Chapter 1

Introduction

Since it was founded by Aristotle, Logic has been the science devoted to the laws
of the correct reasoning. Traditionally, one of the fundamental laws has been
the Bivalence Principle, which states that every proposition is either true or
false, independently how difficult might be in some cases to determine its truth
value. This traditional logic under the Bivalence Principle, that we call Classical
Logic, turned out to be an excellent tool for the mathematical work, specially
after Mathematical Logic was born in the nineteenth century with Augustus de
Morgan, George Boole and Gottlob Frege among others. It is not strange, since
Mathematics do use precise concepts and always works with statements that are
intended to be either true or false.

Nevertheless, Aristotle already noticed that many of the concepts that are
commonly used outside the strict mathematical discourse are far from being
precise; on the contrary they refer to qualities that admit degrees. In Categories
8, 10b 26-32 he writes:

Qualifications admit of a more and a less; for one thing is called more pale or less pale than
another, and more just than another. Moreover, it itself sustains increase (for what is pale can
still become paler) — not in all cases though, but in most. It might be questioned whether one
justice is called more a justice than another, and similarly for the other conditions. !

Some lines below (Categories 8, 11a 2-5) he adds:

At any rate things spoken of in virtue of these unquestionably admit of a more and a less:
one man is called more grammatical than another, juster, healthier, and so on. Triangle and
square do not seem to admit of a more, nor does any other shape.

This kind of predicates appear in propositions that often do not seem neither
completely true nor completely false. This is the vagueness phenomenon and it
becomes a real challenge for Logic when one considers some reasonings that
involve vague predicates, such as the so called Sorites Paradoxz:

Premises:

(1) A man who has twenty thousand hairs on his head is not bald.

I'We cite from the English translation in [6].
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(2) If a man who is not bald loses one hair, he is still not bald.
Conclusion:
(3) A man with no hair on his head is not bald.

This reasoning is a paradox because it seems to be correct (one can derive
the conclusion from the premisses by using Modus Ponens twenty thounsand
times), and it derives a clearly false conclusion from (apparently) true premisses
(we have no doubt that (1) is true, and (2) seems also true); something that can
never happen in a correct reasoning.

Several solutions to cope with the vagueness phenomena have been proposed
(see e.g. [139]). One of them is Fuzzy Logic. As other non-classical logics, it
rejects the Bivalence Principle and proposes infinitely-valued logics to substitute
Classical Logic. Historically this idea comes from the theory of Fuzzy Sets
proposed in 1965 by Lotfi Zadeh in [140]. His idea consisted on modeling vague
predicates with fuzzy sets, i.e. sets where the objects can belong in a greater
or lesser degree. Formally, a fuzzy set is a pair (X, u) where X is a set (in the
classical sense) and p : X — [0,1] is a function (called membership function)
that maps every object © € X to a real number p(z) between 0 and 1, that
is interpreted as the degree of membership of the object in the fuzzy set. For
instance, given the vague predicate tall, one can define a fuzzy set by considering;:
X :=[0.3,2.4] (set of possible heights in meters) and the membership function:

0 if < 1.2,
plx)=< 2z—-2 if1.2<z <18,
1 if z > 1.8.

This fuzzy set models the predicate tall in such a way that people whose
height is more than 1.8 meters are definitely tall, people with less than 1.2
meters of height are definitely not tall and people with an intermediate height is
given the quality tall in an intermediate degree according to a linear function.?
This interpretation amounts to a certain use of infinitely-many truth-values in
the following way: if some individual a in our universe of discourse has a height
x € X, then we say that the sentence ’a is tall’ is true at degree u(x).

However, if one wants to model vague predicates in terms of fuzzy sets, some
way to combine them is required, since one will want to consider propositions
where vague predicates are combined in disjunctions, conjunctions, negations
and other usual logical connectives. For instance, to model in a truth-functional
way the conjunction of two vague predicates one can consider their corresponding
fuzzy sets and provide some binary function such that, given any object and its
membership degrees to the fuzzy sets, returns the membership degree to the
intersection. In the same way, a binary function is needed for the union of
fuzzy sets, and a unary function for the complement. In his foundational papers

20f course, the choice of the membership function must depend on the context in which
one wants to model the vague predicate. For instance, the meaning of tall is not the same
when the universe of individuals are basketball players or just ordinary people.



Zadeh proposed the functions min{z,y}, max{z,y} and 1 — x respectively for
the intersection, the union and the complement of fuzzy sets.

In 1969 Goguen proposes in [75] a solution to the Sorites Paradox in terms of
fuzzy sets, but using some other functions to combine them, namely the truth-
functions introduced by Lukasiewicz for some infinitely-valued logics. Therefore,
a few words on the origin of many-valued logics are needed here.

The first many-valued logic was introduced in 1918 by Jan Lukasiewicz. It
was a three-valued logic proposed to deal with the problem of future contingents.
According to Lukasiewicz, the Bivalence Principle implies a kind of determinism,
since it forces all propositions to be either true or false, including those that state
some facts about the future.® He believes that it is more intuitive to claim that
these propositions are still neither true nor false, and thus he introduces a new
truth-value for them that he calls possible. If {0, %, 1} is the set formed by his
three truth-values, Lukasiewicz defines the logical connectives of implication and
negation by means of the following tables:

H()%l
01 1 1
1 |1
55}1
10 3 1
01
11
2 | 2
110

Therefore, he is using the Principle of Extensionality to compute the truth-
value of every complex proposition from the truth-values of its parts by means of
the tables. The meaning of the tables can be almost explained in the following
way. Suppose that {T, F'} are the classical truth-values, true and false. Then,
the three Lukasiewicz’s truth-values can be interpreted as sets of these classical
truth-values: 0 = {F}, 1 = {T} and § = {T, F}, since the value 3 is given to
those proposition about future facts which still we do not know whether they will
be true or false. Almost all the values in the tables are obtained by operating all
the elements in these sets according to the classical connectives of implication
and negation. For instance, {T,F} — {T} = {T'}, because according to the
classical implication we have T'— T =T and ' — T = T. There is only one
exception which is not compatible with this interpretation: % — % should be %,
but it is 1. The obvious reason seems to be that Lukasiewicz wanted to preserve
the validity of the Identity Law, ¢ — .

In 1922 Lukasiewicz generalizes the three-valued logic to an n-valued logic
for every n > 4 finite, where the set of truth-values is {0, -25,..., 2=% 1}, and
the logical operations are defined by © — y := min{l,1 —z+y} and -z := 1 —=z.

3The problem of future contingents can be also traced back to Aristotle; viz. his famous
naval battle example.
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Finally, in 1930, with Alfred Tarski in [110], they generalize it to an infinitely-
valued logic where the set of truth-values is the real unit interval and the truth-
functions are defined as in the finitely-valued case. Several additional connectives
are defined in the following way: z&y := -(z — ), zVy:= (x —» y) — y and
x Ay := —(—z V —y). Then, some properties of the classical conjunction split
between & and A:

1. For every a,b, ¢, a&b < ¢ iff a < b — ¢ (residuation law)
2. For every a,b,a - b=1iff aAb=aiff a <b (A = min)

By using these truth-functions, Goguen was able to propose a solution to the
sorites paradox. Indeed, he considered that bald is a vague predicate and thus it
must be interpreted by a fuzzy set. (1) can be given the minimum truth-value,
since a man with twenty thousand hairs on his head is not bald, i.e. he belongs
to the set of bald men at degree 0. However, (2) is not absolutely true. Consider
that its truth-value is ;gggg, almost 1. Let v; be the truth-value of A man with
1 hairs in his head is not bald’. Then, we have vog900 = 1 and v; — v;_1 = %8883.
Interpreting — with Lukasiewicz implication and after an easy computation, it
comes out that vg = 0, hence the paradox disappears.

Afterwards, following the truth-functional setting of Zadeh, some other func-
tions were proposed to model the combination of fuzzy sets. They were required
to satisfy certain conditions. For instance, the functions for disjunction and con-
junction were required to be associative and commutative. Alsina, Trillas and
Valverde (see e.g. [4]) proposed a class of functions taken from the theory of
probabilistic metric spaces (see [133, 134]), the triangular norms (t-norms, for
short), to model the intersection of fuzzy sets, their dual functions, the t-conorms
for the unions, and the so-called weak negation functions for the complement
(see [136, 48]). T-norms are binary operations defined on the real unit interval
which are associative, commutative, monotonic and have 1 as neutral element.
As regards to implication, mainly two kinds were proposed:

S-implications: those satisfying that for every a,b, a — b= —-a V b, and
R-implications: those satisfying the residuation law.

In [137] R-implications were chosen in order to deal with the Modus Ponens
rule. For every continuous t-norm there is an associated R-implication, which is
called its residuum. Although the continuity was not required in the definition
of t-norm, the majority of the known examples were actually continuous, for
instance the minimum (the original interpretation for the intersection of fuzzy
sets in Zadeh’s seminal paper), the Lukasiewicz interpretation of the connective
& (we will call it Lukasiewicz t-norm) and the product of reals (we will call
it product t-norm). Moreover, all continuous t-norms can be represented as an
ordinal sum of these three examples, as proved in [118] and in [108].

Interestingly, two of the three basic continuous t-norms and their residua
had been used in the semantics of some infinitely-valued logics before fuzzy sets
were defined. On the one hand, the Lukasiewicz t-norm, as we have already
explained, appeared in the semantics of Lukasiewicz’s infinitely-valued logic. He
also defined a Hilbert-style calculus whose axioms were:




(kL) o= (@ =)

12) (p =) = (¥ = x) = (¢ = X))
E3) (b= v) = ¥) = (¥ =) =)
(E4) (= —p) = (¢ — V)

L5) (p—=v) = W — ) = (¥ —9)

and Modus Ponens was the only inference rule. Let A be the algebra defined
over [0,1] by the Lukasiewicz truth-functions. He conjectured that the tautolo-
gies of the infinitely-valued logic given by the matrix (A, {1}) coincide with the
theorems of this Hilbert-style calculus. However, he was not able to prove it.
In 1935 Mordchaj Wajsberg claimed that he had found a proof, but he never
gave it. The conjecture was finally proved by syntactical means in 1958 by Rose
and Rosser [131] and algebraically in 1959 by Chang [25, 26]. It is important
to remark that Meredith showed in [113] the redundancy of the axiom (L5) and
that Hay improved the result in 1963 (in [86]) by proving that the Hilbert-style
calculus in fact coincides with the finitary fragment of Lukasiewicz logic.

On the other hand, the minimum t-norm also corresponds to the semantical
interpretation of the conjunction in a many-valued logic. Indeed, Godel used it
in [74] to study some linearly ordered matrix semantics for superintuitionistic
logics. Dummett gave in [47] a sound and complete Hilbert-style calculus for
the infinitely-valued logic corresponding to the matrix defined over [0, 1] by the
minimum t-norm and its residuated implication.

These two examples suggested that, with the usage of t-norms and their
residua, Fuzzy Logic was very close to the apparently independent field of many-
valued logics. The next step in approaching both fields was done in [83] when
Hijek, Godo and Esteva gave also a Hilbert-style calculus for the remaining
prominent example of continuous t-norm: the product t-norm.

Therefore, it became clear that at least some part of Fuzzy Logic was directly
related to the study of some many-valued logics. This led to the distinction by
the founder of the field, Zadeh, between a wide and a narrow sense of 'Fuzzy
Logic’. In [141] he writes:

The term ’Fuzzy Logic’ has two different meanings: wide and narrow. In a narrow sense,
fuzzy logic, FLn, is a logical system which aims at a formalization of approximate reasoning.
In this sense, FLn is an extension of multivalued logic. However, the agenda of FLn is quite
different from that of traditional multivalued logics. In particular, such key concepts in FLn
as the concept of a linguistic variable, canonical form, fuzzy if-then rule, fuzzy quantification
and defuzzification, predicate modification, truth qualification, the extension principle, the
compositional rule of inference and interpolative reasoning, among others, are not addressed
in traditional systems. This is the reason why FLn has a much wider range of applications
than traditional systems. In its wide sense, fuzzy logic, FLw, is fuzzily synonymous with the
fuzzy set theory, FST, which is the theory of classes with unsharp boundaries. FST is much
broader than FLn and includes the latter as one of its branches.

Once it was shown that the logics defined by the three main continuous t-
norms and their residua enjoyed a syntactical calculus, Hajek proposed in [79] a
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new logical system, that he called Basic Fuzzy Logic (BL, for short) to capture
the logic given by the class of all continuous t-norms.* His conjecture was
proved in [80, 30]. Nevertheless, Esteva and Godo noticed that the necessary and
sufficient condition for a t-norm to have a residuum was not the continuity, but
the left-continuity. Thus, they wanted to find the fuzzy logic corresponding to
the bigger class of all left-continuous t-norms. To fulfil this aim, they proposed
a new Hilbert-style calculus in [51] called Monoidal T-norm based Logic (MTL,
for short). MTL was proved to be indeed the logic of all left-continuous t-
norms and their residua by Jenei and Montagna in [100]. Thus, in a sense MTL
can be considered the real basic fuzzy logic, since it is the weakest logic which
is complete with respect to a semantics given by a class of t-norms and their
residua (this kind of logics are called ¢-norm based fuzzy logics or just t-norm
based logics). The word 'Monoidal’ in the name is due to the fact that MTL is
an axiomatic extension of another many-valued logic proposed by Hohle in [87]
called Monoidal Logic (ML, for short). ML has been proved to be equivalent
to a contraction-less substructural logic, namely the system Hpcx (also called
FL.y) of Ono and Komori (see [127, 126]). Therefore, since MTL enjoys neither
the contraction rule, it can be regarded not only as a fuzzy logic and as a many-
valued logic, but also as a substructural logic.

In this dissertation, that pertains to Fuzzy Logic in narrow sense, we study
MTL (and its axiomatic extensions) from the two first points of view of the
previous list: as a fuzzy logic and as a many-valued logic. More than that, we
study MTL as an algebraizable many-valued logic. Indeed, traditionally many
algebraic counterparts have been used in the research on many-valued logics. For
instance, Chang introduced MV-algebras to study Lukasiewicz logic®, a subclass
of Heyting algebras called G-algebras have been introduced for Gédel-Dummett
logic, residuated lattices (in the sense of [43]) for ML and so on. Héjek gave
an algebraic semantics for BL, namely the variety of BL-algebras, a subclass of
residuated lattices. A bigger variety of residuated lattices has been used to alge-
braize MTL by Esteva and Godo, the variety of MTL-algebras MTL. Actually,
MTL is algebraizable in the sense of Blok and Pigozzi (see [19]) and MTL is
its equivalent quasivariety semantics. Therefore, all its finitary extensions are
also algebraizable and their algebraic semantics are the corresponding subquasi-
varieties of MTIL. When we restrict to axiomatic extensions, the corresponding
algebraic semantics are the subvarieties of MTL. Moreover, the algebraizability
implies a number of results connecting algebraic properties of the semantics with
logical properties, the so-called bridge theorems of Abstract Algebraic Logic (see
[62]). A relevant subclass of MTL-algebras are those defined over the real unit
interval, which are exactly those where the conjunction & is interpreted by a
left-continuous t-norm. These algebras are called standard. For every finitary
extension of MTL a crucial question, from the Fuzzy Logic point of view, is
whether it is complete w.r.t. the standard algebras of its corresponding quasi-

4Lukasiewicz, Gédel-Dummett and Product logics were proved to be axiomatic extensions
of BL.

5A polinomially equivalent algebraic semantics for Lukasiewicz logic, the class of Wajsberg
algebras, has been proposed in [130, 63].



variety. This kind of result is called standard completeness.%

Many investigations in the algebraic direction for MTL and its finitary ex-
tensions have been already carried out (see e.g. [30, 100, 49, 53, 3, 32, 33,
81, 71, 72, 116, 88, 89, 90, 69, 91]). Thanks to these works (and others) some
parts of the lattice of subvarieties of MITL are already known, namely all vari-
eties of MV-algebras (see [103]), all varieties of G-algebras (see e.g. [76]), many
varieties of BL-algebras (see [3, 53]) and some other parts of the lattice (see
e.g. [71, 72]). The results obtained in BL strongly relied on the knowledge on
its linearly ordered algebras, since all BL-algebras (in fact, all MTL-algebras)
are representable as subdirect product of linearly ordered ones, and linearly
ordered BL-algebras were well described in terms of ordinal sums of some ba-
sic components (generalizing the corresponding result for continuous t-norms).
Unfortunately, such a representation is not known for linearly ordered MTL-
algebras (also called MTL-chains). Thus, the structure of the lattice of varieties
of MTL-algebras was very far from being known.

With this dissertation we want to contribute to the task of describing ax-
iomatic extensions of t-norm based fuzzy logics, or equivalently, varieties of
MTL-algebras and their properties. On the one hand, we try to describe the
structure of MTL-chains. Our first attempt consists in using the decomposi-
tion as ordinal sum of indecomposable semihoops. However, although we prove
that for every chain exists a maximum decomposition in this sense, we show
that the class of indecomposable semihoops is really huge and it seems too dif-
ficult to describe. Nevertheless, we study a significant class of indecomposable
semihoops: those satisfying a weak form of cancellation. The second attempt
uses one of the methods proposed by Jenei to built left-continuous t-norms, the
so-called connected rotation-annihilation construction. We show that for every
chain there is also a maximal decomposition as connected rotation-annihilation.
The task of describing the indecomposable chains seems also too far away, but
we can still study some cases of this decomposition, which leads to the theory
of perfect and bipartite MTL-algebras. On the other hand, we focus on several
varieties of MTL-algebras satisfying some nice properties, namely the varieties
of n-contractive algebras. They seem a good choice because they correspond to
the axiomatic extensions of MTL satisfying the global Deduction-Detachment
Theorem, and they contain all the locally finite varieties of MTL-algebras, in
particular the weak nilpotent minimum algebras (a subvariety that we study
in a greater detail). For all the varieties of MTL-algebras defined in the the-
sis we study several relevant logical and algebraic properties, mainly standard
completeness properties, local finiteness, finite embedding property, finite model
property and decidability.

6The logics studied in this thesis belong to another interesting class of logics studied by
general methods, namely the class of Weakly Implicative fuzzy logics (see [38]). This class
is claimed to be the right class of fuzzy logics (in narrow sense) in [12]. Using the general
results mentioned above the authors obtain completeness w.r.t. linearly ordered algebras,
local Deduction-Detachment Theorem, subdirect decomposition theorem, etc. Moreover, we
also would like to point out that axiomatic extensions of MTL are core fuzzy logics in the sense
of [82].
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Finally, we consider another aspect of Fuzzy Logic in narrow sense: which
should be the use of the intermediate truth-values? In MTL and its finitary
extensions, these truth-values do not seem to be used in a deep way, since in
their algebraization the only distinguished value is the top element, as in classi-
cal logic. For this reason, following Pavelka’s idea in [128] for Lukasiewicz logic,
we consider expansions of t-norm based logics with constants for the interme-
diate truth-values, allowing them to play an explicit role in the language. The
originality of our proposal lies in carrying out an algebraic approach to these
expansions, i.e. studying them also as algebraizable logics.

The thesis is structured in eleven chapters. After this introduction, a first
group of chapters (from the second till the fifth) are introductory, with necessary
preliminaries, sometimes interpreted from our point of view; the rest contains
our contributions to the field.

1. In the second chapter we introduce the basic notions and notation that will
be used throughout all the dissertation on Universal Algebra and Algebraic
Logic.

2. In the third chapter the logic MTL, the main subject of the study, is
formally introduced. The three perspectives (as a substructural logic, as
an algebraizable many-valued logic and as a t-norm based fuzzy logic) for
MTL are also formally discussed.

3. In the fourth chapter we present the basic results and definitions for MTL-
algebras that we will need to study their varieties. In particular, the de-
composition of every algebra as a sudirect product of chains is proved and
some useful methods to build new IMTL-algebras are introduced, namely
Jenei’s rotation and rotation-annihilation methods. We prove a decompo-
sition theorem of every chain as an ordinal sum of indecomposable 0-free
subreducts (totally ordered semihoops) and we discuss another possible
decomposition of chains in terms of connected rotation-annihilation.

4. In the fifth chapter we concentrate on the significant properties of the
varieties, or equivalently of the logics, that we intend to study: three ver-
sions of standard completeness (for each of them we prove useful algebraic
equivalencies), local finiteness, finite embeddability property, finite model
property and decidability.

5. In the sixth chapter, we study some particular cases of the decomposition
in connected rotation-annihilation, obtaining an extension of the theory
of perfect, local and bipartite algebras (originally studied in the context
of MV and BL-algebras) to MTL-algebras. Perfect IMTL-algebras are
proved to be exactly (module isomorphism) the disconnected rotations of
prelinear semihoops. This is used to prove that the lattice of varieties of
bipartite IMTL-algebras is isomorphic to the lattice of varieties of prelinear
semihoops. The results of this chapter are already published by the author
in two joint works with F. Esteva and J. Gispert in [119, 120].
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In the seventh chapter we study a class of indecomposable MTL-chains
(w.r.t. ordinal sums), namely those chains satisfying a weak form of the
cancellation law. We study their corresponding logics and their standard
completeness and other algebraic properties. The results of this chapter
are already published by the author in a joint work with F. Montagna and
R. Horéik in [117].

In the eighth chapter we study the axiomatic extensions of t-norm based
fuzzy logics that enjoy the global Deduction-Detachment Theorem. They
are characterized by satisfying a weak form of contraction, that we call
n-contraction. Their corresponding logics, standard completeness and al-
gebraic properties are discussed. There is a preliminary short paper with
the results of this chapter by the author in a joint work with F. Esteva
and J. Gispert in [122].

In the ninth chapter we focus on a proper subvariety of 3-contractive MTL-
algebras, the so-called Weak Nilpotent Minimum algebras (WNM-algebras,
for short). Local finiteness is proved for all varieties of WNM-algebras, so
the study reduces to the knowledge of finite chains. It enables us to give
some criteria to compare varieties generated by WNM-chains. We ax-
iomatize varieties generated by WNM-chains and discuss their standard
completeness properties. A preliminar version of this results (with a mis-
take that is corrected in this chapter) is already published in a short paper
by the author in a joint work with F. Esteva and J. Gispert in [121].

In the tenth chapter we move to a more expressive language by consid-
ering expansions of t-norm based logics with additional truth-constants.
The motivation of such logics, which is explained in the introduction of
the chapter, is mainly related to the interest in being able to exploit in a
deep way the fuzziness of the logic by putting the intermediate truth-values
explicitly in the language. Several distinctions in the standard complete-
ness properties of these logics are made and then they are discussed. The
results of this chapter are already published (or submitted for publication)
in a series of joint papers with R. Cignoli, F. Esteva, J. Gispert, L. Godo
and P. Savicky in [55, 132, 50, 56].

Finally, an eleventh chapter collects the main results obtained in the thesis
and the problems that remain open for a future research.





