending
a confirmation message p4 to Ac.

5. When all the confirmation messages have been received, Ac assumes that
every agent has now the cases in B̂. Thus, the first round t = 0 starts and
all the agents assume that B̂0 = B̂. Then, Ac broadcasts a message p5

requesting the utility records for the round t = 0 and the protocol moves
from state w2 to state w3.

6. In state w3, each agent Aj use its DU policy to estimate the utility of each
case c in B̂t and stores it in an utility record U = 〈Aj , c,DU (c)〉. Then,
the set UAj

t of all the utility records computed by Aj at round t is send to
Ac in message p6.

7. When Ac has received the sets of utility records of all the other agents (in-
cluding its own), the record with the highest utility value Ut ∈

⋃
Aj∈Ac UAj

t

is selected.

• If Ut.V > 0, Ac sends a message to the rest of agents telling that the
agent Ut.A should retain the case Ut.C. The protocol moves to w4.

• Otherwise (Ut.V = 0), Ac sends a message to the rest of agents
stating that the protocol is over and the remaining cases in B̂t will be
discarded. The protocol moves to state w5, that is a final state and
the protocol ends.

8. In state w4 agent Ut.A retains the case Ut.C and sends a confirmation
message p4 to Ac. The other agents simply send a confirmation message
to Ac. All the gents update B̂t+1 = B̂t − {Ut.C}.

9. Once all the confirmation messages are received, a new round t+ 1 starts
and Ac sends again a message p5 (that moves protocol to state w3) re-
questing for the new utility records in round t+ 1.

Notice that each iteration requires that the agents to reevaluate their utility
assessments for the cases in B̂t. The reason is that when an agent Ai retains
a case in a round t, its utility assessment for the rest of the cases in B̂t may

208 Chapter 8. Case Retention Collaboration Strategies

a)

Round 1
c1 c2 c3 c4 c5

A1 0 0.4 0.6 0 0.2
A2 0.4 0 0.4 0 0
A3 0 0 0 0.2 0.4

b)

Round 2
c1 c2 c3 c4 c5

A1 0 0 - 0 0
A2 0.5 0 - 0 0
A3 0 0 - 0.25 0.5

c)

Round 3
c1 c2 c3 c4 c5

A2 - 0 - 0 0
A1 - 0 - 0 0
A3 - 0 - 0.33 0.66

d)

Round 4
c1 c2 c3 c4 c5

A1 - 0 - 0 -
A2 - 0 - 0 -
A3 - 0 - 0 -

Table 8.5: Evolution of the utility values, for 3 agents A1, A2 and A3 and a set
B = {c1, c2, c3, c4, c5} of 5 cases in the CCB protocol.

change. Thus Ai must reevaluate its utility values in round t+ 1. Moreover, Ai

will use B̂t+1 as the exam to assess its new utility values, while the other agents
would have their utility values assessed using B̂t. Thus, the utility values of Ai

could not be compared with those of the rest of the agents. Therefore, in order
to be able to compare the utility values assessed by all the agents, we require
that every agent reevaluates their utility values using B̂t+1.

CCB-CS may appear to be a complex way to distribute the cases among the
agents but it is designed in this way because the order in which the cases are
bargained does matter. In Section 8.4.2.1 we will discuss further these issues.

The next section presents theDU decision policy with which the agents assess
the utility of cases.

8.4.2 Collaborative Case Bargaining Decision Policies

The agents require a Utility Assessment decision policy DU in order to use CCB-
CS. In this section, we are going to present a DU decision policy based on JCU:

Definition 8.4.3. The Justification-based Utility Assessment decision policy
DU used to estimate the utility of a case c consists of using JCU with the cases
in B̂t as the exam, i.e.:

DU (c) = JCU({c}, B̂t)

The next section presents an exemplification of how CCB-CS works using
this decision policy.

8.4.2.1 Exemplification

Let us illustrate the behavior of the CCB-CS collaboration strategy with an
exemplification. Consider a MAC system composed of 3 agents A = {A1, A2,

8.4. Collaborative Case Bargaining 209

A3}, that have individual pools of delayed retention cases B1, B2 and B3 that
can store 3 cases each. At a given time, the pools of the three agents contain the
following cases: B1 = {c1, c2, c3}, B2 = {c4} and B3 = {c5}, where c1 = (P1, S1),
c2 = (P2, S2), etc.

When the pool B1 of agent A1 is full, agent A1 initiates the ICCB−CS interac-
tion protocol. Both A2 and A3 broadcast the cases in their pools so that all the
agents have access to the set of all delayed retention cases B̂ = {c1, c2, c3, c4, c5}.

When the first round t = 0 starts, B̂0 = B̂ and all the agents estimate the
JCU utility of the cases in B̂0. Let us focus on how agent A1 uses JCU: first, A1

takes the set E = {P1, ..., P5} and builds a JER for each problem in E. Assume
that A1 fails to correctly solve three problems, P2, P3 and P5, and therefore
the set J−E = {J2,J3,J5} has three JERs. A1 builds then the refutation sets
for those three JERs: RJ2

0 = {c2, c3}, RJ3
0 = {c3} and RJ5

0 = {c2, c3, c5}. With
these refutation sets R = {RJ2

0 , RJ3
0 , RJ5

0 } the JCU utility value of the 5 cases
in B̂0 for the agent A1 can be assessed using JCU:

• JCU(c1, B̂0) = #(∅) = 0/5 = 0.0

• JCU(c2, B̂0) = #({RJ2
0 , RJ5

0 }) = 2/5 = 0.4

• JCU(c3, B̂0) = #({RJ2
0 , RJ3

0 , RJ5
0 }) = 3/5 = 0.6

• JCU(c4, B̂0) = #(∅) = 0/5 = 0.0

• JCU(c5, B̂0) = #({RJ5
0 }) = 1/5 = 0.2

Thus, the set of utility records of A1 at round 0 is: UA1
0 = {〈A1, c1, 0.0〉,

〈A1, c2, 0.4〉, 〈A1, c3, 0.6〉, 〈A1, c4, 0.0〉, 〈A1, c5, 0.2〉}.
In the same way, A2 and A3 compute their JCU utility values and send their

utility records to A1, that can now examine all the utility records to determine
the winner. Table 8.5.a shows the utility values for the three agents: the winner
is the agent A1. The utility computed by the agent A1 for case c3 is the highest
one and therefore A1 retains the case c3, the case is not available any more, and
the rest of agents are notified.

When A2 and A3 answer with an acknowledgment to A1, A1 sends again a
message to A2 and A3 requesting for the utility records of the remaining cases
B̂1 = {c1, c2, c4, c5} for the second round of the protocol. A1 has to recompute
its own JCU utility values since has retained a new case, and the new JCU utility
values are shown in Table 8.5.b. This time there is a tie between A2 and A3 that
is resolved randomly: the winner is A2, that receives the case c1 to be retained.

The third round for the cases B̂2 = {c2, c4, c5} has JCU utility values that
can be seen in Table 8.5.c, where the winner is A3 that receives the case c5.

In the fourth round, no agent wants any case in B3 = {c2, c4}, as shown in
Table 8.5.d where all the JCU utility values are zero. A1 sends a message to A2

and A3 telling that the ICCB−CS interaction protocol is over, the cases c2 and
c4 are discarded, and the pools of the three agents are cleared.

210 Chapter 8. Case Retention Collaboration Strategies

One may think that if every agent has access to all the cases during the
CCB-CS collaboration strategy, why isn’t it the best policy to allow each agent
to retain every case? In fact, allowing each agent to retain every case is not
the best policy (as we are going to show in the experiments section), since the
resulting system would be equivalent to a single agent (since as each agent would
have all the cases). The experiments section will show how a group of agents
using CCB-CS can outperform a single agent that has all the cases.

CCB-CS may appear to be a complex way to distribute the cases among
the agents. However, (as we have said earlier) it is designed in this way since
the order in which the cases are bargained does matter. A simpler sequential
protocol that would consider the cases one at a time with a predefined order
(such as a simple auction, where the cases will be auctioned one at a time with a
predefined order) would lead to suboptimal results. Let us illustrate what would
had happened in the exemplification if a sequential protocol is used:

1. The utility for the case c1 is requested to all the agents, and the winner is
the agent A2. Therefore, A2 retains c1 and the new utility values for A2

are (-, 0, 0, 0, 0).

2. Then, the utility for the case c2 is asked. The winner is the agent A1 and
the new utility values for A1 are (-, -, 0.33, 0, 0).

3. The case c3 is assigned also to A1, and his new utility values are (-, -, -, 0,
0).

4. finally, both c4 and c5 will be retained by A3 and no case will be discarded.

Therefore, using this sequential protocol, agent A1 would retain the cases c2
and c3, agent A2 would retain the case c1 and agent A3 would retain the cases
c4 and c5. Moreover, recall that one goal of CCB-CS is to minimize the number
of cases retained while maintaining the competence of the case bases. Therefore,
the sequential protocol is clearly outperformed by CCB-CS that covers all the
errors retaining just 3 cases, while the sequential protocol needs 5 cases.

Moreover, we could also think that instead of this protocol, a combinatorial
auction [Sandholm, 2002] could be used. A combinatorial auction is a multiple-
item auction in which each bidder offers a price for a collection of items (of
the bidder’s choosing) rather than placing a bid on each item separately. The
auctioneer selects a set of these combinatorial bids which raises the most revenue
without assigning any items to more than one bidder. In our scenario, the utility
values should be considered as the bids. However, this assumes that the bids
for the different sets of items (sets of cases in our scenario) are independent, a
property that is not satisfied by the utility of cases in CBR since the utility of
new cases depend on the previously retained cases. For instance, in the example,
the utility of the case c2 for the agent A1 at the beginning was 2, however, after
retaining the case c3 this utility dropped to zero.

8.4. Collaborative Case Bargaining 211

8.4.3 Experimental Evaluation

In this section we are going to empirically evaluate the CCB-CS collaboration
strategy. Specifically, we are going to compare the classification accuracy of
agents solving problems individually and using the Committee collaboration
strategy for a MAC system composed of 5 agents. Moreover, we are also going
to discuss results concerning the characteristics of case bases achieved using each
one of the different collaboration strategies (including case base size, complete-
ness, redundancy, and bias).

In order to test the generality of the collaboration strategies we are going to
present results using three data sets: sponge, soybean and zoology. Moreover, in
all the experiments reported in this section agents use LID as the learning method
and all the presented results are the average of five 10-fold cross validation run.

In an experimental run the data set is divided into two sets: the training set,
containing the 90% of the cases in the data set and the test set, containing the
remaining 10% of the cases in the data set. At the beginning of the experiment,
a 10% of the cases of the training set are distributed among the agents. Then,
the rest of the cases in the training set are sent to the agents one by one (each
case is only sent to one agent). Each time an agent receives a case of the training
set, the agent’s retention strategy is applied to decide retention. From time to
time, the test set is sent to the agents to evaluate their classification accuracy.
The experiment ends when all the cases in the training set have been sent to the
agents. Moreover, in these experiments we have not forced any case base bias,
since CCB-CS is not affected by it. To understand this fact, consider that each
time CCB-CS is used, all the cases in the pools of the agents are joined together
in order to start the bargaining, and thus it is not relevant which concrete agent
received each individual case.

Moreover, results obtained by CCB-CS are compared with the results ob-
tained by OFR-AO and ID-AO presented in Section 8.2. The comparison fo-
cuses on OFR-AO and IF-AO because they (together with CCB-CS) do not
allow copies of cases.

We will first present experimental results concerning classification accuracy,
and after that we will analyze the case base properties with the different retention
strategies.

8.4.3.1 Classification Accuracy Evaluation

Figure 8.17 shows the classification accuracy evolution of the agents in a MAC
system composed of 5 agents using CCB-CS in the sponge data set. Both in-
dividual and committee classification accuracy is shown: right hand side plot
shows the individual classification accuracy and left hand side plot shows the
committee classification accuracy. Five plots are shown: three of them corre-
spond to agents using CCB-CS with pools of delayed retention cases of size 5,
10 and 20 respectively, and the other two correspond to agents using OFR-AO
and ID-AO.

Let us first consider the committee results (the left hand size plot of Figure

212 Chapter 8. Case Retention Collaboration Strategies

CCB (pool = 5)

CCB (pool = 10)

CCB (pool = 20)

OFR-AO

ID-AO

Sponge - Committee LID

40

45

50

55

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

Sponge - Individual LID

40

45

50

55

60

65

70

75

80

85

90

95

10 20 30 40 50 60 70 80 90 100

Figure 8.17: Classification accuracy of a 5 agentMAC system using the CCB-CS
collaboration strategy in the sponge data set.

8.17). Analyzing the effect of the pool size in CCB-CS we observe that a large
pool size (i.e. 20) has two effects: first, the learning plot of the agents does not
start growing from the beginning (since it is delayed retention, and the agents
do not retain any case until one of them has its pool full); and second, when
the plot starts growing, it grows faster and reaches higher classification accuracy
values than the plots of agents with smaller pools. For instance, with a pool size
of 5, agents increase their accuracy value from the beginning of the experiment,
and reach a classification accuracy value of 90.86%, while agents using a pool
size of 20 do not start increasing their accuracy until a 30% of the training set is
sent, but reach an accuracy value of 93.21% at the end of the experiment. Thus,
having a large pool is better in the long term since after the initial delay, the
learning curve grows faster and achieves higher classification accuracy values.

Comparing CCB-CS with OFR-AO and ID-AO (which do not perform de-
layed retention) the classification accuracy of the agents start increasing from
the beginning of the experiments, while CCB-CS requires that the pool of some
agent is full to start case retention. Thus, at the beginning OFR-AO and ID-AO
achieve higher classification accuracy values, but as more cases of the training

8.4. Collaborative Case Bargaining 213

CCB (pool = 5)

CCB (pool = 10)

CCB (pool = 20)

OFR-AO

ID-AO

Soybean - Committee LID

15
20

25
30

35
40
45

50
55

60
65
70

75
80

85
90

10 20 30 40 50 60 70 80 90 100

Soybean - Individual LID

15
20

25
30

35
40
45

50
55

60
65
70

75
80

85
90

10 20 30 40 50 60 70 80 90 100

Figure 8.18: Classification accuracy of a 5 agentMAC system using the CCB-CS
collaboration strategy in the soybean data set.

set are sent to the agents, CCB-CS quickly catches up OFR-AO and ID-AO. At
the end of the experiments, both CCB-CS with pool sizes of 10 and 20 achieve
higher classification accuracy values than OFR-AO and ID-AO. Thus CCB-CS
is able to achieve higher classification accuracy values than OFR-AO and ID-
AO; the reason is that CCB-CS does not discard cases as quickly as OFR-AO or
ID-AO. In fact, the larger to pool size, the less eager that CCB-CS is discarding
cases, and thus the higher classification accuracy value is achieved.

Considering now the individual classification accuracy results on the right
hand side plot of Figure 8.17 we observe results similar to those of the committee:
larger pools produce a larger delay on retaining cases, but they also produce
higher classification accuracy values.

Figure 8.18 shows the classification accuracy evolution of the agents in a
MAC system composed of 5 agents using CCB-CS in the soybean data set.
Figure 8.18 shows very similar results to that of the sponge data set: the larger
the pool size, the longer the delay, but also the higher the accuracy value at
the end of the experiments. Notice that both in the sponge and soybean data
sets, using CCB-CS with a pool size of 20, the classification accuracy of the

214 Chapter 8. Case Retention Collaboration Strategies

Zoology - Committee LID

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Zoology - Individual LID

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

CCB (pool = 5)

CCB (pool = 10)

CCB (pool = 20)

OFR-AO

ID-AO

Figure 8.19: Classification accuracy of a 5 agentMAC system using the CCB-CS
collaboration strategy in the zoology data set.

committee is higher than the accuracy of OFR-AOC and ID-AOC (the versions
of MAR-CS that allowed multiple copies of cases): for instance, in the soybean
data set, CCB-CS with a pool size of 20 reaches an accuracy value of 87.39%
while OFR-AOC reaches an accuracy of 86.97% and OFR-AO an accuracy of
81.03%.

Figure 8.19 shows the classification accuracy evolution of the agents in a
MAC system composed of 5 agents using CCB-CS in the zoology data set. The
results obtained in the zoology data sets are similar to those obtained in sponge
and zoology. However, notice that the zoology data set contains only 101 cases:
10 or 11 cases will constitute the test set and the rest of 90 or 91 cases will
constitute the training set. If the pool size of the agents is 20, it may happen
that no agent has its pool of cases full when the experiment finishes (19 cases
per agent in a 5 agent system means that with 95 cases the pools of the agents
may still not be full). This can be seen in Figure 8.19, where the agents do not
start retaining cases until the 90% of the training set has been sent. Thus, we
can conclude that the zoology data set is too small a data set to use CCB-CS
properly. However, as we have previously said, the tendencies observed show

8.4. Collaborative Case Bargaining 215

Individual CCS CB size C R B
CCB-CS (pool = 20) 85.71% 93.21% 34.78 0.69 0.00 0.22
CCB-CS (pool = 10) 85.36% 92.07% 34.13 0.68 0.00 0.21
CCB-CS (pool = 5) 81.78% 90.86% 34.27 0.68 0.00 0.22

OFR-AO 83.07% 90.71% 34.24 0.68 0.00 0.17
ID-AO 79.14% 90.50% 29.20 0.58 0.00 0.19

Table 8.6: Case Base properties of agents using CCB-CS in the sponge data set.

that if the zoology data set was larger, the obtained results would have been
similar to those obtained in the sponges or soybean data sets.

8.4.3.2 Case Base Evaluation

Table 8.6 shows the case base properties of the CBR agents at the end of the ex-
perimental runs for the sponge data set. Each row of the table shows the results
for a different collaboration strategy. The columns show the following proper-
ties of the case base: the accuracy achieved by individual agents, the accuracy
achieved by the committee of agents, the average size of individual case bases,
and the average Committee Completeness (C), Committee Redundancy (R) and
Committee Bias (B). Moreover, all the values shown in Table 8.6 correspond to
the end of an experimental run. Table 8.6 shows that case base size, C, R and B
do not change appreciably by varying the pool size: agents using CCB-CS end
the experiments with C = 0.68, R = 0 and C = 0.22 approximately, indepen-
dently of the pool size used. Moreover, notice that the case base size achieved
by the agents using CCB-CS is similar to that of the agents using OFR-AO. The
only remarkable difference is that Committee Bias is higher with CCB-CS than
with OFR-AO or ID-AO. This is a surprising result, since we would expect that
a higher Committee Bias implies a lower classification accuracy value.

The explanation is that the ensemble space analysis (C, R and B) is only
a characterization of many possible committees, that serves as a heuristic that
helps us to predict how a given committee will perform. In fact, there are many
different committees with equal characterization but with different performance,
and the ensemble space analysis gives us the average results among all the pos-
sible committees with the same characterization. Moreover, CCB-CS makes use
of JCU to decide which agent retains each case, and thus a deeper analysis of the
case bases of the agents is made than the one provided by the ensemble space
characterization. The result is that CCB-CS is able to find a distribution of
cases that works better than the average predicted by the ensemble space anal-
ysis. However, the ensemble space is still a good tool for analyzing the expected
(average) behavior of committees.

Table 8.7 shows, for agents that use CCB-CS, OFR-AO and ID-AO, the
main case base properties at the end of the experiments in the soybean data set.
Table 8.7 shows that the results obtained in the soybean data set are very similar
to those obtained in the sponge data set: the case base size of CCB-CS is very

216 Chapter 8. Case Retention Collaboration Strategies

Individual CCS CB size C R B
CCB-CS (pool = 20) 68.70 87.39 44.35 0.81 0.00 0.19
CCB-CS (pool = 10) 68.11% 82.73% 44.89 0.82 0.00 0.20
CCB-CS (pool = 5) 65.78% 80.39% 46.70 0.86 0.00 0.21

OFR-AO 69.38% 81.04% 48.05 0.87 0.00 0.12
ID-AO 60.00% 80.85% 40.12 0.73 0.00 0.17

Table 8.7: Case Base properties of agents using CCB-CS in the soybean data
set.

Individual CCS CB size C R B
CCB-CS (pool = 20) 86.13% 89.11% 9.81 0.54 0.00 0.30
CCB-CS (pool = 10) 83.56% 87.72% 9.52 0.52 0.00 0.32
CCB-CS (pool = 5) 85.31% 89.70% 10.67 0.59 0.00 0.31

OFR-AO 85.35% 89.61% 10.86 0.60 0.00 0.23
ID-AO 80,79% 86.73% 9.76 0.54 0.00 0.26

Table 8.8: Case Base properties of agents using CCB-CS in the zoology data set.

similar to that of OFR-AO and ID-AO, while the classification accuracy achieved
using large pool sizes (10 or 20) is higher than that of both OFR-AO and ID-AO.
Moreover, notice that CCB-CS using a pool size of 20 also outperforms OFR-
AOC (that performed impressively well in the soybean data set, as we saw on
Table 8.2), since CCB-CS with pool size of 20 achieves a committee accuracy
of 87.39% with a case base size of 44.35 cases per agent in average, while OFR-
AOC achieves an accuracy value of 86.97% with an average case base size of
85.94 cases. Thus CCB-CS achieves higher accuracy with a much smaller case
base size.

Finally, Table 8.8 shows, for agents that use CCB-CS, OFR-AO and ID-AO,
the main case base properties at the end of the experiments in the zoology data
set. As we have said before, the zoology data set is very small and, since at the
end of the experiments the agents will surely have some cases in their pools that
still have to be considered for retention, the amount of cases in the pools of the
agents may be large compared with the size of the data set. A direct effect of
this can be seen in Table 8.8 where the average case base size of agents with pool
sizes of 10 and 20 is smaller than the case base size with pools of size 5 (while
we have seen in the sponges and soybean data sets that the average number
of cases retained does not depend on the size of the pools). This is the reason
that the accuracy achieved using CCB-CS is not higher than that achieved with
OFR-AO or with ID-AO.

Summarizing the experimental results, we can conclude that CCB-CS is an
effective collaboration strategy for case retention, and that completely avoids
the problem of case base bias (since all the cases received by all the agents are
put together before starting the bargaining). We have also seen that depending
on the size of the pool of delayed retention cases CCB-CS has a different effect:

8.5. Conclusions 217

larger pool delay the retention and can cause problems if the agents receive few
cases (as in the zoology data set), but large pools have the advantage of not dis-
carding cases very eagerly and therefore decide retention with more information,
achieving higher classification accuracy values. Thus CCB-CS can outperform
retention strategies such as OFR-AO or ID-AO that decide retention case by
case, and that discard cases more eagerly. Moreover, CCB-CS with a large pool
size, can also outperform strategies such as OFR-AOC and ID-AOC that allow
copies of cases.

8.5 Conclusions

In this chapter we have presented several case retention strategies. We have
presented strategies based on two main ideas: the first idea is to take into
consideration the multi-agent aspect of case retention and the second idea is to
use justifications in order to decide retention. Specifically, we have presented:

• The MAR-CS collaboration strategy (with eight different versions of it:
NR-NO, AR-NO, OFR-NO, ID-NO, OFR-AO, ID-AO, OFR-AOC and ID-
AOC), that takes into consideration the multi-agent aspect of case reten-
tion.

• The JUST case base reduction technique, that uses justifications to decide
retention for individual CBR systems.

• And finally CCB-CS, that combines both ideas (multi-agent retention and
justifications).

Retention strategies can be classified in several ways: they can be classified
depending on if they are addition case retention strategies or deletion case reten-
tion strategies; they can also be classified depending on whether they treat cases
one by one or in batches; and finally they can also be classified depending on
if they are on-line case retention strategies or off-line case retention strategies.
All the strategies presented in this chapter are addition case retention strategies
(since they decide which cases to add to the case base and not which to delete).
Notice that JUST is a case addition strategy, since JUST starts with an empty
case base and selects the cases to be added to that case base. Moreover, all
the MAR-CS versions consider cases one by one (1-by-1 strategies), while JUST
and CCB-CS consider cases in batches (batch strategies). The main difference
between them is that 1-by-1 strategies are more sensitive to the order in which
the cases arrive to the agents, while batch strategies are less sensitive (since
they do not discard cases as eagerly). Finally, MAR-CS and CCB-CS are on-
line case retention strategies (since they are used during the normal operation
of the CBR agent), and JUST is an off-line strategy (since it is applied as a
background process by the agents and not during problem solving). Moreover,
on-line and off-line strategies are complementary, i.e. an agent can use an on-line
case retention strategy (such as CCB-CS), and also use JUST off-line from time
to time to reduce the size of its case base.

218 Chapter 8. Case Retention Collaboration Strategies

In the experimental evaluation, we have shown that those collaboration
strategies that offer cases to other agents outperform those collaboration strate-
gies that do not offer cases to other agents (since OFR-AO, ID-AO and OFR-
AOC systematically outperform OFR-NO and ID-NO). Moreover, in some data
sets (such as soybean) allowing multiple copies of cases (like OFR-AOC and
ID-AOC do), and thus moderately increasing committee redundancy, can also
improve classification accuracy (albeit at the cost of also increasing the average
case base size of the agents).

Concerning the use of justifications and the JCU measure to decide which
cases to retain, they also improve the retention process of individual CBR sys-
tems. Specifically, we have presented JUST, that uses JCU to determine which
are the cases in a case base that are interesting to be retained and which can
be discarded. The experimental results have shown that JUST can effectively
reduce the size of a case base while maintaining (and even improving) the clas-
sification accuracy of a case base.

The CCB-CS collaboration strategy (that also uses JCU) outperforms all
the versions of the MAR-CS collaboration strategy. The reason is that the
use of justifications in combination with delayed retention allows the agents to
accurately assess the utility of cases, and thus achieve a distribution of cases
among the agents better than the one achieved by MAR-CS. Moreover, CCB-
CS uses delayed retention, i.e. cases to be retained are stored in a pool; the
retention process does not start until the pool of cases of an agent in the MAC
system is full. This can be a problem only in situations where the agents receive
very few cases to retain (as we have shown in the zoology data set). Thus, for a
data set that is large enough, we have shown that the larger the pool size of the
agents, the better CCB-CS performs. The reason is that the larger the pools,
the better the utility estimation made by JCU(since the larger the pools, the
larger the exam used by JCU).

Another reason in which justifications help CCB-CS to outperform MAR-
CS is the following one: agents using CCB-CS retain only those cases having
the highest utility values. Moreover, a case has a high JCU utility when it can
prevent an agent for making many errors in the future. Thus, retaining a single
case with high utility means it is able to fix several errors, and this can only
be detected using justifications. An agent using MAR-CS (for instance using
OFR-AO) would retain a new case every time that the agent solves a problem
incorrectly. Therefore, an agent using MAR-CS retains a case for each error
detected, while an agent using CCB-CS is able to retain cases that fix several
errors (thus achieving a higher reduction).

From the experiments presented in this chapter we can draw three main
conclusions: the first one is that collaboration during retention improves the
performance of CBR agents; the second one is that discarding cases eagerly in
the retention process has a negative effect, and thus batch retention strategies
outperform 1-by-1 strategies; finally, the information provided by justifications
is useful to assess the utility of cases, and thus is useful to case retention; this has
been shown in the experiments since retention strategies based on justifications

8.5. Conclusions 219

outperform those strategies that do not use justifications.
Finally, in Chapter 4 we saw that a moderate degree of Committee Redun-

dancy can improve the classification accuracy of a committee. This effect takes
place in the MAR-CS collaboration strategy applied to the the soybean data set.
However, the CCB-CS collaboration strategy does not allow copies of cases, and
thus does not allow any increase of Committee Redundancy. For this reason,
future work should consider improving CCB-CS so that it can take into account
case copy strategies in order to achieve a certain degree of redundancy.

Chapter 9

Case Bartering
Collaboration Strategies

This chapter presents the Case Bartering Collaboration Strategies (CB-CS), with
which a committee of agents can perform a redistribution of the cases in their
case bases (by means of a regulated process of case bartering), with the goal of
improving their performance, both as individual agents and as a committee.

9.1 Introduction

In previous chapters we have shown that committees of agents can outperform in-
dividual agents in terms of classification accuracy. However, a committee has to
satisfy some conditions in order to have a good classification accuracy. Specif-
ically, Chapter 4 has presented the Ensemble Space as a way to characterize
a committee using three indicators: Committee Completeness (C), Committee
Bias (B) and Committee Redundancy (R). Chapter 4 experimentally shows that
a committee must have a high committee completeness, a low committee bias
and a low (but greater than zero) committee redundancy in order to achieve a
high classification accuracy. Those results have motivated some of the retention
techniques presented in the previous chapter. These techniques tried to achieve
case bases that satisfy the conditions needed for the committee to have a high
classification accuracy by means of a collaborative process on the cases to be
retained. However, case retention techniques presented in the previous chapter
can only be applied when a committee of agents evolves together, i.e. they col-
laborate during their training; if a committee contains agents that have not had
the opportunity to use collaborative case retention strategies (because they have
learned individually), other strategies must be used for the committee to achieve
high classification accuracy values. In this chapter we are going to present the
Case Bartering collaboration strategies, designed specifically for such situations.

The goal of case bartering is to achieve a redistribution of cases among the
agents that improves both the performance of the individual agents and the

221

222 Chapter 9. Case Bartering Collaboration Strategies

committee as a whole. The idea behind case bartering is that the utility of
individual cases is not the same for all the agents in a MAC system, i.e. there
are cases that can have a high utility for some agents that are useless for some
other agents (because they may be redundant with the cases already present in
their case base, or for any other reason). Thus, case bartering is a collaboration
strategy that is used by the agents in order to reach bartering agreements so that
an agent cedes cases with low utility in exchange of cases with higher utility for
itself to another agent (that accepts because it has the complementary utility
values for the exchanged cases). For example, if an agent A1 in a MAC system
has retained a large amount of cases of a certain class S1, but has troubles in
finding cases of another class S2, it may happen that there is another agent A2

in the MAC system that is in the opposite situation (with a lot of cases of S2

and very few of S1); thus, it will be beneficial for both agents if they reach an
agreement to trade cases so that both A1 and A2 can get cases of the class that
they had troubles to find cases of.

In order to use the case bartering collaboration strategy, agents need a policy
to decide which bartering agreements to reach. In this chapter we are going to
present two different decision policies to reach bartering agreements: the first
one will be based in the ensemble space, and the second one in justifications.
Each set of decision policies defines in fact a different case bartering collaboration
strategy.

The structure of the chapter is as follows. First, Section 9.2 formally defines
the case bartering collaboration strategy. Section 9.3 presents the bias based
decision policies (inspired in the ensemble space). Then, Section 9.4 presents the
case bartering interaction protocol and Section 9.5 presents an exemplification
of the case bartering collaboration strategy. After that, Section 9.6 presents
an alternative set of decision policies for case bartering based on justifications.
Finally, Section 9.7 presents the experimental evaluation of the case bartering
collaboration strategy. The chapter ends with the conclusions section.

9.2 The Case Bartering Collaboration Strategy

This section introduces the Case Bartering Collaboration Strategy (CB-CS),
that allows a group of agents to reach agreements to barter cases in order to
achieve higher individual and committee performance. CB-CS is an iterative
collaboration strategy composed of a series of rounds. Each round is divided in
two steps:

• Information Gathering,

• Case Bartering.

During the Information Gathering step, the agents will collect information in
order to be able to know which cases to barter during the Case Bartering step.
During the Case Bartering step, agents will send offers to each other to barter
cases (that we will call bartering offers) that can be accepted or rejected. If an

9.3. Bias Based Case Bartering 223

:

:

w0 w1 w2

p1 p2

p1

p2

Request(?Ai, ?Aj , distribution)

Inform(!Aj , !Ai, {?dj,1, ..., ?dj,K})

Figure 9.1: Interaction protocol used by the agents in the DBG decision policy.

agent accepts an offer to barter cases received from another agent, the cases are
actually exchanged in the Case Bartering step.

Definition 9.2.1. The Case Bartering Collaboration Strategy (CB-CS) is a
collaboration strategy 〈ICB−CS , DG, DB , DA〉, where ICB−CS is the CB-CS in-
teraction protocol shown in Figure 9.3, DG is the decision policy used by the
agents to gather information in the Information Gathering step, DB is the deci-
sion policy used by the agents to decide which bartering offers to generate, and
DA is the decision policy used to decide which bartering offers to accept.

In the remainder of this chapter we will define two different sets of deci-
sion policies: first we will define a set of decision policies (DBG, DBB , and
DBA) based on the ensemble space, while later at Section 9.6 we will introduce
another set of decision policies (DJG, DJB , and DJA) based on justifications.
Moreover, in some situations, the definition of those decision policies will in-
volve the definition of a sub-protocol of ICB−CS . Finally, we will present the
interaction protocol ICB−CS .

9.3 Bias Based Case Bartering

This section presents a set of decision policies for case bartering based on the
ensemble space. Specifically, the policies presented in this section have the goal
of minimizing Committee Bias (B). Recall (see Section 4.4) that committee bias
measures the average case base bias of the individual agents, and that case base
bias measures the degree in which a case base has some areas of the problem space
undersampled (while other parts may be oversampled). Therefore, as Chapter
4 shows, diminishing bias the classification accuracy is expected to increase.

The set of decision policies presented in this section define the bias based case
bartering collaboration strategy (CB-CS bias).

9.3.1 Bias Based Information Gathering

The goal of the Information Gathering step of CB-CS is to obtain information
on order to be able to generate bartering offers in the Case Bartering step.
Therefore, during Information Gathering the agents must obtain information in

224 Chapter 9. Case Bartering Collaboration Strategies

order to be able to estimate their case base bias and the committee bias, so
that proper bartering offers can be generated. An agent Ai in a committee A
that wants to estimate both its individual bias and the committee bias needs
the following information:

• The distribution of cases among the different solution classes (i.e. how
many cases of each solution class) that each agent in A has,

• The real distribution of cases among the different solution classes in the
application domain.

The distribution of cases of each individual agent is easy to obtain. Specifi-
cally, given the set of possible solution classes S = {S1, ..., SK}, an agent has to
know:

dj,k =
#(c ∈ Cj |c.S = Sk)

#(Cj)

for each agent Aj ∈ Ac. Where dj,k represents the fraction of cases of the
case base of Aj that belong to the solution class Sk. Therefore, during during
the Information Gathering step, every agent in A can compute and share this
information.

However, there is no obvious way in which an agent Ai can compute which is
the real distribution of cases in the domain. Therefore, in the policies presented
in this section, the agents will estimate such distribution. To make this estima-
tion, the agents will assume two facts: the first one is that the case bases of the
agents have no overlapping (i.e. that committee redundancy is R = 0) and that
aggregating the case distributions of the agents in A is a good estimation of the
distribution of cases in the application domain. Therefore, if an agent knows the
distribution of cases among the rest of agents in the committee, it can compute
Dk =

∑
j=1...n dj,k for each solution class, and assume that the distribution of

cases in the application domain is:

dk =
Dk∑

l=1...K Dl

With this estimation, an agent Ai can estimate its own case base bias and
the committee bias using equations presented in Definitions 4.4.3 or 4.4.4, as
follows:

B(Ci) '

√√√√k=1∑
m

(di,k − dk)2

The idea behind this estimation is that each agents’ case base can be consid-
ered an independent sample of cases of the problem space. Thus, if we aggregate
such samples, the resulting sample is likely to be less biased than the individual
sample. Thus, computing the bias of an agent with respect to the aggregated
sample is likely to be a good estimation of the real bias of that individual agent.

9.3. Bias Based Case Bartering 225

:

:

:

w0 w1

w2

w3

p1 p2

p3

p1

p2

p3

Request(?Ai, ?Aj , ?O)

Inform(!Aj , !Ai, accept)

Inform(!Aj , !Ai, reject)

Figure 9.2: Interaction protocol used by the agents in the DBB decision policy.

We can now define the policy used by the agents in the Information Gathering
step:

Definition 9.3.1. The Bias based Information Gathering decision policy DBG

used by an agent Ai in CB-CS consists of requesting the values dj,k for each
solution class Sk ∈ S to each agent Aj ∈ A during the Information Gathering
step using the interaction protocol shown in Figure 9.1.

9.3.2 Bias Based Case Bartering

During the Case Bartering step agents are allowed to send bartering offers to
other agents. A bartering offer communicates an offer to barter two sets of cases
between two agents. In this section we are going to define bartering offers that
exchange a single case for another case, and also define a decision policy that
can be used by an agent in a MAC system to generate such bartering offers.

Definition 9.3.2. A Bartering Offer O = 〈SO, SR, AO, AR〉 is a tuple where
an offeror agent AO is offering the receiver agent AR a case of the class SO in
exchange of a case of the class SR.

Assuming that the goal of an agent Ai participating in the CB-CS collabo-
ration strategy is to decrease its own case base bias, the bartering offers that Ai

is interested in accepting are those that would decrease its own case base bias.
Moreover, only those offers that would reduce the case base bias of the receiver
agent are likely to be accepted by the receiver. Thus, we are going to present
a method with which an agent can generate all those bartering offers that will
reduce its case base bias and that are likely to be accepted by the receiver agent.

Moreover, notice that in the real world, bartering involves the exchange of
two physical goods, but the agents in a MAC system barter with cases that are

226 Chapter 9. Case Bartering Collaboration Strategies

just information. Thus, agents in a MAC system have two options: the first one
is to barter with cases as if they where physical goods, i.e. when an agent Ai

cedes a case c1 to an agent Aj in exchange of a case c2, Ai deletes c1 from its
case base and Aj deletes c2 from its case base; this is what we call the non-copy
mode. And the second option is to barter copies of the cases, i.e. agents do not
delete the cases they give to the other agents when bartering; this is what we
call the copy mode. There are fundamental differences on whether the agents
barter cases in the copy or non-copy modes:

• In the non-copy mode agents only perform a redistribution of cases among
their case bases. Thus, only case base bias and committee bias are affected
by the bartering process. Moreover, individual case base completeness is
not affected and the number of cases in the case base of each agent will
not vary.

• In the copy mode agents are increasing the committee redundancy since
copies of the cases are made. Moreover, individual case base completeness
also increases with each barter.

Thus, we are going to define two different decision policies, one for the non-
copy mode and another for the copy mode.

Definition 9.3.3. The Bias based Non-Copy Case Bartering decision policy
DBB−NC used by an agent Ai in CB-CS consists of 4 steps:

1. For each pair of solution classes SO ∈ S and SR ∈ S, such that SO 6= SR

and such that Ai has at least one case of SO in its case base.

2. Ai checks if adding one case with solution class SR and deleting a case
with solution class SO from Ci will decrease its individual bias.

3. If so, Ai checks if there is another agent Aj in the system in the opposite
situation (i.e. that deleting one case with solution class SR and adding a
case with solution class SO from Cj will decrease the individual case base
bias of Aj).

4. If that agent exists, a bartering offer O = 〈SO, SR, Ai, Aj〉 is generated
and sent to Aj using the interaction protocol shown in Figure 9.2.

Definition 9.3.4. The Bias based Copy Case Bartering decision policy DBB−C

used by an agent Ai in CB-CS consists of 4 steps:

1. For each pair of solution classes SO ∈ S and SR ∈ S, such that SO 6= SR

and such that Ai has at least one case of SO in its case base.

2. Ai checks if adding one case with solution class SR to Ci will decrease its
individual case base bias.

9.3. Bias Based Case Bartering 227

3. If so, Ai checks if there is another agent Aj in the system in the opposite
situation (i.e. that adding a case with solution class SO to Cj will decrease
the individual case base bias of Aj).

4. If that agent exists, a bartering offer O = 〈SO, SR, Ai, Aj〉 is generated
and sent to Aj using the interaction protocol shown in Figure 9.2.

Agents using both DBB−C and DBB−NC use the interaction protocol shown
in Figure 9.2 in order to communicate the bartering offer to other agents. The
protocol works as follows:

1. In state w0, Ai sends a message p1 to Aj containing a bartering offer O.

2. In state w1, Aj uses its DBA decision policy to decide whether to accept
the bartering offer or not:

• If Aj accepts, a message p2 is send to Ai, the protocol ends, and the
cases are actually exchanged.

• If Aj does not accept, a message p3 is send to Ai and the protocol
ends.

Thus, the bias based case bartering strategy (CB-CS bias) an work on the
copy mode or in the non-copy mode. In the remaining of this chapter we will
note CB-CS bias copy and CB-CS bias non-copy to make reference to the bias
based bartering strategy working in the copy or non-copy modes.

We would like to remark that more complex case offering generation decision
policies could be designed inspired in the ensemble space. However, our goal is
just to show that case bartering using decision policies based on the ensemble
space can improve the performance of committees of agents, and the simple
decision policies defined in this section are sufficient for this purpose.

9.3.3 Bias Based Offer Acceptance

When an agent Ai receives a bartering offer, Ai requires a decision policy to
decide whether to accept the offer or not.

Definition 9.3.5. The Bias Based Acceptance decision policy DBA used by an
agent Ai determines to accept a bartering offer O only if it will reduce the the
individual case base bias of Ai:

DBA(O) =

{
true if B(C ′i) < B(Ci)
false otherwise

where C ′i is the case base that Ai will have after performing the barter specified
in O.

228 Chapter 9. Case Bartering Collaboration Strategies

:

:

w0 w1 w2

p1

p2

p1

p2

w3 w4

:

:

p3/c1

Inform(?Ai, !Ac, finished)

Request(?Ac, ?Ai, token)/p3/c1

p3/c2

p5/c3

p3/c2

|!w1w1Ai| =!n

Request(?Ac, ?Ai, token)/
|!w1w3Ai| <!n − 1

p4/c3

Inform(!Ac, all, terminate)

p4/c3 :
|!w1w1A3| =!n − 1

Request(!Ac, all, newround)/

p5/c3 :
|!w1w1A3| =!n − 1

Request(?Ac, all, ?n = #(A)∧?Rmax ∧ newround)

Inform(!Ai, !Ac, success/failure)

p6

p6 :

Figure 9.3: The CB-CS interaction protocol.

Notice that if the agents in a MAC system use the decision policies defined
in this section, all the offers will be accepted, since the DBB−C and DBB−NC

decision policies only generate those offers that will be accepted by the receiver
agent. However, a decision policy for offer acceptance is needed, since an agent
cannot assume that all the offers received will be favorable.

The next section explains how these three decision policies are used in the
case bartering protocol. And Section 9.5 presents an exemplification of how
CB-CS works using these decision policies.

9.4 The Case Bartering Interaction Protocol

This section presents the interaction protocol ICB−CS used in the CB-CS col-
laboration strategy. ICB−CS is an iterative protocol that consists of a series
of rounds. Each round consists of two steps: Information Gathering, and Case
Bartering.

During the Information Gathering step, the agents use their DG decision
policy to obtain information that will be used during the Case Bartering step
by their DB decision policy to generate bartering offers.

At the beginning of each round, all the agents perform the Information Gath-

9.4. The Case Bartering Interaction Protocol 229

ering step at the same time. Then, the agents perform the Case Bartering step
one agent at a time. The protocol uses a token-passing mechanism and only
the agent who owns the token will perform the Case Bartering step. At the
beginning of each round the token is owned by the convener agent, and once the
owner of the token has finished the Base Bartering step, the token is given to
another agent, and so on until all the agents in the committee have owned the
token in the current round. Once all the agents have performed the Information
Gathering and Case Bartering steps, a new round starts. The protocol will last
until a predefined number of rounds tmax have been made or when there have
been no accepted bartering offers between agents in the committee in a given
round.

ICB−CS is shown in Figure 9.3 and works as follows for a committee of agents
A (assuming that an agent Ac ∈ A acts as the convener agent and starts the
protocol):

1. w0 is the initial state, and the protocol starts when the convener agent
Ac sends message p1 to the rest of agents in A stating that the ICB−CS

starts. With message p1, Ac also informs the rest of agents which is the
committee of agents A that intervene in the protocol and the maximum
number of rounds Rmax.

2. In state w1 each agent uses its own Information Gathering decision policy
DG in order to obtain information. In fact, state w1 corresponds to the
Information Gathering step of CB-CS. An agent confirms to Ac that has
finished its Information Gathering step by sending a message p2 to Ac.

3. When all agents have confirmed to Ac that they have finished the Infor-
mation Gathering step (and Ac has also finished), Ac selects one agent
Ai ∈ A and sends a message p3 to him stating that Ai is allowed to make
bartering offers (i.e. Ac “gives” the token to Ai).

4. In state w2, an agent Ai owns the token, and uses its own Case Bartering
decision policy DB in order to send bartering offers. State w2 corresponds
to the Case Bartering step of CB-CS, and the sub-protocol associated with
DB is used (see Section 9.3.2 and Section 9.6.2). Once Ai has finished
sending bartering offers, it sends a message p6 to the convener agent Ac

stating if it has succeeded in making some bartering (if Ai has achieved to
make at least one case bartering, then it has succeeded; otherwise it has
failed).

5. In state w3, if there are some agents that have not yet owned the token in
this round of the protocol, Ac selects one of them and sends it the token
with a message p3. When all the agents in the committee have owned
the token once (including the convener agent), Ac decides if a new round
has to take place. If all the agents have failed in the Case Bartering step
or if the maximum number of rounds has been reached, the protocol will
end; Ac will send a termination message p5 to the rest of agents and the

230 Chapter 9. Case Bartering Collaboration Strategies

Case Bartering Protocol

Information
Gathering:

DBG

Case
Bartering:

DBB

DBB Sub-protocol

Offer
Acceptance:

DBA

Figure 9.4: Relation between the protocols and decision policies used in bias
based case bartering.

protocol will move to state w4 that is a final state. Otherwise, Ac will sent
message p4 to the rest of agents, and the protocol moves again to state w1

since a new round will take place.

Finally, figure 9.4 shows the relation between all the protocols and decision
policies involved in the justification based case bartering. Figure 9.4 shows
that the main case bartering protocol requires two decision policies DBG and
DBB . Moreover, the DBB decision policy engages a sub-protocol that requires
an additional decision policy DBA.

The next section presents an exemplification of the CB-CS collaboration
strategy.

9.5 Exemplification

In this section we are going to visualize the effect of case bartering using a two
dimensional data set, shown in Figure 9.5. The example data set has three
solution classes: red, blue, and green, and there are 64 red cases, 32 blue cases
and 32 green cases. For this example, we are going to consider CB-CS bias
non-copy.

In the exemplification we are going to consider a committee composed of 4
agents A = {A1, A2, A3, A4}. Each one of those agents is going to receive a
biased sample of the data set. Specifically, the samples of cases received by the
4 agents are shown in Figure 9.6: A1 has 12, 4, and 8 cases of the blue, green,
and red classes respectively; A2 has 6, 6, and 30 cases of each class; A3 has 4,9,
and 20; and finally A4 has 10, 13, and 6 cases of each class. Thus, with those
numbers, the bias of the individual agents can be estimated:

9.5. Exemplification 231

Figure 9.5: Two dimensional data set used in the bartering exemplification

B(A1) =

√(
12
24
− 16

64

)2

+
(

4
24
− 16

64

)2

+
(

8
24
− 32

64

)2

= 0.3118

B(A2) =

√(
6
42
− 16

64

)2

+
(

6
42
− 16

64

)2

+
(

30
42
− 32

64

)2

= 0.2624

B(A3) =

√(
4
33
− 16

64

)2

+
(

9
33
− 16

64

)2

+
(

20
33
− 32

64

)2

= 0.1684

B(A4) =

√(
10
29
− 16

64

)2

+
(

13
29
− 16

64

)2

+
(

6
29
− 32

64

)2

= 0.3664

The average Committee Bias is B = 0.2773, quite a high value for a committee
bias. Figure 9.7 shows how a decision tree algorithm used to index the cases in
the case base would partition the problem space. Figure 9.7 shows that agents
A1 and A4 (the left-most, and right-most ones in the figure) show the larger
deviations from the original data set, as expected by its high individual case
base bias.

Now imagine that we allow the four agents to use the CB-CS collaboration
strategy. As we have said, the four agents will use the bias based decision
policies, so they are going to focus on minimizing their individual case base

232 Chapter 9. Case Bartering Collaboration Strategies

A1 A2 A3 A4

A1 A2 A3 A4

Figure 9.6: Initial distribution of cases among the four agents.

A1 A2 A3 A4

A1 A2 A3 A4

Figure 9.7: Partition of the problem space obtained using a decision tree algo-
rithm to index the cases of the individual case bases.

biases. Moreover, for this exemplification the agents will use the non-copy mode,
so no copies of the case will be made. After CB-CS the case bases of the agents
are (Figure 9.6): A1 has 7, 5, and 12 cases of the blue, green, and red class
respectively; A2 has 10,11, and 21 cases; A3 has 8, 8, and 17 cases; and finally
A4 has 7, 8 and 14 cases respectively. Notice that, since the agents have not
exchanged copies of cases but the cases themselves, the number of cases that each
agent has after case bartering is exactly the same than before case bartering.
Moreover, if we compute the individual case base bias of the agents after case
bartering, we obtain:

B(A1) =

√(
7
24
− 16

64

)2

+
(

5
24
− 16

64

)2

+
(

12
24
− 32

64

)2

= 0.0589

B(A2) =

√(
10
42
− 16

64

)2

+
(

11
42
− 16

64

)2

+
(

30
42
− 21

64

)2

= 0.0168

9.5. Exemplification 233

A1 A2 A3 A4

A1 A2 A3 A4

Figure 9.8: Distribution of cases among the four agents obtained after using
CB-CS. A1 A2 A3 A4

A1 A2 A3 A4

Figure 9.9: Partition of the problem space obtained using a decision tree algo-
rithm to index the cases of the individual case bases obtained after using CB-CS.

B(A3) =

√(
8
33
− 16

64

)2

+
(

8
33
− 16

64

)2

+
(

20
33
− 17

64

)2

= 0.0186

B(A4) =

√(
7
29
− 16

64

)2

+
(

8
29
− 16

64

)2

+
(

6
29
− 14

64

)2

= 0.0323

The average Committee Bias is B = 0.0316, i.e. after case bartering the
average bias has been reduced by an order of magnitude. The effect can be seen
in Figures 9.8 and 9.9; Figure 9.8 shows the sample of cases obtained by the
agents after case bartering, and Figure 9.9 shows how a decision tree algorithm
used to index the cases in the case base would partition the problem space
with the case bases obtained after case bartering. Figure 9.9 shows that the
partition of the problem space obtained after case bartering resembles much
more the original partition of the data set than the partition obtained before
case bartering.

234 Chapter 9. Case Bartering Collaboration Strategies

:

:

w0 w1 w2

p1 p2

p1

p2

Request(?Ai, ?Aj , ?E)

Inform(!Aj , !Ai, ?JE)

Figure 9.10: Interaction protocol used by the agents in the DJG decision policy.

Thus, the idea of case bartering is that each agent can obtain a case base
that is more representative of the application domain.

Next section presents an alternative set of decision policies based on justifi-
cations.

9.6 Justification Based Decision Policies

This section presents a set of decision policies for case bartering based on justifi-
cations. In Chapter 8 we have shown that justifications can be used to evaluate
the utility of a case or set of cases for a CBR agent. Specifically, Chapter 8 pre-
sented the JCU function that used justifications to estimate the utility that a set
of cases has for a given CBR agent. The goal of the decision policies presented
in this section is to provide two agents with a way to select the cases that when
bartered are useful (in the sense that they have a JCU utility higher than zero)
for both agents.

The Case Bartering Collaboration Strategy (CB-CS) requires three decision
policies (DG, DB and DA). In this section we will present three decision policies
(DJG, DJB and DJA) based on justifications, that can be used by the agents in
a MAC system in the CB-CS collaboration strategy.

9.6.1 Justification Based Information Gathering

During the Information Gathering step of the CB-CS collaboration strategy,
agents need to obtain information in order to be able to decide which case to
barter in the Case Bartering step. Since the goal of the agents is to select cases
with a JCU utility higher than zero, each agent Ai ∈ A should, in principle,
obtain information about which cases of the other agents they are interested in.
However, since the agents do not know which cases own the rest of the agents
this is not feasible. Instead of that, a CBR agent Ai can easily know which of
its own cases can be interesting (i.e. have a JCU utility higher than zero) for
the other agents in the system. Thus, this is the information that the agents
will collect in the Information Gathering step.

The main idea is that each agent Ai ∈ A will send an exam to the rest of the
agents in the committee and request them to provide justified predictions for

9.6. Justification Based Decision Policies 235

each of the problems in the exam. With the justifications of those predictions,
Ai can evaluate which cases of its local case base Ci are interesting for each of
the other agents in A. Let us introduce some concepts before presenting the
justification based Information Gathering decision policy.

Specifically, an exam built by an agent Ai is a set of problems for which Ai

knows the correct solution. To build an exam E, an agent Ai chooses a subset
of cases CE ⊆ Ci (that we will call the examination cases) from its case base.
Then, the exam can be generated as E = {c.P |c ∈ CE} (recall that the case
description c.P of a case c is in fact a problem).

When an agent Aj receives an exam E, Aj solves each problem P ∈ E
providing a justified prediction in the form of a JER (Justification Endorsing
Record) for each problem. Thus, the answer of an agent Aj for an exam E is
a set of JERs JE (containing a JER for each problem in the exam). When Ai

receives the set JE from an agent Aj , Ai can proceed as in JUST (see Section
8.3.2): determine which is the set of incorrect JERs J−E , and for each incorrect
JER J ∈ J−E , build the refutation set (see Definition 8.3.2). Let us note by Rt

Aj

the collection of all the refutation sets computed for an agent Aj in a bartering
round t. Notice that the cases in the refutation sets in Rt

Aj
are the cases that

have a JCU utility higher than zero for the agent Aj , and thus Ai is able to
know which cases are interesting for Aj .

Moreover, since Ai is interested in obtaining information about all the other
agents in the system, during information gathering Ai will obtain a collection
of refutation sets Rt

Aj
for each other agent Aj ∈ A − {Ai}. We will note by

Rt
Ai

= {Rt
Aj
}Aj∈A−{Ai} to the set of all the collections of refutation sets obtained

by an agent Ai at a round t.
We can now formally define the Justification based Information Gathering

decision policy as:

Definition 9.6.1. The Justification based Information Gathering decision pol-
icy DJG used by an agent Ai ∈ A in CB-CS consists of generating an exam E
from the set of examination cases CE ⊆ Ci (i.e. using a subset of the cases in its
case base as the examination cases); and then engaging the interaction protocol
shown in Figure 9.10 with each agent Aj ∈ A − {Ai}. The sub-protocol works
as follows:

1. Ai sends the exam E to Aj.

2. Aj solves each problem P ∈ E and provides a justified prediction for each
problem. Then, Aj sends all the justified predictions back to Ai.

3. With the justified predictions received from Aj, Ai builds the collection of
refutation sets Rt

Aj
(to be used later to generate bartering offers in the

Case Bartering step).

After having used the sub-protocol with the other agents, Ai has obtained the
set Rt

Ai
, containing a collection of refutation sets for each agent Aj ∈ A−{Ai}.

236 Chapter 9. Case Bartering Collaboration Strategies

Moreover, in our experiments all the cases in the case base are used as exami-
nation cases (i.e. CE = Ci) in order to obtain the maximum possible information
during the Information Gathering step.

With the information gathered using the DJG decision policy, the agents are
now ready to generate bartering offers as next section explains.

9.6.2 Justification Based Case Bartering

During the Case Bartering step of the CB-CS collaboration strategy, agents are
allowed to send bartering offers to other agents. Moreover, bartering offers used
by the justification based case bartering differ in form from those used in the
bias based case bartering. The main difference is that in the bias based bartering
the bartering offers make reference only to the solution class of the cases, while
in the justification based bartering the bartering offers make reference to specific
cases. For this reason, in this section a new bartering offer is defined to be used
in the justification based bartering, and also a new decision policy will be defined
to generate such bartering offers.

During the Information Gathering step the information that each agent Ai

has obtained is which cases of Ci are interesting for the rest of agents, but not
which cases of the rest of agents are interesting for him. Therefore, the bartering
offer will be made in two steps:

1. In a first step, an agent Ai sends a bartering request to another agent
Aj , informing Aj that Ai has a set of cases in its case base that may be
interesting for Aj .

2. In a second step, (and assuming that Aj has accepted the bartering request
made by Ai) Aj sends a bartering offer to Ai, where Aj proposes to Ai

two specific sets of cases to barter.

Notice that, since a bartering offer makes reference to specific cases, Aj can-
not construct a bartering offer if Ai does not send a bartering request containing
which cases Ai has that can be of interest for Aj .

Let us formally define bartering requests and bartering offers.

Definition 9.6.2. A bartering request Q = 〈DR→O, AR, AO〉 sent by an agent
AR (requester) to an agent AO (offeror) is a tuple containing a set of case
descriptions (DR→O), that AR thinks AO might be interested in acquiring.

Notice that the bartering requests contains case descriptions only and not
the complete cases (recall that a case c consists of a case description c.P and
a solution c.S). Thus, a bartering request incudes the case description of some
cases in the case base Ci of an agent Ai that might be interesting for an offeror
agent Aj .

When an agent Aj receives a bartering request from a requester agent Ai

that upon consideration seems useful (using its DA acceptance decision policy),
Aj will answer to the requester with a message containing a bartering offer.

9.6. Justification Based Decision Policies 237

Definition 9.6.3. A Bartering Offer O = 〈DO→R, DR→O, AO, AR〉 is a tuple
sent by an offeror agent AO to an agent AR (the requester) with a set DO→R

containing the descriptions of the cases that AO offers to AR in exchange of the
cases whose descriptions are in DR→O. Moreover, the size of the sets DO→R

and DR→O must be the same

The restriction that the size of the sets DO→R and DR→O must be the same
is imposed so that bartering is a smooth process. Let us illustrate the problems
that can arise if we do not impose this restriction with an extreme example: in
a bartering process involving sets of cases of different sizes, an agent Ai with
a small case base could receive a large amount of cases in just one barter from
another agent Aj ; that would increase the error correlation of Ai dramatically
with Aj since the majority of cases owned by Ai would be the cases received
from Aj . Therefore, unequal size in bartering offers could make the committee
to perform sub-optimally since a committee is interested in keeping a low error
correlation in order to take benefit from the ensemble effect.

If a bartering offer is accepted, the offeror agent AO will send the cases
BO→R = {c ∈ CO|c.P ∈ DO→R} to AR and the requester agent AR will send
the cases BR→O = {c ∈ CR|c.P ∈ DR→O} to AO. Moreover, for the justification
based decision policies we have only considered the copy mode, i.e. the agents
barter copies of the cases. To consider the non-copy mode an agent must have a
way to determine that the cases that it is giving to another agent are less useful
than the cases received. However, to keep our experiments as simple as possible,
we have not considered such scenario. In the conclusions section we will retake
this discussion of explain some possibilities on how decision policies to work in
the non-copy mode could be designed.

The set of decision policies presented in this section define the justification
based case bartering strategy (CB-CS justifications).

9.6.2.1 Justification-based Case Bartering Policy

The DJB decision policy used by an agent Ai decides, for every Aj ∈ A −
Ai, whether it is interesting to send a bartering request to Aj or not. If it is
interesting, a sub-protocol is engaged to allow the agents to communicate the
bartering requests and offers. The sub-protocol is shown in Figure 9.11, and
requires four additional decision policies:

• DJRG: that generates the bartering requests.

• DJOG: that generates the bartering offers.

• DJRA: that decides whether to accept or not a bartering request received
from another agent.

• DJOA: that decides whether to accept or not a bartering offer received
from another agent.

238 Chapter 9. Case Bartering Collaboration Strategies

:

:

w0 w1 w2

p1 p2

p1

p2

w3

w4

p3

p4

p5

:

:

:

p3

p4

p5

Request(?Ai, ?Aj , ?R)

Request(!Aj , ?Ai, ?O)

Request(!Aj , ?Ai, reject)

Request(!Ai, ?Aj , reject)

Request(!Ai, ?Aj , accept)

Figure 9.11: Interaction protocol used by the agents in the DJB decision policy.

Figure 9.12 shows the relation between all the protocols and decision policies
involved in the justification based case bartering. Figure 9.12 shows that the
main case bartering protocol requires two decision policies DJG and DJB .

In the remainder of this section we are going to define the DJRG, DJOG,
DJRA and DJOA decision policies and also define how the sub-protocol engaged
by DJB uses them. Let us first formally define DJB .

Definition 9.6.4. The Justification based Case Bartering decision policy DJB

used by an agent Ai in a round t of CB-CS is a boolean function that is applied
for each agent Aj ∈ A− {Ai} to decide whether to engage the sub-protocol with
Aj or not:

DJB(Aj) =

{
true if DJRG(Aj) 6= ∅
false otherwise

For each agent Aj the decision policy DJRG is used to generate a bartering
request for Aj, and if the bartering request generated is not empty (DJRG(Aj) 6=
∅), then the sub-protocol is engaged with Aj.

The protocol of Figure 9.11 used by the DJB decision policy is engaged when
DJB decides that it is interesting to send a bartering request Q to an agent Aj ,
i.e. when Ai has some cases that might be interesting for Aj . The protocol
works as follows:

1. Ai sends a message p1 to Aj with a bartering request Q.

2. If Aj accepts the request (using its DJRA acceptance decision policy),
generates a bartering offer O as explained above and sends a message p2

to Ai containing the bartering offer O. If Aj rejects the request, a reject
message p4 is sent to Ai and the protocol ends.

9.6. Justification Based Decision Policies 239

Case Bartering Protocol

Information
Gathering:

DJG

Case
Bartering:

DJB

DJB Sub-protocol

Request
Generation:

DJRG

Request
Acceptance:

DJRA

Offer
Generation:

DJOG

Offer
Acceptance:

DJOA

Figure 9.12: Relation between the protocols and decision policies used in justi-
fication based case bartering.

3. If Ai accepts the offer (using its DJOA acceptance decision policy), an
accept message p3 is sent to Aj , the protocol ends and the cases are ex-
changed; otherwise, a reject message p5 is sent to Aj and the protocol
ends.

The following sections present each one of the decision policies used in the
sub-protocol.

9.6.2.2 Justification-based Request Generation Policy

Let us focus on how an agent Ai uses the information obtained in the Information
Gathering step to generate a bartering request to send to an agent Aj in a round
t of CB-CS. First of all Ai has to determine which cases is it going to offer to
Aj . To do so, Ai uses the collection of refutation sets Rt

Aj
∈ Rt

Ai
collected

for Aj . Each refutation set in Rt
Aj

contains the cases that can prevent Aj of
making again one of the errors made in the exam that Ai sent to Aj in the
Information Gathering step. Thus, by offering Aj a case from each refutation
set, Ai is actually offering a set of cases that can prevent Aj of making each
one of the errors made in the exam. Therefore, to build a bartering request,
Ai selects a case from each of the refutation sets in Rt

Aj
, constructing the set

of cases Bt
i→j , and then the set of case descriptions Dt

i→j = {c.P}c∈Bt
i→j

with
which the bartering request 〈Dt

i→j , Ai, Aj〉 is made.
Moreover, since an agent Ai may barter cases with more than one agent at

each round of CB-CS, an additional issue must be taken care of. Imagine that
Ai has already bartered cases with an agent Ak at a round t, an now Ai is going
to send a bartering request to another agent Aj . Let us note by Bt

i→k the set of
cases that Aj has already bartered with Ak and by Bt

i→j the set of cases that Ai

is going to offer to Aj in the bartering request. Notice that if there is a non null
intersection between Bt

i→k and Bt
i→j some cases will be sent to more than one

agent. This may increase the degree to which agent Aj and Ak make correlated

240 Chapter 9. Case Bartering Collaboration Strategies

predictions. Moreover, if Ai selects cases from the refutation sets in Rt
Aj

that
are not present in Bt

i→k, the correlation between the predictions of Aj and Ak is
not increased. Thus, since the goal of the agents using CB-CS is to increase their
individual performance and also the committee performance, it is interesting to
keep correlation as low as possible (since it is one of the preconditions for the
ensemble effect to take place).

Thus, we can now formally define the DJRG decision policy:

Definition 9.6.5. The Justification based Request Generation decision policy
DJRG used by an agent Ai in a round t of CB-CS to generate a bartering request
for an agent Aj consists of the the following steps:

1. Let us note by Ab ⊂ A the set of agents to which Ai has already sent
bartering requests. Thus, Ai starts by identifying the set of cases Bb that
Ai has already bartered with the agents in Ab.

2. After that, for each non empty refutation set RJ
t ∈ Rt

Aj
:

(a) Ai looks if there is any case c ∈ RJ
t that is not present in Bb:

• If such a case exists, c is selected (if more than one case matches
this condition, Ai randomly selects one of them).

• Otherwise, Ai randomly selects a case from all the cases in RJ
t .

3. All the cases selected in the previous step form the set of cases Bt
i→j.

Thus, Ai constructs the set Dt
i→j = {c.P}c∈Bt

i→j
containing all the case

descriptions of the cases in Bt
i→j.

4. Finally, Dt
i→j is the output of the decision policy.

Notice that in step 2.(a), cases not previously bartered (i.e. cases not present
in Bb) are preferred to cases previously bartered. In this way, correlation is kept
as low as possible.

9.6.2.3 Justification-based Offer Generation Policy

When an agent Aj receives a bartering request Q from an agent Ai, Aj uses
the DJOG decision policy to decide which cases to offer to Ai in exchange of the
cases that Ai has offered.

Definition 9.6.6. The Justification based Bartering Offer Generation decision
policy DJOG used by an agent Aj in a round t of CB-CS after having received a
bartering request Q from an agent Ai consists of the the following steps:

1. Let us note by Ab ⊂ A the set of agents to which Aj has already sent
bartering requests. Thus, Aj starts by identifying the set of cases Bb that
Aj has already bartered with the agents in Ab.

2. After that, for each non empty refutation set RJ
t ∈ Rt

Ai
:

9.6. Justification Based Decision Policies 241

(a) Aj looks if there is any case c ∈ RJ
t that is not present in Bb:

• If such a case exists, c is selected (if more than one case matches
this condition, Aj randomly selects one of them).

• Otherwise, Aj randomly selects a case from all the cases in RJ
t .

3. All the cases selected in the previous step form the set of cases Bt
j→i.

Thus, Aj constructs the set Dt
j→i = {c.P}c∈Bt

j→i
containing all the case

descriptions of the cases in Bt
j→i.

4. Finally, since we imposed a restriction over bartering offers so that the
size of Dt

j→i must be the same than Dt
i→j, Aj performs an extra step: Aj

selects two subsets D̂t
j→i ⊆ Dj and D̂i ⊆ Di such that D̂t

j→i and D̂t
i→j are

of the same size. Then, the bartering offer O = 〈D̂t
j→i, D̂

t
i→j , Aj , Ai〉 is

generated and sent to Ai.

9.6.2.4 Justification Based Request Acceptance

In this section we will define two very simple decision policies to be used by the
agents to accept or reject bartering requests and bartering offers coming from
other agents in the MAC system.

Definition 9.6.7. The Justification-based Bartering Request Acceptance de-
cision policy DJRA is defined as accepting every bartering request that offers a
non-empty subset of cases, i.e.

DJRA(Q) =

{
true if Q.DR→O 6= ∅
false otherwise

Notice that the previous definition assumes that each agent participating
in the CB-CS collaboration strategy is collaborative, and that the agents will
not offer cases in the bartering requests that are not interesting for the agents
that receive the requests. If this assumption does not hold, a more elaborated
decision policy should be defined.

9.6.2.5 Justification Based Offer Acceptance

Definition 9.6.8. The Justification-based Bartering Offer Acceptance decision
policy DJOA is defined as accepting every bartering offer that offers a non-empty
subset of cases, i.e.

DJOA(O) =

{
true if O.DO→R 6= ∅
false otherwise

Again, this acceptance decision policy assumes that every agent is collabo-
rative.

The next section presents an empirical evaluation of case bartering that in-
cludes experiments with both bias based and justification based decision policies.

242 Chapter 9. Case Bartering Collaboration Strategies

9.7 Experimental Evaluation

In this section we are going to empirically evaluate the CB-CS collaboration
strategy. Specifically, we are going to compare the classification accuracy ob-
tained by MAC systems composed of 3, 5, 7, 9, 11, 13, and 15 agents with and
without case bartering. Moreover, we are also going to discuss results concerning
the properties of case bases achieved using each one of the different collaboration
strategies (including case base size, completeness, redundancy, and bias).

To test the case bartering strategy, the cases in the training set are not
randomly sent to the agents but are sent with a certain degree of bias, i.e.
some agents have a higher probability of receiving cases of certain classes and
a smaller probability of receiving cases of other classes. In an experimental
run, the training set is distributed among the agents (in a biased way) and
the classification accuracy is measured; then the agents use the case bartering
strategy and the classification accuracy is measured again in order to evaluate
the difference. Specifically, we are going to compare four different strategies:

• base: represents a MAC system where the agents do not apply any case
bartering strategy.

• CB-CS bias copy: the agents use the bias based strategy (see Section 9.3)
in the copy mode (i.e. exchanging copies of cases).

• CB-CS bias no-copy: the agents use the CB-CS collaboration strategy
using the bias based strategy in the non-copy mode (i.e. exchanging cases
and not copies of cases).

• CB-CS justifications: the agents use the justification based strategy (see
Section 9.6) to exchange copies of cases.

Moreover, we have limited the number of bartering rounds of the bias based
strategies to 100 and of the justification based strategy to 10. We have allowed
more rounds in the bias based strategies because them barter cases one by one
while the justification based strategy barters batches of cases and requires less
iterations.

In order to test the generality of the collaboration strategies we are going to
present results using three data sets: sponge, soybean and zoology. Moreover, in
all the experiments reported in this section agents use LID as the learning method
and all the presented results are the average of five 10-fold cross validation runs.

We will first present experimental results concerning classification accuracy,
and after that we will analyze the properties of the case bases with the different
decision policies.

9.7.1 Accuracy Evaluation

Figure 9.13 shows the classification accuracy achieved by agents inMAC systems
composed of 3, 5, 7, 9, 11, 13, and 15 agents in the sponge data set. Four

9.7. Experimental Evaluation 243

CB-CS - Individual - Sponge

50

55

60

65

70

75

80

85

90

95

3 5 7 9 11 13 15

CB-CS - Committee - Sponge

50

55

60

65

70

75

80

85

90

95

3 5 7 9 11 13 15

Base

CB-CS bias no-copy

CB-CS bias copy

CB-CS justifications

Figure 9.13: Classification accuracy comparison between agents using the differ-
ent CB-CS decision policies in the sponge data set for several MAC systems.

bars are shown for each MAC system, corresponding to the base, CB-CS bias
no-copy, CB-CS bias copy and CB-CS justifications strategies explained above.
The left hand side plot shows the committee classification accuracy and the right
hand side plot shows the individual classification accuracy. Figure 9.13 shows
that the classification accuracy achieved using case bartering is always higher
to that achieved without case bartering, both concerning the individual and the
committee accuracy.

Concerning the bias based strategies, CB-CS bias copy and CB-CS bias non-
copy, Figure 9.13 shows that both strategies are almost undistinguishable in the
committee classification accuracy. However, CB-CS bias copy achieves higher
individual classification accuracy than CB-CS bias non-copy. The explanation is
that in the copy mode the agents barter copies of cases and therefore the average
number of cases that an individual agent has after case bartering is higher than
before case bartering. Thus, the individual classification accuracy increases due
to the individual increase of case base size. However, the committee classification
accuracy is not increased with respect to CB-CS bias non-copy because bartering
copies of cases increases the error correlation among the agents.

244 Chapter 9. Case Bartering Collaboration Strategies

Concerning CB-CS justifications, Figure 9.13 shows that agents using CB-CS
justifications achieve the highest classification accuracy values for all the MAC
systems except for the 3 agents system, where CB-CS non-bias copy achieves
higher committee accuracy and CB-CS bias copy achieves higher individual ac-
curacy. Moreover, notice that using CB-CS justifications the classification accu-
racy of systems composed of many agents is equal (or even higher) than that of
systems with less agents. The difference in classification accuracy between the
base strategy and CB-CS justifications is specially high for systems with many
agents: for instance, in the 15 agents MAC system, the classification accuracy
for the base strategy is 55.07% for the individual agents and 86.00% for the com-
mittee while the classification accuracy for CB-CS justifications is 87.57% for
the individual agents and 93.86% for the committee. Moreover, the difference
in classification accuracy between the bias based strategies and CB-CS justifica-
tions is also higher in systems with many agents. CB-CS justifications achieves
higher accuracy than the bias based strategies because their goal is to minimize
the case base bias, and the increase of classification accuracy is a consequence of
this; thus they achieve to increase classification accuracy in an indirect way. CB-
CS justifications directly tries to increase classification accuracy by exchanging
cases with high JCU utility, that are cases that can fix errors.

Figure 9.14 shows the classification accuracy achieved in the soybean data
set. Figure 9.14 shows that the bias based strategies achieve higher classification
accuracy values than without using case bartering. Moreover, in the soybean
data set, the classification accuracy achieved using the copy mode is higher than
the one achieved using the non-copy mode. For instance, the accuracy achieved
by a committee of 11 agents using bias based case bartering in the non-copy
mode is 65.89% while working in the copy mode it is 74,01%. The explanation
is that in the soybean data set the classification accuracy diminishes quickly if
we reduce the number of cases that an agent has in its case base (as can be
seen in the MAC systems with many agents); therefore, working in the copy
mode increases classification accuracy because it increases the average size of
individual case bases.

Figure 9.14 shows that CB-CS justifications achieve even higher classification
accuracy values than CB-CS bias copy. Moreover, notice that using CB-CS
justifications the classification accuracy of systems composed of many agents is
equal to that of systems with less agents (as we already observed in the sponge
data set). Again, the explanation is that CB-CS justifications aims directly at
increasing classification accuracy while the bias based strategies aim at reducing
case base bias and the classification accuracy increase is a consequence.

Figure 9.15 shows the classification accuracy achieved in the zoology data
set with results similar to those observed in Figures 9.13 and 9.14: case bar-
tering systematically improves classification accuracy, CB-CS bias copy achieves
higher classification accuracy than CB-CS bias non-copy and CB-CS justifica-
tions achieves the highest classification accuracy. Moreover, notice that in the
zoology data set the highest classification accuracy is achieved in the 15 agents
system, achieving a classification accuracy of 97.03% for the committee and a

9.7. Experimental Evaluation 245

Base

CB-CS bias no-copy

CB-CS bias copy

CB-CS justifications

CB-CS - Committee - Soybean

30

35

40

45

50

55

60

65

70

75

80

85

90

3 5 7 9 11 13 15

CB-CS - Individual - Soybean

30

35

40

45

50

55

60

65

70

75

80

85

90

3 5 7 9 11 13 15

Figure 9.14: Classification accuracy comparison between agents using the differ-
ent CB-CS decision policies in the soybean data set for several MAC systems.

93.04% for the individual agents (a centralized CBR system owning all the cases
achieves a classification accuracy of 95.64%). This result also happened in the
sponge and soybean data sets, in the sponge data set the maximum accuracy
is achieved by the 13 agents system (94.64%) and is also much higher than the
accuracy achieved by a centralized CBR system owning all the cases (89.50%); in
the soybean data set he maximum accuracy is achieved by the 15 agents system
(89.90%) and is slightly higher than the accuracy achieved by a centralized CBR
system owning all the cases (89.51%). The high classification accuracy achieved
with the systems composed of many agents is because the justification based
case bartering is able to boost the ensemble effect. Therefore, we can conclude
that CB-CS justifications is able both to increase the classification accuracy of
the individual agents and of keeping the error correlation among them low (since
these are the preconditions of the ensemble effect).

The next section presents an analysis of the properties of the case bases of
the individual agents after case bartering that will help us to better understand
the results related to classification accuracy.

246 Chapter 9. Case Bartering Collaboration Strategies

Base

CB-CS bias no-copy

CB-CS bias copy

CB-CS justifications

CB-CS - Committee - Zoology

40

45

50

55

60

65

70

75

80

85

90

95

100

3 5 7 9 11 13 15

CB-CS - Individual - Zoology

40

45

50

55

60

65

70

75

80

85

90

95

100

3 5 7 9 11 13 15

Figure 9.15: Classification accuracy comparison between agents using the differ-
ent CB-CS decision policies in the zoology data set for several MAC systems.

9.7.2 Case Base Evaluation

Table 9.1 shows the case base properties of the CBR agents in a MAC system
composed of 9 agents for the sponge data set. Each row of the table shows
the results for a different strategy. The columns correspond to the following
properties of the case base: the accuracy achieved by individual agents, the
accuracy achieved by the committee of agents (using CCS), the average size of
individual case bases, and the average Committee Completeness (C), Committee
Redundancy (R) and Committee Bias (B).

Concerning CB-CS bias non-copy, Table 9.1 shows that the only property
of the case base that changes is the bias, that goes down from 0.45 to 0.20.
Thus, the increment of the committee accuracy from 86.00% to 90.21% and of
the individual accuracy from 65.07% to 70.42% is due entirely to this reduction
of case base bias.

CB-CS bias copy has two effects in the case bases of the agents: decrease of
bias (from 0.40 to 0.19) and slight increase of the redundancy (from 0.00 to 0.06).
This increment in redundancy increases the average size of the case bases from
28.00 to 41.13 cases. If we recall the conclusions of Chapter 4, we concluded

9.7. Experimental Evaluation 247

Individual CCS CB size C R B
Base 65.07% 86.00% 28.00 1.00 0.00 0.45

CB-CS bias no-copy 70.42% 90.21% 28.00 1.00 0.00 0.20
CB-CS bias copy 75.86% 91.00% 41.13 1.00 0.06 0.19

CB-CS justifications 83.21% 94.28% 95.02 1.00 0.30 0.13

Table 9.1: Case Base properties comparison between agents using the different
CB-CS decision policies in the sponge data set in a 9 agents MAC system.

Individual CCS CB size C R B
Base 45.08% 68.99% 30.70 1.00 0.00 0.26

CB-CS bias no-copy 45.39% 71.07% 30.70 1.00 0.00 0.10
CB-CS bias copy 67.67% 77.60% 57.54 1.00 0.11 0.10

CB-CS justifications 83.71% 87.95% 119.35 1.00 0.36 0.10

Table 9.2: Case Base properties comparison between agents using the different
CB-CS decision policies in the soybean data set in a 9 agents MAC system.

that a low bias and a moderate redundancy were the optimal conditions for
an ensemble. Thus, CB-CS bias copy is expected to outperform CB-CS bias
non-copy. In fact, this expectation is accomplished, since the individual agents
achieve an accuracy of 70.42% and 75.86% for the CB-CS bias non-copy and CB-
CS bias copy and the committee achieves an accuracy of 90.21% and 91.00%.

Finally, the fourth row of Table 9.1 shows that CB-CS justifications has two
effects in the case base: a decrease in bias, and a large increase in redundancy.
The large increase in redundancy is reflected in a large increase in individual
case base size, that has increased from an average of 28.00 cases per agent to
95.02. Moreover, this increase in case base size is useful, since it has boosted
classification accuracy from 65.07% to 83.21% for the individual agents and from
86.00% to 94.28% for the committee. Moreover, the increase of classification
accuracy is not only due to the increase in redundancy, since a committee of 9
agents with a redundancy of 0.30 achieves a classification accuracy of just 90.21%
(as shown in Chapter 4). Therefore, the higher value of classification accuracy
must be due to the ability of CB-CS justifications to properly select which cases
are adequate to be bartered.

Table 9.2 shows the case base properties of the CBR agents for the soybean
data set. The analysis is similar to that of the sponge data set: CB-CS bias
non-copy increases the classification accuracy as a consequence of reducing bias;
CB-CS bias copy introduces a small degree of redundancy that is able to increase
classification accuracy even more; and finally the CB-CS justifications achieves
the highest classification accuracy values for the same reasons explained in the
sponge data set analysis.

Table 9.3 shows the case base properties of the CBR agents for the zoology
data set showing the same results observed in the sponge and soybean data set.

CB-CS justifications is a more informed strategy than both CB-CS bias non-

248 Chapter 9. Case Bartering Collaboration Strategies

Individual CCS CB size C R B
Base 57.42% 83,96% 10.10 1.00 0.00 0.42

CB-CS bias no-copy 66.73% 85.54% 10.10 1.00 0.00 0.18
CB-CS bias copy 77.82% 88.51% 18.93 1.00 0.09 0.16

CB-CS justifications 92.80% 95.07% 36.28 1.00 0.32 0.25

Table 9.3: Case Base properties comparison between agents using the different
CB-CS decision policies in the zoology data set in a 9 agents MAC system.

copy or CB-CS bias copy. This is because CB-CS justifications uses exams to
analyze the contents of the case bases of the individual agents, and thus is able to
decide which concrete cases would be interesting for certain agents. In contrast,
the bias based strategies only analyze the contents of the case bases in terms of
how many cases each agent has of each solution class and never make reference to
concrete cases. Moreover, CB-CS justifications has a higher computational cost
(since it has to process more information) than the bias based strategies. In fact,
agents using CB-CS justifications have to solve n − 1 exams at each bartering
round (where n is the number of agents in the system) and the exams have an
average of M/n cases (where M is the size of the training set); that represents
(n− 1) ∗ (M/n) retrieve operations per agent per cycle. Then, each agent has to
analyze the results of the exams, that requires (n−1)∗(M/n) retrieve operations
(in the worst case) per agent per cycle. Thus, the cost of the Information
Gathering step in CB-CS justifications is 2 ∗ (n− 1) ∗ (M/n) retrieve operations
per agent per cycle. In contrast, using the bias based strategies, agents only have
to count the number of cases they have of each class. Thus, agents using CB-CS
justifications have a higher computational cost than agents using the bias based
strategies, but this cost is justified, since the additional information gathered
by CB-CS justifications is useful in achieving better performance than the bias
based strategies.

Summarizing the experimental results presented in this section we can con-
clude that case bartering improves classification accuracy both of individual
agents and of committees of agents. Moreover, as we also observed in previ-
ous chapters, allowing some degree of redundancy increases the classification
accuracy (as we have seen in this chapter comparing strategies working in the
non-copy mode versus working in the copy mode). Finally, we have shown that
the CB-CS justifications is able to achieve the highest classification accuracy
values proving that it achieves an increased individual classification accuracy
while keeping a low error correlation.

9.8 Conclusions

In this chapter we have presented several Case Bartering Collaboration Strate-
gies (CB-CS), that allow a committee of agents to reach bartering agreements.
Specifically, we have presented a common interaction protocol and two sets of

9.8. Conclusions 249

decision policies that the agents in a MAC system can use with CB-CS:

• Strategies with bias based decision policies: focused on diminishing the
bias of the individual agents in a MAC system, and thus increasing classi-
fication accuracy. Moreover, these policies can work in the non-copy mode
(that does not increase redundancy) or in the copy mode (that moderately
increases redundancy).

• A strategy with justification based decision policies: that uses the JCU
utility assessment function presented in Chapter 8. The purpose of this
strategy is that each agent obtains cases with a high JCU utility (i.e. cases
that can prevent them from making errors in the future), thus increasing
their classification accuracy.

The experimental evaluation presented in this chapter allows us to conclude
that case bartering is useful since both the individual and the committee clas-
sification accuracy increase with case bartering. The experiments have shown
that the bias based strategies succeed in increasing classification accuracy by
diminishing case base bias. Moreover, the experimental results have shown the
moderate degree of redundancy introduced when performing case bartering in
copy mode increases the classification accuracy with respect to the non-copy
mode. Thus, the classification accuracy increase achieved by the bias based
strategy in the copy mode is the effect of both diminishing case base bias and
of slightly increasing redundancy.

The justification based strategy achieves the highest classification accuracy,
and this fact cannot be explained only as a sum of the reduction of bias and
in the increase of redundancy. In fact, justifications allow the agents to obtain
information suitable to correctly decide which specific cases are effectively traded
with whom. Moreover, the decisions taken are right in the sense that they
achieve a higher individual agent classification accuracy while maintaining a
low error correlation. The fact that the classification accuracy achieved using
justifications is higher than the accuracy that could be expected by the degree
of bias and of redundancy of the system let us conclude that the analysis made
using justifications provides useful information that can be exploited by the
agents (in this case to generate interesting bartering offers). Moreover, this
reinforces the results obtained in Chapter 8 where a justification based retention
strategy achieved higher accuracy than expected by the ensemble space analysis.

In general, we can view case bartering as a decentralized search process in
the space of all the possible distributions of cases among the agents in a MAC
system (i.e. a search in the ensemble space in which the number of agents
is fixed). Each time two agents barter cases, the distribution of cases in the
MAC system changes. Moreover, case bartering performs a search with the
goal of maximizing/minimizing some criterion. For instance, the bias based
strategies have as the goal minimizing the case base bias of the agents, and the
justification based strategy has as the goal minimizing the number of individual
errors that the agents make while solving exams during the information gathering
step (i.e. maximizing their individual classification accuracy) and keeping the

250 Chapter 9. Case Bartering Collaboration Strategies

error correlation as low as possible. However, case bartering is not limited to
diminishing bias or to exchange high utility cases; new criteria could be defined
other than the ones presented in this chapter, and new decision policies developed
that optimize such criteria.

Notice that bias based case bartering is very related to classification tasks
(that are our main focus in this work). The reason is that it is based on the
result found in Chapter 4 stating that a high case base bias with respect to the
partition induced by the solution classes leads to a reduced classification accu-
racy. Thus, it is not obvious to adapt the bias based bartering to other domains
such as regression or planning, where there is no straightforward way to define
a partition with which to compute case base bias. However, this limitation does
not apply to the justification based case bartering. Justification case bartering
relies only on the concept of “erroneous solution”: for any domain in which we
can define a criterion of what is an erroneous solution, it will be possible to com-
pute the refutation sets, and thus to use the justification based decision policies.
For instance, in a planning domain, an erroneous solution can be defined as a
solution that involves an execution cost higher than a certain value, or that has
a higher cost than a given known solution. Therefore, the justification based
case bartering is a more general strategy than the bias based one in the sense
that it can be applied to a wider range of domains.

Finally, there are two open issues in the case bartering strategies presented in
this chapter. The first issue is to define bartering decision policies that automat-
ically find the optimal degree of redundancy (so that the committee achieves the
maximum classification accuracy). Current decision policies introduce a moder-
ate degree of redundancy, that improves classification accuracy, but they do not
search the optimal redundancy degree. The second open issue is to define case
bartering decision policies inspired on justifications using the non-copy mode.
The problem to work in the non-copy mode is that the agents need two crite-
ria: one to decide which cases are interesting to be obtained and another one
to decide to which cases to do without. As future work we think it would be
interesting to integrate JUST(see Chapter 8) into the justifications based case
bartering so that it determines a set of cases that an agent can do without in
exchange of cases with higher utility.

Chapter 10

Conclusions

This chapter presents a brief summary of the thesis, presenting a complete list of
the techniques and strategies introduced, discussing then the main contributions
of our work, and finally outlining some future lines of research.

10.1 Summary

In this section we are going to present a brief summary of the work presented in
this thesis with the purpose of having a global view of all the thesis.

With the purpose of studying the effect of distributed data and distributed
decision making in learning problems, in this work we have focused on Multi-
Agent Case Based Reasoning Systems (MAC), that are multi-agent systems
where each individual agent uses CBR to solve problems. Moreover, the work
on MAC systems presented in this thesis can be grouped in three main areas,
as Figure 10.1 shows:

• Work on committees, focusing on how agents can coordinate to act as
ensembles that achieve better performance than working individually.

• Work on retention, focusing on retention strategies specifically designed
for a multi-agent setting instead of single CBR systems.

• Work on redistribution of cases, focusing on how the agents in a MAC
system can coordinately exchange cases in their case bases in order to
improve their individual and committee performance.

Figure 10.1 shows these three areas of work, together with the specific tech-
niques proposed in this thesis for each area.

Committees

Concerning the work presented in committees, our research has focused in three
sub-areas, namely committee formation, prediction aggregation and committee

251

252 Chapter 10. Conclusions

Committees

Committee
Formation

Prediction
Aggregation

BWAV

Justifications

CCS

B-CS

P-CSCompetence
Models

Proactive
Learning

PB-CS

Analysis
Ensemble

Space

JEV

JEC

Retention

Redistribution
of cases

Multi-Agent
Retention

Justification-based
Retention

Delayed Retention

MAR-CS

JCU

JUST

CCB-CS

Case
Bartering:

CB-CS

Bias-based
Bartering

Justifications-based
Bartering

Multi-Agent
CBR

Systems

Figure 10.1: The different techniques presented in this thesis, grouped by areas.

analysis (see Figure 10.1). Specifically, committee formation involves designing
collaboration strategies and decision policies that allow individual agents to de-
cide when to convene committees and which agents to convene. The Committee
Collaboration Strategy (CCS) has been presented as the basic way to convene
committees and has been shown to have a higher classification accuracy than
when the agents solve problems individually. Therefore, CCS has shown the
feasibility of attaining the ensemble effect over distributed data.

CCS uses the static strategy of convening a committee with all the agents in a
MAC system for any problem, but it is not obvious that this is the best strategy
in all situations. Therefore, we proposed the dynamic committee collaboration
strategies, where an ad hoc committee is convened for each specific problem. For
this purpose, we defined competence models, used to assess the confidence that
an agent or group of agents will predict the correct solution for a given problem.
Moreover, competence models can also be used for self-evaluation. Using compe-
tence models agents can determine when a committee should be convened or not
(assessing its own confidence) and which agents should be convened (assessing
the confidence of the other agents in the system). Notice that there are problems

10.1. Summary 253

for which dynamic committees will not convene a committee at all (when the
competence model predicts that an individual agent is competent enough to in-
dividually solve the problem). Thus, dynamic committees are a lazy approach to
convening committees, where committees are only convened when needed, and
where no more agents than required are convened. Specifically, the Bounded
Counsel Collaboration (B-CCS) and the Peer Counsel Collaboration (P-CCS)
are strategies that use competence models to convene dynamic committees.

Moreover, we have also presented a proactive learning technique with which
agents can autonomously learn competence models. Combining the proactive
learning technique with B-CCS, we defined the Proactive Bounded Counsel Col-
laboration Strategy (PB-CCS), that achieved higher classification accuracy than
B-CCS and PB-CCS, and even outperformed CCS in some scenarios. Moreover,
PB-CCS showed to be a very robust way of creating dynamic committees, since
it was much less sensitive to the distribution of cases among the agents than B-
CCS, PB-CCS or CCS. This shows that competence models can be learnt, and
that learning competence models gives MAC systems a larger flexibility (since
it allows agents to perform well in a larger variety of scenarios) and a better
performance than using predefined competence models.

Let us now focus on prediction aggregation. Prediction aggregation deter-
mines a global prediction from the set of individual predictions made by the
agent members of a committee. We proposed the Bounded Weighted Approval
Voting (BWAV) as a voting system specifically designed for CBR agents. BWAV
uses the number of retrieved cases of each solution class to determine how many
votes each agent casts for each solution class.

BWAV assumes that every agent is similarly competent. However, since
there are situations where this assumption does not hold, it would be desirable
to design techniques such that more competent agents have more relevance in
the voting system than less competent agents. For this purpose we introduced
the notion of justifications. A justification is the explanation given by an agent
of why it has considered the solution of a specific problem to be correct. Justifi-
cations provide a way in which agents can examine the rationale of predictions
made by other agents, and thus assess the confidence on the prediction made
by any agent in a committee. Thus, while competence models offer an eager
way to assess the confidence on agents, justifications provide us with a problem-
centered and lazy way of assessing that confidence. Using this idea, we defined
an alternative voting system called Justification Endorsed Voting (JEV), where
the assessed confidence values for member agents are used to weight their respec-
tive predictions in the voting system. Then, we defined the Justification-based
Committee Collaboration Strategy (JE-CS) that uses JEV in order to aggregate
the predictions made by the individual agents in a committee. This new way
of aggregating solutions has proved to be much more robust, since less compe-
tent agents are detected and their weight in the voting system are diminished
accordingly.

Finally, we have also worked in committee analysis. For that purpose, we
defined the ensemble space, a characterization of committees based on three fea-

254 Chapter 10. Conclusions

tures: completeness, bias, and redundance. Using those features, we performed
an analysis of several committees with different properties, and determined that
a committee should have high completeness, low bias and moderate redundance
in order to achieve high performance.

Case Retention

Concerning Case Retention, we introduced three new ideas: multi-agent reten-
tion, justification-based case utility assessment, and delayed retention (Figure
10.1).

The idea of multi-agent retention is that when an agent discards a case, is
may be worthwhile to offer it to another agent in the MAC system, since that
can improve the individual and committee performance. The Multi-Agent Case
Retention Collaboration Strategy (MAR-CS) has been presented as a general way
to implement that idea. Moreover, MAR-CS is a family of strategies and not
a single strategy. Thus, several MAR-CS strategies have been defined, both
inspired in active learning and in CBR case retention ideas, namely: NR-NO,
AR-NO, OFR-NO, ID-NO, OFR-AO, ID-AO, OFR-AOC, and ID-AOC. Specif-
ically, two strategies, OFR-AOC and ID-AOC (that allowed multiples copies of
the same case to be retained by several agents) outperformed the others.

Another idea introduced for case retention is the use of justifications to as-
sess the utility of a case. Thus, we defined the Justification-based Case Utility
(JCU), that uses justifications to predict whether new cases can improve the
performance of a given CBR agent if the cases are added to its case base. To
evaluate the effectiveness of JCU, we define the Justification-based Selection of
Training Examples technique (JUST), that uses JCU in order to reduce the size
of a case base without increasing its classification error.

A main issue in retention techniques is that they are usually sensitive to the
order in which new cases are considered. In order to mitigate this problem, we
introduce the idea of delayed retention. With delayed retention, new cases are
stored in a pool, and only when the pool is full, the cases are considered for
retention. This allows the agents to use retention strategies that are less eager
at discarding or retaining cases. Finally, the three ideas presented introduced for
case retention are combined in the Collaborative Case Bargaining Collaboration
Strategy (CCB-CS), that allows a group of agents to decide which agents should
retain each case using a bargaining mechanism. Moreover, experimental results
have shown that CCB-CS is a very robust retention strategy, and outperforms
all the different versions of MAR-CS.

Case Redistribution

Chapter 9 proposed the idea of case bartering to deal with the general problem
of case redistribution among the agents in a committee. Case bartering involves
the exchange of cases among agents with the purpose of achieving a distribution
of cases that improved both individual and committee performance. Moreover,
recall that we are dealing with autonomous agents, and thus two agents will

10.2. Contributions 255

barter cases only if both agents benefit from that barter. We have proposed two
alternative strategies to perform case bartering: bias based case bartering and
justification based case bartering.

The bias based case bartering is inspired on the results obtained using the
ensemble space analysis, namely that reducing the bias of the agents the perfor-
mance of the committee tends to increase. Thus, we proposed two collaboration
strategies, CB-CS bias copy and CB-CS bias no-copy. The first one involves
bartering of copies of cases and not the cases themselves, and thus increases the
redundancy in the system; the second one does not allow copies of cases, and
thus does not increase the degree of redundancy in the system. Experimental
results have shown that both strategies can improve both individual and com-
mittee performance (and that CB-CS bias copy achieves better results, since,
in addition to decreasing bias, it introduces a moderate degree of redundancy).
These experimental results a) reinforce the results obtained with the ensemble
space analysis and b) prove that is is feasible to perform case redistribution using
decentralized decision making in a way that performance improves.

In justification based case bartering, an agent uses JCU to determine which of
its own cases are likely to be useful for another agent. Thanks to JCU, two agents
barter cases with high utility for both. Specifically, we have presented the CB-
CS justifications collaboration strategy, that has shown to greatly improve the
individual and committee performance of the agents, even improving the results
achieved with CB-CS bias copy. This shows that the additional information
provided by justifications is useful and that the agents can benefit from it to
achieve a more adequate distribution of cases.

10.2 Contributions

In this section we are going to summarily present the contributions of this the-
sis to the fields of multi-agent learning, Case Based Reasoning and ensemble
learning:

• A framework to study learning processes over distributed data with decen-
tralized decision making. This framework is based on multi-agent systems,
where coordination is achieved by means of collaboration strategies (com-
posed of interaction protocols and individual decision policies), and where
data is distributed among the different agents of the system.

• An analysis of the ensemble effect over distributed data. The ensemble
effect has been studied in ensemble learning for centralized data. However,
we study the ensemble effect in a new scenario where data is distributed
over a number of predictors and where no assumptions can be made about
how data is distributed or even about the number of those predictors.

• The notion of committee. A committee is the organizational form of an
“ensemble of agents” from the point of view of multi-agent systems. Com-
mittees are ensembles of agents because data is distributed and because
the control is decentralized.

256 Chapter 10. Conclusions

• The definition of the dynamic committees. Dynamic committees are a
lazy and problem-centered approach to “agent ensemble” creation. They
are lazy because committees are only convened on demand, and they are
problem-centered because ad hoc committees are convened depending on
the specific problem. For these two reasons, dynamic committees are an
approach well adapted to the dynamic and open nature of multi-agent
systems.

• A framework for agents to learn how to collaborate based on competence
models. In this framework, the task of learning when to collaborate and
with whom to collaborate can be achieved by learning competence models.
Competence models can be individually learnt by interacting with other
agents, and those competence models can then be used in the agents’ deci-
sion policies to determine when and with whom to collaborate. Moreover,
experimental results show that learnt competence models allow agents to
achieve higher performance than predefined competence models.

• The definition of the ensemble space. The ensemble space is an analytical
tool for characterizing agent ensembles and their performance. We have
proposed a set of properties for characterizing agent ensembles, namely
completeness, bias, and redundancy. These three properties define the
space of possible ensembles, the ensemble space.

• Identification of the directly measurable preconditions that an agent ensem-
ble must satisfy in order to achieve high performance. Using the ensemble
space analysis, we have determined the preconditions that an ensemble
must satisfy to achieve a high performance, namely a high completeness,
a low bias and a moderate redundancy. Notice that the ensemble space
analysis is based only on the properties of the distribution of cases among
the agents. Thus, these properties are directly measurable and do not re-
quire empirical evaluation. In contrast, the existing formulations of the
preconditions of the ensemble effect are based on properties that are not
directly measurable, namely that the members of an ensemble must be
minimally competent and have low error correlation error (both properties
that require empirical evaluation to be measured).

• An framework for distributed CBR using multi-agent systems (MAC).
MAC systems use a social agents approach based on electronic institutions,
where each individual agent owns a case base. Moreover, our approach pre-
serves the autonomy of the agents and the confidentiality of the individual
case bases (in the sense that a specific piece of data can be revealed, but
only if the responsible agent decides to do so).

• The introduction of distributed reuse. In distributed reuse, each agent indi-
vidually retrieves cases from its case base, gathering relevant information
to solve the problem at hand. Then, the information gathered by each in-
dividual agent is aggregated to build a final prediction about the problem.

10.2. Contributions 257

Moreover, classic aggregation schemes consider only individual predictions
aggregation, while distributed reuse is a more general technique where any
information that the agents can provide can be considered to generate the
final prediction. Thus distributed reuse offers an alternative to distributed
retrieval, with the property that each individual agent only retrieves cases
from its own case base and thus no disclosure of cases is required, preserv-
ing confidentiality of data.

• The introduction of distributed retain. Distributed retain improves the
performance of committees of agents with respect to performing individ-
ual retain. The improvement achieved is due to two main facts. First,
because collaboration during retain allows the individual agents to have
access to a larger sample of cases during the retain process. And second,
because collaboration allows agents to achieve a more adequate distribu-
tion of cases among them resulting in a performance improvement when
they solve problems individually or acting as an ensemble.

• The notion of delayed retention. Delayed retention allows the retain pro-
cesses to use batches of cases instead of considering cases one by one.
Delayed retention strategies achieve higher performance than one by one
strategies because delayed retention is less eager and less sensitive to the
order in which cases are considered.

• A bartering framework for data redistribution. This framework provides a
decentralized way in which agents can redistribute cases. The redistribu-
tion process in case bartering is the result of individual decision making
with respect to which cases are offered and accepted in specific barters.
Thus, agent autonomy is preserved, resulting in a suitable process for
multi-agent systems.

• The interpretation of explanations as justifications. Explanations can be
seen as justifications endorsing agent predictions that can be communi-
cated to other agents in order to improve their collaboration and perfor-
mance. This is a novel idea with respect to the traditional treatment of
explanations in CBR, where explanations are simply be provided to human
users.

• The use of justifications to assess the confidence on predictions. Exami-
nation of justifications provides the agents with a problem-centered way
to evaluate the confidence on the predictions made by other agents in a
committee. Moreover, we have developed a weighted voting system based
on justifications where those predictions endorsed by more confident jus-
tifications have higher weights.

• The use of justifications to evaluate the usefulness of cases. Justifications
can be used to identify weak points in the knowledge of lazy learners, and

258 Chapter 10. Conclusions

thus evaluate the usefulness of new cases for them. Moreover, the justifi-
cation based case utility (JCU) has been successfully applied to improve
both case retention and case redistribution strategies.

10.3 Future Work

There are several issues in our research that will be subject of future research.
First of all, we would like to perform a complete evaluation of the ensemble
space, with a larger number of data sets, with the goal of obtaining clues on
how to find the optimal degree of redundancy for an agent ensemble. This result
is expected to be very useful in both retention and redistribution techniques.
We also plan to improve the ensemble space analysis by trying to identify other
characteristics (in addition to completeness, bias and redundancy) that can be
used to analyze agent ensembles. Moreover, determining the optimal ensemble
space point in terms of classification accuracy could lead to the definition of new
retention and redistribution strategies that exploit this new information in order
to further increase the performance of the agents in a MAC system.

Competence models play an important role in committee collaboration
strategies. Specifically, we have seen that agents make decisions using indi-
vidual decision policies, and that decision policies use competence models and
the current situation in order to make decisions. Thus, a future line of research is
developing better ways to define and to learn competence models with the goal
of improving agent decision making. For instance, better competence models
could lead to improvements in the dynamic committee collaboration strategies
presented in this work.

The generation of justifications is also a subject for future research. During
our work, we have used LID and decision trees algorithms to generate justifica-
tions. However, identifying the kind of justifications that other machine learning
methods can provide would be interesting. In this way, the justification based
techniques that we have presented in this thesis could be applied to a broader
range of machine learning techniques.

We have seen that justifications can be examined by other agents. Moreover,
these justifications can be seen as arguments that endorse agents’ predictions.
In fact, the Justification Endorsed Voting (JEV) presented in this work can be
seen as a basic way of argumentation, where each agent expresses its arguments
and the rest of agents examine those arguments in order to assess a confidence
for the predictions that those arguments endorse. Thus, we plan to develop
further committee aggregation techniques based on more complex argumentation
processes, where the members of a committee tries to convince the other agents
by expressing their arguments in favor of their individual predictions.

In this work we have been interested on analyzing the ensemble effect in
distributed data scenarios. For this purpose, we have experimented with homo-
geneous MAC systems i.e. systems where all the agents used the same learning
methods. In that way, we ensured that the experimental results reflected the
improvement on the ensemble effect due only to our collaboration strategies and

10.3. Future Work 259

not due to the heterogeneity of the learning methods. Indeed, further increase
of performance can be achieved using MAC systems where agents use different
learning methods. However, heterogeneous MAC systems pose new problems.
For instance, the ensemble space analysis should be extended in order to con-
sider the heterogeneity of the system. Moreover, it would be interesting to work
with justifications in heterogeneous MAC systems since those justifications may
not be directly comparable.

We are also interested in applying our techniques to other domains than
classification, such as regression or planning. These new domains raise several
new challenges. First of all, it is not obvious how to aggregate solutions in a
planning domain, thus new ways to aggregate individual solutions have to be
investigated. Some possible ways to do this could be plan merging or the division
of the creation of a plan in several classification sub-tasks where voting can be
applied.

Another problem is that bias is measured in classification domains with re-
spect to the partition induced by the solution classes; this partition, however,
is not available in regression or planning domains. Therefore, a way to define
a reference partition with which to compute bias or a completely new way to
compute bias should be developed. Possible ways to do this could be related to
the definition of similarity relations in the solution space.

Another problem is how to generate and examine justifications to endorse
predictions in regression or planning domains. The main problem with justifica-
tions is that most of the justification based techniques proposed in this work rely
on the idea that the correctness of a solution can be assessed in a boolean way,
however this is not true for regression nor planning. In fact, in planning domains,
it is likely that several plans are correct, but that some of them are better than
others. For that reason, correctness predicates should take into account these
preference relations among solutions.

Finally, more complex argumentation processes will surely be needed in order
to aggregate justified predictions in a planning domain, that would involve plan
critiquing, alternative option discussion, preferences negotiation or plan revision.

Appendix A

Notation

This appendix summarizes all the notation used throughout this thesis.

A.1 General Notation

• M: denotes a MAC system.

• Ai: is used to denote an agent.

• A: denotes a set of agents.

• Ci: denotes the case base of the agent Ai.

• c = 〈P, S〉: denotes a specific case, composed of a problem description and
of a solution class.

• S: denotes the set of possible solution classes in a domain.

• Si: denotes a specific solution class.

• K: is the number of possible solution classes in a domain.

• Di: is used to denote a decision policy.

• ICS : is used to denote an interaction protocol for a specific collaboration
strategy CS.

• wi: is used to denote a specific state of an interaction protocol.

• Γ: is used to denote the set of sorts that can be used in the feature terms.

• γi: denotes a specific sort.

• ⊥: denotes the more general sort any.

• ψ: is used to denote a feature term.

261

262 Appendix A. Notation

• τ(ψ): is used to denote the root node of a feature term.

• v: denotes the subsumption relation among feature terms.

A.2 Ensemble Space Notation

• P: denotes a problem space.

• D: denotes a data-set.

• C: denotes the completeness of a case base or of a committee in the terms
of the ensemble space analysis.

• BΠ: denotes the bias of a case base (or the average bias the case bases
of the agents in a committee) with respect to a partition of the problem
space Π.

• BS : denotes the bias with respect to the partition induced by the set of
solution classes S.

• B: is sometimes used as BS for short.

• R: denotes the redundancy in a committee of agents.

A.3 Committees Notation

• Ac: denotes the convener agent of a committee.

• Ac: denotes a committee of agents convened by a convener agent Ac.

• Ac
t : denotes a committee of agents convened at a round t of a dynamic

committee collaboration strategy.

• Ar
t : denotes the candidate agents to be invited to join a committee at the

round t+ 1 of a dynamic committee collaboration strategy.

• R = 〈S,E, P,A〉: denotes a solution endorsement record (SER), composed
of a solution class, the number of endorsing cases, a problem, and the agent
who has generated the record.

• RAi
: is used to denote the set of SERs generated by an agent Ai while

solving a specific problem.

• RA: is used to denote the set of SERs generated by a set of agents A while
solving a specific problem (this is also called a voting situation).

• Rc: is used to denote the set of all the SERs generated by all the agents
in a committee Ac.

A.4. Voting Systems 263

A.4 Voting Systems

• V ote(Sk, P,Ai): is used to denote the votes of an agent Ai for a solution
class Sk to be the correct solution of problem P .

• Ballot(Sk, P,Ac): the sum of all the votes for solution class Sk casted by
the agents in Ac for the problem P .

• Sol(S, P,R): is used to denote the solution class resulting from applying
the voting system to the set of SERs R.

A.5 Proactive Learning Notation

• V(Ai): is used to denote the set of all the possible valid voting situations
for an agent Ai.

• A(Ai): is used to denote the set of all the possible subsets of agents of the
current committee Ac that at least contain Ai.

• MAi
: denotes a competence model of an agent Ai.

• MA: denotes a competence model of a set of agents A.

• mi = 〈A1, ..., An, S
c, V c, V r, ρ〉: is denotes an M -example, i.e. an example

to learn a competence model M .

• TM : denotes a training set composed of M -examples that can be used to
learn a competence model M .

• l: denotes a specific leaf in a confidence tree.

• pl: is used to denote the confidence of a voting situation classified in a leaf
l of a confidence tree.

• p−l : is the pessimistic estimation of pl.

• p+
l : is the optimistic estimation of pl.

A.6 Justifications Notation

• J : is used to denote a justification.

• J = 〈S, J, P,A〉: denotes a justification endorsement record (JER), com-
posed of a solution class, a justification, a problem, and the agent who has
generated the record.

• EC(J, C): denotes the set of endorsing cases of a JER J contained in a
case base C.

264 Appendix A. Notation

• CE(J, C): denotes the set of counterexamples of a JER J contained in a
case base C.

• V CE(J, C): denotes the set of valid counterexamples of a JER J contained
in a case base C.

• X = 〈J, Y,N,A〉: denotes an examination record (XER), composed of a
JER, the number of endorsing cases and of counterexamples and the agent
who has generated it.

• JAi
: is used to denote the set of JERs generated by an agent Ai while

solving a specific problem.

• JA: is used to denote the set of JERs generated by a set of agents A while
solving a specific problem.

• CAc(J): denotes the overall confidence of a JER computed by a committee
of agents Ac.

• JV ote(Sk, P,Ai): is used to denote the justification endorsed votes of an
agent Ai for a solution class Sk to be the correct solution of problem P .

• JBallot(Sk, P,Ac): the sum of all the justification endorsed votes for so-
lution class Sk casted by the agents in Ac for the problem P .

• JSol(S, P,R): is used to denote the solution class resulting from applying
the justification endorsed voting system to the set of SERs R.

A.7 Retention Notation

• E: is used to denote an exam.

• CE : denotes the set of cases from which an exam E has been generated.

• Cr
t : is used to denote the reduced case base at a round t of JUST.

• Cu
t : is used to denote set of unseen cases at a round t of JUST.

• JCU(C,CE): is used to denote the JCU utility of a set of cases C computed
with respect to a set of examination cases CE .

• T : is used to denote the termination criterion of the JUST method.

• RJ
t : denotes the refutation set of a JER J at a round t of JUST.

• Bt: denotes the belying set at a round t of JUST.

• Bi: is used to denote the pool of delayed retention cases of an agent Ai.

• B̂: denotes the union of the pools of delayed retention cases of all the
agents in a committee.

A.8. Bartering Notation 265

• B̂t: denotes the cases remaining to the cases remaining to bargain for at
a round t of the CCB-CS collaboration strategy.

• U = 〈A,C, V 〉: denotes an utility record containing the agent who has
computed the record, the case and the utility value.

• UAi
t : is used to denote the set of utility records generated by an agent Ai

at a round t of the CCB-CS collaboration strategy.

• U t: denotes the utility record with maximum utility value at a round t of
the CCB-CS collaboration strategy.

A.8 Bartering Notation

• dj,k: denotes the fraction of cases in the case base of agent Aj that belong
to the solution class Sk.

• dk: denotes the expected fraction of classes with solution Sk in the appli-
cation domain.

• O = 〈SO, SR, AO, SR〉: is used to denote a bartering offer in the bias based
case bartering.

• Rt
Aj

: denotes the collection of refutation sets computed for an agent Aj

in a round t of the justification based bartering.

• Rt
Ai

: denotes the set of the collections of refutation sets computed by an
agent Ai in a round t of the justification based bartering.

• Q = 〈DR→O, AR, AO〉: is used to denote a bartering request in the justi-
fication based case bartering.

• O = 〈DO→R, DR→O, AO, AR〉: is used to denote a bartering offer in the
justification based case bartering.

• Bt
i→j : the set of cases that an agent Ai will send to an agent Aj in round

t the justification based bartering.

• Dt
i→j : denotes the case descriptions of all the cases in Bt

i→j .

Appendix B

The NOOS Agent Platform

In this appendix we are going to briefly describe the NOOS Agent Platform
(NAP), with which we have performed all the experiments reported in this work
and that has been developed at the Artificial Intelligence Research Institute
(IIIA) of the Spanish Council for Scientific Research (CSIC).

B.1 Overview

The NOOS Agent Platform (NAP), is a LISP based development environment
specifically designed to create knowledge rich Case Based Reasoning agents in
the NOOS representation language based that can communicate and cooperate
using the technology of Agent Mediated Institutions.

The NOOS representation language was developed in the Analog Project and
in the Massive Memory Project, that aimed at developing systems that integrate
problem-solving methods with learning from experience, and has been success-
fully used to develop AI applications related to music [Arcos et al., 1998], and to
medical domains [Armengol and Plaza, 2001a] among others. Later, NOOS was
extended to support multi-agent systems using the technology of agent mediated
institutions [Esteva et al., 2001], constituting the NOOS Agent Platform, that
was developed in the COMRIS, IBROW, E-institutor and Tabasco projects.

Specifically, NAP is mainly composed of two elements:

• The NOOS representation language, based on feature terms and that pro-
vides tools to create CBR agents.

• A FIPA compliant agent platform, that allows the user to define NOOS
agents that can communicate and coordinate among them and with exter-
nal agents.

Let us briefly describe the NOOS representation language and the agent
platform.

267

268 Appendix B. The NOOS Agent Platform

External-features

Ecological-features

Spiculate-skeleton

Sponge

Surface
Growing
Colour

External-features

External

Colour

Orange, Yellow

Grow
Line-Form

Growing

Peduncle

Line-Form

Encrusting

No

Location

Ecological-features

Atlantic

Megascleres
Sclerospongids
Uniform-length

Spiculate-skeleton

No

No

Smooth-form
Acanthose

Ornamentation
Max-length

Two-or-more-length

Megascleres

Tylostyle

No-acanthose

Smooth-ornamentation

2347

Yes

Bristly

Figure B.1: Example of a simplified sponge represented using feature terms.

B.2 Knowledge Representation

NOOS uses the feature term formalism to represent knowledge (see Section 3.2.1)
and provides a LISP-like language to specify feature terms.

Specifically, three elements constitute the knowledge representation language
of NOOS: ontologies, domain model and terms:

• An ontology is a hierarchy of sorts that describes a specific domain.

• The domain model of a specific domain is constituted in NOOS by a set of
predefined instances of the sorts specified in the corresponding ontology.

• Finally, a term describe an individual in a specific domain.

Let us illustrate this with an example in the sponges domain used in our
experiments. Figure B.1 shows a simplified sponge of the sponge data set (in the
sponge data set, the problem is to classify a new sponge in its correct biological
order: astrophorida, hadromerida or axinellida). Figure B.1 shows a series of
boxes. Each box represents a node of the feature term. Each node has a sort
(that in the figure is represented with a gray background on the top of the
boxes) and a set of features (on the lower part of the boxes). The root node of
the feature term is the left-most node in the figure. Specifically, Figure B.1 shows
a sponge that has three features (external-features, ecological-features

B.2. Knowledge Representation 269

(define-sort (sponge)
(external-features external-features)
(ecological-features ecological-features)
(spiculate-skeleton spiculate-skeleton)
(fibrous-skeleton fibrous-skeleton)
(tracts-skeleton tracts-skeleton)
(anatomy anatomic-features))

(define-sort (spiculate-skeleton)
(chemical chemical)
(architecture architecture)
(megascleres megascleres)
(microscleres micros)
(sclerospongids boolean)
(hexactinellids hexactinellids)
(uniform-length boolean))

(define-sort (micros))
(define-sort (micros aster))
(define-sort (aster sterraster)

(type form)
(deformed boolean)
(sterr-diameter number))

(define-sort (aster oxyaster)
(deformation boolean)
(max-diameter number)
(two-length-categories boolean))

...

Figure B.2: NOOS definition of the ontology needed to define the feature term
depicted in Figure B.1.

and spiculate-skeleton); each feature value has its own features, etc. For
instance, the feature ecological-features has as a value a node that is of the
sort ecological-features, that has a single feature, location, that has as
value atlantic, that is defined in the domain model.

Now, let us see how to define that feature term in NOOS. First of
all, the ontology has to be defined. The ontology required for the sponge
data set is huge, and thus only a fragment will be presented here. Figure
B.2 shows the specification of a part of the sponge ontology in the NOOS
representation language. Initially, the sort sponge is defined, as having 6
features (external-features, ecological-features, spiculate-skeleton,
tracts-skeleton and anatomy). Each feature is specified as a pair, for instance,
the pair (anatomy anatomic-features), defines a feature named anatomy and
that takes as values terms of the sort anatomic-features. After that, the
spiculate-skeleton sort is defined. Then, the micros sort, and after that, the

270 Appendix B. The NOOS Agent Platform

...
(define (aster :id spheraster))
(define (aster :id chiaster))
(define (aster :id strongylaster))
(define (aster :id selenaster))
(define (aster :id spiraster))
(define (aster :id diplaster))
(define (aster :id amphiaster))
(define (aster :id sanidaster))
(define (aster :id metaster))
(define (aster :id plesiaster))
...

Figure B.3: Part of the NOOS definition of the domain model for the marine
sponge identification domain.

micros sort is specialized in the aster, sterraster and oxiaster. Notice that
when a sort is specialized, further features can be defined. For instance, the sort
oxiaster defines three extra features not present in the sort aster, namely,
deformation, max-diameter, and two-length-categories.

Once the ontology is defined, the next step is to define the domain model.
The domain model in NOOS is constituted by a set of predefined instances of the
sorts defined in the ontology. For instance, Figure B.3 defines a lot of different
instances of the sort aster (defined in the ontology). Notice that the instances
in the domain model had an identifier. The identifier is used to make reference
to them when defining terms. For instance, the first line defines an instance
called spheraster of the sort aster.

Finally, once the ontology and the domain model are defined, terms can
be defined. Figure B.4 shows the NOOS expression to define the sponge de-
picted in Figure B.1. All the sorts used in the definition of terms must have
been defined in the ontology. Moreover, notice that the term makes also ref-
erence to the instances defined in the domain model. For instance, the value
bristly found in external-features.surface must have been defined in the
domain model as an instance of the proper sort. Notice also that the sort sponge
had 6 features defined in the ontology, and that the definition of Figure B.4
only defines three of them (external-features, ecological-features, and
spiculate-skeleton); the non specified features are assumed to have the value
any (that represents the minimum information in NOOS).

Moreover, NOOS gives support to define case bases (that are called episodic
memories in NOOS). Each individual agent defined in NOOS has its own episodic
memory, and can retrieve cases (expressed as terms) from it. Moreover, NOOS
also implements the subsumption relation (that defines an information order
among terms) and many other tools to easily visualize, create and manipulate
terms. Thus, the NOOS representation language, provides an excellent frame-
work to develop knowledge intensive applications that combine learning and

B.3. Agent Platform 271

(define (sponge)
(external-features

(define (external-features)
(surface bristly)
(growing

(define (growing)
(grow encrusting)
(line-form

(define (line-form)
(peduncle no)))))

(colour
(define (colour)

(external
(define (set) orange yellow))))))

(ecological-features
(define (ecological-features)

(location atlantic)))
(spiculate-skeleton

(define (spiculate-skeleton)
(megascleres

(define (megascleres})
(smooth-form tylostyle)
(acanthose no-acanthose)
(ornamentation smooth-ornamentation)
(max-length 2347)
(two-or-more-length yes)))
(sclerospongids no)
(uniform-length no))))

Figure B.4: NOOS definition of the feature term depicted in Figure B.1.

problem solving.

B.3 Agent Platform

The NOOS Agent Platform gives support for agent communication and coordi-
nation using the framework of agent mediated institutions [Esteva et al., 2001].
Agents are implemented in NAP by means of four elements: activities, scenes,
behaviors, and problem solving methods (PSM).

• Problem Solving Methods (PSMs): are the primitive inference units. For
instance, CBR methods that solve new problems are PSMs.

• Scenes: define the interaction among a group of agents to perform a certain
task. A scene is fully specified by an interaction protocol that defines a

272 Appendix B. The NOOS Agent Platform

(define-noos-scene BARTER-CASES-SCENE
:description "Scene for two agents that barter cases"
:roles (AI AJ)
:states (W0 W1 W2)
:initial-state W0
:final-states (W2)
:connections ((W0 W1 (Inform (?I AI) (?J AJ) b-message))

(W1 W2 (Inform (!J AJ) (!I AI) b-message))))

Figure B.5: NOOS definition of the interaction protocol that two agents (AI and
AJ) follow to barter two cases.

set of roles that the agents may play, a set of interaction states that the
agents playing different roles may be in, and a set of messages that each
agent is allowed to send in each interaction state.

• Behaviors: define how a specific agent behaves in a specific protocol I.
A behavior is defined by a behavior-method for each possible interaction
state in I. The behavior methods decide the actions that an agent will
perform at each interaction state, including sending messages. Moreover,
behavior-methods use PSMs to make decisions.

• Activities: defines the tasks that an agent is able to manage. An activity
specifies which protocols an agent knows, and which behaviors will an
agent use to follow each known protocol playing a specific role.

Let us illustrate, all the previous elements with a simple example. We will
show the implementation of the interaction protocol followed by two agents that
want to barter two cases (recall the case bartering strategy presented in Chapter
9):

Figure B.5 presents the definition in NAP of the scene for two agents that
want to barter two cases, the BARTER-CASES-SCENE. Two roles (AI and AJ), and
three interaction states (W0, W1, and W2) are defined. Then, state W0 is defined
as the initial state (that state in which each agent will be at the beginning of
the protocol), and state W2 is regarded as a final state (i.e. the protocol will end
when reaches that state). Finally, connections defines the set of messages that
can be send in each of the interaction states by each of the roles in the protocol.
Specifically, this simple protocol only allows two messages, one in state W0 from
AI to AJ (that will contain the case that AI gives to AJ), and another in state W1
from AJ to AI (containing the case that AJ gives to AI). Intuitively, the protocol
is designed to work as follows: first the agent playing role AI will send a case to
the agent playing the role AJ; after that, AJ will answer to AI with another case
and the protocol will end.

The next step is to define the activities. Recall that an activity de-
fines which behavior should be used by an agent to play a specific role
in an interaction protocol. Thus, activity definition is simple in NOOS,

B.3. Agent Platform 273

(define-Activity AI-BARTER-CASE-ACTIVITY
:implements ((AI BARTER-CASES-SCENE)))

(define-Activity-Method AI-BARTER-CASE-ACTIVITY (W args)
(use-behavior ’AI-Barter-Cases-Behavior args))

(define-Activity AJ-BARTER-CASE-ACTIVITY
:implements ((AJ BARTER-CASES-SCENE)))

(define-Activity-Method AJ-BARTER-CASE-ACTIVITY (W)
(use-behavior ’AJ-Barter-Cases-Behavior))

Figure B.6: NOOS definition of the two activities required to play each of the
two roles defined in the protocol specified in Figure B.5

as can be seen in Figure B.6, where the two activities for playing roles
AI and AJ are specified. The first activity AI-BARTER-CASE-ACTIVITY
specifies that the behavior AI-Barter-Cases-Behavior will be used as
the behavior to play the role AI in the scene BARTER-CASES-SCENE.
The second activity AJ-BARTER-CASE-ACTIVITY specifies that the behavior
AJ-Barter-Cases-Behavior will be used as the behavior to play the role AJ
in the scene BARTER-CASES-SCENE.

Figure B.7 shows the NOOS definition of the two behaviors ref-
erenced in the activities. Namely, AI-Barter-Cases-Behavior and
AJ-Barter-Cases-Behavior. Notice, that the behavior for the role AI defines
a behavior-method for two states (W0 and W2) while the behavior for the role
AJ only defines a behavior-method for the state W1. This is because the agent
playing the role AI has to perform actions in states W0 and W2 and the agent
playing the role AJ only has to perform any action in the state W1.

Figure B.7 shows that the agent playing the role AI in state W0 will choose
a case to be sent to AJ, delete it from its case base if the bartering is performed
in the non-copy mode, and send it to AJ. In state W2, the agent playing the role
AJ only has to retain into its case base the case received from AJ. In state W1
the agent playing the role AI does not have to perform any action, just wait for
AJ. Moreover, the agent playing the role AJ in state W1 has to retain the case
received from AI to its case base, choose a case to send to AI, remove it from its
case base if the bartering is performed in the non-copy mode, and finally send
the selected case to AI.

The methods referred to in the behavior methods (such as
Choose-case-to-send, etc.) are the problem solving methods, that are
basically LISP functions that solve the problems that an agent has to
solve in order to perform a certain task with a given behavior. For the
behaviors defined in this example, just three PSMs need to be defined:
choose-case-to-send, that chooses a case from the agents case base to be sent
to another agent; add-to-cb, that retains a given case into the agent’s case
base; and remove-from-cb that deletes a given case form the agent’s case base.

274 Appendix B. The NOOS Agent Platform

(define-behavior AI-Barter-Cases-Behavior
:implements (AI BARTER-CASES-SCENE))

(define-behavior-Method AI-Barter-Cases-Behavior ((W W0) args)
(let* ((aj (first args))

(case (Choose-case-to-send aj)))
(when (eq bartering-mode ’non-copy) (remove-from-cb case))
(send-acl ’INFORM aj (define (b-message) (case-offered case)))))

(define-behavior-Method AI-Barter-Cases-Behavior ((W W2) (m message))
(let* ((case-received m.content.case-offered)))
(add-to-cb case-received)))

(define-behavior AJ-Barter-Cases-Behavior
:implements (AJ BARTER-CASES-SCENE))

(define-behavior-Method AJ-Barter-Cases-Behavior ((W W1) (m message))
(let* ((ai m.sender)

(case-received m.content.case-offered))
(case (Choose-case-to-send ai))

(add-to-cb case-received)
(when (eq bartering-mode ’non-copy) (remove-from-cb case))
(send-acl ’INFORM ai (define (b-message) (case-offered case)))))

Figure B.7: NOOS definition of the behaviors to play the roles AI and AJ in the
protocol specified in Figure B.5

Finally, once all the scenes, activities, behaviors and problem solving methods
are defined, we can define the agents. Figure B.8 shows the definition in NAP
of a simple agent that can use the two activities defined in this exemplification,
and that is able to understand the sponge ontology.

Figure B.9 shows a screenshot of the the NAP development environment.
On the upper part of the screen you can see the different tabs related to agents,
protocols, activities, behaviors, methods, ontologies, and domain knowledge.
Specifically, the screenshot shows the the protocol view, where the scenes and
protocols that have been defined can be graphically viewed.

B.3. Agent Platform 275

(define-Agent CBR-Agent
(activities AJ-Barter-Case-Activity

AI-Barter-Case-Activity)
(ontologies Sponge-Ontology)
(Domain-Models Sponge-DM))

Figure B.8: NOOS definition of an agent that is able to deal with the sponge
domain and to perform some activities.

Figure B.9: Screenshot of the NOOS Agent Platform development environment.

Appendix C

Probability Estimation

This appendix will explain in more detail the technique used in chapters 6 and
8 to estimate probabilities. Specifically, Chapter 6 uses probability estimation
to learn competence models of individual agents and of committees of agents for
the PB-CCS collaboration strategy, and Chapter 8 uses probability estimation
to assess the classification accuracy of a CBR system in the JUST method.

Let us formalize the problem of probability estimation. Let V be a variable
taking values in a set {x1, ..., xn}. Moreover, we have a set of observations
O = {o1, ..., om} of the values that V has taken in the past. The goal is to
compute the probability of each of the n possible values that V can take. We
will call θi to the probability of the value xi, and thus the goal is to compute the
set θ = {θ1, ..., θn} (notice that θn = 1 −

∑
i=1...n−1 θi, and thus we have only

n− 1 parameters to estimate).
A first solution to the previous problem can be found by simply performing

a frequency count of the different values xi on the observations. However, it
would be desirable that a measure of how confident are the estimations made on
θi could be provided. Therefore, a more complex approach has to be taken.

In order to provide an estimation of how confident our probability estimation
is, the solution is to compute a likelihood function p(θ|D) instead of computing
θ directly. Such likelihood function will predict how probable is a concrete
instantiation of θ given the observed data D.

To compute p(θ|D) we will simply use the Bayes’ Formula. We will start
with an initial distribution p(θ|ξ), where ξ represents our prior knowledge (if we
have no prior knowledge about θ, then p(θ|ξ) will simply consist on a uniform
density probability function). Then, we will use the Bayes’ Formula to update
p(θ|ξ) given the observed data.

Thus, if D consists of a single observation o1 = 〈V = xi〉, using the Bayes’
Formula we would obtain the following likelihood function:

p(θ|V = xi, ξ) =
p(V = xi|θ, ξ)p(θ|ξ)

p(V = xi|ξ)
by definition p(V = xi|θ, ξ) = θi, and thus:

277

278 Appendix C. Probability Estimation

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1
0

0,5

1

1,5

2

2,5

0 0,2 0,4 0,6 0,8 1

0 observations of correct
0 observations of incorrect

1 observation of correct
0 observations of incorrect

Figure C.1: Left, p(θ1|ξ) as a uniform density probability function; Right,
p(θ1|D1, ξ) for a single observation where V = correct.

p(θ|V = xi, ξ) =
θip(θ|ξ)

p(V = xi|ξ)

Now, since p(V = xi|ξ) does not depend on θ, it can be considered a normal-
ization constant c, and obtain:

p(θ|V = xi, ξ) = cθip(θ|ξ)

It is now easy to derive the general formula for the case that D consists of a
set of m observations (where each value xi has been observed αi times):

p(θ|D, ξ) = c′
n∏

i=1

θαi
i

Let us illustrate the derived formula with an exemplification before proceed-
ing to explain how to compute the estimations of the confidence. Assume a
binary variable V that can take the values {correct, incorrect}, such variable
corresponds to a CBR agent, and takes the value correct when the CBR agent
correctly answers a problem, and incorrect otherwise. Thus, we have to estimate
θ = {θ1, θ2}, and since θ2 = 1−θ1, we just have to estimate θ1, that corresponds
to the probability of the value correct (i.e. the classification accuracy of the
CBR agent). Moreover, let us assume that we have no prior knowledge of the
CBR agent, thus p(θ|ξ) is a uniform density probability function. Moreover,
since we have just to estimate θ1, we will consider only p(θ1|ξ) and p(θ1|D, ξ) in
this example.

The left plot of Figure C.1 shows p(θ1|ξ) as a uniform density probability
function. The right plot of Figure C.1 shows p(θ1|D1, ξ) where D1 consists
of one observation o1 = 〈V = correct〉. Figure C.1 shows that with a single
observation of V = correct, the most probable value for θ1 is 1 (that corresponds

279

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,2 0,4 0,6 0,8 1

1 observation of correct
1 observation of incorrect

10 observations of correct
10 observations of incorrect

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,2 0,4 0,6 0,8 1

Figure C.2: Left, p(θ1|D2, ξ) for two observations;Right, p(θ1|D3, ξ) for twenty
observations.

to a classification accuracy of 100%), however, there are many other values with
probability higher than 0.

The left plot of Figure C.2 shows p(θ1|D2, ξ) where D2 consists of two obser-
vations o1 = 〈V = correct〉 and o2 = 〈V = incorrect〉. The most probable now
is that θ1 = 0.5 (corresponding to a classification accuracy of 50%). Moreover,
the right plot of Figure C.2 shows p(θ1|D3, ξ) where D3 consists of 20 observa-
tions, in 10 of them V has taken the value correct, and in 10 of them V has
taken the value incorrect. Notice that again the most probable is that θ1 = 0.5
(corresponding to a classification accuracy of 50%), but now the plot shown for
20 observations (right hand side) is much narrower than the plot shown for 2
observations (left hand side).

The probability that θ1 takes value in a certain interval [a, b] can be obtained
by computing the area below the plot in the interval [a, b]:

P (θ1 ∈ [a, b]|D, ξ) =
∫ b

a

p(θ1 = x|D, ξ)dx

For instance, if we compute the probability that θ1 lies in the interval [0.4, 0.5]
in both plots (corresponding the the probability that the classification accuracy
is between 40% and 50%), we obtain that in the left hand side plot, the proba-
bility is P (θ1 ∈ [0.4, 0.6]|D2, ξ) = 0.2945, while in the right hand side plot it is
P (θ1 ∈ [0.4, 0.6]|D3, ξ) = 0.6423. Therefore, if we have 20 observations, we can
be more confident that θ1 will lie in the interval [0.4, 0.6] than with just 2 obser-
vations. Thus, we can say that “with 10 correct observations and 10 incorrect
observations we have a 64.23% of certainty that the classification accuracy will
be between 40% and 60%, and the most probable value is 50%”.

Thus, we now have the tools to mathematically prove the statement made in
Chapter 8: “for estimating accuracy values around α = 90% (having a certainty
of 66% of having an error lower than the 4%) at least 60 answers are required”.

280 Appendix C. Probability Estimation

54 observations of correct
6 observations of incorrect

-2

0

2

4

6

8

10

12

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

expectation: 0,9

Figure C.3: p(θ1|D4, ξ) for 60 observations where V = correct in the 90% of
the observations. The blue area corresponds to the area below the plot in the
interval [0.86, 0.94] (see the text).

Figure C.3 shows the likelihood function p(θ1|D4, ξ) where D4 consists of 60
observations (where the 90% of them where correct and the 10% of them where
incorrect). The blue area represents the area of the interval [0.86, 0.94] (that
corresponds to having an error of ±4% in the estimation of the classification
accuracy). This area can be easily computed numerically, and is approximately
0.6864. Thus, we can conclude that the probability that θ1 lies in the interval
[0.86, 0.94] is 0.6864, and therefore we have a certainty higher than the 66% (in
fact, it is of the 68.64%) of having an error lower than the 4% if we estimate the
accuracy to be 90%.

Moreover, similar computations are used in Chapter 6 to compute the con-
fidence intervals [p−l , p

+
l] at the leaves of the confidence tree. Specifically, the

interval [p−l , p
+
l] is computed so that the area below the curve in the interval

is 0.66 (i.e. having a certainty of 66% than the estimated value lies in that
interval).

Bibliography

[Aamodt and Plaza, 1994] Aamodt, A. and Plaza, E. (1994). Case-based rea-
soning: Foundational issues, methodological variations, and system ap-
proaches. Artificial Intelligence Communications, 7(1):39–59. online at
<url:http://www.iiia.csic.es/People/enric/AICom ToC.html>.

[Aha,] Aha, D. W. Case-based learning algorithms. In DARPA Case-Based
Reasoning Workshop, pages 147–158.

[Aha et al., 1991] Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-
based learning algorithms. Machine Learning, 6(1):37–66.

[Arcos, 1997] Arcos, J. L. (1997). The Noos representation language. PhD thesis,
Universitat Politècnica de Catalunya.

[Arcos et al., 1998] Arcos, J. L., López de Mántaras, R., and Serra, X. (1998).
Saxex : a case-based reasoning system for generating expressive musical per-
formances. Journal of New Music Research, 27 (3):194–210.

[Arcos and Plaza, 1996] Arcos, J. L. and Plaza, E. (1996). Inference and reflec-
tion in the object-centered representation language Noos. Journal of Future
Generation Computer Systems, 12:173–188.

[Argamon-Engelson and Dagan, 1999] Argamon-Engelson, S. and Dagan, I.
(1999). Committee-based sample selection for probabilistic classifiers. Journal
of Artificial Intelligence Research, 11:335–360.

[Armengol and Plaza, 2001a] Armengol, E. and Plaza, E. (2001a). Individual
prognosis of diabetes long-term risks: A CBR approach. Methods of Informa-
tion in Medicine, page to appear.

[Armengol and Plaza, 2001b] Armengol, E. and Plaza, E. (2001b). Lazy induc-
tion of descriptions for relational case-based learning. In Submitted.

[Banerjee and Peng, 2003] Banerjee, B. and Peng, J. (2003). Adaptive policy
gradient in multiagent learning. In Int. Conf. Autonomous Agents and Mul-
tiagent Systems AAMAS’03, pages 686–692.

[Banerjee et al., 2001] Banerjee, B., Sen, S., and Peng, J. (2001). Fast concur-
rent reinforcement learners. In IJCAI 2001, pages 825–830.

281

282 Bibliography

[Bay, 1998] Bay, S. D. (1998). Combining nearest neighbor classifiers through
multiple feature subsets. In Proc. 15th International Conf. on Machine Learn-
ing, pages 37–45. Morgan Kaufmann, San Francisco, CA.

[Bowling and Veloso, 2003] Bowling, M. and Veloso, M. (2003). Simultaneous
adversarial multi-robot learning. In IJCAI 2003.

[Bowling and Veloso, 2002] Bowling, M. H. and Veloso, M. M. (2002). Multia-
gent learning using a variable learning rate. Artificial Intelligence, 136(2):215–
250.

[Brams and Fishburn, 1983] Brams, S. J. and Fishburn, P. C. (1983). Approval
Voting. Birkhauser, Boston.

[Breiman, 1996] Breiman, L. (1996). Bagging predictors. Machine Learning,
24(2):123–140.

[Caragea et al., 2003] Caragea, D., Silvescu, A., and Honavar, V. (2003). Deci-
sion tree induction from distributed heterogeneous autonomous data sources.

[Cawsey, 1992] Cawsey, A. (1992). Explanation and interaction. the computer
generation of explanatory dialogues.

[Chan and Stolfo, 1995] Chan, P. K. and Stolfo, S. J. (1995). A comparative
evaluation of voting and meta-learning on partitioned data. In Proc. 12th
International Conference on Machine Learning, pages 90–98. Morgan Kauf-
mann.

[Cohn et al., 1994] Cohn, D. A., Atlas, L., and Ladner, R. E. (1994). Improving
generalization with active learning. Machine Learning, 15(2):201–221.

[Cohn et al., 1995] Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1995). Ac-
tive learning with statistical models. In Tesauro, G., Touretzky, D., and Leen,
T., editors, Advances in Neural Information Processing Systems, volume 7,
pages 705–712. The MIT Press.

[Dejong and Mooney, 1986] Dejong, G. and Mooney, R. (1986). Explanation-
based learning: An alternative view. Machine Learning, 1(2):145–176.

[Dietterich, 2000] Dietterich, T. (2000). Ensemble methods in machine learning.
In Kittler, J. and Roli, F., editors, First International Workshop on Multiple
Classifier Systems, Lecture Notes in Computer Science, pages 1 – 15. Springer
Verlag.

[Dietterich and Bakiri, 1995] Dietterich, T. G. and Bakiri, G. (1995). Solving
multiclass learning problems via error-correcting output codes. Journal of
Artificial Intelligence Research, 2:263–286.

Bibliography 283

[Durfee and Lesser, 1989] Durfee, E. H. and Lesser, V. R. (1989). Negotiating
task decomposition and allocation using partial global planning. In Gasser,
L. and Huhns, M. N., editors, Distributed Artificial Intelligence, volume II,
pages 229 – 243. Morgan Kaufmann Publishers.

[Durfee and Rosenschein, 1994] Durfee, E. H. and Rosenschein, J. (1994). Dis-
tributed problem solving and multiagent systems: Comparisons and examples.
In Klein, M., editor, Proceedings of the 13th International Workshop on DAI,
pages 94–104, Lake Quinalt, WA, USA.

[Esteva et al., pear] Esteva, M., Padget, J., and Sierra, C. (To appear). For-
malising a language for institutions and norms. In Intelligent Agents VIII,
Proceedings ATAL’01, LNAI. Springer Verlag.

[Esteva et al., 2001] Esteva, M., Rodriguez-Aguilar, J. A., Sierra, C., P.Garcia,
and Arcos, J. L. (2001). On the formal specification of electronic institutions.
In Agent Mediated Electronic Commerce, volume 1991 of LNAI. Springer-
Verlag.

[Freitag, 1998] Freitag, D. (1998). Multistrategy learning for information extrac-
tion. In Proc. 15th International Conf. on Machine Learning, pages 161–169.
Morgan Kaufmann, San Francisco, CA.

[Freund and Schapire, 1995] Freund, Y. and Schapire, R. E. (1995). A decision-
theoretic generalization of on-line learning and an application to boosting. In
European Conference on Computational Learning Theory, pages 23–37.

[Freund and Schapire, 1996] Freund, Y. and Schapire, R. E. (1996). Experi-
ments with a new boosting algorithm. In Proc. 13th ICML, pages 148–156.
Morgan Kaufmann.

[Fürnkranz, 2002] Fürnkranz, J. (2002). Pairwise classification as an ensem-
ble technique. In Proceedings of the 13th European Conference on Machine
Learning, ECML’2002, volume 2430 of LNAI, pages 97–110. Springer Verlag.

[G. Zenobi, 2001] G. Zenobi, P. C. (2001). Using diversity in preparing ensemble
of classifiers based on different subsets to minimize generalization error. In
12th European Conference on Machine Learning.

[Gama and Brazdil, 2000] Gama, J. and Brazdil, P. (2000). Cascade generaliza-
tion. Machine Learning, 41(3):315–343.

[Goel et al., 1997] Goel, A. K., de Silva Garza, A. G., Gru, N., Murdock, J. W.,
and Recker, M. M. (1997). Functional explanations in design. In IJCAI-97
Workshop on Modeling and Reasoning about Function.

[Hansen and Salamon, 1990] Hansen, L. K. and Salamon, P. (1990). Neural
networks ensembles. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12:993–1001.

284 Bibliography

[Hart, 1967] Hart, P. (1967). The condensed nearest neighbor rule. IEEE Trans-
actions on Information Theory, 14:515–516.

[Haynes et al., 1998] Haynes, T., Lau, K., and Sen, S. (1998). Learning cases
to compliment rules for conflict resolution in multiagent systems. In Sen,
S., editor, AAAI Symposium on Adaptation, Co-evolution and Learning in
Multiagent Systems, pages 51–56.

[Haynes and Sen, 1995] Haynes, T. and Sen, S. (1995). Evolving behavioral
strategies in predators and prey. In Sen, S., editor, IJCAI-95 Workshop on
Adaptation and Learning in Multiagent Systems, pages 32–37, Montreal, Que-
bec, Canada. Morgan Kaufmann.

[Haynes et al., 1995] Haynes, T., Wainwright, R., Sen, S., and Schoenefeld, D.
(1995). Strongly typed genetic programming in evolving cooperation strate-
gies. In Eshelman, L., editor, Genetic Algorithms: Proceedings of the Sixth
International Conference (ICGA95), pages 271–278, Pittsburgh, PA, USA.
Morgan Kaufmann.

[Ho, 1997] Ho, T. K. (1997). Adaptive coordination of multiple classifiers. In
Hull, J. and Taylor, S., editors, Document Analysis Systems II, pages 371–384.
World Scientific Publishing Co.

[Hu and Wellman, 1998] Hu, J. and Wellman, M. P. (1998). Multiagent rein-
forcement learning: theoretical framework and an algorithm. In Proc. 15th
International Conf. on Machine Learning, pages 242–250. Morgan Kaufmann,
San Francisco, CA.

[Jennings, 1993] Jennings, N. R. (1993). Commitments and conventions: The
foundation of coordination in multi-agent systems. The Knowledge Engineer-
ing Review, 8(3):223–250.

[Karsenty and Brzillon, 1994] Karsenty, L. and Brzillon, P. (1994). Cooperative
problem solving and explanation.

[kiat Soh and Luo, 2003] kiat Soh, L. and Luo, J. (2003). Combining individ-
ual and cooperative learning for multiagent negotiations. In Int. Conf. Au-
tonomous Agents and Multiagent Systems AAMAS’03, pages 686–692.

[Kohavi and Wolpert, 1996] Kohavi, R. and Wolpert, D. H. (1996). Bias plus
variance decomposition for zero-one loss functions. In Saitta, L., editor, Ma-
chine Learning: Proceedings of the Thirteenth International Conference, pages
275–283. Morgan Kaufmann.

[Koltchinskii et al., 2001] Koltchinskii, V., Panchenko, D., and Lozano, F.
(2001). Some new bounds on the generlization error of combined classiers.
In T.Dietterich, editor, Advances in Neural Information Processing Systems,
volume 14. MIT Press.

Bibliography 285

[Koppel and Engelson, 1996] Koppel, M. and Engelson, S. (1996). Integrating
multiple classifiers by finding their areas of expertise. In AAAI-96 Workshop
On Integrating Multiple Learned Models.

[Krogh and Vedelsby, 1995] Krogh, A. and Vedelsby, J. (1995). Neural network
ensembles, cross validation, and active learning. In Tesauro, G., Touretzky,
D., and Leen, T., editors, Advances in Neural Information Processing Systems,
volume 7, pages 231–238. The MIT Press.

[Leake and Sooriamurthi, 2002a] Leake, D. and Sooriamurthi, R. (2002a). Au-
tomatically selecting strategies for multi-case-base reasoning. In Craw, S. and
Preece, A., editors, Advances in Case-Based Reasoning: Proceedings of the
Fifth European Conference on Case-Based Reasoning, pages 204–219, Berlin.
Springer Verlag.

[Leake and Sooriamurthi, 2001] Leake, D. B. and Sooriamurthi, R. (2001).
When two case bases are better than one: Exploiting multiple case bases.
In ICCBR, pages 321–335.

[Leake and Sooriamurthi, 2002b] Leake, D. B. and Sooriamurthi, R. (2002b).
Managing multiple case bases: Dimensions and issues. In Proceedings of
the Fifteenth International Florida Artificial Intelligence Research Society
(FLAIRS), pages 106–110. AAAI Press.

[Leake and Sooriamurthi, 2003] Leake, D. B. and Sooriamurthi, R. (2003). Dis-
patching cases versus merging case-bases: When mcbr matters. In Proceedings
of the Sixteenth International Florida Artificial Intelligence Research Society
Conference (FLAIRS), pages 129–133. AAAI Press.

[Leake and Wilson, 2000] Leake, D. B. and Wilson, D. C. (2000). Remembering
why to remember: Performance-guided case-base maintenance. In EWCBR,
pages 161–172.

[Lindenbaum et al., 1999] Lindenbaum, M., Markovitch, S., and Rusakov, D.
(1999). Selective sampling for nearest neighbor classifiers. In AAAI/IAAI,
pages 366–371.

[Littman, 1994] Littman, M. L. (1994). Markov games as a framework for multi-
agent reinforcement learning. In Proceedings of the 11th International Con-
ference on Machine Learning (ML-94), pages 157–163, New Brunswick, NJ.
Morgan Kaufmann.

[Maria Salamó, 2003] Maria Salamó, E. G. (2003). Hybrid deletion policies for
case base maintenance. In FLAIRS’2003, pages 1150–155.

[Matan, 1996] Matan, O. (1996). On voting ensembles of classifiers (extended
abstract). In AAAI 96 - Workshop in Induction of Multiple Learning Models.

[Mataric, 1994] Mataric, M. (1994). Learning to behave socially.

286 Bibliography

[Matos et al., 1998] Matos, N., Sierra, C., and Jennings, N. R. (1998). Determin-
ing successful negotiation strategies: an evolutionary approach. In Demazeau,
Y., editor, Proceedings of the 3rd International Conference on Multi-Agent
Systems (ICMAS-98), pages 182–189, Paris, France. IEEE Press.

[McGinty and smyth, 2001] McGinty, L. and smyth, B. (2001). Collaborative
case-based reasoning: Applications in personalized route planning. In ICCBR,
pages 362–376.

[McKenna and Smyth, 2001] McKenna, E. and Smyth, B. (2001). Competence
models and the maintenance problem. Computational Intelligence: Special
Issue on Maintaining Case-Based Reasoning Systems, 17(2):235–249.

[Mitchell, 1997] Mitchell, T. (1997). Machine Learning. McGraw-Hill.

[Modi and Shen, 2001] Modi, P. J. and Shen, W.-M. (2001). Collaborative mul-
tiagent learning for classification tasks. In Müller, J. P., Andre, E., Sen, S.,
and Frasson, C., editors, Proceedings of the Fifth International Conference on
Autonomous Agents, pages 37–38, Montreal, Canada. ACM Press.

[Nash, 1951] Nash, J. F. (1951). Non-cooperative games. Annals of Mathemat-
ics, 2(54):286–295.

[Ontañón and Plaza, 2001] Ontañón, S. and Plaza, E. (2001). Learning when to
collaborate among learning agents. In 12th European Conference on Machine
Learning, pages 394–405.

[Perrone and Cooper, 1993] Perrone, M. P. and Cooper, L. N. (1993). When
networks disagree: Ensemble methods for hydrid neural networks. In Artificial
Neural Networks for Speech and Vision. Chapman-Hall.

[Plaza et al., 1997] Plaza, E., Arcos, J. L., and Mart́ın, F. (1997). Coopera-
tive case-based reasoning. In Weiss, G., editor, Distributed Artificial Intelli-
gence Meets Machine Learning. Learning in Multi-Agent Environments, num-
ber 1221 in Lecture Notes in Artificial Intelligence, pages 180–201. Springer-
Verlag.

[Plaza et al., 1998] Plaza, E., Arcos, J. L., Noriega, P., and Sierra, C. (1998).
Competing agents in agent-mediated institutions. Journal of Personal Tech-
nologies, 2:212–220.

[Plaza and Ontañón, 2001] Plaza, E. and Ontañón, S. (2001). Ensemble case-
based reasoning: Collaboration policies for multiagent cooperative cbr. In
Watson, I. and Yang, Q., editors, In Case-Based Reasoning Research and
Development: ICCBR-2001, number 2080 in LNAI, pages 437–451. Springer-
Verlag.

[Prassad et al., 1995] Prassad, M. V. N., Lesser, V. R., and Lander, S. (1995).
Retrieval and reasoning in distributed case bases. Technical report, UMass
Computer Science Department.

Bibliography 287

[Rosin, 1997] Rosin, C. D. (1997). Coevolutionary search among adversaries.
PhD thesis, San Diego, CA.

[Sandholm, 2002] Sandholm, T. W. (2002). Algorithm for optimal winner de-
termination in combinatorial auctions. Artificial Intelligence, 135:1–54.

[Schapire and Singer, 2000] Schapire, R. E. and Singer, Y. (2000). BoosTex-
ter: A boosting-based system for text categorization. Machine Learning,
39(2/3):135–168.

[Searle, 1969] Searle (1969). Speech Acts: An Essay on the Philisophy of Lan-
guage. Cambridge University Press.

[Seung et al., 1992] Seung, H. S., Opper, M., and Sompolinsky, H. (1992). Query
by committee. In Computational Learing Theory, pages 287–294.

[Smyth, 1996] Smyth, B. (1996). The utility problem analysed: A case-based
reasoning persepctive. In Third European Workshop on Case-Based Reasoning
EWCBR-96, Lecture Notes in Artificial Intelligence, pages 234–248. Springer
Verlag.

[Smyth and Keane, 1995] Smyth, B. and Keane, M. T. (1995). Remenbering to
forget: A competence-preserving case delection policy for case-based reasoning
systems. In Proceedings of IJCAI-95, pages 377–382.

[Smyth and McKenna, 1999] Smyth, B. and McKenna, E. (1999). Building com-
pact competent case-bases. Lecture Notes in Computer Science, 1650:329–??

[Steels,] Steels, L. Emergent functionality in robotic agents through on-line
evolution. pages 8–16.

[Stone and Veloso, 2000] Stone, P. and Veloso, M. M. (2000). Multiagent sys-
tems: A survey from a machine learning perspective. Autonomous Robots,
8(3):345–383.

[Suematsu and Hayashi, 2002] Suematsu, N. and Hayashi, A. (2002). A mul-
tiagent reinforcement learning algorithm using extended optimal response.
In 1st International Joint Conference in Autonomous Agents and Multiagent
Systems, pages 370–377.

[Tan, 1993] Tan, M. (1993). Multi-agent reinforcement learning: Independent
vs. cooperative learning. In Proc. 10th International Conf. on Machine Learn-
ing, pages 330–337. Morgan Kaufmann, San Francisco, CA.

[Ting, 1996] Ting, K. (1996). The characterisation of predictive accuracy and
decision combination. In Thirteenth International Conference on Machine
Learning, pages 498–506. Morgan Kaufmann.

288 Bibliography

[Tumer et al., 2002] Tumer, K., Agogino, A. K., and Wolpert, D. H. (2002).
Learning sequences of actions in collectives of autonomous agents. In 1st In-
ternational Joint Conference in Autonomous Agents and Multiagent Systems,
pages 378–385.

[Tumer and Ghosh, 1996] Tumer, K. and Ghosh, J. (1996). Classifier combining:
analytical results and implications. In AAAI 96 - Workshop in Induction of
Multiple Learning Models.

[Wolpert, 1990] Wolpert, D. H. (1990). Stacked generalization. Technical Report
LA-UR-90-3460, Los Alamos, NM.

[Wooley, 1998] Wooley, B. A. (1998). Explanation component of software sys-
tems. ACM CrossRoads.

[Woolridge, 1992] Woolridge, M. (1992). The logical modelling of computational
multi-agent systems. PhD thesis, University of Manchester, U.K.

[Zhu and Yang, 1999] Zhu, J. and Yang, Q. (1999). Remembering to add:
Competence-preserving case-addition policies for case base maintenance. In
IJCAI, pages 234–241.

E
x
p
l
o

it
in

g
 t

h
e
 S

t
r

u
c

t
u

r
e
 o

f
 D

is
t
r

ib
u

t
ed

 C

o
n

s
t
r

a
in

t
 O

p
t
im

iz
a

t
io

n

P

r
o

b
l
e
m

s
 t

o
 A

ssess

 a

n
d
 B

o
u

n
d
 C

o
o

r
d

in
a

t
io

n
 A

c
t
io

n
s
 i

n
 MA

S

4644447

M
e
ri

tx
e
ll
 V

in
ya

ls
 S

a
lg

a
d

o

CSIC

	Contents
	List of Figures
	Foreword
	Resumen
	Abstract
	Chapter 1. Introduction
	1.1 Motivation
	1.2 The Framework
	1.3 The Goals
	1.4 The Thesis
	1.5 Notation

	Chapter 2. State of the Art
	2.1 Ensemble Learning
	2.2 Case Based Reasoning
	2.3 Multi-Agent Learning

	Chapter 3. A Framework for Multi-Agent Learning
	3.1 Multi-Agent Systems
	3.2 Knowledge Representation and Agent Platform
	3.3 Multi-Agent Case Based Reasoning Systems
	3.4 Individual Problem Solving
	3.5 An Approach to Multi-Agent Learning
	3.6 Summary

	Chapter 4. Committee Collaboration Strategies
	4.1 Introduction
	4.2 The Committee Collaboration Strategy
	4.3 Bounded Weighted Approval Voting
	4.4 Characterizing Committees
	4.5 Experimental Evaluation
	4.6 Ensemble Space Redux
	4.7 Conclusions

	Chapter 5. Dynamic Committees
	5.1 Introduction
	5.2 Peer Counsel Collaboration Strategy
	5.3 Bounded Counsel Collaboration Strategy
	5.4 Experimental Evaluation
	5.5 Conclusions

	Chapter 6. Proactive Learning for Collaboration
	6.1 Introduction
	6.2 Competence Models
	6.3 Proactive Learning of Competence Models
	6.4 Proactive Bounded Counsel
	6.5 Experimental Evaluation
	6.6 Conclusions

	Chapter 7. Justification Endorsed Collaboration
	7.1 Introduction
	7.2 Justifications in CBR Systems
	7.3 Justification Endorsed Committee Collaboration Strategy
	7.4 Examination of Justifications
	7.5 Justification Endorsed Voting System
	7.6 Justification Endorsed Committee Interaction Protocol
	7.7 Experimental Evaluation
	7.8 Conclusions

	Chapter 8. Case Retention Collaboration Strategies
	8.1 Introduction
	8.2 Multi-agent Case Retention Strategies
	8.3 Justification-based Case Reduction
	8.4 Collaborative Case Bargaining
	8.5 Conclusions

	Chapter 9. Case Bartering Collaboration Strategies
	9.1 Introduction
	9.2 The Case Bartering Collaboration Strategy
	9.3 Bias Based Case Bartering
	9.4 The Case Bartering Interaction Protocol
	9.5 Exemplification
	9.6 Justification Based Decision Policies
	9.7 Experimental Evaluation
	9.8 Conclusions

	Chapter 10. Conclusions
	10.1 Summary
	10.2 Contributions
	10.3 Future Work

	Appendix A. Notation
	Appendix B. The NOOS Agent Platform
	Appendix C. Probability Estimation
	Bibliography

