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Foreword

Multivalued logical systems were studied from  Lukasiewicz’s early papers but
they received much more attention after some infinitely-valued systems were
considered as the logical systems underlying Fuzzy Logic. These logics are known
as triangular norm based multivalued (residuated or fuzzy) logics because their
semantics are defined over the real unit interval by a triangular norm and its
residuum. The first step in this development was the definition of Product Logic,
which completed the three basic continuous triangular norm based logics (with
the previously studied  Lukasiewicz and Gödel-Dummett logics). Later, Hájek’s
BL logic and, finally, MTL logic completed the framework of triangular norm
based logics. From then a lot of papers have been devoted to the study of these
systems and their algebraic counterparts, the corresponding varieties. Until now
a lot of work has been done in the study of subvarieties of the variety of BL-
algebras but not so much is studied regarding subvarieties of MTL-algebras. The
first part of this monograph contains a number of deep results towards the study
of these subvarieties. Even though there is not a full description of the lattice of
subvarieties, there are different approaches to the problem and deep results in
each of them. On the other hand and taking into account that in applications
the basic notion is that of partial truth, the second part contains a new method
to study multivalued logical systems obtained when adding truth constants in
the language corresponding to a subalgebra of truth values (following Pavelka’s
approach). That part combines the interest from the applicative point of view
with good and deep theoretical results.

Carles’ personality, always cooperative and open minded, has been proven
by the fact that the published papers are coauthored by different authors from
different institutions. He has obtained the award for students of Mathematics
given by the Institut d’Estudis Catalans with a monograph entitled Lògiques
borroses (Fuzzy logics) where he described the relation between triangular norm
based logics and Fuzzy Logic together with some results presented in the first
part of this monograph. His solid logic and algebraic background has been
decisive for the development of the work, for the collaborations and for the
elaboration and readability of the monograph you have in your hands.

We hope that this work will give the readers a deep understanding of trian-
gular norm based logics and stimulate them to a further study on the topic.

Prof. Francesc Esteva and Prof. Joan Gispert
Bellaterra and Barcelona, Catalonia, July 2007
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Abstract

According to the Zadeh’s famous distinction, Fuzzy Logic in narrow sense, as
opposed to Fuzzy Logic in broad sense, is the study of logical systems aiming
at a formalization of approximate reasoning. In the systems commonly used the
strong conjunction connective is interpreted by a triangular norm (t-norm, for
short) while the implication connective is interpreted by its residuum. Therefore,
the usual logical systems for Fuzzy Logic are based on t-norms with a residuum.
The necessary and sufficient condition for a t-norm to have a residuum is the
left-continuity. In order to define the based t-norm based fuzzy logic, Esteva and
Godo introduced the system MTL, which was indeed proved to be complete with
respect to the semantics given by all left-continuous t-norms and their residua.

In the first part of this dissertation we have carried out an attempt to describe
the axiomatic extensions of MTL, paying special attention to those which are also
t-norm based. We have done it from an algebraic point of view, by exploiting the
fact that these logics are algebraizable by varieties of MTL-algebras. Therefore,
our study has resulted in an algebraic study of such varieties, where the final
aim would be to obtain a description of the structure of their lattice and their
relevant properties. Although this description has not been achieved yet, we
have done several significant advances in this direction that can be classified in
two groups: (a) those that spread some light over the amazing complexity of the
lattice, and (b) those that describe some well-behaved parts of the lattice. More
precisely:

• By considering the connected rotation-annihilation method proposed to
build involutive left-continuous continuous t-norm, we have proposed a
possible way to decompose MTL-chains and we have studied some partic-
ular cases of this decomposition. This has resulted in an extension of the
theory of perfect, local and bipartite algebras formerly used in varieties of
MV and BL-algebras, to the variety of all MTL-algebras.

• Perfect IMTL-algebras have been proved to be exactly (module isomor-
phism) the disconnected rotations of prelinear semihoops (a particular case
of the decomposition as connected rotation-annihilation).

• The lattice of varieties generated by perfect IMTL-algebras has been
proved to be isomorphic to the lattice of varieties of prelinear semihoops.
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• A decomposition theorem of every MTL-chain as an ordinal sum of inde-
composable prelinear semihoops has been obtained. Since all IMTL-chains
are indecomposable and, as the previous item states, we have the complex-
ity of all the lattice of varieties inside the involutive part, the description
of all indecomposable prelinear semihoops seems to be a hopeless task.

• A particular class of indecomposable MTL-chains has been studied, namely
weakly cancellative chains. We have studied the logics associated to these
chains.

• We have studied the varieties of MTL-chains where a weak form of con-
traction, the so-called n-contraction law, holds. This condition yields a
global form of Deduction Detachment Theorem and allows to prove sev-
eral properties of their related logics.

• We have focused on a particular subvariety of 3-contractive MTL-algebras,
namely Weak Nilpotent Minimum algebras, obtaining a number of results
on axiomatization of their subvarieties, local finiteness, generic chains and
standard completeness.

In the second part of the dissertation we consider another significant question
of Fuzzy Logic: which should be the use of the intermediate truth-values? In
MTL and its extensions, these truth-values for partial truth do not seem to be
used in a deep way, since in the algebraization of the logics the only distinguished
value is the top element. Following Pavelka’s idea, we consider expansions of t-
norm based logics with constants for the intermediate truth-values, allowing
them to play an explicit role in the language. The originality of our proposal
lies in carrying out an algebraic approach to these expansions and studying their
standard completeness properties.
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tagiós; a tots els companys de l’Institut d’Investigació en Intel·ligència Artificial
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Rostislav Horč́ık, Tomáš Kroupa, Enrico Marchioni, George Metcalfe, Tiziana
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Chapter 1

Introduction

Since it was founded by Aristotle, Logic has been the science devoted to the laws
of the correct reasoning. Traditionally, one of the fundamental laws has been
the Bivalence Principle, which states that every proposition is either true or
false, independently how difficult might be in some cases to determine its truth
value. This traditional logic under the Bivalence Principle, that we call Classical
Logic, turned out to be an excellent tool for the mathematical work, specially
after Mathematical Logic was born in the nineteenth century with Augustus de
Morgan, George Boole and Gottlob Frege among others. It is not strange, since
Mathematics do use precise concepts and always works with statements that are
intended to be either true or false.

Nevertheless, Aristotle already noticed that many of the concepts that are
commonly used outside the strict mathematical discourse are far from being
precise; on the contrary they refer to qualities that admit degrees. In Categories
8, 10b 26-32 he writes:

Qualifications admit of a more and a less; for one thing is called more pale or less pale than

another, and more just than another. Moreover, it itself sustains increase (for what is pale can

still become paler) – not in all cases though, but in most. It might be questioned whether one

justice is called more a justice than another, and similarly for the other conditions.1

Some lines below (Categories 8, 11a 2-5) he adds:
At any rate things spoken of in virtue of these unquestionably admit of a more and a less:

one man is called more grammatical than another, juster, healthier, and so on. Triangle and

square do not seem to admit of a more, nor does any other shape.

This kind of predicates appear in propositions that often do not seem neither
completely true nor completely false. This is the vagueness phenomenon and it
becomes a real challenge for Logic when one considers some reasonings that
involve vague predicates, such as the so called Sorites Paradox:

Premises:

(1) A man who has twenty thousand hairs on his head is not bald.

1We cite from the English translation in [6].
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(2) If a man who is not bald loses one hair, he is still not bald.

Conclusion:

(3) A man with no hair on his head is not bald.

This reasoning is a paradox because it seems to be correct (one can derive
the conclusion from the premisses by using Modus Ponens twenty thounsand
times), and it derives a clearly false conclusion from (apparently) true premisses
(we have no doubt that (1) is true, and (2) seems also true); something that can
never happen in a correct reasoning.

Several solutions to cope with the vagueness phenomena have been proposed
(see e.g. [139]). One of them is Fuzzy Logic. As other non-classical logics, it
rejects the Bivalence Principle and proposes infinitely-valued logics to substitute
Classical Logic. Historically this idea comes from the theory of Fuzzy Sets
proposed in 1965 by Lotfi Zadeh in [140]. His idea consisted on modeling vague
predicates with fuzzy sets, i.e. sets where the objects can belong in a greater
or lesser degree. Formally, a fuzzy set is a pair 〈X,µ〉 where X is a set (in the
classical sense) and µ : X → [0, 1] is a function (called membership function)
that maps every object x ∈ X to a real number µ(x) between 0 and 1, that
is interpreted as the degree of membership of the object in the fuzzy set. For
instance, given the vague predicate tall, one can define a fuzzy set by considering:
X := [0.3, 2.4] (set of possible heights in meters) and the membership function:

µ(x) =

 0 if x < 1.2,
5
3x− 2 if 1.2 ≤ x ≤ 1.8,
1 if x > 1.8.

This fuzzy set models the predicate tall in such a way that people whose
height is more than 1.8 meters are definitely tall, people with less than 1.2
meters of height are definitely not tall and people with an intermediate height is
given the quality tall in an intermediate degree according to a linear function.2

This interpretation amounts to a certain use of infinitely-many truth-values in
the following way: if some individual a in our universe of discourse has a height
x ∈ X, then we say that the sentence ’a is tall’ is true at degree µ(x).

However, if one wants to model vague predicates in terms of fuzzy sets, some
way to combine them is required, since one will want to consider propositions
where vague predicates are combined in disjunctions, conjunctions, negations
and other usual logical connectives. For instance, to model in a truth-functional
way the conjunction of two vague predicates one can consider their corresponding
fuzzy sets and provide some binary function such that, given any object and its
membership degrees to the fuzzy sets, returns the membership degree to the
intersection. In the same way, a binary function is needed for the union of
fuzzy sets, and a unary function for the complement. In his foundational papers

2Of course, the choice of the membership function must depend on the context in which
one wants to model the vague predicate. For instance, the meaning of tall is not the same
when the universe of individuals are basketball players or just ordinary people.
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Zadeh proposed the functions min{x, y}, max{x, y} and 1 − x respectively for
the intersection, the union and the complement of fuzzy sets.

In 1969 Goguen proposes in [75] a solution to the Sorites Paradox in terms of
fuzzy sets, but using some other functions to combine them, namely the truth-
functions introduced by  Lukasiewicz for some infinitely-valued logics. Therefore,
a few words on the origin of many-valued logics are needed here.

The first many-valued logic was introduced in 1918 by Jan  Lukasiewicz. It
was a three-valued logic proposed to deal with the problem of future contingents.
According to  Lukasiewicz, the Bivalence Principle implies a kind of determinism,
since it forces all propositions to be either true or false, including those that state
some facts about the future.3 He believes that it is more intuitive to claim that
these propositions are still neither true nor false, and thus he introduces a new
truth-value for them that he calls possible. If {0, 1

2 , 1} is the set formed by his
three truth-values,  Lukasiewicz defines the logical connectives of implication and
negation by means of the following tables:

→ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

¬
0 1
1
2

1
2

1 0

Therefore, he is using the Principle of Extensionality to compute the truth-
value of every complex proposition from the truth-values of its parts by means of
the tables. The meaning of the tables can be almost explained in the following
way. Suppose that {T, F} are the classical truth-values, true and false. Then,
the three  Lukasiewicz’s truth-values can be interpreted as sets of these classical
truth-values: 0 = {F}, 1 = {T} and 1

2 = {T, F}, since the value 1
2 is given to

those proposition about future facts which still we do not know whether they will
be true or false. Almost all the values in the tables are obtained by operating all
the elements in these sets according to the classical connectives of implication
and negation. For instance, {T, F} → {T} = {T}, because according to the
classical implication we have T → T = T and F → T = T . There is only one
exception which is not compatible with this interpretation: 1

2 →
1
2 should be 1

2 ,
but it is 1. The obvious reason seems to be that  Lukasiewicz wanted to preserve
the validity of the Identity Law, ϕ→ ϕ.

In 1922  Lukasiewicz generalizes the three-valued logic to an n-valued logic
for every n ≥ 4 finite, where the set of truth-values is {0, 1

n−1 , . . . ,
n−2
n−1 , 1}, and

the logical operations are defined by x→ y := min{1, 1−x+y} and ¬x := 1−x.

3The problem of future contingents can be also traced back to Aristotle; viz. his famous
naval battle example.
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Finally, in 1930, with Alfred Tarski in [110], they generalize it to an infinitely-
valued logic where the set of truth-values is the real unit interval and the truth-
functions are defined as in the finitely-valued case. Several additional connectives
are defined in the following way: x&y := ¬(x→ ¬y), x ∨ y := (x→ y) → y and
x ∧ y := ¬(¬x ∨ ¬y). Then, some properties of the classical conjunction split
between & and ∧:

1. For every a, b, c, a&b ≤ c iff a ≤ b→ c (residuation law)

2. For every a, b, a→ b = 1 iff a ∧ b = a iff a ≤ b (∧ = min)

By using these truth-functions, Goguen was able to propose a solution to the
sorites paradox. Indeed, he considered that bald is a vague predicate and thus it
must be interpreted by a fuzzy set. (1) can be given the minimum truth-value,
since a man with twenty thousand hairs on his head is not bald, i.e. he belongs
to the set of bald men at degree 0. However, (2) is not absolutely true. Consider
that its truth-value is 19999

20000 , almost 1. Let vi be the truth-value of ’A man with
i hairs in his head is not bald’. Then, we have v20000 = 1 and vi → vi−1 = 19999

20000 .
Interpreting → with  Lukasiewicz implication and after an easy computation, it
comes out that v0 = 0, hence the paradox disappears.

Afterwards, following the truth-functional setting of Zadeh, some other func-
tions were proposed to model the combination of fuzzy sets. They were required
to satisfy certain conditions. For instance, the functions for disjunction and con-
junction were required to be associative and commutative. Alsina, Trillas and
Valverde (see e.g. [4]) proposed a class of functions taken from the theory of
probabilistic metric spaces (see [133, 134]), the triangular norms (t-norms, for
short), to model the intersection of fuzzy sets, their dual functions, the t-conorms
for the unions, and the so-called weak negation functions for the complement
(see [136, 48]). T-norms are binary operations defined on the real unit interval
which are associative, commutative, monotonic and have 1 as neutral element.
As regards to implication, mainly two kinds were proposed:

S-implications: those satisfying that for every a, b, a→ b = ¬a ∨ b, and
R-implications: those satisfying the residuation law.

In [137] R-implications were chosen in order to deal with the Modus Ponens
rule. For every continuous t-norm there is an associated R-implication, which is
called its residuum. Although the continuity was not required in the definition
of t-norm, the majority of the known examples were actually continuous, for
instance the minimum (the original interpretation for the intersection of fuzzy
sets in Zadeh’s seminal paper), the  Lukasiewicz interpretation of the connective
& (we will call it  Lukasiewicz t-norm) and the product of reals (we will call
it product t-norm). Moreover, all continuous t-norms can be represented as an
ordinal sum of these three examples, as proved in [118] and in [108].

Interestingly, two of the three basic continuous t-norms and their residua
had been used in the semantics of some infinitely-valued logics before fuzzy sets
were defined. On the one hand, the  Lukasiewicz t-norm, as we have already
explained, appeared in the semantics of  Lukasiewicz’s infinitely-valued logic. He
also defined a Hilbert-style calculus whose axioms were:
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( L1) ϕ→ (ψ → ϕ)

( L2) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))

( L3) ((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ)

( L4) (¬ψ → ¬ϕ) → (ϕ→ ψ)

( L5) ((ϕ→ ψ) → (ψ → ϕ)) → (ψ → ϕ)

and Modus Ponens was the only inference rule. Let A be the algebra defined
over [0, 1] by the  Lukasiewicz truth-functions. He conjectured that the tautolo-
gies of the infinitely-valued logic given by the matrix 〈A, {1}〉 coincide with the
theorems of this Hilbert-style calculus. However, he was not able to prove it.
In 1935 Mordchaj Wajsberg claimed that he had found a proof, but he never
gave it. The conjecture was finally proved by syntactical means in 1958 by Rose
and Rosser [131] and algebraically in 1959 by Chang [25, 26]. It is important
to remark that Meredith showed in [113] the redundancy of the axiom ( L5) and
that Hay improved the result in 1963 (in [86]) by proving that the Hilbert-style
calculus in fact coincides with the finitary fragment of  Lukasiewicz logic.

On the other hand, the minimum t-norm also corresponds to the semantical
interpretation of the conjunction in a many-valued logic. Indeed, Gödel used it
in [74] to study some linearly ordered matrix semantics for superintuitionistic
logics. Dummett gave in [47] a sound and complete Hilbert-style calculus for
the infinitely-valued logic corresponding to the matrix defined over [0, 1] by the
minimum t-norm and its residuated implication.

These two examples suggested that, with the usage of t-norms and their
residua, Fuzzy Logic was very close to the apparently independent field of many-
valued logics. The next step in approaching both fields was done in [83] when
Hájek, Godo and Esteva gave also a Hilbert-style calculus for the remaining
prominent example of continuous t-norm: the product t-norm.

Therefore, it became clear that at least some part of Fuzzy Logic was directly
related to the study of some many-valued logics. This led to the distinction by
the founder of the field, Zadeh, between a wide and a narrow sense of ’Fuzzy
Logic’. In [141] he writes:

The term ’Fuzzy Logic’ has two different meanings: wide and narrow. In a narrow sense,

fuzzy logic, FLn, is a logical system which aims at a formalization of approximate reasoning.

In this sense, FLn is an extension of multivalued logic. However, the agenda of FLn is quite

different from that of traditional multivalued logics. In particular, such key concepts in FLn

as the concept of a linguistic variable, canonical form, fuzzy if-then rule, fuzzy quantification

and defuzzification, predicate modification, truth qualification, the extension principle, the

compositional rule of inference and interpolative reasoning, among others, are not addressed

in traditional systems. This is the reason why FLn has a much wider range of applications

than traditional systems. In its wide sense, fuzzy logic, FLw, is fuzzily synonymous with the

fuzzy set theory, FST, which is the theory of classes with unsharp boundaries. FST is much

broader than FLn and includes the latter as one of its branches.

Once it was shown that the logics defined by the three main continuous t-
norms and their residua enjoyed a syntactical calculus, Hájek proposed in [79] a
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new logical system, that he called Basic Fuzzy Logic (BL, for short) to capture
the logic given by the class of all continuous t-norms.4 His conjecture was
proved in [80, 30]. Nevertheless, Esteva and Godo noticed that the necessary and
sufficient condition for a t-norm to have a residuum was not the continuity, but
the left-continuity. Thus, they wanted to find the fuzzy logic corresponding to
the bigger class of all left-continuous t-norms. To fulfil this aim, they proposed
a new Hilbert-style calculus in [51] called Monoidal T-norm based Logic (MTL,
for short). MTL was proved to be indeed the logic of all left-continuous t-
norms and their residua by Jenei and Montagna in [100]. Thus, in a sense MTL
can be considered the real basic fuzzy logic, since it is the weakest logic which
is complete with respect to a semantics given by a class of t-norms and their
residua (this kind of logics are called t-norm based fuzzy logics or just t-norm
based logics). The word ’Monoidal’ in the name is due to the fact that MTL is
an axiomatic extension of another many-valued logic proposed by Höhle in [87]
called Monoidal Logic (ML, for short). ML has been proved to be equivalent
to a contraction-less substructural logic, namely the system HBCK (also called
FLew) of Ono and Komori (see [127, 126]). Therefore, since MTL enjoys neither
the contraction rule, it can be regarded not only as a fuzzy logic and as a many-
valued logic, but also as a substructural logic.

In this dissertation, that pertains to Fuzzy Logic in narrow sense, we study
MTL (and its axiomatic extensions) from the two first points of view of the
previous list: as a fuzzy logic and as a many-valued logic. More than that, we
study MTL as an algebraizable many-valued logic. Indeed, traditionally many
algebraic counterparts have been used in the research on many-valued logics. For
instance, Chang introduced MV-algebras to study  Lukasiewicz logic5, a subclass
of Heyting algebras called G-algebras have been introduced for Gödel-Dummett
logic, residuated lattices (in the sense of [43]) for ML and so on. Hájek gave
an algebraic semantics for BL, namely the variety of BL-algebras, a subclass of
residuated lattices. A bigger variety of residuated lattices has been used to alge-
braize MTL by Esteva and Godo, the variety of MTL-algebras MTL. Actually,
MTL is algebraizable in the sense of Blok and Pigozzi (see [19]) and MTL is
its equivalent quasivariety semantics. Therefore, all its finitary extensions are
also algebraizable and their algebraic semantics are the corresponding subquasi-
varieties of MTL. When we restrict to axiomatic extensions, the corresponding
algebraic semantics are the subvarieties of MTL. Moreover, the algebraizability
implies a number of results connecting algebraic properties of the semantics with
logical properties, the so-called bridge theorems of Abstract Algebraic Logic (see
[62]). A relevant subclass of MTL-algebras are those defined over the real unit
interval, which are exactly those where the conjunction & is interpreted by a
left-continuous t-norm. These algebras are called standard. For every finitary
extension of MTL a crucial question, from the Fuzzy Logic point of view, is
whether it is complete w.r.t. the standard algebras of its corresponding quasi-

4  Lukasiewicz, Gödel-Dummett and Product logics were proved to be axiomatic extensions
of BL.

5A polinomially equivalent algebraic semantics for  Lukasiewicz logic, the class of Wajsberg
algebras, has been proposed in [130, 63].
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variety. This kind of result is called standard completeness.6

Many investigations in the algebraic direction for MTL and its finitary ex-
tensions have been already carried out (see e.g. [30, 100, 49, 53, 3, 32, 33,
81, 71, 72, 116, 88, 89, 90, 69, 91]). Thanks to these works (and others) some
parts of the lattice of subvarieties of MTL are already known, namely all vari-
eties of MV-algebras (see [103]), all varieties of G-algebras (see e.g. [76]), many
varieties of BL-algebras (see [3, 53]) and some other parts of the lattice (see
e.g. [71, 72]). The results obtained in BL strongly relied on the knowledge on
its linearly ordered algebras, since all BL-algebras (in fact, all MTL-algebras)
are representable as subdirect product of linearly ordered ones, and linearly
ordered BL-algebras were well described in terms of ordinal sums of some ba-
sic components (generalizing the corresponding result for continuous t-norms).
Unfortunately, such a representation is not known for linearly ordered MTL-
algebras (also called MTL-chains). Thus, the structure of the lattice of varieties
of MTL-algebras was very far from being known.

With this dissertation we want to contribute to the task of describing ax-
iomatic extensions of t-norm based fuzzy logics, or equivalently, varieties of
MTL-algebras and their properties. On the one hand, we try to describe the
structure of MTL-chains. Our first attempt consists in using the decomposi-
tion as ordinal sum of indecomposable semihoops. However, although we prove
that for every chain exists a maximum decomposition in this sense, we show
that the class of indecomposable semihoops is really huge and it seems too dif-
ficult to describe. Nevertheless, we study a significant class of indecomposable
semihoops: those satisfying a weak form of cancellation. The second attempt
uses one of the methods proposed by Jenei to built left-continuous t-norms, the
so-called connected rotation-annihilation construction. We show that for every
chain there is also a maximal decomposition as connected rotation-annihilation.
The task of describing the indecomposable chains seems also too far away, but
we can still study some cases of this decomposition, which leads to the theory
of perfect and bipartite MTL-algebras. On the other hand, we focus on several
varieties of MTL-algebras satisfying some nice properties, namely the varieties
of n-contractive algebras. They seem a good choice because they correspond to
the axiomatic extensions of MTL satisfying the global Deduction-Detachment
Theorem, and they contain all the locally finite varieties of MTL-algebras, in
particular the weak nilpotent minimum algebras (a subvariety that we study
in a greater detail). For all the varieties of MTL-algebras defined in the the-
sis we study several relevant logical and algebraic properties, mainly standard
completeness properties, local finiteness, finite embedding property, finite model
property and decidability.

6The logics studied in this thesis belong to another interesting class of logics studied by
general methods, namely the class of Weakly Implicative fuzzy logics (see [38]). This class
is claimed to be the right class of fuzzy logics (in narrow sense) in [12]. Using the general
results mentioned above the authors obtain completeness w.r.t. linearly ordered algebras,
local Deduction-Detachment Theorem, subdirect decomposition theorem, etc. Moreover, we
also would like to point out that axiomatic extensions of MTL are core fuzzy logics in the sense
of [82].
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Finally, we consider another aspect of Fuzzy Logic in narrow sense: which
should be the use of the intermediate truth-values? In MTL and its finitary
extensions, these truth-values do not seem to be used in a deep way, since in
their algebraization the only distinguished value is the top element, as in classi-
cal logic. For this reason, following Pavelka’s idea in [128] for  Lukasiewicz logic,
we consider expansions of t-norm based logics with constants for the interme-
diate truth-values, allowing them to play an explicit role in the language. The
originality of our proposal lies in carrying out an algebraic approach to these
expansions, i.e. studying them also as algebraizable logics.

The thesis is structured in eleven chapters. After this introduction, a first
group of chapters (from the second till the fifth) are introductory, with necessary
preliminaries, sometimes interpreted from our point of view; the rest contains
our contributions to the field.

1. In the second chapter we introduce the basic notions and notation that will
be used throughout all the dissertation on Universal Algebra and Algebraic
Logic.

2. In the third chapter the logic MTL, the main subject of the study, is
formally introduced. The three perspectives (as a substructural logic, as
an algebraizable many-valued logic and as a t-norm based fuzzy logic) for
MTL are also formally discussed.

3. In the fourth chapter we present the basic results and definitions for MTL-
algebras that we will need to study their varieties. In particular, the de-
composition of every algebra as a sudirect product of chains is proved and
some useful methods to build new IMTL-algebras are introduced, namely
Jenei’s rotation and rotation-annihilation methods. We prove a decompo-
sition theorem of every chain as an ordinal sum of indecomposable 0-free
subreducts (totally ordered semihoops) and we discuss another possible
decomposition of chains in terms of connected rotation-annihilation.

4. In the fifth chapter we concentrate on the significant properties of the
varieties, or equivalently of the logics, that we intend to study: three ver-
sions of standard completeness (for each of them we prove useful algebraic
equivalencies), local finiteness, finite embeddability property, finite model
property and decidability.

5. In the sixth chapter, we study some particular cases of the decomposition
in connected rotation-annihilation, obtaining an extension of the theory
of perfect, local and bipartite algebras (originally studied in the context
of MV and BL-algebras) to MTL-algebras. Perfect IMTL-algebras are
proved to be exactly (module isomorphism) the disconnected rotations of
prelinear semihoops. This is used to prove that the lattice of varieties of
bipartite IMTL-algebras is isomorphic to the lattice of varieties of prelinear
semihoops. The results of this chapter are already published by the author
in two joint works with F. Esteva and J. Gispert in [119, 120].
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6. In the seventh chapter we study a class of indecomposable MTL-chains
(w.r.t. ordinal sums), namely those chains satisfying a weak form of the
cancellation law. We study their corresponding logics and their standard
completeness and other algebraic properties. The results of this chapter
are already published by the author in a joint work with F. Montagna and
R. Horč́ık in [117].

7. In the eighth chapter we study the axiomatic extensions of t-norm based
fuzzy logics that enjoy the global Deduction-Detachment Theorem. They
are characterized by satisfying a weak form of contraction, that we call
n-contraction. Their corresponding logics, standard completeness and al-
gebraic properties are discussed. There is a preliminary short paper with
the results of this chapter by the author in a joint work with F. Esteva
and J. Gispert in [122].

8. In the ninth chapter we focus on a proper subvariety of 3-contractive MTL-
algebras, the so-called Weak Nilpotent Minimum algebras (WNM-algebras,
for short). Local finiteness is proved for all varieties of WNM-algebras, so
the study reduces to the knowledge of finite chains. It enables us to give
some criteria to compare varieties generated by WNM-chains. We ax-
iomatize varieties generated by WNM-chains and discuss their standard
completeness properties. A preliminar version of this results (with a mis-
take that is corrected in this chapter) is already published in a short paper
by the author in a joint work with F. Esteva and J. Gispert in [121].

9. In the tenth chapter we move to a more expressive language by consid-
ering expansions of t-norm based logics with additional truth-constants.
The motivation of such logics, which is explained in the introduction of
the chapter, is mainly related to the interest in being able to exploit in a
deep way the fuzziness of the logic by putting the intermediate truth-values
explicitly in the language. Several distinctions in the standard complete-
ness properties of these logics are made and then they are discussed. The
results of this chapter are already published (or submitted for publication)
in a series of joint papers with R. Cignoli, F. Esteva, J. Gispert, L. Godo
and P. Savický in [55, 132, 50, 56].

10. Finally, an eleventh chapter collects the main results obtained in the thesis
and the problems that remain open for a future research.





Chapter 2

Universal Algebra and
Algebraic Logic
preliminaries

In this chapter we introduce the basic definitions and notation that will be used
throughout the dissertation. Since this is an algebraic investigation of a certain
family of logics, it is necessary to introduce both several concepts from two fields:
Universal Algebra and Algebraic Logic.

2.1 Universal Algebra

As regards to Universal Algebra, it will be for us a language and a tool, rather
than a topic of research. Therefore, instead of doing an extensive presentation
of its main contents, we will just assume some acquaintance of the reader with
the topic (a pair of good reference textbooks are [24] and [78]) and set the main
definitions and results, and the notation as it will used in the dissertation.

An algebraic language is a pair L = 〈F, τ〉, where F is a set of functional
symbols and τ is a mapping τ : F → ω (where ω denotes the set of the natural
numbers). For every f ∈ F , τ(f) is called the arity of the functional symbol f .

Example 1. As an example we may cite the main language that will appear
all along the dissertation. Consider the pair L = 〈{&,→,∧,∨, 0, 1}, τ〉, where
τ(&) = τ(→) = τ(∧) = τ(∨) = 2 and τ(0) = τ(1) = 0. This definition will be
sometimes simplified just by saying that L = {&,→,∧,∨, 0, 1} is a language of
type 〈2, 2, 2, 2, 0, 0〉.

Given an algebraic language L = 〈F, τ〉, an algebra A of type L is a pair
〈A, {fA : f ∈ F}〉, where A is a non-empty set called the universe or the carrier
of A and for every f ∈ F , if τ(f) = n, then fA is an n-ary operation in A (a
0-ary operation in A is just an element of A). When the number of functionals

11
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is finite, say {f1, . . . , fn}, we write A = 〈A, fA1 , . . . , fAn 〉, and we say that it is
an algebra of type 〈τ(f1), . . . , τ(fn)〉. The superscripts in the functions will be
often omitted when they are clear from the context.

Example 2. An important example of algebra is the algebra of formulae. Let
L be a countable algebraic language and let X be an infinite countable set. The
set FmL(X) of L-formulae (or L-terms) over X is inductively defined as:

1. For every x ∈ X, x ∈ FmL(X).

2. For every c ∈ F with arity 0, c ∈ FmL(X).

3. For every f ∈ F with arity n > 0, if ϕ1, . . . , ϕn ∈ FmL(X), then
f(ϕ1, . . . , ϕn) ∈ FmL(X).

X is called the set of variables. The algebra of formulae, FmL(X) =
〈FmL(X), {fFmL(X) : f ∈ F}〉, is defined by:

• For every c ∈ F with arity 0, cFmL(X) := c.

• For every f ∈ F with arity n > 0 and every ϕ1, . . . , ϕn ∈ FmL(X),
fFmL(X)(ϕ1, . . . , ϕn) := f(ϕ1, . . . , ϕn).

Given another infinite countable set Y of variables, the resulting algebra of
formulae, FmL(Y ) is isomorphic to FmL(X), thus to simplify the notation the
set of formulae will be denoted as FmL. Notice that FmL is also countable.

The algebra of formulae is defined in the same way when the set of variables is
uncountable, but since the number of variables occurring in a formula is always
finite, in general it is enough to consider algebras of formulae built over an
infinite countable set of variables.

We write ϕ(x1, . . . , xn) to indicate that the variables occurring in the formula
ϕ are among {x1, . . . , xn}.

Example 3. Let A = 〈A,∧A,∨A, 0A, 1A〉 be an algebra of type 〈2, 2, 0, 0〉. It
is a bounded lattice if, and only if, the operations ∧A and ∨A are associative,
commutative and idempotent, and for every a, b ∈ A it holds:

• a ∧A 0A = 0A

• a ∨A 1A = 1A

• a ∧A (a ∨A b) = a

• a ∨A (a ∧A b) = a

A is a distributive lattice iff it is a lattice such that for every a, b, c ∈ A it
holds:

• a ∧A (b ∨A c) = (a ∧A b) ∨A (a ∧A c)
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In every lattice A it is possible to define a partial order in the following way:
for every a, b ∈ A, a ≤ b iff a ∧A b = a (or, equivalently, a ∨A b = b). In this
partial order every set of two elements {a, b} has an infimum (namely a ∧A b)
and a supremum (namely a ∨A b). A lattice is called complete if, and only if,
every subset of the carrier (even the infinite ones) has supremum and infimum.

Let A = 〈A, {fA : f ∈ F}〉 and B = 〈B, {fB : f ∈ F}〉 be two algebras of
the same type. We say that A is a subalgebra of B, and we write A ⊆ B, if and
only if:

• A ⊆ B,

• for every c ∈ F with arity 0, cA = cB, and

• for every f ∈ F with arity n > 0, fA = fB � An.

The universe of a subalgebra of A is called a subuniverse. Since the set of
subuniverses of A is closed under arbitrary intersections, for every non-empty
B ⊆ A, one can define the subalgebra generated by B as the subalgebra 〈B〉A
whose universe is

⋂
{C ⊆ A : C is a subuniverse of A and B ⊆ C}.

A mapping h : A→ B is a homomorphism from A to B if and only if:

• for every c ∈ F with arity 0, h(cA) = cB, and

• for every f ∈ F with arity n > 0 and for every a1, . . . , an ∈ A,
h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).

B is homomorphic image of A if, and only if, there is a surjective homomor-
phism from A to B. A one-to-one homomorphism is called an embedding and a
one-to-one surjective homomorphism is called an isomorphism. We say that A
and B are isomorphic and we write A ∼= B if, and only if, there is an isomorphism
from A to B.

Given an algebra A = 〈A, {fA : f ∈ F}〉, a set θ ⊆ A2 is a congruence of A
if, and only if, it is an equivalence relation on A and for every f ∈ F with arity
n > 0, if 〈a1, b1〉, . . . , 〈an, bn〉 ∈ θ, then 〈fA(a1, . . . , an), fA(b1, . . . , bn)〉 ∈ θ. The
set of all congruences of A is denoted as Con(A) and it is closed under arbitrary
intersections, hence it forms a bounded complete lattice ordered by the inclusion:
Con(A) = 〈Con(A),∩,

∨
,∆A,∇A〉, where

∨
i∈I θi =

⋂
{θ :

⋃
i∈I θi ⊆ θ}, ∆A =

{〈a, a〉 : a ∈ A} and ∇A = A2. Since this is a complete lattice, it makes sense to
consider the notion of generated congruence, i.e. given B ⊆ A2 there exists the
minimum congruence containing B, which is denoted as Θ(B). The congruences
of the form Θ({〈a, b〉}), are called principal congruences. Given θ1, θ2 ∈ Con(A),
the composition of θ1 with θ2 is defined as the binary relation θ1 ◦ θ2 := {〈a, b〉 :
there is c ∈ A such that 〈a, c〉 ∈ θ1 and 〈c, b〉 ∈ θ2}. We say that A is simple if,
and only if, Con(A) = {∆A,∇A}.

Let A = 〈A, {fA : f ∈ F}〉 be an algebra and θ ∈ Con(A). Given a ∈ A, its
equivalence class with respect to θ is denote as a/θ. The quotient algebra of A
by θ is defined as A/θ = 〈A/θ, {fA/θ : f ∈ F}〉 where:
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• A/θ = {a/θ : a ∈ θ},

• for every c ∈ F with arity 0, cA/θ = cA/θ, and

• for every f ∈ F with arity n > 0 and for every a1, . . . , an ∈ A,
fA/θ(a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ.

Given a family {Ai : i ∈ I} of algebras of the same type, we define the product
algebra (or direct product algebra)

∏
i∈I Ai = 〈

∏
i∈I Ai, {f

Q
i∈I Ai : f ∈ F}〉 by:

•
∏
i∈I Ai is the Cartesian product of the universes,

• for every c ∈ F with arity 0, c
Q

i∈I Ai = 〈cAi : i ∈ I〉, and

• for every f ∈ F with arity n > 0 and for every â1, . . . , ân ∈
∏
i∈I Ai,

f
Q

i∈I Ai(â1, . . . , ân)(i) = fAi(â1(i), . . . , ân(i)), for every i ∈ I, where b̂(i)
denotes the i-th component of b̂ ∈

∏
i∈I Ai.

If j ∈ I, the j-th projection is the homomorphism πj :
∏
i∈I Ai → Aj defined as

π(â) := â(j).
A filter F on a set I is a family of subsets of I such that:

• I ∈ F ,

• if X,Y ∈ F , then X ∩ Y ∈ F , and

• if X ∈ F and X ⊆ Y ⊆ I, then Y ∈ F .

F is proper if, and only if, ∅ /∈ F (i.e. F 6= P(I)).
Given a family {Ai : i ∈ I} of algebras of the same type and a proper

filter F on I, the following binary relation is defined on
∏
i∈I Ai: for every

â, b̂ ∈
∏
i∈I Ai, â ∼F b̂ if, and only if, {i ∈ I : â(i) = b̂(i)} ∈ F . ∼F is a

congruence of
∏
i∈I Ai. The reduced product algebra of {Ai : i ∈ I} w.r.t. F is

the algebra
∏
i∈I Ai/F = 〈

∏
i∈I Ai/F , {f

Q
i∈I Ai/F : f ∈ F}〉 defined by:

•
∏
i∈I Ai/F is the quotient by ∼F of the Cartesian product

∏
i∈I Ai,

• for every c ∈ F with arity 0, c
Q

i∈I Ai/F = c
Q

i∈I Ai/F , and

• for every f ∈ F with arity n > 0 and for every â1/F , . . . , ân/F ∈∏
i∈I Ai/F , f

Q
i∈I Ai/F (â1/F , . . . , ân/F) = f

Q
i∈I Ai(â1, . . . , ân)/F .

For the sake of simpler notation, the reduced product will be also denoted
as

∏I
F Ai.

Let F be a proper filter on I. F is an ultrafilter if, and only if, satisfies any
of the following equivalent conditions:

• For every X ⊆ I, X ∈ F if, and only if, I \X /∈ F .

• For every X,Y ⊆ I, X ∪ Y ∈ F if, and only if, X ∈ F or Y ∈ F .
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• F is maximal in the set of proper filters on I ordered by the inclusion.

The reduced product w.r.t. an ultrafilter is called ultraproduct.
Given a family {Ai : i ∈ I} ∪ {A} of algebras of the same type, we say that

A is a subdirect product of {Ai : i ∈ I} if, and only if:

1. A ⊆
∏
i∈I Ai, and

2. for every j ∈ I, the restriction on A of the j-th projection of
∏
i∈I Ai is

surjective.

A is representable as a subdirect product of {Ai : i ∈ I} if, and only if it is
isomorphic to a subdirect product of {Ai : i ∈ I}, i.e. there exists an embedding
α : A ↪→

∏
i∈I Ai such that for every j ∈ J , πj ◦α is surjective. In this case α is

called a subdirect representation of A. We say that the subdirect representation
is finite when I is finite.

An algebra A is (finitely) subdirectly irreducible if, and only if, for every
(finite) representation α : A ↪→

∏
i∈I Ai there exists j ∈ J such that πj ◦α is an

isomorphism.

Proposition 2.1. Let A be an algebra and take θ ∈ Con(A) \ {∇A}. The
following are equivalent:

(i) A/θ is subdirectly irreducible.

(ii) θ is ∩-completely irreducible.

(iii) θ is maximal relatively to a pair, i.e. there is a pair 〈a, b〉 ∈ A2 such that
θ is maximal in the set of proper congruences not containing 〈a, b〉.

Corollary 2.2. Let A be an algebra. The following are equivalent:

(i) A is subdirectly irreducible.

(ii) Con(A) \ {∆A} has a minimum element.

Theorem 2.3 ([15]). Every algebra A is representable as a subdirect product of
subdirectly irreducible algebras (which are homomorphic images of A).

Given a class of algebras K, we denote the class of its subdirectly irreducible
members by KSI and the class if its finitely subdirectly irreducible members by
KFSI .

Notice that simple algebras are subdirectly irreducible. An algebra is called
semisimple if, and only if, it is representable as a subdirect product of simple
algebras.

The operators over classes of algebras that give their isomorphic images, sub-
algebras, homomorphic images, products, reduced products and ultraproducts
are respectively denoted as I, S, H, P, PR, PU .

Given a class of algebras K of the same type and an operator O ∈
{I,S,H,P,PR,PU}, the following hold:
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1. O(K) ⊆ IO(K),

2. IO(K) = OI(K),

3. IPS(K) ⊆ ISP(K),

4. IPH(K) ⊆ HP(K),

5. ISH(K) ⊆ IHS(K), and

6. ISPR(K) = ISPPU (K).

If K = {A1, . . . ,An}, we write O(A1, . . . ,An) instead of O({A1, . . . ,An}).
Moreover, K is said to be a variety if, and only if, it is closed under H, S

and P. We denote as V(K) the variety generated by K, i.e. the smallest variety
containing K. It is clear that V(K) = HSP(K).

Given a formula ϕ(x1, . . . , xn) ∈ FmL and an algebra A of type L, we define
inductively a function ϕA : An → A by:

1. If ϕ is a variable xi, ϕA(a1, . . . , an) := ai, for every a1, . . . , an ∈ A.

2. If ϕ is a functional c, with arity 0, ϕA(a1, . . . , an) := cA, for every
a1, . . . , an ∈ A.

3. If ϕ is of the form f(ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)), ϕA(a1, . . . , an) :=
fA(ϕA1 (a1, . . . , an), . . . , ϕAm(a1, . . . , an)), for every a1, . . . , an ∈ A.

An L-equation is an expression of the form:

ϕ ≈ ψ

where ϕ,ψ ∈ FmL. The set of all equations is denoted as EqL. Given an L-
equation ϕ(x1, . . . , xn) ≈ ψ(x1, . . . , xn) and an algebra A of type L, we say that
A satisfies (or verifies) the equation if, and only if, for every a1, . . . , an ∈ A,
ϕA(a1, . . . , an) = ψA(a1, . . . , an). It is denoted as A |= ϕ ≈ ψ. A class of
algebras K of type L satisfies an equation ϕ ≈ ψ ∈ EqL if, and only if, A |= ϕ ≈ ψ
for every A ∈ K. It is denoted as K |= ϕ ≈ ψ. K satisfies a set of equations
Λ ⊆ EqL if, and only if, K |= ϕ ≈ ψ for every ϕ ≈ ψ ∈ Λ. It is denoted as
K |= Λ.

Theorem 2.4 ([14]). Let L be an algebraic language and let K be a class of
algebras of type L. K is a variety if, and only if, it is an equational class (i.e.
there exists a set of equations Λ ⊆ EqL such that K = {A : A |= Λ}).

We say that an algebra A is congruent permutable if, and only if, for every
θ1, θ2 ∈ Con(A), θ1 ◦ θ2 = θ2 ◦ θ1. A variety K is congruent permutable if, and
only if, for every A ∈ K, A is congruent permutable. A variety K is congruent
distributive if, and only if, for every A ∈ K, Con(A) is a distributive lattice. A
variety is arithmetic if, and only if, it is congruent distributive and congruent
permutable.

The finitely subdirectly irreducible members of a congruent distributive va-
riety have a useful description, as the following result states.
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Theorem 2.5 (Jónsson’s Lemma). Let K be a class of algebras of the same type
such that V(K) is congruent distributive. If an algebra A ∈ V(K) is finitely
subdirectly irreducible, then A ∈ HSPU (K).

A class of algebras K is said to be a quasivariety if, and only if, it is closed
under I, S and PR. We denote as Q(K) the quasivariety generated by K, i.e.
the smallest quasivariety containing K. It is clear that Q(K) = ISPR(K).

An L-quasiequation is an expression of the form:

ϕ0 ≈ ψ0 & . . .&ϕn−1 ≈ ψn−1 ⇒ ϕn ≈ ψn

where ϕi, ψi ∈ FmL for every i ≤ n. The set of all quasiequations is denoted
as QEqL. Notice that EqL ⊆ QEqL, since an equation is a quasiequation with
n = 0. Given an L-quasiequation ϕ0 ≈ ψ0& . . .&ϕn−1 ≈ ψn−1 ⇒ ϕn ≈ ψn
such that its variables are in {x1, . . . , xm} and an algebra A of type L, we say
that A satisfies the quasiequation if, and only if, for every a1, . . . , am ∈ A,
ϕAn (a1, . . . , am) = ψAn (a1, . . . , am), whenever ϕAi (a1, . . . , am) = ψAi (a1, . . . , am)
for every i < n. It is denoted as A |= ϕ0 ≈ ψ0& . . .&ϕn−1 ≈ ψn−1 ⇒ ϕn ≈ ψn.
The extension of this definition to classes of algebras and sets of quasiequations
is done in the obvious way, as in the case of equations.

Theorem 2.6 ([111]). Let L be an algebraic language and let K be a class of
algebras of type L. K is a quasivariety if, and only if, it is a quasiequational class
(i.e. there exists a set of quasiequations Λ ⊆ QEqL such that K = {A : A |= Λ}).

Since EqL ⊆ QEqL, the last theorem implies that every variety is a quasiva-
riety.

Let now FmL be a set formulae buit over a set of variables with arbitrary
length. A generalized L-quasiequation is an expression of the form:

&i<κϕi ≈ ψi ⇒ ϕκ ≈ ψκ

where ϕi, ψi ∈ FmL for every i ≤ κ, where κ is a cardinal number. The set of all
generalized equations is denoted as GQEqL. Of course, QEqL ⊆ GQEqL. The
satisfaction relations of generalized quasiequations are the obvious generalization
of the corresponding notions for quasiequations.

Generalized quasiequations determine a kind of generalized quasivarieties,
namely classes of algebras closed under isomorphic images, subalgebras and
products, as the following theorem states (cf. [78], page 380).

Theorem 2.7. Let L be an algebraic language and let K be a class of algebras
of type L. K is closed under I, S and P if, and only if, there exists a set of
generalized quasiequations Λ ⊆ GQEqL such that K = {A : A |= Λ}).

A variety K has the equationally definable principal congruences property
(EDPC, for short) if, and only if, there exists a finite set of equations in 4
variables

{σi(x, y, z, w) ≈ τi(x, y, z, w) : i < n}
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such that for every A ∈ K and every a, b, c, d ∈ A: 〈c, d〉 ∈ Θ({〈a, b〉}) if, and
only if, σAi (a, b, c, d) = τAi (a, b, c, d) for every i < n.

A variety K has the congruence extension property (CEP, for short) if, only
if, for every A,B ∈ K such that B ⊆ A and every θ ∈ Con(B), there exists
θ′ ∈ Con(A) such that θ′ ∩B2 = θ.

A class K of algebras is locally finite (LF, for short) if, and only if, for every
A ∈ K and for every finite set B ⊆ A, the subalgebra generated by B is also
finite. Notice that this property is inherited by the subclasses of K.

Let L be an algebraic language, let A = 〈A, {fA : f ∈ F}〉 be an algebra of
type L and let B ⊆ A be an non-empty set. The partial subalgebra B of A with
domain B is the partial algebra 〈B, {fB : f ∈ F}〉, where for every f ∈ F n-ary,
and every b1, . . . , bn ∈ B,

fB(b1, . . . , bn) =
{
fA(b1, . . . , bn) if fA(b1, . . . , bn) ∈ B,
undefined otherwise.

We denote it by B ⊆p A.
Given two algebras A and B of the same language we say that A is partially

embeddable into B when every finite partial subalgebra of A is embeddable into
B. Generalizing this notion to classes of algebras, we say that a class K of
algebras is partially embeddable into a class M if every finite partial subalgebra
of a member of K is embeddable into a member of M.

If the language is finite, this turns out to be equivalent to say that K belongs
to the universal class generated by M (see for instance [76]). That is, by recall-
ing  Los’ theorem (see [24]) of characterization of universal classes, we have the
following equivalence.

Proposition 2.8 ([76],Th. 1.2.2). Let K and M be classes of algebras of the
same finite language. Then the following conditions are equivalent:

• K is partially embeddable into M

• K ⊆ ISPU (M)

Given a class K of algebras, Kfin will denote the class of its finite members.
A class K of algebras has the finite embeddability property (FEP, for short)

if, and only if, it is partially embeddable into Kfin.
A class K of algebras of the same type has the strong finite model property

(SFMP, for short) if, and only if, every quasiequation that fails to hold in K can
be refuted in some member of Kfin.

A class K of algebras of the same type has the finite model property (FMP,
for short) if, and only if, every equation that fails to hold in K can be refuted in
some member of Kfin.

It is clear that a variety has the FMP if, and only if, it is generated by its
finite members and a quasivariety has the SFMP if, and only if, it is generated
(as a quasivariety) by its finite members.



2.2. ALGEBRAIC LOGIC 19

Theorem 2.9 ([22],Th. 3.1). Let L be a finite algebraic language and let K be
a class of algebras of type L closed under finite products. Then, K has the FEP
if, and only if, K has the SFMP.

Moreover, it is clear that for every class of algebras K, we have:

• If K is locally finite, then it has the FEP.

• If K has the FEP, then it has the SFMP.

• If K has the SFMP, then it has the FMP.

Theorem 2.10 ([22], Th. 3.3, cf. [18]). Let L be a finite algebraic language and
let K be a variety of algebras of type L enjoying the EDPC. Then, the following
are equivalent:

• K has the FEP,

• K has the SFMP,

• K has the FMP.

2.2 Algebraic Logic

Again, regarding to Algebraic Logic, we introduce only the definitions, basic
general facts, and notations that are needed in the dissertation. Nevertheless,
this is an already far developed subject. The interested reader can find a useful
introductory survey to its abstract theory in [62], and reference textbooks in [41]
and [61].

A propositional language L is an algebraic language. The functional sym-
bols of L are called propositional connectives. A propositional logic (also called
sentential logic) is a pair S= 〈L,`S〉 where L is a propositional language and
`S⊆ P(FmL)× FmL satisfying the following conditions:

1. Consequence relation:
For every Γ ∪∆ ∪ {ϕ,ψ} ⊆ FmL,

(a) If ϕ ∈ Γ, then Γ `S ϕ.

(b) If Γ `S ϕ and Γ ⊆ ∆, then ∆ `S ϕ.

(c) If Γ `S ϕ and for every ψ ∈ Γ, ∆ `S ψ, then ∆ `S ϕ.

2. Structural:
For every Γ ∪ {ϕ} ⊆ FmL and every homomorphism σ : FmL → FmL
(these homomorphisms are called substitutions), if Γ `S ϕ, then σ[Γ] `S

σ(ϕ).
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Given Γ ∪ {ϕ} ⊆ FmL, we write Γ `S ϕ instead of 〈Γ, ϕ〉 ∈`S, and we write
Γ 6`S ϕ instead of 〈Γ, ϕ〉 /∈`S.

A formula ϕ is a theorem of S if, and only if, ∅ `S ϕ. In such a case we write
`S ϕ.

A propositional logic S= 〈L,`S〉 is finitary if, and only if, Γ ∪ {ϕ} ⊆ FmL
such that Γ `S ϕ, there exists a finite subset Γ′ ⊆ Γ such that Γ′ `S ϕ.

A propositional logic S= 〈L,`S〉 is decidable if, and only if, there is an efective
process that for every ϕ ∈ FmL decides whether `S ϕ or 6`S ϕ.

Let L be a propositional language and K a class of algebras of type L. The
equational consequence associated to K is defined in the following way: for every
Λ ∪ {ϕ ≈ ψ} ⊆ EqL, Λ |=K ϕ ≈ ψ iff for every A ∈ K and every homomorphism
h : FmL → A, it holds:

if h(α) = h(β) for every α ≈ β ∈ Λ, then h(ϕ) = h(ψ).
Then, the following facts can be proved:

• The pair 〈L, |=K〉 satisfies the conditions in the definition of propositional
logic, where EqL plays the role of FmL.

• |=K=|=ISP(K).

• If PU (K) ⊆ K, then 〈L, |=K〉 is finitary.

A Hilbert-style calculus is a triple H = 〈L, AX, IR〉, where L is a propositional
language, and the sets AX ⊆ FmL (the set of axioms) and IR ⊆

⋃
n≤1(FmL)n

(the set of inference rules) are closed under substitutions.1 H defines a relation
`H⊆ P(FmL)× FmL as follows:

Given Γ ∪ {ϕ} ⊆ FmL, Γ `H ϕ iff there exists a finite sequence of formulae
〈ϕ0, . . . , ϕn〉 such that:

• ϕn = ϕ, and

• for every i ≤ n, either ϕi ∈ Γ ∪ AX or there is 〈ψ0, . . . , ψm〉 ∈ IR such
that ψm = ϕi and {ψ0, . . . , ψm−1} ⊆ {ϕ0, . . . , ϕi−1}.

In such a case we say that ϕ is derivable from Γ in the calculus H.
The pair 〈L,`H〉 is a finitary propositional logic.

Theorem 2.11 ([109]). Let S = 〈L,`S〉 be a propositional logic. Then, S is
finitary if, and only if, there exists a Hilbert-style calculus H such that `H=`S.

A finitary logic is finitely axiomatizable if, and only if, it is equivalent to
a Hilbert-style calculus which can be presented by using a finite number of
schemata.

1Usually the sets AX and IR are presented by using schemata, i.e. by showing a particular
formula (or rule) and assuming that all its substitutions are also included in the set. For
instance, to say that the system has the Modus Ponens, we write that the schema 〈p, p → q, q〉
is in IR, but this will actually mean that all the substitutions of this schema are also in IR.
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Given two propositional languages L and L′ such that L ⊆ L′ and two
propositional logics S = 〈L,`S〉 and S′ = 〈L′,`S′〉, we say that S′ is an expansion
of S if, and only if, `S⊆`S′ . The expansion is conservative if, and only if, for
every Γ ∪ {ϕ} ⊆ FmL, Γ `S ϕ iff Γ `S′ ϕ; in this case we say that S is the
L-fragment of S′. We say that S′ is an extension of S if, and only if, `S⊆`S′

and L = L′.
Let H = 〈L, AX, IR〉 and H′ = 〈L′, AX ′, IR′〉 be two Hilbert-style calculi,

and let S and S′ be their corresponding sentential logics. We say that S′ is an
axiomatic extension (resp. expansion) of S if, and only if, AX ⊆ AX ′, IR = IR′

and L = L′ (resp. L ⊆ L′).
Let S = 〈L,`S〉 be a finitary propositional logic and K a class of algebras of

type L. K is an algebraic semantics for S if, and only if, there is a finite set of
L-equations in one variable

δ(x) ≈ ε(x) = {δi(x) ≈ εi(x) : i < n},

which is called system of defining equations, such that for every Γ∪{ϕ} ⊆ FmL,
Γ `S ϕ iff {δ(ψ) ≈ ε(ψ) : ψ ∈ Γ} |=K δ(ϕ) ≈ εϕ)

Proposition 2.12 ([19], Cor. 2.3). If K is an algebraic semantics for a finitary
propositional logic S, then Q(K) is also an algebraic semantics for S and it has
the same system of defining equations.

Definition 2.13 ([19]). Let S = 〈L,`S〉 be a finitary propositional logic and K
a class of algebras of type L. K is an equivalent algebraic semantics for S if, and
only if, it is an algebraic semantics for S and there is a finite set of formulae
in two variables ∆(x, y) = {∆j(x, y) : j < m}, which are called equivalence
formulae, such that for every ϕ ≈ ψ ∈ EqL it holds:

• ϕ ≈ ψ |=K δ(∆(ϕ,ψ)) ≈ ε(∆(ϕ,ψ)), and

• δ(∆(ϕ,ψ)) ≈ ε(∆(ϕ,ψ)) |=K ϕ ≈ ψ,

where δ ≈ ε is the system of defining equations of K and δ(∆(ϕ,ψ)) ≈
ε(∆(ϕ,ψ)) is a shorthand for {δi(∆j(ϕ,ψ)) ≈ εi(∆j(ϕ,ψ)) : i < n, j < m}.

A finitary propositional logic is algebraizable if, and only if, it has an equiv-
alent algebraic semantics.

Proposition 2.14 ([19], Cor. 2.11). Let K be an equivalent algebraic semantics
for a finitary propositional logic S. Then, K is an equivalent algebraic semantics
for S iff Q(K) is also an equivalent algebraic semantics for S.

Theorem 2.15 ([19], Th. 2.15). Let S = 〈L,`S〉 be a finitary propositional logic.
If K and K′ are two equivalent algebraic semantics for S, then Q(K) = Q(K′).

This quasivariety is called the equivalent quasivariety semantics of S. It can
be axiomatized as the following theorem describes.
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Theorem 2.16 ([19], Th. 2.17). Let S = 〈L,`S〉 be an algebraizable logic and let
H = 〈L, AX, IR〉 be an equivalent Hilbert-style calculus. Let δ ≈ ε be the system
of defining equations and ∆(x, y) the equivalence formulae. Then, the equivalent
quasivariety semantics is axiomatizable by the following quasiequations:

1. δ(ϕ) ≈ ε(ϕ), for each ϕ ∈ AX,

2. δ(∆(x, x)) ≈ ε(∆(x, x)),

3. δ(ϕ0) ≈ ε(ϕ0)& . . .&δ(ϕn−1) ≈ ε(ϕn−1) ⇒ δ(ϕn) ≈ ε(ϕn), for each
〈ϕ0, . . . , ϕn〉 ∈ IR, and

4. δ(∆(x, y)) ≈ ε(∆(x, y)) ⇒ x ≈ y.

Theorem 2.17 (cf. [19]). Let S = 〈L,`S〉 be an algebraizable logic and let K
be its equivalent quasivariety semantics. Let δ ≈ ε be the system of defining
equations and ∆(x, y) the equivalence formulae. Then, every finitary extension
of S is algebraizable (with the same defining equations and equivalence formu-
lae) and we have the following dual order isomorphism between the lattice of
subquasivarieties of K and the lattice of finitary extensions of S:

1. If Γ ⊆ FmL, Σ ⊆
⋃
n≤1(FmL)n are closed under substitutions and S′ is

the extension of S obtained by adding the formulae of Γ as axioms and
adding Σ as inference rules, then the equivalent algebraic semantics of S′

is the subquasivariety of K axiomatized by the quasiequations

• δ(ϕ) ≈ ε(ϕ), for each ϕ ∈ Γ, and

• δ(ϕ0) ≈ ε(ϕ0)& . . .&δ(ϕn−1) ≈ ε(ϕn−1) ⇒ δ(ϕn) ≈ ε(ϕn), for each
〈ϕ0, . . . , ϕn〉 ∈ Σ.

2. Let K′ ⊆ K be the subquasivariety axiomatized by a set of quasiequations
Λ. Then the logic associated to K′ is the finitary extension of S given by
the rules {〈∆(ϕ0, ψ0), . . . ,∆(ϕn, ψn)〉 : ϕ0 ≈ ψ0& . . .&ϕn−1 ≈ ψn−1 ⇒
ϕn ≈ ψn ∈ Λ}.

When the equivalent algebraic semantics is a variety, by restricting the dual
order isomorphism of the last theorem, we also obtain a bijective correspondence
between axiomatic extensions and subvarieties.

On the one hand, it is clear that every fragment of an algebraizable logic
whose language contains all the connectives occurring in the defining equa-
tions and in the equivalence formulae, is also algebraizable. On the other hand,
some expansions of an algebraizable logic are algebraizable as well. Indeed, let
S = 〈L,`S〉 be an algebraizable logic and let K be its equivalent quasivariety
semantics. Let δ ≈ ε be the system of defining equations and ∆(x, y) the equiv-
alence formulae. Let L′ be a language extending L and S′ = 〈L′,`S′〉 be the
expansion of S obtained by adding some sets Γ as axioms and Σ as inference
rules. Assume that for every new n-ary connective λ in the language L′,

∆(x1, y1) ∪ . . . ∪∆(xn, yn) `L′ ∆(λ(x1, . . . , xn), λ(y1, . . . , yn))
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Then, S′ is algebraizable and its equivalent quasivariety semantics K′ is ax-
iomatized by the axioms of K plus the quasiequations

• δ(ϕ) ≈ ε(ϕ), for each ϕ ∈ Γ, and

• δ(ϕ0) ≈ ε(ϕ0)& . . .&δ(ϕn−1) ≈ ε(ϕn−1) ⇒ δ(ϕn) ≈ ε(ϕn), for each
〈ϕ0, . . . , ϕn〉 ∈ Σ.

In general, S′ needs not be a conservative expansion of S.

Proposition 2.18 (cf. [19]). Under the previous hypothesis, S′ is a conservative
expansion of S if, and only if, every algebra of K is a subreduct of K′.

There is an intrinsic characterization of algebraizable logics, i.e. with no
reference to its semantics.

Theorem 2.19 ([19], Th. 4.7). A sentential logic S = 〈L,`S〉 is algebraizable
if, and only if, there is a set of formulae in two variables ∆(x, y) ⊆ FmL and
a system of equations in one variable δ ≈ ε ⊆ EqL such that the following
conditions hold:

(i) `S ∆(x, x)

(ii) ∆(x, y) `S ∆(y, x)

(iii) ∆(x, y) ∪∆(y, z) `S ∆(x, z)

(iv) x `S ∆(δ(x), ε(x)) and ∆(δ(x), ε(x)) `S x

For every n-ary λ in the language L,

(v) ∆(x1, y1) ∪ . . . ∪∆(xn, yn) `S ∆(λ(x1, . . . , xn), λ(y1, . . . , yn))

In this case δ ≈ ε is the system of defining equations and ∆(x, y) are the
equivalence formulae.

Using the equivalence formulae it is also possible to translate the axiomati-
zation of the equivalent quasivariety semantics into a Hilbert-style calculus for
the algebraizable logic. Therefore, we obtain the next result.

Theorem 2.20. Let S = 〈L,`S〉 be an algebraizable logic and let K be its equiv-
alent quasivariety semantics. Then, S is finitely axiomatizable if, and only if, K
is finitely axiomatizable.

This kind of results, like the last one, connecting properties of the alge-
braizable logic with properties of its corresponding quasivariety are called bridge
theorems and show the power of Algebraic Logic. We will state the ones that
will be needed in the dissertation. For instance, notice that if K is the equivalent
quasivariety semantics of a logic S and K enjoys the FMP, then S is decidable.

Other logical properties which have their equivalent algebraic property are
the Deduction-Detachment Theorem and the Local Deduction-Detachment The-
orem.
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A finitary propositional logic S = 〈L,`S〉 has the Deduction-Detachment
Theorem (DDT, for short) if, and only if, there is a finite set of formulae in
two variables E(x, y) such that for every Γ ∪ {ϕ,ψ} ⊆ FmL, Γ ∪ {ϕ} `S ψ iff
Γ `S E(ϕ,ψ).

Theorem 2.21 ([21], Th. 5.4). Let S = 〈L,`S〉 be an algebraizable logic and
let K be its equivalent algebraic semantics. Suppose that K is a variety. Then,
S has the DDT if, only if, K has the EDPC.

A finitary propositional logic S = 〈L,`S〉 has the Local Deduction-
Detachment Theorem (LDDT, for short) if, and only if, there is a family of
finite sets of formulae in two variables {Ei(x, y) : i ∈ I} such that for every
Γ ∪ {ϕ,ψ} ⊆ FmL, Γ ∪ {ϕ} `S ψ iff there is i ∈ I such that Γ `S Ei(ϕ,ψ).

Theorem 2.22 (cf. [20]). Let S = 〈L,`S〉 be an algebraizable logic and let K be
its equivalent algebraic semantics. Suppose that K is a variety. Then, S has the
LDDT if, only if, K has the CEP.

2.3 Some results on ordered Abelian groups

In this section we list some results on ordered Abelian groups that are used in
the dissertation. Some of them are particular cases of most general results about
ordered Abelian groups but we give the results we need and some of the proofs
for the reader’s convenience.

For the first result we recall the definition of the ordered group obtained
as the lexicographic product of copies of the o.a.g of the positive real numbers
with the natural order and the product operation (R+, ·,≤). For any natural k,
we denote by (R+)klex = ((R+)k, • , (1, k..., 1),≤lex) the linearly ordered Abelian
group defined on the Cartesian product of k copies of the positive reals R+,
with • being the coordinatewise multiplication and with ≤lex the lexicographic
order. Note that the ⇒ • operation in the Π-algebra P(R+k

lex), with (0, k..., 0)
as bottom element, is defined as follows:

(a1, ..., ak) ⇒ • (b1, .., bk) =
{

(1, ..., 1), if (a1, ..., ak) ≤lex (b1, ..., bk)
(1, ..., 1, bj/aj , ..., bk/ak), otherwise

where j is the smallest index for which aj > bj .
The following result is a consequence of well-known Hahn’s theorem, which

is a more general result (see e.g. [73, Theorem 4.C]). However, a direct proof of
the next theorem can be found in [84, Theorem 7.3.15].

Theorem 2.23. If G is a finitely generated ordered Abelian group, then G is
isomorphic to a subgroup of (R+)klex .

The second result is given in the following lemma.

Lemma 2.24. Let H be a subgroup of R+. Any function t : H ∩ (0, 1] → R+

such that t(x ·y) = t(x) · t(y) for all x, y in H ∩ (0, 1] may be extended to a group
homomorphism t′ : H → R+.
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Proof: Define t′ : H → R+ as follows:

t′(x) =
{
t(x), if x ≤ 1
1/t(1/x), if x > 1

For any x, y ∈ H, one (and only one) of the identities

t(x · y) = t(x) · t(y)
t(x · y) · t(1/x) = t(y)
t(x · y) · t(1/y) = t(x)

t(1/y) = t(1/x · 1/y) · t(x)
t(1/x) = t(1/x · 1/y) · t(y)

t(1/x) · t(1/y) = t(1/x · 1/y)

is well defined and satisfied, and implies a corresponding identity with t′ instead
of t. Since for every z ∈ H t′(1/z) · t′(z) = 1, we may derive t′(x ·y) = t′(x) · t′(y)
in each of the cases. 2

Finally the third result is a consequence of the fact that an Abelian group is
injective 2 if and only if it is divisible, see e.g. [107, Prop. 3, Sect. 4.2]. Since R+

is abelian and divisible, the next lemma follows. For the reader’s convenience,
we provide a simple elementary proof of the particular case we need.

Lemma 2.25. Let H be a subgroup of R+, x ∈ R+\H and let H ′ be the subgroup
generated by H and x. Then every homomorphism t : H → R+ may be extended
to a homomorphism t′ : H ′ → R+.

Proof: If there is no n ≥ 1 such that xn ∈ H, then define t′(x) arbitrarily. Every
element of H ′ has a unique decomposition as xi · a, where i is an integer and
a ∈ H, so we may define t′(xi · a) = t′(x)i · t(a) and this yields a homomorphism
on H ′.

If there is some n ≥ 1 such that xn ∈ H, denote by n the smallest natural
number with this property. For every integer i, we have xi ∈ H iff n divides
i. For every integer i and every a ∈ H define t′(xi · a) = t(xn)i/n · t(a). Let
us prove that this is a correct definition. If xi · a = xj · b for integers i, j and
a, b ∈ H, then there is a natural k such that j = i − k · n and b = a · xkn. It
follows that t(xn)j/n · t(b) = t(xn)i/n−k · t(a) · t(xn)k = t(xn)i/n · t(a). Moreover,
the mapping t′ is clearly a homomorphism on H ′. 2

2An algebra A (or more generally, an object in a category) is injective provided that if B
is an algebra of the same class, then every homomorphism from a subalgebra S of B into A
can be extended to a homomorphism from the whole B to A.
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Chapter 3

The Monoidal Triangular
norm based Logic (MTL)

The object of the present study is the logic MTL, whose name is a shorthand
for Monoidal T-norm based Logic. It was defined by Esteva and Godo in [51]
by means of a Hilbert-style calculus in the language L = {&,→,∧, 0} of type
〈2, 2, 2, 0〉. The only inference rule is Modus Ponens and the axiom schemata are
the following (taking → as the least binding connective):

(A1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
(A2) ϕ&ψ → ϕ
(A3) ϕ&ψ → ψ&ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ&(ϕ→ ψ) → ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ)) → (ϕ&ψ → χ)
(A7b) (ϕ&ψ → χ) → (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(A9) 0 → ϕ

The usual defined connectives are introduced as follows:
ϕ ∨ ψ := ((ϕ→ ψ) → ψ) ∧ ((ψ → ϕ) → ϕ);

ϕ↔ ψ := (ϕ→ ψ)&(ψ → ϕ);

¬ϕ := ϕ→ 0;

1 := ¬0.
MTL was defined in order to generalize an already defined logic, namely the

logic BL introduced by Petr Hájek in [79]. It is also defined by a Hilbert style
calculus in the language {&,→, 0} of type 〈2, 2, 0〉. The only inference rule is
again Modus Ponens and the axiom schemata1 are the following:

1In [36] it is proved that the axiom (A3) and the axiom (B3) are redundant in the systems

29
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(B1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
(B2) ϕ&ψ → ϕ
(B3) ϕ&ψ → ψ&ϕ
(B4) ϕ&(ϕ→ ψ) → ψ&(ψ → ϕ)
(B5a) (ϕ→ (ψ → χ)) → (ϕ&ψ → χ)
(B5b) (ϕ&ψ → χ) → (ϕ→ (ψ → χ))
(B6) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(B7) 0 → ϕ

Now the conjunction ∧ is a defined connective:

ϕ ∧ ψ := ϕ&(ϕ→ ψ).

In [51] it is proved that BL is the extension of MTL obtained by adding the
divisibility axiom:

ϕ ∧ ψ → ϕ&(ϕ→ ψ) (Div)

Moreover, in [79] Hájek also proved that three well-known many-valued logics
can be presented as axiomatic extensions of BL. Indeed,  Lukasiewicz logic  L is
the extension obtained by adding the involution axiom:

¬¬ϕ→ ϕ (Inv)

Gödel-Dummett logic G is the extension obtained by adding the contraction
axiom:

ϕ→ ϕ&ϕ (Con)

and Product logic Π is obtained by adding two axiom schemata; one for the
cancellation law:

¬¬χ→ ((ϕ&χ→ ψ&χ) → (ϕ→ ψ)) (Π1),

and one for pseudocomplementation:

ϕ ∧ ¬ϕ→ 0 (Π2) or (PC)

3.1 MTL as a substructural logic

MTL can be seen as an axiomatic extension of Monoidal Logic (ML, for short).
This logic was introduced by Höhle in [87].2 He gave a Hilbert-style calculus
for ML which consisted in 14 axiom schemata and Modus Ponens as the only
inference rule in the language L with an additional binary connective for the
disjunction ∨. This axiomatics was simplified by Gottwald, Garćıa-Cerdaña and
Bou (see [76] and [77]), obtaining the following system:

for MTL and BL, respectively.
2The aim of this logic was to cope with what Höhle believed is the basic structure behind

many-valued logics: the lattice ordered residuated monoids (these structures are introduced in
the next section of this chapter).
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(AxML1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
(AxML2) ϕ&ψ → ϕ
(AxML3) ϕ&ψ → ψ&ϕ
(AxML4) (ϕ→ (ψ → χ)) → (ϕ&ψ → χ)
(AxML5) (ϕ&ψ → χ) → (ϕ→ (ψ → χ))
(AxML6) ϕ ∧ ψ → ϕ
(AxML7) ϕ ∧ ψ → ψ ∧ ϕ
(AxML8) (ϕ→ ψ) → ((ϕ→ χ) → (ϕ→ ψ ∧ χ))
(AxML9) 0 → ϕ
(AxML10) ϕ→ ϕ ∨ ψ
(AxML11) ψ → ϕ ∨ ψ
(AxML12) (ϕ→ χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))

and Modus Ponens as inference rule.
In fact, MTL is the axiomatic extension of ML obtained by adding the schema

of prelineality:

(ϕ→ ψ) ∨ (ψ → ϕ)

On the other hand, ML turns out to be equivalent to one of the so-called
substructural logics, namely the logic HBCK of Ono and Komori ([127]), which
afterwards Ono has called FLew (see [126]).

Substructural logics are those where some of the following shemata are not
provable:

(C) (ϕ→ (ψ → χ)) → (ψ → (ϕ→ χ)) (Exchange)
(K) ψ → (ϕ→ ψ) (Weakening)
(W) (ϕ→ (ϕ→ ψ)) → (ϕ→ ψ) (Contraction)

In ML, (K) and (C) are provable, but (W) is not a theorem. The same
situation holds in MTL, BL, Π and  L. Therefore, these logics can be seen inside
the family of substructural logics without contraction. On the contrary, G does
prove all these formulae, hence it is not a substructural logic.

In substructural logics the language is richer than that of classical logic.
There is terminological distinction between two groups of connectives: additive
connectives and multiplicative connectives. In MTL (and its axiomatic exten-
sions) the distincion is the following

1. Multiplicative connectives: &,→,↔,¬, 0, 1

2. Additives connectives: ∧,∨, 0, 1.

Sometimes the multiplicative conjunction & is also called fusion.
Since in our approach finitary logics are presented by means of Hilbert-style

calculi, here we have not followed the usual definition of substructural logic,
but a rather indirect one. Indeed, substructural logics are usually presented
by using Gentzen-style calculi, in terms of sequents or hypersequents, where
some of the structural Gentzen rules (Exchange, Weakening or Contraction) are
not valid. For instance, FLew was introduced by means of a sequent calculus
extending the Full Lambek calculus with the rules of Exchange and Weakening.
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The extension of FLew with Contraction is the Intuitionistic logic. Therefore,
in our framework of axiomatic extensions of MTL the only structural logics
are those enjoying Contraction, equivalently those that extend the Intuitionistic
logic, i.e. Gödel-Dummett logic and its axiomatic extensions.

Some works have been done for MTL and its extensions from the perspective
of substructural logics (which is strongly connected to Proof Theory); see for
instance [8, 9, 115]. However, in this dissertation we will not consider this aspect
of MTL.

3.2 MTL as an algebraizable many-valued logic

As mentioned in the Introduction, the study of many-valued logics began in
1918 and 1922 with the definition of  Lukasiewicz’s n-valued logics. In 1930
 Lukasiewicz and Tarski in [110] introduce also the infinitely-valued version.
Other pionnering examples of many-valued logics are introduced by Emil Post
(in 1921, [129]), Kleene (in 1938, [101]) and Bochvar (in 1939) with different
motivations.

Many-valued logics are usually semantically defined by means of some algebra
of truth-values with a set of distinguished elements. Sometimes this semantics is
enough to deal with the logic, but other times it is necessary to introduce an al-
ternative semantics.  Lukasiewicz logic is an example of the latter; it was formerly
introduced in terms of an algebra defined over [0, 1] with 1 as distinguished ele-
ment, but afterwards some classes of algebras were introduced in order to prove
the completeness with respect to  Lukasiewicz’s calculus: MV-algebras in [25, 26]
and their polinomially equivalent form of Wajsberg algebras in [130, 63]. In a
similar way, Gödel-Dummett logic was given a semantics in terms of a variety
of Heyting algebras. In many cases (including  Lukasiewicz and Gödel-Dummett
logics) the relation between the many-valued logic and its algebraic semantics is
very strong, i.e. they are sometimes algebraizable logics in the sense of Blok and
Pigozzi and the semantics is actually their equivalent quasivariety semantics. We
will show now that this is the case of MTL, because it is an axiomatic extension
of an algebraizable many-valued logic, the Monoidal Logic. To this end we need
to introduce the corresponding class of algebras, the residuated lattices.

Definition 3.1. An integral commutative bounded residuated lattice is an algebra
A = 〈A,&A,→A,∧A,∨A, 0A, 1A〉 of type 〈2, 2, 2, 2, 0, 0〉 such that:

1. 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice.

2. 〈A,&A, 1A〉 is a commutative monoid.

3. The operations &A and →A form an adjoint pair:
∀a, b, c ∈ A, a&Ab ≤ c iff b ≤ a→A c.

We call it residuated lattice for short. Usually an additional unary operation
is defined as ¬Aa := a→A 0A for every a ∈ A.
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Krull was the first one to study these structures, in [106]. They were called
residuated lattices for the first time by Dilworth and Ward in [43]. Afterwards
they have been studied also under several names: integral commutative residu-
ated l-monoids (Birkhoff [16] and Höhle [87]), BCK-algebras with condition (S)
(Iseki [95]), BCK-lattices (Idziak [93, 94]), full BCK-algebras (Ono and Komori
[127]) and FLew-algebras (Ono [126]).

We denote the class of all residuated lattices by RL. It is a variety. For
instance, the following is an equational base for RL:

1. (x ∧ y) ∧ z ≈ x ∧ (y ∧ z)

2. (x ∨ y) ∨ z ≈ x ∨ (y ∨ z)

3. x ∧ y ≈ y ∧ x

4. x ∨ y ≈ y ∨ x

5. x ∧ x ≈ x

6. x ∨ x ≈ x

7. x ∧ (x ∨ y) ≈ x

8. x ∨ (x ∧ y) ≈ x

9. x ∧ 0 ≈ 0

10. x ∨ 1 ≈ 1

11. (x&y)&z ≈ x&(y&z)

12. x&y ≈ y&x

13. x&1 ≈ x

14. x&(y ∨ z) ≈ (x&y) ∨ (x&z)

15. x&y → z ≈ x→ (y → z)

16. (x&(x→ y)) ∧ y ≈ x&(x→ y)

17. x ∧ y → y ≈ 1

Proposition 3.2. Let A ∈ RL. Then:

(i) For every a, b ∈ A, a→ b = 1 iff a ≤ b.

(ii) For every a, b ∈ A, a→ b = max{c ∈ A : a&c ≤ b}.

(iii) & is a left-continuous operation with respect to the order topology, thus for
every X ⊆ A such that there exists supX in A, b&(supX) = sup{b&a :
a ∈ X}.
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The algebraic counterpart of MTL logic is a class of algebraic structures
called MTL-algebras. They are defined as follows.

Definition 3.3 ([51]). Let A ∈ RL. A is an MTL-algebra iff it satisfies the
prelinearity equation:

(x→ y) ∨ (y → x) ≈ 1

If the lattice order is total we say that A is an MTL-chain.

MTL will denote the class of all MTL-algebras, i.e. the subvariety of RL
defined by the prelinearity equation.

Adillon and Verdú prove in [1] that HBCK (and hence ML) is an algebraizable
logic whose equivalent algebraic semantics is RL. Therefore, since MTL is the
axiomatic extension of ML obtained by adding the prelinearity axiom and after
Theorem 2.17, we obtain the following result:3

Theorem 3.4. MTL is an algebraizable logic and MTL is its equivalent al-
gebraic semantics with the same translations that Adillon and Verdú use for
HBCK. Furthermore, all axiomatic extensions of MTL are also algebraizable and
their equivalent algebraic semantics are the subvarieties of MTL defined by the
translations of the axioms into equations. In particular, there is a dual order
isomorphism between axiomatic extensions of MTL and subvarieties of MTL:

1. If Σ ⊆ FmL and L is the extension of MTL obtained by adding the for-
mulae of Σ as schemata, then the equivalent algebraic semantics of L is
the subvariety of MTL axiomatized by the equations {ϕ ≈ 1 : ϕ ∈ Σ}. We
denote this variety by L and we call its members L-algebras. There are
two main exceptions to that rule: the algebras associated to  L are called
MV-algebras4 following the terminology of Chang in [25], and the alge-
bras associated to the Classical Propositional Calculus (CPC for short) are
called, of course, Boolean algebras (BA will denote the variety of Boolean
algebras).

2. Let L ⊆ MTL be the subvariety axiomatized by a set of equations Λ. Then
the logic associated to L is the axiomatic extension L of MTL given by the
axiom schemata {ϕ↔ ψ : ϕ ≈ ψ ∈ Λ}.

It will be useful later on to recall now the definition of some examples of
MTL-algebras:

• B2 and B4 will be the Boolean algebras of two elements and four elements
respectively, with the usual definitions.

3Actually, a much more general class of residuated lattices (satisfying neither commutativity
nor integrallity) is known to be the quasivariety semantics of the logic corresponding to the
Full Lambek calculus. Our study of axiomatic extensions of MTL can be seen as a part of the
study of algebraizable many-valued logics based on quasivarieties of residuated lattices in this
general sense (see e.g. [67], [11] and [68]).

4They are also called Wajsberg algebras in the polinomially equivalent definition of [130, 63].
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• For every n ≥ 3,  Ln is the MV-algebra defined over the set
{0, 1

n−1 , . . . ,
n−2
n−1 , 1}. The operations of strong conjunction and negation in

all these algebras have the following expressions: a&b = max{a+ b− 1, 0}
and ¬a = 1 − a. The remaining operations are defined from the for-
mer in the following way: a → b := ¬(a&¬b), a ∧ b := a&(a → b) and
a ∨ b := (a→ b) → b.

• Chang’s algebra C is another useful example of MV-algebra which is defined
by Chang in [25] (page 474). With our notation it can be defined in the
following way. Consider the set of rational numbers C = {( 1

2 )n : n ∈
ω}∪{−( 1

2 )n : n ∈ ω}, endowed with the natural ordering and the following
monoidal operation:

a&b :=


ab if a, b > 0
−min{1,− b

a} if a > 0, b < 0
−min{1,−a

b } if a < 0, b > 0
− 1

2 if a, b < 0

and its residuum.

• For every n ≥ 3, Gn is the G-algebra defined over the set
{0, 1

n−1 , . . . ,
n−2
n−1 , 1}. the operations in all these algebras have the following

expressions: a&b = a ∧ b = min{a, b}, a ∨ b = max{a, b} and

a→ b =
{

1 if a ≤ b,
b otherwise.

3.3 MTL as a t-norm based fuzzy logic

Even though MTL turns out to be a substructural logic and also an algebraiz-
able many-valued logic, originally it was not introduced from these perspectives.
Indeed, it was proposed in the framework of triangular norm based fuzzy log-
ics, i.e. as a logic whose intended semantics is a set of algebras defined over
the real unit interval [0, 1] where the multiplicative conjunction & is interpreted
by a triangular norm (t-norm, for short) and the implication is its residuum.
More formally, a logic S= 〈L,`S〉 is t-norm based if, and only if, there exists a
set of algebras K of type L whose carrier is [0, 1], their interpretation of & is a
t-norm and their interpretation of → is its residuum, and such that it holds the
following standard completeness theorem: for every formula ϕ ∈ FmL, `S ϕ iff
K |= ϕ ≈ 1. We will see in this section that MTL is in fact the weakest t-norm
based logic.

T-norms had appeared in the framework of probabilistic metric spaces (see
Schweizer and Sklar’s works [133, 134]) following the ideas of Menger exposed
in [112]. An extensive monography on t-norms can be found in [102].

Definition 3.5. A t-norm is a function T : [0, 1]2 → [0, 1] such that for every
a, b, c ∈ [0, 1]:
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• T (a, T (b, c)) = T (T (a, b), c) (associativity)

• T (a, b) = T (b, a) (commutativity)

• If b ≤ c, then T (a, b) ≤ T (a, c) (monotony)

• T (a, 1) = a (neutral element)

Some properties follow immediately from the definition.

Proposition 3.6. Let T : [0, 1]2 → [0, 1] be a t-norm. For every a, b ∈ [0, 1]:

• T (a, 0) = 0

• T (a, b) ≤ min{a, b}

Since they are binary functions we will often use an operational notation,
such as a ∗ b, instead of T (a, b). Sometimes we will generalize slightly the notion
of t-norm by considering also t-norms defined over other closed real intervals,
satisfying exactly the same conditions.

The residuum of a t-norm is introduced in order to model the implication in
fuzzy logics.

Definition 3.7. Let ∗ be a t-norm. For every pair 〈a, b〉 ∈ [0, 1]2 we define the
pseudocomplement of a with respect to b as: a→ b := sup{c ∈ [0, 1] : a ∗ c ≤ b}.

Proposition 3.8. Let ∗ be a t-norm and consider the associated operation →.
∗ and → form an adjoint pair if, and only if, ∗ is left-continuous. In this case,
→ is called the residuum of ∗.

Proposition 3.9. If ∗ is a left-continuous t-norm and → is its residuum, then
for every a, b ∈ [0, 1] the following hold:

(i) a→ b = max{c ∈ [0, 1] : a ∗ c ≤ b}.

(ii) a→ b = 1 if, and only if, a ≤ b.

(iii) (a→ b) ∨ (b→ a) = 1.

(iv) max{a, b} = min{(a→ b) → b, (b→ a) → a}.

Therefore, given a left-continuous t-norm ∗, the algebra [0, 1]∗ = 〈[0, 1], ∗,→
,min,max, 0, 1〉 is an MTL-chain. Notice that [0, 1]∗ is completely determined
by the t-norm. Moreover, it is obvious that in every MTL-chain A over [0, 1], the
operation &A is a left-continuous t-norm. We call these chains defined over [0, 1]
standard algebras. Sometimes we will consider the isomorphic copy of a standard
chain [0, 1]∗ over some other closed real interval [a, b] (being the isomorphism
the affine transformation from [0, 1] to [a, b]), and we will denote it as [a, b]∗.

The standard BL-chains, are those standard MTL-chains where the t-norm
and its residuum satisfy the divisibility condition, i.e. min{a, b} = a ∗ (a → b)
for every a, b ∈ [0, 1]. It is well known the following characterization:
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Proposition 3.10. Let [0, 1]∗ = 〈[0, 1], ∗,→,min,max, 0, 1〉 be a standard MTL-
chain. [0, 1]∗ is a BL-algebra if, and only if, ∗ is a continuous t-norm.

In general, a two-place function can be continuous in each argument without
being continuous, but, thanks to the monotony, this is not the case of t-norms.

Proposition 3.11. A t-norm is continuous if, and only if, it is continuous in
each argument.

Therefore, due to commutativity, the continuity of a t-norm is equivalent to
the continuity in its first argument.

It is interesting to remark that the stated equivalence between continuity
and divisibility in t-norms cannot be generalized to all MTL-chains. Actually,
Boixader, Esteva and Godo have proved the following:

Proposition 3.12 ([23]). In every BL-chain the monoidal operation is contin-
uous with respect to the order topology.

They give also a counterexample that shows that the inverse implication is
not true, i.e. an MTL-chain where the monoidal operation is continuous with
respect to the order topology and the divisibility does not hold. Nevertheless, the
equivalence between continuity and divisibility can still be slightly generalized:

Proposition 3.13 ([23]). Let A be an MTL-chain whose order is dense and
complete. Then &A is continuous if, and only if, A is a BL-chain.

We recall now the definitions of several well known examples of continuous
t-norms and their associated standard BL-chains:

1. There is only one standard G-chain and it is the one defined by the mini-
mum t-norm, i.e. the t-norm: a ∗G b = min{a, b}. The residuum is:

a→G b =
{

1 if a ≤ b,
b otherwise.

and the negation is:

¬a =
{

1 if a = 0,
0 otherwise.

which is called Gödel negation. Of course, ∗G is continuous. We denote
this algebra by [0, 1]G. Notice that all the elements are idempotent and
that it satisfies the pseudocomplementation equation (x ∧ ¬x ≈ 0).

2. All the standard Π-chains are isomorphic to the one defined by the product
of real numbers: a ∗Π b = ab. It is clearly a continuous t-norm as well, and
its residuum is Goguen implication:

a→Π b =
{

1 if a ≤ b,
b/a otherwise.
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and the negation is Gödel negation. The algebra is denoted by [0, 1]Π. No-
tice that the only idempotent elements are 0 and 1 and the only nilpotent
elements is 0. Moreover, it satisfies the pseudocomplementation equation
and it is cancellative, i.e. for every a, b, c ∈ [0, 1], if c 6= 0 and a ∗ c = b ∗ c,
then a = b.

3. All the standard MV-chains are isomorphic to the one defined by
 Lukasiewicz t-norm: a ∗ L b = max{0, a+ b− 1}. Its residuum is:

x→ L y =
{

1 if a ≤ b,
1− a+ b otherwise.

and its negation is the standard involutive negation: ¬a = 1 − a. This t-
norm is also continuous and, interestingly, even its residuum is continuous.

The associated standard algebra is denoted by [0, 1] L. Notice that the only
idempotent elements are 0 and 1. It safisfies the following weak form of
cancellation: for every a, b, c ∈ [0, 1], if a ∗ c = b ∗ c 6= 0, then a = b.

Theorem 3.14. MTL, BL,  L, Π and G are t-norm based logics. In fact, they
enjoy the following standard completeness results:

1. For every formula ϕ ∈ FmL and every set of formulae Γ ⊆ FmL, Γ `MTL

ϕ iff
{
ψ ≈ 1 : ψ ∈ Γ

}
|=[0,1]∗ ϕ ≈ 1 for every left-continuous t-norm ∗

([100]).

2. For every formula ϕ ∈ FmL and every finite set of formulae Γ ⊆ FmL,
Γ `BL ϕ iff

{
ψ ≈ 1 : ψ ∈ Γ

}
|=[0,1]∗ ϕ ≈ 1 for every continuous t-norm ∗

([30]).

3. For every formula ϕ ∈ FmL and every finite set of formulae Γ ⊆ FmL,
Γ ` L ϕ iff

{
ψ ≈ 1 : ψ ∈ Γ

}
|=[0,1] L

ϕ ≈ 1 ([86]).

4. For every formula ϕ ∈ FmL and every finite set of formulae Γ ⊆ FmL,
Γ `Π ϕ iff

{
ψ ≈ 1 : ψ ∈ Γ

}
|=[0,1]Π ϕ ≈ 1 ([83]).

5. For every formula ϕ ∈ FmL and every set of formulae Γ ⊆ FmL, Γ `G ϕ
iff

{
ψ ≈ 1 : ψ ∈ Γ

}
|=[0,1]G ϕ ≈ 1 ([47]).

Therefore, it is now clear that  L, Π and G are respectively the logics of the
three main continuous t-norms, BL is the logic of all continuous t-norms and
MTL is the logic of all left-continuous t-norms. Since a t-norm has a residuum
if, and only if, is left-continuous, MTL is the weakest t-norm based fuzzy logic
and thus, the basis for an investigation on such kind of logics.
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Axiom schema Name
¬¬ϕ→ ϕ Involution (Inv)

¬¬χ→ ((ϕ&χ→ ψ&χ) → (ϕ→ ψ)) Cancellation (Π1)
ϕ→ ϕ&ϕ Contraction (Con)

ϕ ∧ ψ → ϕ&(ϕ→ ψ) Divisibility (Div)
ϕ ∧ ¬ϕ→ 0 Pseudocomplementation (PC)
ϕ ∨ ¬ϕ Excluded Middle (EM)

(ϕ&ψ → 0) ∨ (ϕ ∧ ψ → ϕ&ψ) Weak Nilpotent Minimum (WNM)

Table 3.1: Some usual axiom schemata in fuzzy logics.

Logic Additional axiom schemata
SMTL (PC)
ΠMTL (PC) and (Π1)
IMTL (Inv)
WNM (WNM)
NM (Inv) and (WNM)
BL (Div)
SBL (Div) and (PC)

 L (Div) and (Inv)
Π (Div), (PC) and (Π1)
G (Con)

CPC (EM)

Table 3.2: Some axiomatic extensions of MTL obtained by adding the corre-
sponding additional axiom schemata.

3.4 Axiomatic extensions of MTL

The topic of the dissertation is the algebraic study of axiomatic extensions of
MTL. As we have already mentioned, several well-known logics have been proved
to be axiomatizable by adding some schemata to the Hilbert-style calculus of
MTL. Besides, some other logics have been introduced in the literature by con-
sidering extensions of MTL with some relevant schemata. Table 3.1 and 3.2
collect some axiom schemata and the axiomatic extensions of MTL that they
define. The partially ordered set defined by them is depicted in Figure 3.1.

We have already explained how BL,  L, G and Π appeared. IMTL was in-
troduced in [51] as the involutive axiomatic extension of MTL, and it was con-
jectured to be the logic of involutive left-continuous t-norms, which was proved
in [49]. NM and WNM logics were also introduced in [51]; the first one was
intended to capture the logic of the only known example at that time of left-
continuous non-continuous t-norm, [0, 1]NM, while WNM was its non-involutive
generalization. Standard completeness theorems for both NM and WNM were
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CPC

SBL
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Figure 3.1: Graphic of some axiomatic extensions of MTL.

already proved in [51]. As for SBL and SMTL, they were defined respectively in
[54] and [49] in order to capture the logic of continuous and left-continuous resp.
t-norms with a Gödel negation; their standard completeness is proved in [30]
and in [49] respectively. Finally, ΠMTL was introduced in [81] as the cancella-
tive extension of MTL (a non-divisible generalization of Π), and its standard
completeness is proved in [88].



Chapter 4

Structure of MTL-algebras

The algebraization results presented in the previous chapter make clear that
the study of t-norm based fuzzy logics and their axiomatic extensions strongly
relies on the knowledge of MTL-algebras and their structure. In this chapter we
prove the well-known decomposition of MTL-algebras as a subdirect product of
MTL-chains. Therefore, a lot of general problems of MTL-algebras can be re-
duced to chains. In particular, the stucture of BL-chains has been fully described
by means of a generalization of the Ling and Mostert and Shields representa-
tion theorem for standard BL-chains. Unfortunately, a general representation
theorem for MTL-chains is far from being known. Nevertheless, we will give
some useful insight to the structure of MTL-chains by considering the notions
of filter, Archimedean classes, ordinal sums of totally ordered semihoops, and
some methods for constructing new classes of IMTL-chains (studied by Jenei in
[97, 98, 99]). Many of the results that we will give in this chapter are proved
or are straightforward from several foundational works in the subject; see for
instance [51, 104, 87].

4.1 Basic definitions and results

The first basic notions are the filters and the implicative filters.

Definition 4.1. Let A be an MTL-algebra. A filter is a set F ⊆ A such that:

• 1A ∈ F ,

• If a ∈ F and a ≤ b, then b ∈ F , and

• If a, b ∈ F , then a&b ∈ F .

A subset F ⊆ A is an implicative filter iff it satisfies:

• 1A ∈ F

• If a, a→ b ∈ F , then b ∈ F

41
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These two notions coincide:

Proposition 4.2. Let F be a subset of the carrier of an MTL-algebra. Then,
F is an implicative filter if, and only if, F is a filter.

Definition 4.3. Let F be a filter of an MTL-algebra. F is proper iff 0A /∈ F .
F is a prime filter iff F is proper and for every a, b ∈ A if a∨ b ∈ F , then a ∈ F
or b ∈ F .

Proposition 4.4. The family of all filters of an MTL-algebra A is a closure
system, i.e. it is a family of subsets of A closed under arbitrary intersections
and containing A.

Therefore, it makes sense to speak about the notion of generated filter.

Definition 4.5. Let A be an MTL-algebra and B ⊆ A an arbitrary subset.
The filter generated by B is the minimum filter of A containing B, i.e. the
intersection of all filters containing B. We denote it by Fi(B). When the filter
is generated only by an element a ∈ A, we write F a instead of Fi({a}), and we
call it a principal filter.

We will use the following notations:

1. Fi(A) denotes the set of proper filters of A.

2. Given a filter F ∈ Fi(A), F denotes the set {a ∈ A : ¬a ∈ F}

Notice that if A is an IMTL-algebra, then F = ¬F = {¬a : a ∈ F}.

Definition 4.6. If A is an MTL-algebra and a ∈ A, we define a0 := 1A, a1 := a
and for every natural number n > 1, an := an−1 ∗ a.

Definition 4.7. Given an MTL-algebra A, a ∈ A is idempotent if, and only
if, a2 = a. Id(A) will be the set of all idempotent elements of A. Notice that
0A, 1A ∈ Id(A). a ∈ A is nilpotent if, and only if, an = 0A for some n ≥ 1.

Proposition 4.8. Let A be an MTL-algebra and B ⊆ A an arbitrary subset.
Then the filter generated by B can be described as Fi(B) = {a ∈ A : bn1

1 ∗ . . . ∗
bnk

k ≤ a for some k, n1, . . . , nk ≥ 1 and some b1, . . . , bk ∈ B}.

The last proposition has as a consequence the following form of LDDT for
MTL.

Theorem 4.9 ([51]). For every Γ ∪ {ϕ,ψ} ⊆ FmL, Γ ∪ {ϕ} `MTL ψ if, and
only if, there exists n ≥ 1 such that Γ `MTL ϕ

n → ψ,
where ϕn denotes ϕ& . . .n &ϕ.

By Theorem 2.22 this implies that MTL, and hence all its subvarieties, enjoy
the CEP.

There is also a one-to-one correspondence between filters and congruences.
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Proposition 4.10. Let A be an MTL-algebra. For every filter F ⊆ A we define
Θ(F ) := {〈a, b〉 ∈ A2 : a ↔ b ∈ F}, and for every congruence θ of A we define
Fi(θ) := {a ∈ A : 〈a, 1〉 ∈ θ}. Then, Θ is an order isomorphism from the set of
filters onto the set of congruences and Fi is its inverse.

By virtue of this correspondence, we will do a notational abuse by writing
A/F instead of A/Θ(F ). Given an element a ∈ A, [a]F will denote the equiva-
lence class of a w.r.t. to the congruence Θ(F ).

Given an MTL-algebra A and an element a ∈ A, we say that a is the fixpoint
of A if, and only if, a = ¬a. In [87] is proved that there exists at most one
fixpoint.1

Definition 4.11. Let A be an MTL-algebra. The sets of positive and negative
elements of A are respectively defined as:

A+ := {a ∈ A : a > ¬a}
A− := {a ∈ A : a ≤ ¬a}

Consider the terms p(x) := x∨¬x and n(x) := x∧¬x. The next proposition
is an easy but useful result describing these sets.

Proposition 4.12. Let A be an MTL-agebra. Then:

• A+ = {p(a) : a ∈ A,¬a 6= ¬¬a}.

• A− = {n(a) : a ∈ A}.

Notice that p(a) is the fixpoint if, and only if, ¬a = ¬¬a.

Definition 4.13. Let A be an MTL-algebra. An element a ∈ A\{0A} is a zero
divisor if, and only if, there exists b ∈ A \ {0A} such that a&Ab = 0A.

The residuation implies this property: for every a, b in an MTL-algebra A,
a ≤ ¬Ab iff a&Ab = 0A. Therefore, all negative elements (except for 0A) are
zero divisors. The following proposition is also straightforward.

Proposition 4.14. Let A be an MTL-chain. The following are equivalent:

• A is an SMTL-chain.

• A has no zero divisors.

Using Zorn’s Lemma one can prove that for each proper filter F , there is a
maximal proper filter G containing F . Moreover, every maximal filter is prime.
Max(A) will denote the set of all maximal filters. The radical of A is defined as
Rad(A) :=

⋂
Max(A). Note that in a chain the set of filters is totally ordered,

hence the radical is the maximum proper filter and Rad(A) ⊆ A+.
The following known characterization of the elements of a maximal filter will

be useful.
1Actually, Höhle states it for the involutive algebras, but the same proof gives the result

for the general non-involutive case.
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Proposition 4.15. Let A be an MTL-algebra and M ⊆ A a maximal filter.
Then for every a ∈ A, a /∈M iff there is n such that ¬an ∈M .

The correspondence between filters and congruences entails immediately the
following proposition.

Proposition 4.16. Let A be an MTL-algebra and F ⊆ A a proper filter. The
following are equivalent:

(i) A/F is subdirectly irreducible.

(ii) F is ∩-completely irreducible.

(iii) F is maximal relatively to an element, i.e. there is an element a ∈ A such
that F is maximal in the set of proper filters not containing a.

In particular, when F = {1A} we obtain:

Corollary 4.17. Let A be an MTL-algebra. The following are equivalent:

(i) A is subdirectly irreducible.

(ii) {1A} is ∩-completely irreducible.

(iii) A has a minimum non-trivial filter.

More generally, the finitely subdirectly irreducible members of MTL are char-
acterized by means of the following proposition.

Proposition 4.18 ([51]). Let A be an MTL-algebra and F ⊆ A a proper filter.
The following are equivalent:

(i) F is prime.

(ii) A/F is finitely subdirectly irreducible.

(iii) A/F is a chain.

Corollary 4.19 ([51]). An MTL-algebra A is finitely subdirectly irreducible if,
and only if, for every a, b ∈ A such that a ∨ b = 1A, a = 1A or b = 1A.

Corollary 4.20 ([51]). An MTL-algebra A is finitely subdirectly irreducible if,
and only if, it is a chain.

Thus, we obtain the basic result of this section:

Theorem 4.21 ([51]). Each MTL-algebra is representable as a subdirect product
of MTL-chains.

This decomposition result has its equivalent logical form:

Theorem 4.22 ([51]). Given Γ ∪ {ϕ} ⊆ FmL,
Γ `MTL ϕ if, and only if,

{
ψ ≈ 1 : ψ ∈ Γ

}
�{MTL−chains} ϕ ≈ 1.
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The same decomposition result is true for every axiomatic extension of MTL
(i.e. for every subvariety of MTL). It can also be proved in the same way
for the 0-free subreducts of MTL-algebras. These algebras are called prelinear
semihoops and they are defined as follows.

Definition 4.23 ([52]). An algebra A =
〈
A,&A,→A,∧A, 1A

〉
of type 〈2, 2, 2, 0〉

is a prelinear semihoop2 iff:

• A =
〈
A,∧A, 1A

〉
is an inf-semilattice with upper bound.

•
〈
A,&A, 1A

〉
is a commutative monoid isotonic w.r.t. the inf-semilattice

order.

• For every a, b ∈ A, a ≤ b iff a→ b = 1A.

• For every a, b, c ∈ A, a&Ab→A c = a→A (b→A c).

An operation ∨A is defined as: a∨A b = ((a→A b) →A b)∧A ((b→A a) →A

a). A is called prelinear iff for every a, b, c ∈ A, (a →A b) →A c ≤ ((b →A

a) →A c) →A c. If A has a minimum element, then it is called a bounded
prelinear semihoop (i.e. an MTL-algebra).

A is a hoop iff A |= x&(x → y) ≈ y&(y → x). A Wajsberg hoop is
a hoop satisfying (x → y) → y ≈ (y → x) → x. A hoop A is cancellative
if a&Ab ≤ c&Ab implies a ≤ c, for every a, b, c ∈ A. In [52] is proved that
cancellative hoops coincide with unbounded Wajsberg hoops.

The class of all prelinear semihoops is a variety and, since 0 is not involved
neither in the defining equation nor in the equivalence formulae, the 0-free frag-
ments of MTL and its axiomatic extensions are still algebraizable with the same
defining equation nor in the equivalence formulae and the corresponding class
of prelinear semihoops as equivalent algebraic semantics. Prelinear hoops are
the 0-free subreducts of BL-algebras, Wajsberg hoops are the 0-free subreducts
of MV-algebras and product hoops are the 0-free subreducts of Π-algebras (see
[58, 2, 3, 52]).3 It is interesting to notice that filters of MTL-algebras coincide
with universes of prelinear semihoops.

We will finish the section with some final remarks on subdirectly irreducible
MTL-algebras. It has been proved that they form a subclass of MTL-chains.
Clearly it is proper subclass (just consider the chain [0, 1]G where all the elements
are idempotent and hence there is not a minimum non-trivial filter). This class
has not been yet characterized by means of a nicer description, but we can easily
prove the following sufficient condition.

Proposition 4.24. If A is an MTL-chain with a coatom, then it is subdirectly
irreducible.

2These algebras are sometimes also called MTLH-algebras.
3Although prelinear semihoops and prelinear hoops were originally called in the literature

basic semihoops and basic hoops, respectively, we prefer to refer them as prelinear since pre-
linearity is their real defining property.
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Proof: Let a = maxA \ {1A} be the coatom. Then it is clear that F a is the
minimum non-trivial filter. 2

This condition is necessary. Indeed, [0, 1] L is sudirectly irreducible but it has
no coatom.

An important subclass of subdirectly irreducible algebras is the class of simple
algebras, i.e. those without non-trivial congruences. They admit the following
general characterization.

Proposition 4.25. Let A be an MTL-algebra. A is simple if, and only if, for
every a ∈ A \ {1A}, there is k ≥ 1 such that ak = 0A.

4.2 Archimedean classes

A very useful notion to study the structure of MTL-chains is that of Archimedean
class. It has been already used by Horč́ık in his Ph. D. dissertation ([89]) for
the description of ΠMTL chains, but some of his results are actually valid for all
MTL-chains. In this section, we recall the definition of Archimedean class for
MTL-chains and totally ordered semihoops and state some of their properties.

Definition 4.26. Let A be an MTL-chain or a totally ordered semihoop. We
define a binary relation ∼ on A by letting for every a, b ∈ A, a ∼ b if, and only
if, there is n ≥ 1 such that an ≤ b ≤ a or bn ≤ a ≤ b. It is easy to check
that ∼ is an equivalence relation. Its equivalence classes are called Archimedean
classes. Given a ∈ A, its Archimedean class is denoted as [a]∼.

The following lemma is straightforward.

Lemma 4.27. Let A be an MTL-chain or a totally ordered semihoop and let
a, b ∈ A. Then:

1. [a]∼ is closed under &.

2. [a]∼ is a convex subset of A.

3. [1A]∼ = {1A}.

4. If A is an MTL-chain, then A− ⊆ [0A]∼.

5. [a&b]∼ = [a ∧ b]∼.

The next lemma and proposition show that Archimedean classes and filters
are related in an interesting way, as is described in [89] for the case of ΠMTL-
chains, and generalized to MTL-chains in [91].

Lemma 4.28 ([91]). Let A be an MTL-chain. Then:

1. The set of filters of A is closed under unions.
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2. Every filter of A is a union of principal filters.

3. If Con(A) is finite, then every filter of A is principal.

4. For every a ∈ A, the principal filter generated by a, F a, has a predecessor
in the set of all filters ordered by inclusion. It is denoted as Fa.

Proposition 4.29 ([91]). Let A be an MTL-chain. There is a dual order iso-
morphism Φ between the set of Archimedean classes of A and the set of its prin-
cipal filters. Actually, for every a ∈ A, Φ([a]∼) = F a, and Φ−1(F a) = F a \ Fa.

Corollary 4.30 ([91]). An MTL-chain has a finite number of Archimedean
classes if, and only if, its lattice of congruences is finite.

4.3 The radical of MTL-algebras

The radical has been a useful notion in the study of MV-algebras and BL-
algebras. In [63] the following characterization of the radical is given for MV-
algebras (in the equivalent form of Wajsberg algebras):

If A is an MV-algebra, then Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1}.
Moreover, the radical of BL-algebras has been studied by Sessa and Turunen

in [135], obtaining this description:
If A is a BL-algebra, then Rad(A) = {a ∈ A : ¬¬an > ¬a ∀n ≥ 1}.
Afterwards this result has been improved by Cignoli and Torrens in [33],

obtaining:
If A is a BL-algebra, then Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1},
i.e. the same expression as in the involutive case. However, the property of

divisibility was used in the proofs of both characterizations for the radical of BL-
algebras. So it was not obvious how to generalize this result to MTL-algebras.
Here we present a new proof for the whole class of MTL-algebras.

First we do it for chains:

Lemma 4.31. Let A be an MTL-chain. Then,
Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1}.

Proof: If a ∈ Rad(A), then for every n ≥ 1, an ∈ Rad(A) ⊆ A+. Since an ≤ a,
we obtain ¬a ≤ ¬an < an. Conversely, take a ∈ A such that for every n ≥ 1,
an > ¬a. Then, in particular, for every n, an 6= 0A, so the filter generated by
a, F a, is proper. Thus, a ∈ F a ⊆ Rad(A), since the set of filters of A is totally
ordered. 2

In order to extend the characterization to all MTL-algebras we will need
some previous lemmata.

Lemma 4.32. Let A be an MTL-algebra and F a maximal filter of A. Then
for any subalgebra B ⊆ A, F ∩B is a maximal filter of B.
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Proof: It is straightforward to check that F ∩ B is a filter of B. It is proper
because 0A /∈ F . Moreover, we know that for every a ∈ A, a /∈ F iff ∃n ¬an ∈ F .
Therefore it is obvious that for every a ∈ B, a /∈ F ∩ B iff ∃n ¬an ∈ F ∩ B.
Thus F ∩B is also maximal. 2

Lemma 4.33. Let A be an MTL-algebra. Then for any subalgebra B ⊆ A,
Max(B) = {M ∩B : M ∈Max(A)}. Therefore, Rad(B) = Rad(A) ∩B.

Proof: We know by the previous lemma that for every M ∈Max(A), M ∩B ∈
Max(B). Take F ∈ Max(B). Then, by the CEP, there is a proper filter F ′

of A such that F = F ′ ∩ B. But then there is a maximal filter M ∈ Max(A)
containing F ′, so F ′ ∩ B ⊆ M ∩ B. Hence, since F is maximal in B, we obtain
F = M ∩B. 2

Next we will describe some maximal filters in direct products. To this end
we need some more notation. Given a set of MTL-algebras {Ai : i ∈ I}, â ∈∏
i∈I Ai, k ∈ I and b ∈ Ak, we define σk(â, b) ∈

∏
i∈I Ai by:

σk(â, b)i =
{
ai if i 6= k,
b if i = k.

Lemma 4.34. Let {Ai : i ∈ I} be a set of MTL-algebras and consider their
direct product

∏
i∈I Ai. Then, for every k ∈ I and every Mk ∈ Max(Ak), the

set Mk ×
∏
i6=k Ai is a maximal filter of

∏
i∈I Ai.

Proof: It is easy to check that Mk ×
∏
i6=k Ai is a proper filter of

∏
i∈I Ai.

Moreover, for every â ∈
∏
i∈I Ai, â /∈Mk×

∏
i6=k Ai iff ak /∈Mk iff ∃n ¬ank ∈Mk

iff ∃n ¬ân ∈Mk ×
∏
i6=k Ai. Thus, Mk ×

∏
i6=k Ai is a maximal filter. 2

Lemma 4.35. Given any set of MTL-algebras {Ai : i ∈ I}, Rad(
∏
i∈I Ai) =∏

i∈I Rad(Ai).

Proof: By applying the definition of the radical and the previous lemma we ob-
tain:
Rad(

∏
i∈I Ai) =

⋂
Max(

∏
i∈I Ai) ⊆

⋂
{Mk ×

∏
i6=k Ai : k ∈ I,Mk ∈

Max(Ak)} =
∏
i∈I

⋂
Max(Ai) =

∏
i∈I Rad(Ai).

Conversely, take â ∈
∏
i∈I Rad(Ai) and M ∈ Max(

∏
i∈I Ai). We must prove

that â ∈M . Suppose not. Then, by the maximality of M , there is m̂ ∈M such
â&m̂ = 0̂, i.e. ai&mi = 0Ai , for every i ∈ I. Therefore, mi ≤ ¬ai, for every
i ∈ I. Since each ai ∈ Rad(Ai), this implies mi ∈ (Ai)−, for every i ∈ I, so
m̂2 = 0̂, contradicting m̂ ∈M . 2

Theorem 4.36. Let A be an MTL-algebra. Then:
Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1}.

Proof: A is representable as a subdirect product of some set of MTL-chains
{Ai : i ∈ I}. Using the previous lemmata we can compute the radical of A in
following way:

Rad(A) = Rad(
∏
i∈I Ai) ∩ A =

∏
i∈I Rad(Ai) ∩ A =

∏
i∈I{ai ∈ Ai : ani >

¬ai ∀n ≥ 1} ∩A = {a ∈ A : an > ¬a ∀n ≥ 1}. 2
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Corollary 4.37. For every MTL-algebra A, Rad(A) ⊆ A+.

Corollary 4.38. Let A be an MTL-algebra. Then:
A+ is a filter if, and only if, A+ = Rad(A).

Proof: Suppose that A+ is a filter. We have to prove that A+ ⊆ Rad(A). Let
a ∈ A+, then for every n ≥ 1 an ∈ A+. We have an ≤ a, hence ¬a ≤ ¬an <
an ≤ a and this means that a ∈ Rad(A). 2

4.4 Standard chains

Standard MTL-chains have been already introduced in the previous chapter,
with some of their main properties. Since they form the intended semantics for
the logics that we study, a closer look to their structure is necessary.

Given a standard MTL-chain [0, 1]∗ = 〈[0, 1], ∗,→,min,max, 0, 1〉 determined
by a left-continuous t-norm ∗, we can consider its negation operation which, as
in every MTL-algebra, is defined as: n(a) = a → 0, for each a ∈ [0, 1]. These
negation operations coincide with the so-called weak negation functions studied
in [136, 48].

Definition 4.39 ([48]). A function n : [0, 1] → [0, 1] is a weak negation function
if, and only if, it satisfies the following conditions:

1. n(1) = 0.

2. If a ≤ b, then n(b) ≤ n(a).

3. a ≤ n(n(a)), for every a ∈ [0, 1].

Proposition 4.40. A function n : [0, 1] → [0, 1] is the negation of a standard
MTL-chain if, and only if, it is a weak negation function.

Definition 4.41 ([48]). Two weak negation functions n1 and n2 are said to be
isomorphic if, and only if, there is an increasing homeomorphism f : [0, 1] →
[0, 1] such that f(n1(a)) = n2(f(a)) for every a ∈ [0, 1].

Definition 4.42 ([48]). A weak negation function n is called involutive or strong
negation if, and only if a = n(n(a)) for every a ∈ [0, 1].

All the involutive negations are strictly increasing bijections of [0, 1] and are
isomorphic to the standard strong negation: n(a) = 1 − a. Therefore, strong
negations functions are continuous. However, weak negation functions in general
are only left-continuous.

A weak negation function has a kind of symmetry; roughly speaking: if we
complete its graphic by drawing vertical lines in the jumps, then the obtained
graphic is symmetric with respect to the diagonal x = y. Formally:

Definition 4.43. A decreasing function n : [0, 1] → [0, 1] is called symmetric
with respect to the diagonal if, and only if, it satisfies the following conditions:
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1. If a ∈ n([0, 1]) and n(a) = b, then a = n(b).

2. If a /∈ n([0, 1]), then:

(i) n is constant in the interval [a, n(n(a))] with value n(a), and

(ii) for every b > n(a) we have n(b) < a, i.e. n(a) is a discontinuity
on the right with n(n(a)−) = n(n(a)) and n(n(a)+) = inf{c : n is
constant in [c, n(n(a))]} < a.

Proposition 4.44 ([48]). n : [0, 1] → [0, 1] is a weak negation function if, and
only if, it is decreasing, symmetric with respect to the diagonal and n(1) = 0.

The standard WNM-chains are defined by a weak negation function n and a
t-norm of the form:

a ∗n b =
{

min{a, b} if a > n(b),
0 otherwise.

The residuum is:

a→n b =
{

1 if a ≤ b,
max{n(a), b} otherwise.

These t-norms are left-continuous but not continuous in general. Notice also
that this family includes [0, 1]G and all standard NM-chains. Actually, there is
only one standard NM-chain up to isomorphism: the one defined by the standard
involutive negation. We denote it by [0, 1]NM and its t-norm was first introduced
by Fodor in [59].

The minimum, the product and  Lukasiewicz t-norms are the most prominent
examples of continuous t-norms (we will sometimes refer to them as the three
basic continuous t-norms) because it is possible to describe all continuous t-
norms in terms of these three distinguished ones by using the notion of ordinal
sum. This notion was born in the field of ordered semigroups (see [39, 40, 64]).
In the particular case of t-norms, the definition is the following:

Definition 4.45. Let {[ai, bi] : i ∈ I} be a countable family of closed subintervals
of [0, 1] such that their interiors are pairwise disjoint. For every i ∈ I, let ∗i be
a t-norm defined on [ai, bi]2. The ordinal sum of this family of t-norms is the
operation defined as:

x ∗ y =
{
x ∗m y if ∃m ∈ I such that 〈x, y〉 ∈ [am, bm]2,
min{x, y} otherwise.

It is straigthforward to prove that the ordinal sum of a family of continuous t-
norms is a continuous t-norm, and the ordinal sum of a family of left-continuous
t-norms is a left-continuous t-norm. In the following we sketch how (indepen-
dently) Mostert and Shields ([118]) and Ling ([108]) obtained a description of
continuous-torms in terms of ordinal sums of the three basic ones.
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Proposition 4.46. Let ∗ be a continuous t-norm and u ∈ [0, 1] an idempotent
element. Then, for every a, b ∈ [0, 1] such that a ≤ u ≤ b, we have a ∗ b =
a. Therefore, the restrictions of ∗ to [0, u]2 and to [u, 1]2 are isomorphic to
continuous t-norms and ∗ is its ordinal sum.

Theorem 4.47 ([118, 108]). Let ∗ be a continuous t-norm. Then, the set of
its idempotent elements is a closed subset of [0, 1], and thus, its complement is
the union of a countable family of pairwise disjoint open intervals. Moreover, if
I(∗) denotes the family of the closures of these intervals, then:

(i) For every interval I ∈ I(∗), the restriction of ∗ to I2 is isomorphic to
[0, 1]Π if it does not have any nilpotent element, or to [0, 1] L otherwise.

(ii) If a, b ∈ [0, 1] and there is no I ∈ I(∗) such that a, b ∈ I, then a ∗ b =
min{a, b}.

Thus, every continuous t-norm can be decomposed as an ordinal sum of the
three basic ones.

4.5 Decomposition in ordinal sums of semihoops

In the previous section we have presented the well-known result of Ling and
Mosterd and Shields that gives the decomposition of every continuous t-norm as
ordinal sum of the three basic ones. Although this result is very useful for many
purposes, it has a little problem: the t-norms that appear in the decomposition
do not form a subalgebra of the original one (they do not share the top and the
bottom element). This disadvantage has been overcome by using the notion of
ordinal sum of hoops (first introduced in [58] for ordinal sums of two hoops and
then generalized in [3] to sums of arbitrary families of hoops), which has resulted
in a deeper knowledge on the structure of all BL-chains, not only the standard
ones. Here we generalize it to our framework of MTL-chains by considering
ordinal sums of totally ordered semihoops.

Definition 4.48. Let 〈I,≤〉 be a totally ordered set. For all i ∈ I, let Ai be
a totally ordered semihoop such that for i 6= j, Ai ∩ Aj = {1}. Then

⊕
i∈I Ai

(the ordinal sum of the family {Ai : i ∈ I}) is the structure whose universe is⋃
i∈I Ai and whose operations are:

x&y =


x&Aiy if x, y ∈ Ai,
y if x ∈ Ai and y ∈ Aj \ {1} with i > j,

x if x ∈ Ai \ {1} and y ∈ Aj with i < j.

x→ y =


x→Ai y if x, y ∈ Ai,
y if x ∈ Ai and y ∈ Aj with i > j,

1 if x ∈ Ai \ {1} and y ∈ Aj with i < j.

For every i ∈ I, Ai is called a component of the ordinal sum.
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If in addition I has a minimum, say i0, and Ai0 is bounded, then the ordinal
sum

⊕
i∈I Ai forms an MTL-chain.

Definition 4.49. A totally ordered semihoop is indecomposable if, and only
if, it is not isomorphic to any ordinal sum of two non-trivial totally ordered
semihoops.

Theorem 4.50 ([3]). Every totally ordered hoop (BL-algebra) is the ordinal sum
of a family of Wajsberg hoops (whose first component is an MV-algebra).

Theorem 4.51 ([3]). Let A be a totally ordered basic hoop (BL-algebra). The
following are equivalent:

1. A is indecomposable.

2. A is a Wajsberg hoop (MV-algebra).

Therefore, all BL-chains are decomposable as ordinal of indecomposable pre-
linear hoops, i.e. Wajsberg hoops. Moreover, in the case of standard BL-chains,
this decomposition is given by the Archimedean classes. Unfortunately, this is
not true in general. For instance, Chang’s MV-algebra C is indecomposable, but
it has two non-trivial Archimedean components.

Using ordinal sums one can also describe the structure of all finite subdirectly
irreducible elements (that is all chains) of the variety generated by a standard
BL-algebra:

Theorem 4.52 ([3]). Let 〈A1, . . . ,An〉 be a sequence of the basic components
and let [0, 1]∗ =

⊕n
i=1Ai be their ordinal sum. Then, the class of finitely

subdirectly irreducible members of V([0, 1]∗) is HSPU ([0, 1]∗) = HSPU (A1) ∪
(ISPU (A1)⊕HSPU (A2))∪ . . .∪ (ISPU (A1)⊕

⊕n−1
i=2 ISPU (Ai)⊕HSPU (An)),

where H, I, S, PU denote the operators homomorphic images, isomorphic im-
ages, subalgebras and ultraproducts in the language of BL-algebras while H, I,
S, PU denote the same operators in the language of Basic hoops (that is on the
0-free language).

Moreover, since for the three basic cases we have that ISPU ([0, 1] L),
ISPU ([0, 1]Π), ISPU ([0, 1]G) are respectively all MV-chains, all product chains
and all Gödel chains [44, 58, 47], it follows that ISPU ([0, 1] L), ISPU ([0, 1]Π),
ISPU ([0, 1]G) are all 0̄-free subreducts of MV-chains, product chains and Gödel
chains. Therefore, from the above Theorem 4.52 and the characterization of vari-
eties generated by a standard BL-algebra in [53], it follows that we can generalize
those results to any standard BL-algebra.

Corollary 4.53. Let [0, 1]∗ be a standard BL-algebra. Then the class of all
finite subdirectly irreducible algebras in V([0, 1]∗) is ISPU ([0, 1]∗).

Now we generalize the decomposition theorem to all MTL-chains.

Theorem 4.54. For every MTL-chain A, there is a maximum decomposition
as ordinal sum of indecomposable totally ordered semihoops, with the first one
bounded.
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Proof: First we need to define the set D of decompositions of A. For every
F ⊆ P(A \ {1A}), F ∈ D if, and only if, F is a partition of A \ {1A} such that
for every B ∈ F , B ∪ {1A} is a subuniverse of the 0-free reduct of A (hence the
universe of a totally ordered semihoop B) and A =

⊕
{B : B ∈ F}. A partial

order � is defined in D in following way:
for every F,G ∈ D, F � G if, and only if, for each B ∈ G there is a B′ ∈ F such
that B ⊆ B′, i.e. the decomposition G is finer than F .

We will use Zorn’s Lemma to show that the partially ordered set 〈D,�〉 has
some maximal element. Suppose that C = {Dk : k ∈ K} is a chain of 〈D,�〉.
Then, we define the following equivalence relation on A \ {1A}:
For every a, b ∈ A \ {1A}, a ≡ b if, and only if, a and b belong to the same class
of Dk for every k ∈ K. Let [a]≡ denote the equivalence class of a w.r.t ≡. We
will prove that {[a]≡ : a ∈ A \ {1A}} ∈ D and it is an upper bound of C. Take
a ∈ A \ {1A}. It is straightforward to check that [a] ∪ {1A} is closed under &
and →. Now take a, b ∈ A \ {1A} such that a < b and [a]≡ 6= [b]≡. Then, there
is some k ∈ K such that a and b are not in the same component of Dk, thus
a&b = a. Therefore, {[a]≡ : a ∈ A \ {1A}} ∈ D. Now take arbitrary k ∈ K and
a ∈ A \ {1A}. Then, by the definition of ≡ all the elements of [a]≡ must be in
the same component of Dk, so Dk � {[a]≡ : a ∈ A \ {1A}}.

Therefore, by Zorn’s Lemma for every F ∈ D, there exists a maximal de-
composition M ∈ D such that F � M . Finally, we will prove that there is
a maximum one, i.e. there cannot be two different maximal decompositions.
Suppose that M1,M2 ∈ D are two different maximal elements. Then there is
A ∈ M1 which is not included in any element of M2. Moreover, A is indecom-
posable so it is not a union of elements of M2, thus there is B ∈ M2 such that
A ∩ B 6= ∅ and B 6⊆ A. Then it is easy to see that A could be decomposed as
ordinal sum of A ∩B and A \B, a contradiction. 2

Corollary 4.55. Let A be an MTL-chain. If the partition {[a]∼ : a ∈ A\{1A}}
given by the Archimedean classes gives a decomposition as ordinal sum, then it
is the maximum one.

Proof: With the notation of the previous proof, take an arbitrary F ∈ D. For
every a ∈ A \ {1A}, there is some B ∈ F such that [a]∼ ⊆ B, since the elements
of F are closed under &. Therefore, F � {[a]∼ : a ∈ A \ {1A}}. So if {[a]∼ : a ∈
A \ {1A}} ∈ D, then it is the maximum. 2

Definition 4.56. An MTL-chain is totally decomposable if, and only if, the
partition given by its Archimedean classes gives a decomposition as ordinal sum.

Corollary 4.57. Each standard BL-chain is totally decomposable.

The decomposition of each MTL-chain as an ordinal sum of indecomposable
totally ordered semihoops seems to give some representation theorem for MTL-
chains. Unfortunately, the class of indecomposable totally ordered semihoops
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is really big. For instance, as the following proposition proves, all involutive
MTL-chains are indecomposable.

Proposition 4.58. All IMTL-chains are indecomposable.

Proof: Let A be an IMTL-chain. If A ∼= B2, it is clearly indecomposable. Sup-
pose that A 6∼= B2 and it is decomposable as ordinal sum of two non-trivial totally
ordered semihoops, i.e. A ∼= C1⊕C2. Then, there is a ∈ C2 \{1

A} and it satisfies
¬¬a = 1A, but this contradicts the fact that the negation is involutive. 2

4.6 Jenei’s methods: rotation and rotation-
annihilation

In the development of Fuzzy Logic the continuous t-norms have played an im-
portant role for the reasons already mentioned in this dissertation. While they
were already well studied and classified still few examples of left-continuous and
non-continuous t-norms were known, although left-continuity had been proved
to be the necessary and sufficient condition for a t-norm to have a residuum and,
thus, to provide a suitable semantics for fuzzy logics. The first known example
of a left-continuous non-continuous t-norm was the Nilpotent Minimum t-norm
given by Fodor in [59], which defined the MTL-algebra that we have denoted
[0, 1]NM. It was defined by considering the minimum t-norm and ”annihilating”
it with the standard involutive negation n(x) = 1−x, i.e. defining the t-norm to
be 0 under the graph of such negation function. This construction was later on
generalized in [51] to define the class of Weak Nilpotent Minimum t-norms, by
considering the annihilation of the minimum by any weak negation function. It
was further generalized in [96] where Jenei studied the annihilation of any con-
tinuous t-norm by an involutive negation and, finally, in [29] where the authors
studied annihilations of any continuous t-norm by a weak negation function.

In addition, some other methods for obtaining involutive left-continuous non-
continuous t-norms have been introduced in the last years by Jenei in [98, 99].
Actually, these methods provide not only standard algebras, but also IMTL-
algebras in general. First we present the disconnected and connected rotation
constructions.

Definition 4.59. Let A be a prelinear semihoop. The disconnected rotation of A
is an algebra denoted A∗ and defined as follows. Let A×{0} be a disjoint copy of
A. For every a ∈ A we write a′ instead of 〈a, 0〉. Consider 〈A′ = {a′ : a ∈ A},≤〉
with the inverse order and let A∗ := A ∪ A′. We extend these orderings to an
order in A∗ by putting a′ < b for every a, b ∈ A. Finally, we take the following
operations in A∗:

1A
∗

:= 1A, 0A
∗

:= (1A)′, ∧A∗ the minimum w.r.t. the ordering, ∨A∗ the
maximum w.r.t. the ordering,

¬A
∗
a :=

{
a′ if a ∈ A
b if a = b′ ∈ A′
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a&A∗b :=


a&Ab if a, b ∈ A
¬A∗(a→A ¬A∗b) if a ∈ A, b ∈ A′
¬A∗(b→A ¬A∗a) if a ∈ A′, b ∈ A
0A

∗

if a, b ∈ A′

a→A∗ b :=


a→A b if a, b ∈ A
¬A∗(a&A¬A∗b) if a ∈ A, b ∈ A′

1A
∗

if a ∈ A′, b ∈ A
¬A∗b→A ¬A∗a if a, b ∈ A′

It is clear from this definition that Chang’s algebra C introduced in the
previous chapter is the disconnected rotation of the cancellative hoop subreduct
generated by 1

2 in [0, 1]Π.

Definition 4.60. Let A be an MTL-algebra satisfying one of the following con-
ditions:

• A does not have zero divisors.

• ∃c ∈ A such that ∀a ∈ A zero divisor, ¬a = c.

Then, the connected rotation of A is denoted A? and defined as follows.
Take

〈
A′ = {a′ : a ∈ A, a 6= 0A},≤

〉
, a disjoint copy of A\{0A} with the inverse

order, and define ¬A?

0A := 0A and all the operations as in the disconnected
rotation.

As an example, one can check that the standard NM-chain [0, 1]NM is iso-
morphic to the connected rotation of [0, 1]G.

Proposition 4.61 ([97]). Disconnected rotations are IMTL-algebras without
fixpoint and connected rotations are IMTL-algebras with fixpoint.

Jenei also introduced the disconnected and connected rotation-annihilation
constructions to produce new kinds of IMTL-algebras.

Definition 4.62. Let a A be a prelinear semihoop and B be an IMTL-algebra
such that A ∩ B = ∅. An algebra C, the disconnected rotation-annihilation of
A and B, is defined as follows. Let 〈A′ = {a′ : a ∈ A},≤〉 be a disjoint copy of
A as above (disjoint also with B) endowed with inverse ordering and let C :=
A ∪ A′ ∪ B. The orderings are extended to C by letting a′ < b and b < c for
every a, c ∈ A and every b ∈ B. Let C+ := A, C0 := B and C− := A′. Finally,
the following operations are defined on C:

1C := 1A, 0C := (1A)′, ∧C the minimum w. r. t. the order, ∨C the maximum
w. r. t. the order,

¬Ca :=

 a′ if a ∈ A
b if a = b′ ∈ A′
¬Ba if a ∈ B
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a&Cb :=



a&Ab if a, b ∈ C+

¬C(a→A ¬Cb) if a ∈ C+, b ∈ C−
¬C(b→A ¬Ca) if a ∈ C−, b ∈ C+

0C if a, b ∈ C−

0C if a, b ∈ C0 and a ≤ ¬Cb
a&A1b if a, b ∈ C0 and a 6≤ ¬Cb
b if a ∈ C+, b ∈ C0

a if a ∈ C0, b ∈ C+

0C if a ∈ C−, b ∈ C0

0C if a ∈ C0, b ∈ C−

a→C b :=



a→A b if a, b ∈ C+

¬C(a ∗A ¬Cb) if a ∈ C+, b ∈ C−

1C if a ∈ C−, b ∈ C+

¬Cb→A ¬Ca if a, b ∈ C−
a→A1 b if a, b ∈ C0 and a 6≤ b

1C if a, b ∈ C0 and a ≤ b
b if a ∈ C+, b ∈ C0

1C if a ∈ C0, b ∈ C+

1C if a ∈ C−, b ∈ C0

¬Ca if a ∈ C0, b ∈ C−

Definition 4.63. Let a A be a prelinear semihoop and B be an IMTL-algebra
such that A ∩ B = ∅. An algebra C, the connected rotation-annihilation of A
and B, is defined as follows. Let 〈A′ = {a′ : a ∈ A},≤〉 be a disjoint copy of
A as above (disjoint also with B) endowed with inverse ordering and let C :=
A∪A′∪B\{0B, 1B}. We extend the orderings to C by letting a′ < b and b < c for
every a, c ∈ A and every b ∈ B. Let C+ := A, C0 := B \{0B, 1B} and C− := A′.
Finally, the operations C are defined as in the disconnected rotation-annihilation.
We will denote C as A� B.

Proposition 4.64 ([99]). Let A and B be a prelinear semihoop and an IMTL-
algebra respectively. Then, the disconnected and connected rotation-annihilations
of A and B are IMTL-algebras.

It is clear that in every connected rotation-annihilation A�B the set A is a
proper filter of A � B. Moreover, by using again Zorn’s Lemma, we can prove
that every IMTL-chain has a maximum decomposition as a connected rotation-
annihilation.

Proposition 4.65. Let A be an IMTL-chain. Then, there is a maximum proper
filter F of A such that A ∼= C�B, where C is the semihoop determined by A and
B is the IMTL-chain determined by (A \ (F ∪ ¬F )) ∪ {0A, 1A}.

Notice that in the previous proposition, B is simple if, and only if, F =
Rad(A).
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Proposition 4.66. Given an IMTL-chain A, a proper filter F ∈ Fi(A) and
B := (A \ (F ∪ ¬F )) ∪ {0A, 1A}, the following are equivalent:

(i) F and B give a decomposition of A as a connected rotation-annihilation.

(ii) B is a subuniverse and A/F ∼= B.

(iii) For each a ∈ F and b ∈ A+ \ F , a&b = b.

(iv) B is a subuniverse and B \ {0A, 1A} is convex w.r.t. the order of A.

Proof: (i) ⇒ (iii) and (i) ⇒ (iv) are trivial.
(i) ⇒ (ii): On the one hand, from the definition of connected rotation-

annihilation we know that B is a subuniverse. On the other hand, given a pair
of elements a, b ∈ B \ {0A, 1A} such that a < b, we have b → a = max{c ∈ A :
b&c ≤ a} /∈ F ; therefore a/F 6= b/F .

(ii) ⇒ (i): Assume (ii). If F and B do not give a decomposition, then there
are a ∈ B \ {0A, 1A} and b ∈ F such that a&b < a. Then, a → a&b ∈ F , and
hence (a&b)/F = x/F ; a contradiction.

(iii) ⇒ (ii): First let us check that B is a subuniverse. It is clear that it is
closed under ¬. To show that it is also closed under &, take a pair of elements
a, b ∈ B such that a ≤ b. If b ∈ A−, then a&b = 0A. Suppose that b ∈ A+ and
¬a < b. If a&b ∈ ¬F , then 0A = ¬(a&b)&(b&a) = (¬(a&b)&b)&a = b&a; a
contradiction. Now we show that A/F ∼= B. If a, b ∈ A+ \ F with a < b, then
b → a /∈ F , hence a/F 6= b/F . If a, b ∈ A− \ ¬F , then (¬a)/F 6= (¬b)/F , thus
a/F 6= b/F .

(iv) ⇒ (iii): Take a ∈ F \ {1A} and b ∈ (B ∩A+) \ {1A} and we must show
a&b = b. Suppose that a&b < b. Then, by the convexity and since b2 ≤ a&b ≤ b,
we have a&b ∈ B. Thus, b→ a&b ∈ B, but b→ a&b ≥ a, a contradiction. 2

Unfortunately, the class of indecomposable IMTL-chains with respect to this
decomposition is again far away from being described. We know that it contains
all simple IMTL-chains as a proper subclass, but we do not have a general
description for it. However, some particular cases of this decomposition will be
studied in Chapter 6.





Chapter 5

Properties of varieties of
MTL-algebras

Since the logics studied in this dissertation are algebraizable we have all the
bridge theorems at our disposal, and hence we can study relevant logical prop-
erties of our axiomatic extensions of MTL by solving some algebraic problems of
the corresponding subvarieties of MTL, and viceversa. In this chapter we focus
on the logical and algebraic properties that we will consider in the following
chapters.

5.1 Standard completeness. Methods and re-
sults.

In Chapter 3 left-continuous t-norms and their residua have been introduced in
order to provide suitable semantics for fuzzy logics. Therefore, we are interested
in completeness results with respect to the semantics given by the standard
algebras.

Definition 5.1. If a logic L is an algebraizable expansion of MTL in a language
L′, we say that L has the property of the (finite) strong standard completeness,
(F)SSC for short, when for every (finite) set of formulae T ⊆ FmL′ and every
formula ϕ it holds that T `L ϕ iff T |=A ϕ for every standard L-algebra A. We
say that L has the property of standard completeness, SC for short, when the
equivalence is true for T = ∅.

Of course, the SSC implies the FSSC, and the FSSC implies the SC. On
the scope of algebraizable logics, these properties have their equivalent algebraic
property.

Theorem 5.2. Let L be an axiomatic extension (or algebraizable axiomatic
expansion) of MTL and let L be its equivalent variety semantics. Then:

59
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1. L has the SC if, and only if, L = V(StandL), and

2. L has the FSSC if, and only if, L = Q(StandL),

where StandL is the class of all standard algebras in L.

Proof: Both statements are proved in an analogous way. Let us prove the first
one as a matter of example. Suppose first that L has the SC and take an arbitrary
equation in the language of L, ϕ ≈ ψ ∈ EqL′ . We have the following chain of
equivalences: |=L ϕ ≈ ψ iff |=L ϕ↔ ψ ≈ 1 iff `L ϕ↔ ψ iff |=StandL ϕ↔ ψ ≈ 1
iff |=StandL ϕ ≈ ψ iff |=V(StandL) ϕ ≈ ψ. Therefore, V(StandL) and L must
be the same variety since they satisfy the same equations. Conversely, suppose
ϕ ∈ FmL′ is such that 6`L ϕ. Then the equation ϕ ≈ 1 is not valid in L, so it
also fails in StandL. 2

There are also some equivalencies for the strong standard completeness.

Theorem 5.3. Let L be an axiomatic extension (or algebraizable axiomatic
expansion) of MTL and let L be its equivalent variety semantics. Then the
following are equivalent:

(i) L has the SSC.

(ii) Every countable chain of L belongs to ISP(StandL).

(iii) Every countable subdirectly irreducible chain of L is embeddable into a
standard L-chain.

Proof: (i) ⇒ (ii): Assume that (ii) is false, i.e. there is a countable L-chain
A /∈ ISP(StandL). Then, there exists a generalized quasiequation such that
StandL |= &i∈κpi ≈ qi ⇒ p ≈ q and A 6|= &i∈κpi ≈ qi ⇒ p ≈ q. There might
be uncountably many variables occurring in the quasiequation but, since A is
countable, it can be arranged. Indeed, let {xi : i ∈ λ} be the variables of the
quasiequation and consider a countable set of variables {yi : i ∈ ω}. Consider
an enumeration {ai : i ∈ ω} of the elements of A and let e be any evaluation in
A such that it gives a countermodel of the generalized quasiequation. Now we
define a mapping σ : {xi : i ∈ λ} → {yi :∈ ω} by letting σ(xi) = yj if e(xi) = aj ,
and we extend it to all formulae. It stills holds that StandL |= &i∈κσ(pi) ≈
σ(qi) ⇒ σ(p) ≈ σ(q) and A 6|= &i∈κσ(pi) ≈ σ(qi) ⇒ σ(p) ≈ σ(q). Therefore:
{σ(pi) ↔ σ(qi) : i ∈ κ} |=StandL σ(p) ↔ σ(q) and {σ(pi) ↔ σ(qi) : i ∈ κ} 6`L

σ(p) ↔ σ(q), and hence the SSC does not hold.
(ii) ⇒ (i): Take arbitrary formulae Γ ∪ {ϕ} ⊆ FmL′ in the language of L

such that Γ |=StandL ϕ, i.e. {ψ ≈ 1 : ψ ∈ Γ} |=StandL ϕ ≈ 1. Then, {ψ ≈ 1 : ψ ∈
Γ} |=ISP(StandL) ϕ ≈ 1, and hence, by (ii), {ψ ≈ 1 : ψ ∈ Γ} |={countable L−chains}
ϕ ≈ 1. Therefore, we have {ψ ≈ 1 : ψ ∈ Γ} |={L−chains} ϕ ≈ 1, and hence
Γ `L ϕ.

(i) ⇒ (iii): Let A be a non-trivial countable subdirectly irreducible L-chain.
Let F ⊆ A be its minimal non-trivial filter and take x ∈ F \ {1A}. Consider a
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set of pairwise different variables {va : a ∈ A} and the following theory: T =
{λ(va1 , . . . , van

) ↔ vλA(a1,...,an) : λ n-ary connective, a1, . . . , an ∈ A}∪{v1,¬v0}.
We have T 6`L vx (just take A with the evaluation e(va) = a as a countermodel),
therefore, by the SSC, there is a standard L-chain [0, 1]∗ and an evaluation e on
[0, 1]∗ such that e[T ] = {1} and e(vx) < 1. Consider the mapping f : A→ [0, 1]
defined as f(a) = e(va). It is clear that f gives a homomorphism from A to
[0, 1]∗, and it is one-to-one because f(x) 6= 1 and x belongs to all the non-trivial
filters.1

(iii) ⇒ (i): Assume (iii) and take arbitrary formulae Γ ∪ {ϕ} ⊆ FmL′ in
the language of L such that Γ 6`L ϕ. Then, there is a subdirectly irreducible
L-chain A and an evaluation e of the formulae on A such that e[Γ] ⊆ {1A}
and e(ϕ) 6= 1A. Let B be the homomorphic image of FmL′ by e. Of course, e
can be seen as an evaluation on B, so B (with e) is a countable countermodel
for the derivation. Consider its representation as subdirect product of chains,
B ↪→sp

∏
i∈I Bi. Of course, every Bi is countable, and there is some j ∈ I such

that πj(e(ϕ)) 6= 1Bj . Now by (iii), Bj is embeddable in some standard L-chain
[0, 1]∗. Let f be the embedding. Then, [0, 1]∗ with the evaluation f ◦ πj ◦ e is a
standard countermodel for the derivation, so we obtain Γ 6|=StandL ϕ, as desired.
2

Standard completeness properties for axiomatic extensions of MTL has been
a matter of intensive research. Table 5.1 shows the results obtained for the logics
introduced in Chapter 3.

Table 5.1: Standard completeness properties of some axiomatic extensions of
MTL.

Logic SC FSSC SSC
MTL Yes Yes Yes
IMTL Yes Yes Yes
SMTL Yes Yes Yes
ΠMTL Yes Yes No

BL Yes Yes No
SBL Yes Yes No

 L Yes Yes No
Π Yes Yes No
G Yes Yes Yes

WNM Yes Yes Yes
NM Yes Yes Yes
CPC No No No

It is obvious that Classical Propositional Calculus CPC does not enjoy any of
the properties, because there are no standard algebras in its equivalent algebraic

1This proof was found by Petr Cintula (private communication).
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semantics (in fact, there are only two linearly ordered Boolean algebras: the
trivial one and B2). The FSSC is proved in [86] for  Lukasiewicz logic, in [83]
for Product logic, in [47] for Gödel logic and in [30] for BL and SBL. In some
cases (see for instance [83, 30]), rather than using the equivalences stated above,
the result has been obtained by proving first that every chain of the equivalent
variety semantics is partially embeddable into a standard algebra. For a long
time, this condition was only known to be sufficient, but as we shall see, when
the language is finite it is actually equivalent to the FSSC.

Proposition 5.4. Let L be an axiomatic extension (or algebraizable axiomatic
expansion in a finite language) of MTL. Then L has the FSSC if, and only if,
every L-chain is partially embeddable into StandL.

Proof: If L satisfies the FSSC then, by Theorem 5.2, its equivalent variety se-
mantics L is such that L = Q(StandL). It follows from [42, Lemma 1.5] that
every relative finitely subdirectly irreducible member of Q(StandL) belongs to
ISPU (StandL). Since Q(StandL) is a variety, relative finitely subdirectly ir-
reducible members coincide with finitely subdirectly irreducible algebras in the
absolute sense, hence with L-chains. Therefore, if L satisfies the FSSC, then
every L-chain belongs to ISPU (StandL) which is equivalent to partial embed-
dability by Proposition 2.8.

If every L-chain is partially embeddable into StandL, then by Proposition
2.8 every L-chain belongs to ISPU (StandL). Now, since every L-algebra is
representable as subdirect product of L-chains we have that

L ⊆ IPSD(ISPU (StandL)) ⊆ Q(StandL) ⊆ L.

Therefore by Theorem 5.2, L has the FSSC. 2

Notice that the implication from right to left of the last proposition is true
even when the language is infinite.

Among all axiomatic extensions of BL, only G enjoys the SSC. As a matter
of example, let Γ = {q → pn | n ∈ N} and ϕ = (q → q2)∨ (p→ p2)∨ (q → p&q),
and consider the following semantical deduction: Γ |=[0,1]∗ ϕ. One can check
that this deduction holds for every continuous t-norm ∗, but Γ 6`L∗ ϕ, since
{ψ ≈ 1 : ψ ∈ Γ0} 6|=[0,1]∗ ϕ ≈ 1, for every finite Γ0 ⊆ Γ when ∗ 6= min.

The SSC has been proved for several axiomatic extensions of MTL, as we
can see in Table 5.1. But instead of using the equivalencies of Theorem 5.3, the
usual strategy has consisted on proving a stronger property, namely showing in a
constructive way that every countable chain is embeddable into a standard chain
of the same variety. This kind of construction was first introduced by Jenei and
Montagna in [100] in order to prove the SSC for MTL. We will sketch it now,
because it will be used in the following chapters.

Completion of countable MTL-chains:
Take an arbitrary countable MTL-chain A. A standard MTL-chain [0, 1]∗ and
an embedding h : A ↪→ [0, 1]∗ are built by following the next steps:
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• Consider the set B := {〈0A, 1〉} ∪ {〈a, q〉 : a ∈ A \ {0A}, q ∈ Q ∩ (0, 1]}.

• Consider the lexicographical order � on B.

• Define the following monoidal operation on B:

〈a, q〉 ◦ 〈b, r〉 :=
{
min�{〈a, q〉, 〈b, r〉} if a&Ab = min{a, b}
〈a&Ab, 1〉 otherwise.

• The ordered monoid 〈A,&A, 1A,≤〉 is embeddable into 〈B, ◦, 〈1A, 1〉,�〉
by mapping every a ∈ A to 〈a, 1〉.

• B = 〈B, ◦, 〈1A, 1〉,�〉 is a densely ordered countable monoid with maxi-
mum and minimum, so it is isomorphic to a monoid B′ = 〈Q∩[0, 1], ◦′, 1,�′

〉. Obviously, 〈A,&A, 1A,≤〉 is also embeddable into B′. Let h be such em-
bedding. Moreover, restricted to h[A], the residuum of ◦′ exists, call it ⇒,
and h(a) ⇒ h(b) = h(a→A b).

• B′ is completed to [0, 1] by defining:

∀α, β ∈ [0, 1] α ∗ β := sup{x ◦′ y : x ≤ α, y ≤ β, x, y ∈ Q ∩ [0, 1]}.

• ∗ is a left-continuous t-norm, so it defines a standard MTL-algebra [0, 1]∗,
and h is the desired embedding. [0, 1]∗ is called the completion of A.

Therefore, we obtain the following sufficient condition for the SSC:

Proposition 5.5. Let L be an axiomatic extension (or algebraizable axiomatic
expansion) of MTL. If for every countable L-chain, its completion given by Jenei
and Montagna construction is an L-chain, then L enjoys the SSC.

The SSC for MTL, SMTL, G and WNM can be proved by applying the
previous proposition. Nevertheless, it does not work for IMTL, NM and ΠMTL.
In [49] the authors prove that the completion of Jenei and Montagna does not
preserve neither the involution nor the cancellation law in general. But the SSC
for IMTL can still be proved by modifying the construction. We skecth it again.

Completion of countable involutive MTL-chains:
Let A be a countable IMTL-chain. A standard IMTL-chain [0, 1]∗ and an em-
bedding h : A ↪→ [0, 1]∗ are built by following the next steps:

• For every a ∈ A, suc(a) is defined the successor of a in the order of A if it
exists, or suc(a) = a otherwise.

• B := {〈a, 1〉 : a ∈ A} ∪ {〈a, q〉 : ∃a′ ∈ A such that a 6= a′ and suc(a′) = a,
q ∈ Q ∩ (0, 1)}.

• Consider the lexicographical order � on B.
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• As before, we define the following monoidal operation on B:

〈a, q〉 ◦ 〈b, r〉 :=
{
min�{〈a, q〉, 〈b, r〉} if a&Ab = min{a, b}
〈a&Ab, 1〉 otherwise.

but now the operation is modified in the following way:

〈a, q〉 ⊗ 〈b, r〉 :=
{
〈0A, 1〉 if a = suc(¬b), q + r ≤ 1
〈a, q〉 ◦ 〈b, r〉 otherwise.

• The ordered monoid 〈A,&A, 1A,≤〉 is embeddable into 〈B,⊗, 〈1A, 1〉,�〉
by mapping every a ∈ A to 〈a, 1〉.

• B = 〈B,⊗, 〈1A, 1〉,�〉 is a densely ordered countable monoid with maxi-
mum and minimum, so it is isomorphic to a monoid B′ = 〈Q∩ [0, 1], ◦′,�′〉.
Obviously, 〈A,&A, 1A,≤〉 is also embeddable into B′. Let h be such em-
bedding. As before, restricted to h[A], the residuum of ◦′ exists, call it
⇒, and h(a) ⇒ h(b) = h(a →A b). Moreover, for every q ∈ Q ∩ [0, 1], the
residuum of q and 0, q ⇒ 0, exists, and the operation n(q) = q ⇒ 0 is an
involutive negation on B′.

• B′ is completed to [0, 1] by defining:

∀α, β ∈ [0, 1] α ∗ β := sup{x ◦′ y : x ≤ α, y ≤ β, x, y ∈ Q ∩ [0, 1]}.

• ∗ is a left-continuous t-norm with an involutive negation, so it defines a
standard IMTL-algebra [0, 1]∗, and h is the desired embedding.

The SSC fails for ΠMTL, as we will see in Chapter 7, but this logic still
enjoys the FSSC as it was proved in [88].

Sometimes standard completeness properties can be refined to some subclass
of standard algebras; sometimes even it is enough to consider only one standard
algebra. When the standard completeness can be proved with respect to a
particular standard algebra which is the intended semantics for the logic, we
call it canonical standard completeness. Notice that in theorems 5.2, 5.3 and
5.4, the equivalencies remain true when restricted to some subclass of standard
algebras. The canonical standard completeness is a matter of special interest
when one considers the logic of the variety generated by the algebra defined by
one particular t-norm, because then this t-norm gives the intended semantics for
the logic.

Definition 5.6. Let ∗ be a left-continuous t-norm. L∗ will denote the axiomatic
extension of MTL whose equivalent algebraic semantics is V([0, 1]∗), the variety
generated by [0, 1]∗.

It is clear, by definition, that for every left-continuous t-norm ∗, the logic L∗
enjoys the SC restricted to [0, 1]∗, i.e. the canonical SC. Sometimes the standard
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completeness is stronger. As we have already mentioned, for instance, we have
canonical FSSC for  L and Π, and canonical SSC for G and NM.

Actually, given any continuous t-norm ∗, it follows from Corollary 4.53 that
all chains in V([0, 1]∗) are partially embeddable into [0, 1]∗. Therefore, after
Proposition 5.4 we obtain the following direct corollary.

Corollary 5.7. For every continuous t-norm ∗, the logic L∗ has the canonical
FSSC.

Nevertheless, this result cannot be improved to SSC. Among all the contin-
uous t-norm based logics, only G enjoys the SSC.

Proposition 5.8. For every axiomatic extension L of BL, L has the SSC if,
and only if, L = G.

Proof: Let Γ = {q → pn | n ∈ N} and ϕ = (q → q2) ∨ (p → p2) ∨ (q → p&q),
and consider the following semantical deduction: Γ |=[0,1]∗ ϕ. One can check
that this deduction holds for every continuous t-norm ∗, but Γ 6`L∗ ϕ, since
Γ0 6|=[0,1]∗ ϕ, for every finite Γ0 ⊆ Γ when ∗ 6= min. 2

To end up this section we show that if an axiomatic extension of MTL does
not enjoy the SC, the FSSC or the SSC, then any of its conservative expansions
neither does.

Proposition 5.9. Suppose that L’ is a conservative expansion of L. Then:

• If L’ enjoys the SC, then L enjoys the SC.

• If L’ enjoys the FSSC, then L enjoys the FSSC.

• If L’ enjoys the SSC, then L enjoys the SSC.

Proof: All the implications are proved in a similar way. Let us prove as an
example the first one. Suppose that L does not enjoy the SC. Then, there is a
formula ϕ ∈ FmL such that 6`L ϕ and |=C ϕ for every standard L-chain C. Let
A be a standard L’-chain. Then, its L-reduct is a model of ϕ, thus |=A ϕ and,
since L’ is a conservative expansion of L, we also have 6`L′ ϕ. Therefore, L’ does
not enjoy the SC. 2

5.2 Other algebraic and logical properties

Regarding to other algebraic properties that will be used in the dissertation, in
the previous chapter we have seen that MTL and its subvarieties enjoy the CEP.
Moreover, it is easy to prove that all these varieties are also arithmetic. Actually,
one can check that RL has the following 2/3-minority term: m(x, y, z) = ((x→
y) → z) ∧ ((z → y) → x) ∧ (x ∨ z) (cf. [95]).

Other meaningful algebraic and logical properties for our logics and varieties
are not so easy to study and must be discussed in a more detailed basis. We
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will focus on the local finiteness, the FEP, the FMP and decidability. They have
been studied for several axiomatic extensions of MTL in the literature, but the
results are quite spread. We summarize all of them here.

As regards to local finiteness, it is trivial for CPC and G, proved for NM
in [71] and generalized to WNM in Chapter 9 of this dissertation. It is easy to
refute it for the rest of the logics so far considered. On the one hand, take any
a ∈ (0, 1) in the standard product algebra. The subalgebra of [0, 1]Π generated
by a is clearly infinite, therefore the following logics are not locally finite: Π,
SBL, BL, ΠMTL, SMTL and MTL. On the other hand, let a be a positive
element in Chang’s MV-algebra C such that c 6= 1C . Then, the subalgebra of
C generated by a is again infinite, therefore local finiteness fails also for  L and
IMTL.

Since the FEP follows from the local finiteness, we do not need to discuss
it for WNM and its axiomatic extensions. It has been proved for  L (see [17]),
BL and SBL (see [2] and [116]). However, since there are no finite Π-chains
and ΠMTL-chains (except for the trivial one and B2), the FMP (hence also the
FEP) fails for ΠMTL and Π. The FEP also holds for MTL, IMTL and SMTL.
Actually, it was first proved for the Monoidal Logic by Blok and Van Alten in
[22], and then Ono2 used the same construction for MTL, IMTL and SMTL.
The proof has been improved in [28].

Almost all of the so far considered logics are decidable because they enjoy
the FMP. We have seen that for only two of them the FMP fails: Product logic
and ΠMTL. However, Π is still decidable due to its connection to lattice ordered
Abelian groups (see [79]), and the decidability of ΠMTL has been proved very
recently in [90]. All the results are gathered in Table 5.2.

Table 5.2: Some algebraic and logical properties.
Logic LF FEP FMP Decidable
MTL No Yes Yes Yes
IMTL No Yes Yes Yes
SMTL No Yes Yes Yes
ΠMTL No No No Yes

BL No Yes Yes Yes
SBL No Yes Yes Yes

 L No Yes Yes Yes
Π No No No Yes
G Yes Yes Yes Yes

WNM Yes Yes Yes Yes
NM Yes Yes Yes Yes
CPC Yes Yes Yes Yes

2His proof has never been published. We know it by private communication.



Chapter 6

Perfect, local and bipartite
MTL-algebras

In Chapter 4 we have presented Jenei’s methods to construct new families of
IMTL-algebras. This led us to some considerations on a possible representa-
tion theorem for IMTL-chains in terms of decomposition as connected rotation-
annihilation of some filter and a convex subalgebra, but we do not have a de-
scription of indecomposable chains yet. In this chapter we will generalize the
connected rotation-annihilation to MTL-chains and we will show that in some
cases the decomposition can be well described, namely those where the used fil-
ter is the radical and the convex subalgebra is B2 or the so-called drastic product
algebras. These kinds of chains will be studied in this chapter by generalizing
the notions of perfect, local and bipartite algebra that have been already used
for MV-algebras and BL-algebras (see [5, 13, 45, 46, 135]).

6.1 Perfect and bipartite MTL-algebras

We start with the notion of order of an element, which will allow us to define
the class of perfect algebras.

Definition 6.1. Let A be an MTL-algebra. We define the order of a ∈ A as:

ord(a) =
{
min{n : an = 0A} if it exists,
∞ otherwise.

Definition 6.2. An MTL-algebra A is perfect if, and only if, for every a ∈ A,
ord(a) <∞ iff ord(¬a) = ∞.

Some easy examples of perfect MTL-algebras are B2, Chang’s algebra C,
WNM-chains without negation fixpoint and all SMTL-chains. Notice that per-
fect algebras cannot have negation fixpoint.

67
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Proposition 6.3. Let F ⊆ A be a filter of an MTL-algebra A. Then the
subuniverse of A generated by F is F ∪ F .

Definition 6.4. An MTL-algebra A is bipartite if, and only if, there is a max-
imal filter F ⊆ A such that A = F ∪ F . In this case we say that A is bipartite
by F .

Definition 6.5. Let A be an MTL-algebra. A ∈ BP0 if, and only if, for every
F ∈ Max(A), A = F ∪ F , i.e. A is bipartite by all maximal filters. We also
define the corresponding class of IMTL-algebras as IBP0 := BP0 ∩ IMTL.

As perfect algebras, bipartite algebras do not have negation fixpoint. Notice
that all the examples of perfect algebras mentioned before are also in BP0. B4 is
an example of an algebra in IBP0 which is not perfect. Besides, not all bipartite
algebras are in BP0; for instance,  L3 × B2 and G3 × B2 are bipartite algebras
(involutive and non-involutive, respectively) that are not in BP0.

However, for MTL-chains, perfect and bipartite algebras and algebras from
BP0 turn out to be the same:

Theorem 6.6. Let A be an MTL-chain. The following are equivalent:

(1) A = Rad(A) ∪Rad(A).

(2) A is bipartite.

(3) A ∈ BP0.

(4) Rad(A) = A+ and A has no fixpoint.

(5) A is perfect.

(6) A |= Bp(x) ≈ 1.

(7) A/Rad(A) ∼= B2.

where Bp(x) = (¬(¬x)2)2 ↔ ¬(¬x2)2.

Proof: (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (4) and (4) ⇒ (5) are straightforward.
(5) ⇒ (6): If the chain is perfect, then one can check that for every a ∈ A+,
(¬(¬a)2)2 = ¬(¬a2)2 = 1A and for every a ∈ A−, (¬(¬a)2)2 = ¬(¬a2)2 = 0A.
(6) ⇒ (7): Suppose that A satisfies the equation. Notice that in this case the
set of positive elements is a proper filter. Indeed, if a ∈ A+, then ¬a ∈ A−, so
(¬a)2 = 0A. Therefore (¬(¬a)2)2 = 1A = ¬(¬a2)2 and this implies a2 ∈ A+.
Now, take a, b ∈ A+ such that a ≤ b. Then a2 ≤ a&b and a2 ∈ A+, so
a&b ∈ A+. Thus A+ = Rad(A). Consider the algebra A/Rad(A) and take
a ∈ A. If a is positive, then a→ 1A = 1A ∈ Rad(A) and 1A → a = a ∈ Rad(A),
so a/Rad(A) = 1A/Rad(A). If a is negative, then a→ 0A = ¬a ∈ Rad(A) and
0A → a = 1A ∈ Rad(A), so a/Rad(A) = 0A/Rad(A). Therefore A/Rad(A) ∼=
B2.
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(7) ⇒ (1): Suppose that the quotient by the radical is the two element Boolean
algebra. Take an arbitrary a ∈ A and suppose a /∈ Rad(A). Then a/Rad(A) 6=
1A/Rad(A), so a/Rad(A) = 0A/Rad(A) and hence ¬a/Rad(A) = 1A/Rad(A),
i.e. ¬a ∈ Rad(A). 2

Theorem 6.7. Let A be an MTL-algebra. Then:
A is perfect if, and only if, A = Rad(A) ∪Rad(A).

Proof: Suppose that A is perfect. By Corollary 6.25 we know that Rad(A) =
{a ∈ A : ord(a) = ∞} and then the result follows immediately. Conversely,
if A = Rad(A) ∪ Rad(A) then every a ∈ Rad(A) has infinite order and every
a ∈ Rad(A) has finite order, hence the algebra is perfect. 2

Corollary 6.8. Every perfect algebra is bipartite.

Proof: If the algebra is perfect, then it is local, so the radical is the only maximal
filter and the result is obvious. 2

Another easy consequence is the following proposition about perfect subal-
gebras:

Corollary 6.9. Given an MTL-algebra A, Rad(A) ∪ Rad(A) is a perfect sub-
algebra and contains all perfect subalgebras.

Theorem 6.10. Let A be an MTL-algebra. Then the following are equivalent:

(1) A is perfect.

(2) A/Rad(A) ∼= B2.

Proposition 6.11. Let A be an MTL-algebra and let M ⊆ A be a prime filter.
Then the following are equivalent:

(1) A+ ⊆M and A has no fixpoint.

(2) M is maximal and A = M ∪M .

(3) A/M ∼= B2.

Proof: (1) ⇒ (2): If a ∈ A, then by Proposition 4.12, a ∨ ¬a ∈ A+ ⊆ M , but
since M is prime, a ∈M or ¬a ∈M .

(2) ⇒ (3): On one hand, M is prime, so A/M is a chain. On the other hand,
for every a ∈ A, a/M ∨¬(a/M) = (a∨¬a)/M = 1A/M , hence A/M is Boolean,
so it must be the two element Boolean algebra.

(3) ⇒ (1): Take any a ∨ ¬a ∈ A+. (a ∨ ¬a)/M = a/M ∨ ¬(a/M) = 1A/M ,
so a ∨ ¬a ∈M . 2

Lemma 6.12. Let A be an MTL-algebra and let F ⊆ A be a proper filter. Then:
A/F ∈ BA if, and only if, {a ∨ ¬a : a ∈ A} ⊆ F .
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Proof: Suppose that the quotient is a Boolean algebra and take a ∈ A+. Then
a/F ∨ ¬(a/F ) = (a ∨ ¬a)/F = 1A/F . Thus: a = a ∨ ¬a ∈ F . Conversely, it is
straightforward to check that A/F satisfies the law of the excluded middle. 2

Theorem 6.13. For every MTL-algebra A the following are equivalent:

(1) A ∈ BP0.

(2) A/Rad(A) ∈ BA.

(3) Rad(A) = A+ and A has no fixpoint.

Proof: (1) ⇔ (2): For every maximal filter M , A = M ∪M iff (by Theorem
6.11) A+ is contained in every maximal filter iff A+ ⊆ Rad(A). By Lemma 6.12,
this is equivalent to A/Rad(A) ∈ BA.

(2) ⇒ (3): By Lemma 6.12, we obtain A+ ⊆ Rad(A) and the other inclusion
is always true.

(3) ⇒ (2): Also by Lemma 6.12.
2

From (2) of the last theorem and Theorem 6.10 we obviously obtain the
following result:

Corollary 6.14. Every perfect MTL-algebra is in BP0.

Theorem 6.15. BP0 is a variety. One equational base is obtained by adding
the next set of equations to the usual axiomatization for MTL:

{(¬x ∧ ¬¬x) → (x ∨ ¬x)n ≈ 1 : n ≥ 1}

Proof: Let A be an MTL-algebra. A ∈ BP0 iff A+ ⊆ Rad(A) and there is no
fixpoint iff for every a ∨ ¬a ∈ A+ and every n ≥ 1, (a ∨ ¬a)n ≥ ¬(a ∨ ¬a) =
¬a ∧ ¬¬a. 2

Corollary 6.16. BP0 is the variety generated by all perfect MTL-algebras.

Proof: Let K be the variety generated by all perfect MTL-algebras. By Corollary
6.14, K ⊆ BP0. The other inclusion follows from the subdirect representation
theorem and Theorem 6.6. 2

Corollary 6.17. There is a simpler axiomatization for BP0 obtained by adding
to the axioms of MTL only the equation Bp(x) ≈ 1.

Proof: Let K be the variety of MTL-algebras satisfying this equation. We will
prove K = BP0. If A ∈ K, then by the subdirect representation theorem A
is representable as a subdirect product of chains satisfying the equation. By
Theorem 6.6, these chains are in BP0, so A ∈ BP0. Conversely, take A ∈ BP0.
Then A is isomorphic to a subdirect product of MTL-chains in BP0, so it satisfies
the equation. 2
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We can prove the following Glivenko-style theorem1 for the logic BP0 asso-
ciated to the variety BP0:

Theorem 6.18. Let `CPC denote the relation of derivability in the classical
propositional calculus. Then, for every ϕ ∈ FmL, `CPC ϕ if, and only if,
`BP0 (¬(¬ϕ)2)2.

Proof: Suppose that `CPC ϕ. It suffices to prove that for each chain A ∈
BP0, A |= (¬(¬ϕ)2)2 ≈ 1. Let A be such a chain and v : FmL → A an
evaluation. We know that A/Rad(A) ∼= B2, so v(ϕ)/Rad(A) = 1A/Rad(A),
i.e. v(ϕ) ∈ A+, hence (¬(¬v(ϕ))2)2 = 1A. Conversely, if `BP0 (¬(¬ϕ)2)2, then
B2 |= (¬(¬ϕ)2)2 ≈ 1, i.e. B2 |= ϕ ≈ 1, hence `CPC ϕ. 2

Concerning the structure of the class of bipartite MTL-algebras, we obtain
the following results:

Proposition 6.19. The class of bipartite MTL-algebras is closed under subal-
gebras.

Theorem 6.20. Let {Ai : i ∈ I} be a set of MTL-algebras and take their direct
product A. If there is some j ∈ I such that Aj is bipartite, then A is bipartite.

Proof: Using the same reasoning as in Theorem 4.5 of [45]. 2

Corollary 6.21. The class of bipartite MTL-algebras is closed under direct
products.

Corollary 6.22. The variety generated by all bipartite MTL-algebras is MTL.

Proof: Let A be an arbitrary MTL-algebra. Consider A×B2, that is a bipartite
MTL-algebra since B2 is bipartite. Thus, taking the projection over the first
component, we obtain A as a homomorphic image of a bipartite algebra. There-
fore, every MTL-algebra is in the variety generated by all bipartite algebras.
2

6.2 Local MTL-algebras

The definition of local algebras is also done in terms of the order of the elements.

Definition 6.23. An MTL-algebra A is local if, and only if, for every a ∈ A
ord(a) <∞ or ord(¬a) <∞.

It is clear that all the chains are local algebras. Perfect algebras are local as
well. In fact, we have this characterization:

Proposition 6.24. An MTL-algebra is local if, and only if, it has a unique
maximal filter.

1For a general study of this type of theorems in the framework of natural expansions of
BCK logic see [34]. See also some results in [33].
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Proof: Suppose that M is the unique maximal filter of A. If there is a ∈ A
such that ord(a) = ord(¬a) = ∞ then a,¬a ∈ M and this is a contradiction
since M is proper. Conversely, suppose that A is local and let M be a maximal
filter. Then it is easy to prove that M = {a ∈ A : ord(a) = ∞}. Clearly M is
contained in this set. If a /∈ M and ord(a) = ∞, then ∃n such that ¬an ∈ M ,
so ord(¬an) = ∞. Hence ord(an) <∞, so ord(a) <∞, a contradiction. 2

Corollary 6.25. Let A be an MTL-algebra.
A is local if, and only if, Rad(A) = {a ∈ A : ord(a) = ∞}.

In order to state a classification theorem of local algebras, we define two new
classes of MTL-algebras.

Definition 6.26. An MTL-algebra A is locally finite2 if, and only if, for every
a ∈ A\{1A} ord(a) <∞. A is peculiar iff is local and ∃a, b ∈ A\{0A, 1A} such
that ord(a) = ∞, ord(b) <∞ and ord(¬b) <∞.

Theorem 6.27. Let A be a local MTL-algebra such that A � B2. Then A
satisfies one, and only one, of the following:

• A is perfect.

• A is locally finite.

• A is peculiar.

We know that perfect algebras cannot have negation fixpoint but this is not
the case for the other types of local algebras. For instance, on the one hand,
[0, 1] L is a locally finite MTL-algebra and, on the other hand, [0, 1]NM and in
general all WNM-chains with negation fixpoint are peculiar.

6.3 Perfect IMTL-algebras and disconnected ro-
tations of prelinear semihoops

In the involutive case, the notion of perfect algebra turns out to be an exact
description of the IMTL-chains obtained by means of the disconnected rotation
method presented in Chapter 4. Recall that the disconnected rotation of a
prelinear semihoop B is denoted as B∗.

Theorem 6.28. Let A be an IMTL-algebra. Then the following are equivalent:

(1) A is perfect.

(2) A/Rad(A) ∼= B2.

(3) A is isomorphic to the disconnected rotation of a prelinear semihoop.
2We follow here the nomenclature introduced by Chang for MV-algebras. Do not confuse

this with the general notion of locally finite algebra in Universal Algebra defined in Chapter
2.
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Proof: (1) ⇒ (2): If the algebra is perfect, then the radical is perfect and maxi-
mal, hence A/Rad(A) is simple and perfect, so it must be isomorphic to B2.

(2) ⇒ (3): For every a ∈ A, (a/Rad(A) = 1A/Rad(A) ⇒ a ∈ Rad(A)) and
(a/Rad(A) = 0A/Rad(A) ⇒ a ∈ ¬Rad(A)). So A = Rad(A)∪¬Rad(A). Then,
considering the prelinear semihoop B given by Rad(A), we obtain that A ∼= B∗.

(3) ⇒ (1): If A ∼= B∗ for some prelinear semihoop B, then it is obvious that
all positive elements have infinite order and all negative elements have finite
order. 2

Furthermore, we can prove that perfect MV-algebras are exactly the discon-
nected rotations of cancellative hoops.

Theorem 6.29. Let A be an IMTL-algebra. The following are equivalent:

(1) A is a perfect MV-algebra.

(2) A is isomorphic to the disconnected rotation of a cancellative hoop.

Proof: (1) ⇒ (2): It is clear that Rad(A) is a Wajsberg hoop. We only need to
show that it has no minimum element and then it will be a cancellative hoop.
Suppose that a is the minimum of Rad(A) and take any x < a different from
0A. Then a ∧ x = x, but a&(a → x) = a&¬(a&¬x) = ¬(a → a&¬x) = ¬(a →
a) = 0A, a contradiction with A being a MV-algebra.

(2) ⇒ (1): The rotation of a cancellative hoop is always an MV-algebra as it
is proved in Lemma 3.13 of [52] and by the last theorem it is perfect. 2

6.4 Correspondence between varieties of pre-
linear semihoops and varieties of IMTL-
algebras

In this section we will prove that the lattice of subvarieties of IBP0 is really big
and complex. Indeed we show that it is isomorphic to the lattice of subvarieties
of prelinear semihoops.

We will need the next notation: given a class of prelinear semihoops K, we
define K∗ := {A∗ : A ∈ K} ⊆ IMTL.

Lemma 6.30. If K is a class of prelinear semihoops, then H(K∗) = H(K)∗.

Proof: Take A ∈ K and B ∈ H(A) and consider B∗. We know that B is the
image of some homomorphism h : A → B. We must prove that B∗ ∈ H(A∗). It
suffices to consider the following homomorphism:

g : A∗ → B∗ defined by:

g(a) =
{
h(a) if a ∈ (A∗)+
¬h(¬a) if a ∈ (A∗)−

Take now B ∈ H(K∗), i.e., B is the image of some homomorphism h : A∗ → B,
where A ∈ K. Then B ∼= h[(A∗)+]∗, so B ∈ H(A)∗ ⊆ H(K)∗. 2
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Lemma 6.31. If K is a class of prelinear semihoops, then S(K∗) = S(K)∗.

Proof: Take A ∈ K and B ∈ S(A∗). Since B is a subalgebra of the disconnected
rotation of A, we have that B+ ⊆ (A∗)+ = A and B− ⊆ (A∗)−. Actually, B+

is the universe of a subalgebra of A and B is the disconnected rotation of this
subalgebra. Therefore, A ∈ S(K)∗.

Conversely, if A ∈ K and B ∈ S(A)∗, then B = C∗ for some C ⊆ A. It follows
that C∗ ⊆ A∗, so B ∈ S(A∗) ⊆ S(K∗). 2

Lemma 6.32. If K is a class of prelinear semihoops, then PU (K)∗ ⊆ ISPU (K∗).

Proof: Take {Ai : i ∈ I} ⊆ K and consider an ultraproduct
∏I
U Ai. Consider

also the ultraproduct of {A∗i : i ∈ I} corresponding to the same index set and the
same ultrafilter, i.e.,

∏I
U A∗i . It suffices to take the embedding α : (

∏I
U Ai)∗ →∏I

U A∗i defined by:

• If ā/U ∈ (
∏I
U Ai)

∗
+, α(ā/U) := ā/U .

• If ¬(ā/U) ∈ (
∏I
U Ai)

∗
−, α(¬(ā/U)) := ¬ā/U , where for every i ∈ I

(¬ā)(i) = ¬(ā(i)).

We obtain (
∏I
U Ai)∗ ∈ IS(

∏I
U A∗i ) ⊆ ISPU (K∗). 2

Lemma 6.33. If K is a class of prelinear semihoops, then PU (K∗) ⊆
IS(PU (K)∗).

Proof: Take {Ai : i ∈ I} ⊆ K and an ultraproduct
∏I
U A∗i . Given ā ∈

∏I
A∗i ,

we define j(ā) ∈
∏I

Ai as:

j(ā)(i) :=
{
ā(i) if ā(i) > ¬ā(i),
¬ā(i) otherwise.

In order to show that
∏I
U A∗i ∈ IS((

∏I
U Ai)∗) ⊆ IS(PU (K)∗) it is enough to

consider the embedding α :
∏I
U A∗i → (

∏I
U Ai)∗ defined by:

• If ā/U ∈
∏I
U A

∗
i is such that {i ∈ I : ā(i) > ¬ā(i)} ∈ U , then α(ā/U) :=

j(ā)/U .

• If ā/U ∈
∏I
U A

∗
i is such that {i ∈ I : ā(i) < ¬ā(i)} ∈ U , then α(ā/U) :=

¬α(¬ā/U).

2

Theorem 6.34. Let K and L be classes of totally ordered prelinear semihoops.
Then:

• V(K) ⊆ V(L) if, and only if, V(K∗) ⊆ V(L∗), and
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• V(K) = V(L) if, and only if, V(K∗) = V(L∗).

Proof: From Jónsson’s Lemma (see [24]) we deduce that given a class M of
prelinear semihoops or IMTL-algebras, HSPU (M) coincides with the class of
the chains in V(M). Therefore, due to the representation in subdirect products
of chains, we only need to prove: HSPU (K) ⊆ HSPU (L) iff HSPU (K∗) ⊆
HSPU (L∗).

Suppose first that HSPU (K) ⊆ HSPU (L). Therefore, K ⊆ HSPU (L), so
K∗ ⊆ (HSPU (L))∗ = HS(PU (L))∗ ⊆ HSISPU (L∗) ⊆ HSPU (L∗). Thus,
HSPU (K∗) ⊆ HSPU (L∗).

Suppose now that HSPU (K∗) ⊆ HSPU (L∗). Then, K∗ ⊆ HSPU (L∗) ⊆
HSIS(PU (L))∗ = (HSISPU (L))∗ ⊆ (HSPU (L))∗. Therefore, K ⊆ HSPU (L).

The other equivalence trivially follows from this one. 2

Corollary 6.35. Given any variety of prelinear semihoops K, define σ(K) :=
V({chains of K}∗). Then, σ is an isomorphism between the lattice of varieties
of prelinear semihoops and the lattice of subvarieties of IBP0.

6.5 Adding the fixpoint to perfect MTL-
algebras. Logics BP+n and BP+ω. Glivenko
theorems, standard completeness and other
properties

In this section we will use perfect MTL-algebras to construct new kinds of MTL-
algebras and we will study the varieties and the logics that they define.

First, we extend the construction of connected rotation-annihilation (see
Chapter 4) in such a way that it will not only produce IMTL-algebras, but
also non-involutive MTL-algebras.

Definition 6.36. Let A and B be MTL-algebras such that A is perfect. We
define a new MTL-algebra C, whose carrier is A ∪ (B \ {0B, 1B}), the orderings
in A and B are extended by letting a < b < c for every a ∈ A−, b ∈ B \ {0B, 1B}
and c ∈ A+, and the operations are defined as 0C := 0A, 1C := 1A and:

a&Cb :=



a&Ab if a, b ∈ A
0A if a, b ∈ B \ {0B, 1B} and a ≤ ¬Bb
a&Bb if a, b ∈ B \ {0B, 1B} and a 6≤ ¬Bb
b if a ∈ A+, b ∈ B \ {0

B
, 1B}

a if a ∈ B \ {0B, 1B}, b ∈ A+

0A if a ∈ B \ {0B, 1B}, b ∈ A−
0A if a ∈ A−, b ∈ B \ {0

B
, 1B}
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a→C b :=



a→A b if a, b ∈ A
1C if a, b ∈ B \ {0B, 1B}, a ≤ b

a→B b if a, b ∈ B \ {0B, 1B}, a 6≤ b

b if a ∈ A+, b ∈ B \ {0
B
, 1B}

1A if a ∈ B \ {0B, 1B}, b ∈ A+

¬Ba if a ∈ B \ {0B, 1B}, b ∈ A−
1A if a ∈ A−, b ∈ B \ {0

B
, 1B}

It is routine to check that C is indeed an MTL-algebra. Since this is a
generalization of the connected rotation-annihilation construction, we keep on
denoting it as A � B. Therefore, we can also speak about decompositions of
MTL-chains in rotation-annihilation of a perfect MTL-chain and another MTL-
chain. Moreover, propositions 4.65 and 4.66 can be easily generalized to this
more general case. We will use this construction in some special cases, but first
we need to introduce a particular kind of WNM-chains.

Definition 6.37. For every natural number n ≥ 1, we define a WNM-chain
Wn = 〈Wn,&,→,∧,∨, 0Wn , 1Wn〉 by taking Wn = {1Wn > a0 > a1 > . . . >

an−1 > 0Wn} and ¬ai = a0 for every i < n. As in every WNM-chain, the
operations & and → are defined as:

a&b :=
{
a ∧ b if a > ¬b,
0Wn otherwise.

a→ b :=
{

1Wn if a ≤ b,
¬a ∨ b otherwise.

for every a, b ∈Wn.
Moreover, we define the WNM-chain Wω = 〈Wω,&,→,∧,∨, 0Wω , 1Wω 〉 by

taking an infinite set {ak : k < ω}, letting Wω = {1Wω > a0 > a1 > . . . > an >

an+1 > . . . > 0Wω} and defining the operations in the same way.

Notice that in these chains the product of any pair of elements different from
the top, is always the bottom. This is sometimes called the drastic product.
Moreover, all of them have negation fixpoint, namely a0. It is clear that  L3

∼= W1.

Definition 6.38. Let A be a perfect MTL-algebra and 1 ≤ n ≤ ω, A �Wn is
denoted as A+n and we call it a perfect algebra plus n points. Since a0 is a
negation fixpoint, when n = 1 we call A+1 a perfect algebra plus fixpoint.

We must be careful to avoid any misunderstanding here. Perfect algebras
cannot have fixpoint. Therefore, we are not saying that A+n is a perfect algebra
with fixpoint; this would not make sense. On the contrary, we are just saying
that A+n is a perfect algebra plus n points, in the sense that it is obtained by
adding n new points to a given perfect algebra A. Thus, A+n is not perfect and
it has negation fixpoint.
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Notice that if we start with an IMTL-algebra, this definition is only preserv-
ing the involution when n = 1. Moreover, the construction of A+1 is canonical
in the sense that it is the only possible way to add the fixpoint to a perfect
algebra:

Theorem 6.39. Let A be an MTL-algebra with negation fixpoint such that A =
A+ ∪ A− and Rad(A) = A+. Let a be the fixpoint. Then, a&b = a for every
b ∈ A+ and a&b = 0A for every b ∈ A−.

Proof: Take b > a. We know that a&b ≤ a. Suppose a&b < a. Then, ¬(a&b) ∈
A+, hence b&¬(a&b) ∈ A+. This implies a > ¬(b&¬(a&b)), in contradiction
with a&(b&¬(a&b)) = (a&b)&¬(a&b) = 0A. If b ∈ A−, then ¬b ∈ A+, so
a ≤ ¬b and this is equivalent to a&b = 0A. 2

The class of perfect IMTL-algebras plus fixpoint coincides with the class of
all connected rotations of MTL-algebras without zero divisors:

Theorem 6.40. Let A be an IMTL-algebra. The following are equivalent:

(1) A is a perfect algebra plus fixpoint.

(2) A is isomorphic to the connected rotation of an MTL-algebra without zero
divisors.

Proof: (1) ⇒ (2): Let a be the fixpoint of the algebra. Consider the MTL-
algebra B defined by Rad(A)∪ {a} such that 0B = a. Since the radical is closed
under &, B is an MTL-algebra without zero divisors. Thus A ∼= B?.

(2) ⇒ (1): If A ∼= B? for some MTL-algebra B without zero divisors, then
is clear that all the positive elements have infinite order and all the negative
elements have finite order, so it is a perfect algebra plus the fixpoint. 2

Proposition 6.41. Let A be a perfect MTL-algebra and n any ordinal number
such that 1 ≤ n ≤ ω. Then, A+n/Rad(A+n) ∼= Wn.

Proof: Recall that Rad(A+n) = A+. So, on one hand, it is clear that

1A
+n

/Rad(A+n) = A+ and 0A
+n

/Rad(A+n) = A−. On the other hand, for
every a, b ∈Wn \{0

Wn , 1Wn} such that a < b, we have b→ a = a0 /∈ Rad(A+n),
thus a/Rad(A+n) 6= b/Rad(A+n). Therefore, the function defined by:

f(x/Rad(A+n)) :=


1Wn if x = 1A

+n

0Wn if x = 0A
+n

x if x ∈Wn \ {0
Wn , 1Wn}

is an isomorphism from A+n/Rad(A+n) to Wn. 2

However, in this case the quotient by the radical does not characterize perfect
algebras plus fixpoint. This is false even for MV-algebras. Take for instance the
MV-algebra  Lω3 . Indeed,  Lω3 /Rad( Lω3 ) ∼= W1 but  Lω3 is not a perfect algebra plus
fixpoint.
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Definition 6.42. For every 1 ≤ n ≤ ω, let BP+n
0 be the variety generated by all

perfect MTL-algebras plus n points, and define IBP+1
0 := BP+1

0 ∩ IMTL.

Obviously, IBP0 ( IBP+1
0 , since  L3 ∈ IBP+1

0 \ IBP0.
It is also clear that we have the following chain of strict inclusions:
BP0 ( BP+1

0 ( . . . ( BP+n
0 ( BP+(n+1)

0 ( . . . ( BP+ω
0 .

Proposition 6.43. BP+ω
0 is the minimum variety containing BP+n

0 for every
finite n, i.e. BP+ω

0 =
∨

1≤n<ω BP+n
0 .

Proof: It is obvious that
∨

1≤n<ω BP+n
0 ⊆ BP+ω

0 . To prove the other inclusion,
consider any equation ϕ ≈ ψ ∈ EqL such that is not verified by all algebras in
BP+ω

0 . We must show that ϕ ≈ ψ is not verified by all algebras in
∨

1≤n<ω BP+n
0 .

Suppose that {x1, . . . , xn} is the set of variables appearing in ϕ ≈ ψ. There is a
chain C ∈ BP+ω

0 and an evaluation v in C such that v(ϕ) 6= v(ψ). If C is perfect or
C = A+k for some k < ω and some perfect algebra A, the proof finishes. Suppose
that C = A+ω for some perfect algebra A. Then the subalgebra generated by
the set A+ ∪ A+ ∪ {v(x1), . . . , v(xn)} is also not satisfying the equation and it
belongs to the variety BP+(n+1)

0 . 2

Theorem 6.44. We can obtain an equational base for BP+ω
0 by adding to the

axioms of MTL the following:

1. Bp(x) ∨ (¬x↔ ¬¬x) ≈ 1

2. (x ∨ ¬x → y ∨ ¬y) ∨ ((y ∨ ¬y → ¬y ∧ ¬¬y) → y ∨ ¬y) ∨ (((x ∨ ¬x)2 →
y ∨ ¬y) → y ∨ ¬y) ≈ 1

3. Bp(x) ∨ (¬y ↔ ¬¬y) ∨ (x→ x&p(y)) ≈ 1

Proof: Let K be the variety of MTL-algebras where these equations are valid.
Let A be a perfect MTL-algebra plus ω points. One can easily check that
A |= ((¬(¬x)2)2 ↔ ¬(¬x2)2) ∨ (¬x ↔ ¬¬x) ≈ 1. Let us prove that also
the second equation is valid in A. Take a, b ∈ A. If ¬a is the fixpoint, then
a ∨ ¬a → b ∨ ¬b = 1A and the equation is satisfied. Suppose now that ¬b is
the fixpoint and ¬a 6= ¬¬a. a ∨ ¬a > b ∨ ¬b, so (a ∨ ¬a)2 > b ∨ ¬b. Thus,
(a ∨ ¬a)2 → b ∨ ¬b = b ∨ ¬b and the equation is satisfied too. Finally, suppose
that neither ¬a nor ¬b are the fixpoint. Then b ∨ ¬b → ¬b ∧ ¬¬b ∈ A−,
hence (b ∨ ¬b → ¬b ∧ ¬¬b) → b ∨ ¬b = 1A. Finally, let us prove that also the
third equation is valid in A. Take a, b ∈ A. Suppose Bp(a) 6= 1A and ¬¬b 6= ¬b
(otherwise the equation is clearly satisfied). Then, we have a /∈ Rad(A)∪Rad(A)
and p(b) ∈ A+, so a&p(b) = a and the equation is also satisfied. Therefore,
BP+ω

0 ⊆ K.
In order to prove the other inclusion and taking into account the represen-

tation theorem in subdirect products of chains, we only need to check that all
chains in K are either perfect or perfect plus some points. Let C be such a
chain and take a ∈ C+; we will see that a2 ∈ C+. Suppose that it is not
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true. Then there are two possibilities: either a2 is the fixpoint or it is smaller
than its negation. If a2 = b = ¬b, then the second equation would imply
(a → b) ∨ ((b → b) → b) ∨ ((a2 → b) → b) = (a → b) ∨ b ∨ b = a → b = 1A,
so a ≤ b, a contradiction. Suppose now, that a2 < ¬a2. By the first
equation ¬(¬a2)2 = (¬(¬a)2)2 = (¬0A)2 = 1A, so (¬a2)2 = 0A, i. e.
¬a2 ≤ ¬¬a2. This means that a2 < ¬a2 ≤ ¬¬a2, so ¬a2 = ¬¬a2. There-
fore ¬a2 is the fixpoint. Using values a and ¬a2 in the second equation we
obtain: (a → ¬a2) ∨ ((¬a2 → ¬a2) → ¬a2) ∨ ((a2 → ¬a2) → ¬a2) = (a →
¬a2) ∨ ¬a2 ∨ ((a2 → ¬a2) → ¬a2) = (a → ¬a2) ∨ ((a2 → ¬a2) → ¬a2) = 1A,
so one of the two disjuncts must be 1A. a > ¬a2, thus a2 → ¬a2 ≤ ¬a2, but
this is absurd since a2 → ¬a2 = 1A. Thus, given a, b ∈ C+ such that a ≤ b, we
have a&b ≥ a2 ∈ C+; therefore, C+ is closed under &. If C = Rad(C)∪Rad(C),
the chain is perfect. Suppose not. Then for every a /∈ Rad(C) ∪ Rad(C), we
have ¬a = ¬¬a. Indeed, a ≤ ¬a (because a /∈ Rad(C) = C+), and ¬a ≤ ¬¬a
(because ¬a /∈ Rad(C) = C+). Thus, a ≤ ¬a ≤ ¬¬a, and this implies ¬a = ¬¬a.
Moreover, given a /∈ Rad(C) ∪ Rad(C), and b ∈ C+, the third equation implies
a&b = b, so C is perfect plus some points. 2

Theorem 6.45. If 1 ≤ n < ω, we can obtain an equational base for BP+n
0 by

adding to the axioms of MTL the following:

1. Bp(x) ∨ (¬x↔ ¬¬x) ≈ 1

2. (x ∨ ¬x → y ∨ ¬y) ∨ ((y ∨ ¬y → ¬y ∧ ¬¬y) → y ∨ ¬y) ∨ (((x ∨ ¬x)2 →
y ∨ ¬y) → y ∨ ¬y) ≈ 1

3. Bp(x) ∨ (¬y ↔ ¬¬y) ∨ (x→ x&p(y)) ≈ 1

4.
∨

0≤i≤nBp(xi) ∨
∨

0≤i<j≤n(xi ↔ xj) ≈ 1

Proof: Let K be the variety defined by these equations. Let A+n be a perfect
algebra plus n points. By the previous theorem the first three equations are
valid in this algebra. Let us check the fourth one. Consider a0, . . . , an ∈ A+n.

If there is some i such that ai ∈ Rad(A+n)∪Rad(A+n), then Bp(ai) = 1A
+n

. If
for every i ai /∈ Rad(A+n) ∪Rad(A+n), then there must be some i, j such that

ai = aj , since there are only n elements in these conditions, so ai ↔ aj = 1A
+n

and the equation is also satisfied. Therefore, BP+n
0 ⊆ K. Conversely, take any

chain C ∈ K. On one hand, by the proof of the previous theorem we know that
C is perfect or perfect plus some points. On the other hand, the fourth equation
implies that there are at most n points not belonging to Rad(C) ∪ Rad(C).
Therefore, we obtain C ∈ BP+n

0 , hence K ⊆ BP+n
0 . 2

Corollary 6.46. An equational base for IBP+1
0 is obtained by adding to the

axioms of IMTL the following:

1. Bp(x) ∨ (x↔ ¬x) ≈ 1
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2. (x∨¬x→ y∨¬y)∨((y∨¬y → y∧¬y) → y∨¬y)∨(((x∨¬x)2 → y∨¬y) →
y ∨ ¬y) ≈ 1

Notice that the equation Bp(x) ∨ (¬y ↔ ¬¬y) ∨ (x → x&p(y)) ≈ 1 of the
last two theorems is strictly necessary. Indeed, if A is any perfect MTL-algebra,
we can define an MTL-algebra B whose carrier is A∪{a, b}, the ordering in A is
extended by letting x < b < a < y for every x ∈ A−, y ∈ A+, and the operations
are defined as 0B = 0A, 1B = 1A and:

x&By :=


x&Ay if x, y ∈ A
0A if x, y ∈ {a, b}
b if x ∈ A+, y ∈ {a, b}
0A if x ∈ A−, y ∈ {a, b}

and → is its residuum. Then, B is neither in BP+ω
0 nor in BP+2

0 , and it does
not satisfy the equation Bp(x) ∨ (¬y ↔ ¬¬y) ∨ (x→ x&p(y)) ≈ 1, even though
it satisfies the remaining equations.

If BP+1
0 , IBP+1

0 , BP+n
0 and Wn are respectively the logics associated to the

varieties BP+1
0 , IBP+1

0 , BP+n
0 and V(Wn) for every 2 ≤ n ≤ ω, and L3 is the

three-valued logic of  Lukasiewicz, i.e. the logic associated to the variety V( L3),
we can prove the following Glivenko-style theorems for these logics:

Theorem 6.47. For every ϕ ∈ FmL, we have:

(i) `L3 ϕ if, and only if, `BP+1
0
t(ϕ) ∨ (t(ϕ↔ ¬ϕ)&ϕ).

(ii) `L3 ϕ if, and only if, `IBP+1
0
t(ϕ) ∨ (t(ϕ↔ ¬ϕ)&ϕ).

(iii) `Wn ϕ if, and only if, `BP+n
0
t(ϕ)∨ (t(¬ϕ↔ ¬¬ϕ)&ϕ), for every 2 ≤ n ≤

ω.

where t(x) = ¬(¬x2)2.

Proof: We will prove the first case as an example. The remaining ones are
analogous. Suppose that `L3 ϕ and take any chain A ∈ BP+1

0 . We must prove
that A |= t(ϕ) ∨ t(ϕ ↔ ¬ϕ)&ϕ ≈ 1. Let v : FmL → A be an evaluation. We
know that A/Rad(A) ∼=  L3, so v(ϕ)/Rad(A) = 1A/Rad(A), i.e. v(ϕ) ∈ A+ =
Rad(A), hence t(v(ϕ)) = 1A. Conversely, if `BP+1

0
t(ϕ) ∨ (t(ϕ↔ ¬ϕ)&ϕ), then

in particular  L3 |= t(ϕ) ∨ (t(ϕ ↔ ¬ϕ)&ϕ) ≈ 1. Let v be any evaluation on  L3.
We have t(v(ϕ))∨ (t(v(ϕ) ↔ ¬v(ϕ))&v(ϕ)) = 1. The assumptions v(ϕ) = 0 and
v(ϕ) = 1

2 lead to contradiction, so it must be v(ϕ) = 1, and this finishes the
proof. 2

Finally, we will discuss which of those varieties define new fuzzy logics with
strong standard completeness theorem. We will prove the theorem for BP+ω

0 ,
BP0, IBP+1

0 and BP+1
0 . For BP+ω

0 the original method of Jenei and Montagna
[100], that we have sketched in Chapter 5, will be enough to prove it, while for
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BP0, IBP+1
0 and BP+1

0 we will need some modifications of the method. For the
remaining varieties, BP+n

0 (for every 1 < n < ω) and IBP0 we will prove that
there is no standard completeness.

Theorem 6.48. The logic BP+ω
0 enjoys the SSC.

Proof: Let A ∈ BP+ω
0 be a countable perfect chain plus infinitely many points.

Using the method of Jenei and Montagna we obtain an MTL-chain B over [0, 1]
and an embedding h : A → B. It is easy to check that Rad(B) = B+, so
B ∈ BP+ω

0 . 2

Theorem 6.49. The logic BP0 enjoys the SSC.

Proof: Let A ∈ BP0 be a countable chain. We know that A is perfect. If A− has
no maximum, the method of Jenei and Montagna would not work. Indeed, the
resulting chain over [0, 1] would have a negation fixpoint, so it would not belong
to BP0. To avoid this problem and make sure that A− has a maximum element,
we add a couple of new elements a, b /∈ A requiring:

• a < x for each x ∈ A+,

• b < a,

• x < b for each x ∈ A−,

• ¬a = b,

• ¬b = a,

• a&x = x&a = a for each x ∈ A+ ∪ {a},

• a&x = x&a = 0A for each x ∈ A− ∪ {b},

• b&x = x&b = b for each x ∈ A+ and

• b&x = x&b = 0A for each x ∈ A− ∪ {b}.

A is a subalgebra of this extended chain. Therefore, we can suppose without
losing generality that A− has a maximum, say b. Now we apply the usual
method of Jenei and Montagna. First we obtain a densely ordered countable
monoid B over the set {〈0A, 1〉} ∪ {〈a, q〉 : a ∈ A \ {0A}, q ∈ Q∩ (0, 1]}, with the
lexicographical order and the following monoidal operation:

〈a, q〉 ◦ 〈c, r〉 :=
{
min{〈a, q〉, 〈c, r〉} if a&c = min{a, c}
〈a&c, 1〉 otherwise.

Notice that for every 〈c, r〉 > 〈b, 1〉 (i.e. c > b) we have 〈c, r〉n > 〈b, 1〉
for every n ≥ 1. Notice also that given 〈c, r〉 ≤ 〈b, 1〉 we can define ¬〈c, r〉 :=
max{〈a, q〉 : 〈a, q〉 ◦ 〈c, r〉 = 〈0A, 1〉} and we get ¬〈c, r〉 > 〈b, 1〉.



82 CHAPTER 6. PERFECT AND BIPARTITE ALGEBRAS

B is isomorphic to a monoid over Q ∩ [0, 1] and it is completed to [0, 1] by
defining α⊗β := sup{p◦q : p, q ∈ Q, p ≤ α, q ≤ β} and we obtain an MTL-chain
C over [0, 1] and an embedding h : A → C. It is easy to check that C is perfect.
2

Theorem 6.50. The logic IBP+1
0 enjoys the SSC.

Proof: Let A ∈ IBP+1
0 be a countable chain. As we have seen, A is either perfect

or perfect plus fixpoint. It is enough to suppose that A is a countable perfect
chain plus fixpoint and show that it can be embedded in a standard chain of
IBP+1

0 over [0, 1]. Let a ∈ A be the fixpoint. If we use the usual method we
first obtain an algebra over a densely ordered set B, as we have described in
the preliminaries. For every q ∈ Q ∩ (0, 1) the element 〈a, q〉 ∈ B is such that
¬〈a, q〉 = 〈a, 1〉, so the resulting standard chain will not be perfect plus fixpoint.

In order to solve this problem, we consider the construction of Jenei and
Montagna applied to the prelinear semihoop defined by Rad(A), but giving
an algebra C over [0.6, 1] instead of being over [0, 1] as usual. We have an
embedding h : Rad(A) → [0.6, 1] such that is a homomorphism with respect to
&, is monotonic and h(1A) = 1. We extend h to ĥ : A → [0, 1] in the following
way:

• ĥ(x) = h(x), if a ∈ Rad(A),

• ĥ(¬x) = 1− h(x), if ¬a ∈ ¬Rad(A), and

• ĥ(a) = 1
2 .

Consider now the algebra B over [0.5, 1] given by the ordinal sum of the G-
chain over [0.5, 0.6] and C. B is an MTL-algebra without zero divisors. Consider
its connected rotation B? defined over [0, 1]. Then, B? ∈ BP+

0 ∩ IMTL and ĥ is
an embedding from A into B?, so the theorem holds. 2

Theorem 6.51. The logic BP+1
0 enjoys the SSC.

Proof: LetA ∈ BP+1
0 be a countable perfect chain plus fixpoint. Let a ∈ A be the

fixpoint. The usual method would produce the same problem as in the previous
proof, so we will modify it again. If A+ has minimum or A− \{a} has maximum
we embed A into a new countable perfect chain plus fixpoint in the following
way. Let B be the disconnected rotation of a countable cancellative hoop such
that A∩B = ∅. We will define a new chain over C := (A \ {a})∪ (B \ {0B, 1B})
by extending the operations and the order of A and B in this way:

• x < y for each x ∈ B \ {0B, 1B} and each y ∈ A+,

• x < y for each x ∈ A− \ {a} and each y ∈ B \ {0B, 1B},

• x&y = y&x = y for each x ∈ A+ and each y ∈ B \ {0B, 1B},
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• x&y = y&x = x&By for each x, y ∈ B \ {0B, 1B} such that x > ¬y,

• x&y = y&x = 0A for each x, y ∈ B \ {0B, 1B} such that x ≤ ¬y, and

• x&y = y&x = 0A for each x, y ∈ A− \ {a}.

Let → be the residuum of &. With this order and these operations C is a
countable perfect MTL-algebra. Then, considering C+1 we obtain a countable
perfect chain plus fixpoint where it is possible to embed A and with no minimum
in the set of positives and no maximum in the set of negatives minus the fixpoint.
Thus we can suppose without losing generality that A is such that A+ has no
minimum and A− \ {a} has no maximum.

Now we will use the construction of Jenei and Montagna slightly modified.
Indeed, we define a densely ordered countable monoid with the lexicographical
order and the usual operations, but over the set {〈0A, 1〉, 〈a, 1〉} ∪ {〈b, q〉 : b ∈
A\{0A, a}, q ∈ Q∩(0, 1]}. To be sure that this also works we only need to check
the left-continuity of the monoidal operation on 〈a, 1〉. Let {〈bi, qi〉 : i ∈ ω}
be such that sup{〈bi, qi〉 : i ∈ ω} = 〈a, 1〉 and take an arbitrary element 〈c, p〉.
We must prove sup{〈bi, qi〉 ◦ 〈c, p〉 : i ∈ ω} = 〈a, 1〉 ◦ 〈c, p〉. If c ≤ a then
〈a, 1〉 ◦ 〈c, p〉 = 〈0A, 1〉 and 〈bi, qi〉 ◦ 〈c, p〉 = 〈0A, 1〉 for every i ∈ ω, so it holds.
Suppose that c > a. 〈a, 1〉 ◦ 〈c, p〉 = 〈a, 1〉 and for every i ∈ ω we have:

〈bi, qi〉 ◦ 〈c, p〉 :=
{
〈bi&c, qi〉 if bi&c = bi
〈bi&c, 1〉 otherwise.

Now using that sup{bi&c : i ∈ ω} = a&c the proof finishes. 2

Finally, we prove that the remaining varieties do not define a logic with
standard completeness:

Theorem 6.52. The logic IBP0 does not enjoy the SC.

Proof: This is clear because all IMTL-chains over [0, 1] have negation fixpoint,
so there are no perfect standard IMTL-chains. 2

Theorem 6.53. For every 1 < n < ω, the logic BP+n
0 does not enjoy the SC.

Proof: Observe that the only standard chains in BP+n
0 are perfect chains plus

fixpoint, hence if the standard completeness was true we would have BP+n
0 =

V({standard BP+n
0 -chains}) = BP+1

0 , a contradiction. 2

6.6 Conclusions

Even though a decomposition theorem in terms of connected rotation-
annihilation has not been achieved yet, in this chapter, we have generalized
the construction to the general non-involutive case and we have studied some
particular cases of this decomposition obtaining several meaningful results.



84 CHAPTER 6. PERFECT AND BIPARTITE ALGEBRAS

Table 6.1: Standard completeness properties of fuzzy logics arising from perfect
algebras.

Logic SC FSSC SSC
BP0 Yes Yes Yes
IBP0 No No No
BP+1

0 Yes Yes Yes
IBP+1

0 Yes Yes Yes
BP+n

0 , 1 < n < ω No No No
BP+ω

0 Yes Yes Yes

• IMTL-chains which are decomposable as a connected rotation-annihilation
where the filter is its radical and the convex subalgebra is isomorphic to
B2 (i.e. are the isomorphic to the disconnected rotation of its radical) have
been characterized as perfect chains.

• IMTL-chains which are decomposable as a connected rotation-annihilation
where the filter is its radical and the convex subalgebra is isomorphic to the
drastic product algebra Wn (i.e. are isomorphic to the disconnected rota-
tion of its radical) have been characterized as perfect chains plus fixpoint
and possibly some additional points.

• The varieties generated by perfect IMTL-chains, perfect MTL-chains, per-
fect IMTL-chains plus fixpoint and perfect MTL-chains plus n points (BP0,
IBP0, IBP+1

0 and BP+n
0 respectively) have been finitely axiomatized.

• We have discussed standard completeness properties (see Table 6.1) and
Glivenko-style theorems for the logics associated to these new varieties.

• The lattice of subvarieties of IBP0 has been proved to be isomorphic to the
lattice of varieties of prelinear semihoops, which shows a kind of fractal
structure in the lattice of all axiomatic extensions of MTL and suggests
its amazing complexity.



Chapter 7

Weakly cancellative
MTL-algebras

In Chapter 4 we have proved that every MTL-chain can be decomposed as an
ordinal sum of indecomposable totally ordered semihoops. Nevertheless, we also
have shown there that the class of all indecomposable totally ordered semihoops
seems to be hard to describe, since it contains all IMTL-chains and, as proved
in the previous chapter, the complexity of the lattice of varieties of involutive
MTL-chains contains at least all the complexity of the lattice of varieties of
prelinear semihoops. In this chapter we will study a different class of indecom-
posable semihoops that seems more accessible than the class of all IMTL-chains.
These semihoops are defined by considering a generalization of the property of
cancellation that we will call weak cancellation.

7.1 The property of weak cancellation

An MTL-chain A is said to be cancellative if, and only if, for every a, b, c ∈ A if
a 6= 0A and a&b = a&c, then b = c. This property is typically satisfied by the
product of real numbers. The axiom (Π1) was proposed to express the law of
cancellation in order to axiomatize the logic of the product t-norm. Nevertheless,
(Π1) is proved to be equivalent to the property of cancellativity in the presence
of the axiom (PC), i.e. it is equivalent to the cancellativity for SMTL-chains.
Now we propose an alternative axiom that is equivalent to the cancellativity for
all MTL-chains:

¬ψ ∨ ((ψ → ϕ&ψ) → ϕ) (C)

Proposition 7.1. The variety generated by cancellative MTL-chains is axioma-
tized by the equation corresponding to axiom (C), i.e. ¬y∨((y → x&y) → x) ≈ 1.

Proof: Let A be an MTL-chain. We have to prove that A |= ¬y∨((y → x&y) →
x) ≈ 1 if, and only if, A is cancellative. First, suppose that the equation is

85
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valid in A and take a, b, c ∈ A such that a 6= 0A and a&b = a&c. Then,
using the equation we have: (a → b&a) → b = (a → c&a) → c = 1A, hence
a → b&a = b and a → c&a = c, so b = c. Conversely, suppose that the chain
is cancellative and let us check that for any pair of elements a, b ∈ A we have
¬b ∨ ((b → a&b) → a) = 1A. If b = 0A, it is obviously true. Otherwise, using
the cancellativity we obtain b→ a&b = a, so the equation is also true. 2

Therefore, in the axiomatization of Product logic and ΠMTL we could re-
place the axiom (Π1) by (C). But, in fact, the law of cancellation implies the
pseudocomplementation as the following lemma shows.

Lemma 7.2. Let A be an MTL-chain. If A |= ¬y∨ ((y → x&y) → x) ≈ 1, then
A |= x ∧ ¬x ≈ 0.

Proof: If there exists a ∈ A such that a ∧ ¬a 6= 0A, then a,¬a 6= 0A. Thus,
applying cancellation, from a&¬a = a&0A we obtain ¬a = 0A, a contradiction.
2

Corollary 7.3. Π is the axiomatic extension of BL obtained by adding (C) and
ΠMTL is the axiomatic extension of MTL obtained by adding (C).

In particular, we have found a new axiomatization for Product logic that is
also different from the one proposed1 by Cintula in [35].

Therefore, cancellativity (C) is a very strong axiom for the axiomatization
of Product logic and ΠMTL which makes (PC) superfluous. We may wonder if
there is an axiom which does not imply (C) but, added to SBL (resp. SMTL)
gives an axiomatization of Π (resp. ΠMTL). We will prove that the answer to
this question is provided by the following weaker form of cancellativity:

Definition 7.4. Let A be an MTL-chain. We say that A is weakly cancellative
if, and only if, for every a, b, c ∈ A if a&b = a&c 6= 0A, then b = c.

Analogously to Proposition 7.1 we can give an equivalent equation for this
property:

Proposition 7.5. Let A be an MTL-chain. Then, A |= ¬(x&y)∨((y → x&y) →
x) ≈ 1 if, and only if, A is weakly cancellative.

We will refer to the corresponding axiom schema as axiom of weak cancella-
tion (WC):

¬(ϕ&ψ) ∨ ((ψ → ϕ&ψ) → ϕ) (WC)

This axiom turns out to be the difference between pseudocomplementation
and cancellation that we were looking for:

1This axiomatization was also obtained by adding only one axiom with two variables to
BL. In fact, it was proved in the same paper that it cannot be done with one axiom in one
variable only.
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Proposition 7.6. Let A be an MTL-chain. Then the following are equivalent:

(i) A |= x ∧ ¬x ≈ 0 and A |= ¬(x&y) ∨ ((y → x&y) → x) ≈ 1

(ii) A |= ¬y ∨ ((y → x&y) → x) ≈ 1

Proof: (ii) ⇒ (i): It follows from lemma 7.2. (i) ⇒ (ii): Suppose that a&b =
a&c for some a, b, c ∈ A with a 6= 0A. If a&b 6= 0A, then by weak cancellation
b = c. Suppose now that a&b = 0A, i.e. a ≤ ¬b. If b 6= 0A, then ¬b = 0A

(by pseudocomplementation), hence a = 0A, a contradiction. Thus b = 0A and
analogously c = 0A, so b = c. 2

Another interesting fact about weak cancellation is that (WC) added to
IMTL axiomatizes  Lukasiewicz logic. Recall that an MTL-algebra satisfying
x ∨ y ≈ (x→ y) → y is already an MV-algebra.

Proposition 7.7. Let A be an IMTL-chain. Then, A |= x ∨ y ≈ (x → y) → y
if, and only if, A |= ¬(x&y) ∨ ((y → x&y) → x) ≈ 1.

Proof: One direction follows from the fact that all MV-algebras are weakly can-
cellative. For the other one, suppose that A is a weakly cancellative IMTL-
chain and take a pair of arbitrary elements a, b ∈ A. We have to check that
a ∨ b = (a → b) → b. If a ≤ b, it is obvious. Suppose a > b, i.e. ¬b&a 6= 0A.
Then, (a → b) → b = ¬b → ¬(a → b) = ¬b → a&¬b = a = a ∨ b, by weak
cancellation. 2

Corollary 7.8.  Lukasiewicz logic is the axiomatic extension of IMTL obtained
by adding the axiom schema (WC).

Therefore, in the involutive case the property of weak cancellation is not
giving any new logic. But in the general case we obtain a new logic and a
new variety of MTL-algebras. Let WCMTL be the axiomatic extension of MTL
obtained by adding (WC). Of course its equivalent algebraic semantics is the
variety of weakly cancellative MTL-algebras, that are called WCMTL-algebras.
We will now axiomatize their 0-free subreducts, the weakly cancellative prelinear
semihoops.

Proposition 7.9. The class of 0-free subreducts of WCMTL-algebras is the
variety of prelinear semihoops satisfying the equation:

(x&y → z) ∨ ((y → x&y) → x) ≈ 1.

Proof: LetA be a totally ordered semihoop. We have to check thatA |= (x&y →
z) ∨ ((y → x&y) → x) ≈ 1 if, and only if, A is a 0-free subreduct of some
WCMTL-chain C. First suppose that A |= (x&y → z) ∨ ((y → x&y) → x) ≈ 1.
If there is a minimum element inA, say m, then we define C as the L-expansion of
A where 0 is interpreted as m. It is obvious that C satisfies the equation of weak
cancellation for MTL-algebras. If A has no minimum, then define C := B2 ⊕A.
It is clear that C is an MTL-chain and A is one of its 0-free subreducts. To
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check that it satisfies the equation of weak cancellation for MTL-algebras, take
an arbitrary pair of elements a, b ∈ C such that a&b 6= 0C (hence a, b ∈ A).
Then, since there is no minimum in A, there is some c < a&b, hence a&b →
c 6= 1A, which implies (b → a&b) → a = 1A. Conversely, suppose that A is a
0-free subreduct of some WCMTL-chain C. Then for every a, b, c ∈ A, we have
(a&b→ c) ∨ ((b→ a&b) → a) ≥ (a&b→ 0) ∨ ((b→ a&b) → a) = 1A. 2

We will show now that this kind of semihoops gives some examples of inde-
composable totally ordered semihoops.

Proposition 7.10. Let A be a weakly cancellative totally ordered semihoop.
Then:

(1) If A is unbounded, then it is indecomposable.

(2) Suppose that A is bounded.

(2.1) If A has no zero divisors, then it is a ΠMTL-chain and it is decom-
posable as A ∼= B2 ⊕C, where C is the 0-free subreduct whose domain
is A \ {0A}.

(2.2) If A has zero divisors, then it is indecomposable.

Proof: First suppose that A is unbounded and decomposable as A ∼= C1 ⊕ C2.
Then, take a ∈ C1 \ {1

A} and b ∈ C2 \ {1
A}. Since it is unbounded there is

some c < a. Then, the equation of weakly cancellative semihoops would not hold
because a&b → c = a → c 6= 1A and (a → a&b) → b = (a → a) → b = b 6= 1A.
Now suppose that A is bounded and has no zero divisors. This means that it is
pseudocomplemented, hence, by Proposition 7.6 it is cancellative, i.e. a ΠMTL-
chain. Clearly, it is decomposable as A ∼= B2⊕C, where C = A \ {1A}. Suppose
that A is bounded, it has zero divisors and it is decomposable as A ∼= C1 ⊕ C2.
Then, the existence of zero divisors implies that C1 6∼= B2. Take a ∈ C1\{0

A
, 1A}

and b ∈ C2 \ {1
A}. Then, a&b → 0A = a → 0A 6= 1A and (a → a&b) → b =

(a→ a) → b = b 6= 1A, so A cannot be weakly cancellative. 2

Given an MTL-chain A and an element a ∈ A, the truncation of A with
respect to a is the algebra A[a] = 〈{x ∈ A : a ≤A x ≤A 1A},&A

a ,→A
a ,≤A, a, 1

A〉
where &A

a is defined as x ∗Aa y = (x ∗A y) ∨ a, and →A
a is its residuum (i. e. the

restriction of →A to {x ∈ A : a ≤A x ≤A 1A}).
It can be easily checked that any truncation of a ΠMTL-chain is a WCMTL-

chain. It is well known (see [79]) that each MV-chain is isomorphic to a trun-
cation of some Π-chain, i.e. given an MV-chain A there is a Π-chain B and
an element b ∈ B such that A ∼= B[b]. It seems natural to ask whether the
same kind of result is true in the general non-divisible case, i.e. whether each
WCMTL-chain is isomorphic to a truncation of some ΠMTL-chain. We will end
the section giving a negative answer to this question by using an example of a
totally ordered monoid defined in [57].
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For any a, b, c, d ∈ N, 〈a, b, c〉 will denote the submonoid of N generated by a,
b, c, and 〈a, b, c〉/d will denote the totally ordered monoid obtained by identifying
with ∞ all elements of 〈a, b, c〉 that are greater than or equal to d.

Let S = {32∗} ∪ 〈9, 12, 16〉/30 denote the totally ordered monoid obtained
from 〈9, 12, 16〉/30 by adding one additional element, denoted by 32∗. This
element satisfies 16 + 16 = 32∗, 32∗ + z = ∞ for z 6= 0, and the whole monoid is
to be ordered as follows:

0 < 9 < 12 < 16 < 18 < 21 < 24 < 25 < 27 < 28 < 32∗ <∞ .

All the relations that do not involve 32∗ are as in 〈9, 12, 16〉/30, so we have
to only check that x ≤ y implies x + z ≤ y + z when some of the terms attain
the value 32∗. If x or y or z is equal to 32∗ then it is easy to see. If x+ z = 32∗

and x, z 6= 32∗ then x = z = 16. Thus 32∗ = 16 + 16 ≤ y + 16 because if y > x
then y + 16 = ∞.

Now since we want to make from this monoid an MTL-chain A, we reverse
the order:

0 > 9 > 12 > 16 > 18 > 21 > 24 > 25 > 27 > 28 > 32∗ >∞ .

It is clear that a residuum exists since A is finite and linearly ordered. Even
the weak cancellation is satisfied. Suppose that x + z = y + z 6= ∞. Then if
x + z = y + z 6= 32∗ then you can cancel like in N. If x + z = y + z = 32∗

then there are three possibilities: (1): x = y = z = 16; (2): x = 0, z = 32∗,
and y = 0; (3): x = 32∗, z = 0, and y = 32∗. Thus A = 〈A,+,→,≤,∞, 0〉 is a
WCMTL-chain.

Now let us introduce the following identity:

(x1&z1 → y1&z2) ∨ (x2&z2 → y2&z1) ∨ (y1&y2 → x1&x2) ≈ 1 (7.1)

This identity is not valid in A. Indeed, let

x1 = 16 , y1 = 18 , z1 = 16 ,
x2 = 12 , y2 = 9 , z2 = 12 .

Then we get the following:

x1 + z1 → y1 + z2 = 32∗ →∞ = 9 ,
x2 + z2 → y2 + z1 = 24 → 25 = 9 ,
y1 + y2 → x1 + x2 = 27 → 28 = 9 .

Thus

(x1 + z1 → y1 + z2) ∨ (x2 + z2 → y2 + z1) ∨ (y1 + y2 → x1 + x2) = 9 6= 0 .

On the other hand, we claim that given any ΠMTL-chain B = 〈B,&,→,≤
, 0, 1〉, every truncation B[a] = 〈B[a],&a,→a,≤, a, 1〉, satisfies the identity (7.1).
There are four cases.
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1. It is clear that if one of the inequalities x1&az1 ≤ y1&az2, x2&az2 ≤
y2&az1, y1&ay2 ≤ x1&ax2 is valid then the identity (7.1) is obviously
valid.

2. Let y1 or y2 equals a. Then y1&ay2 = a ≤ x1&ax2.

3. Let z1 or z2 equals a. Then either x1&az1 = a ≤ y1&az2 or x2&az2 = a ≤
y2&az1

4. Suppose that x1&az1 > y1&az2, x2&az2 > y2&az1, and y1, y2, z1, z2 > a.
Then we have x1&x2&z1&z2 > y1&y2&z1&z2 in the original ΠMTL-chain
B. By cancellativity of B we get x1&x2 > y1&y2 in L. After truncation
we obtain that x1&ax2 ≥ y1&ay2. Thus the identity (7.1) is valid in this
case as well.

Summing up, the identity is valid in all truncations of any ΠMTL-chain, but
it is not valid in the WCMTL-chain A. Thus, A cannot be isomorphic to any
truncation of a ΠMTL-chain.

7.2 The logics of weakly cancellative chains and
their ordinal sums

In the previous section we have defined the logic of weakly cancellative MTL-
chains, WCMTL. Now we will consider the logic of ordinal sums of weakly
cancellative totally ordered semihoops. This can be done with any axiomatic
extension of MTL, so it is worth formulating first this process in an abstract
way.

Definition 7.11. Let L be an axiomatic extension of MTL. We define Ω(L) as
the variety of MTL-algebras generated by all the ordinal sums of 0-free subreducts
of L-chains with the first bounded, and we denote by Ω(L) its corresponding logic.

Some well known subvarieties of MTL are closed under this operator, for
instance:

• Ω(G) = G

• Ω(BL) = BL

• Ω(SBL) = SBL

• Ω(SMTL) = SMTL

• Ω(MTL) = MTL

In some other cases they are not closed but we obtain an already known
variety:

• Ω(BA) = G
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• Ω(MV) = BL

But sometimes the operator Ω gives new varieties (and hence new fuzzy
logics) as we will show now for Ω(WCMTL) and Ω(ΠMTL).

Definition 7.12. Let K be the variety of MTL-algebras such that letting x ≺
y = x→ x&y and I(x) = x→ x2, satisfy the following conditions:
(1) (x ∧ y → x&y) ∨ I(x&y) ∨ ((x→ x&y) → y) = 1
(2) (x ≺ y)&(z → x) ≤ z ≺ y
(3) (x ≺ y)&(x→ z)&(z → y) ≤ (z ≺ y) ∨ (x ≺ z) ∨ I(x&y)

We will prove that K = Ω(WCMTL).
Note that x ≺ y = 1 if x ≤ y and x&y = x. In an ordinal sum of weakly

cancellative totally ordered semihoops, this happens if either x is the minimum
of the component which y belongs to or y = 1 or x < y and x and y belong
to different components. Moreover I(x) = 1 iff x is an idempotent. Thus
the intuitive meaning of (1) is that either x&y = x or x&y = y or x&y is an
idempotent or x and y belong to the same component and satisfy the cancellation
law. The intuitive meaning of (2) is the following: suppose that x < y, that x
and y are not in the same component and that z ≤ x < y. Then z and y, are in
different components. The complementary property is true in all totally ordered
semihoops: if x < y ≤ z and x&y = x, then x&z ≥ x&y = x, so x&z = x.
Finally (3) means that if x&y = x and x is not an idempotent, then for any z
with x ≤ z ≤ y we must have either x&z = x or z&y = z.

Lemma 7.13. Equations (1), (2) and (3) hold in any ordinal sum of weakly
cancellative totally ordered semihoops whose first component is bounded.

Proof: This is not completely trivial because we have to verify that the equations
hold also when the lefthand side is not 1. In the sequel we write x� y to mean
that x < y and x and y are not in the same component. We also write x ≡ y to
mean that x and y are in the same component.

We start from equation (1). The equation clearly holds if x 6≡ y or if x&y is
an idempotent. If x ≡ y and x&y is not an idempotent, then x&y must satisfy
the cancellation law and the third disjunct is 1.

Now consider equation (2). The equation clearly holds if z ≺ y = 1, hence a
fortiori if z � y. The equation also holds if z ≤ x and x ≺ y = 1, because then
either z = x or z � y, and in both cases z ≺ y = 1. The equation also holds if
x ≤ z, because then (x → x&y)&(z → x) ≤ z → z&y. It remains to consider
the case where z < x and either y � x or x ≡ y. If z < x and y � x then
x ≺ y = y, and (2) becomes y ≤ z ≺ y, which is clearly satisfied. Finally suppose
z < x and x ≡ y. Without loss of generality we can also suppose z ≡ x ≡ y,
otherwise z � y and z ≺ y = 1. Thus (2) becomes x ≺ y ≤ z ≺ y. If z&y is not
an idempotent, then x ≺ y = z ≺ y = y and (2) holds. If x&y is an idempotent,
then x&y = z&y is the minimum m of the component which x, y, z belong to,
and (2) becomes x → m ≤ z → m, which clearly holds as z < x. Finally if
z&y = m is an idempotent and x&y is not (so x&y > m), then x ≺ y = y and
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z ≺ y = z → m. Now from z&y = m by residuation we derive y ≤ z → m and
the claim is proved.

We verify (3). Note that (3) holds (in any ordinal sum of WCMTL semi-
hoops) if either x&y is an idempotent or z ≺ y = 1 or x ≺ z = 1 (thus in
particular if z � y or x � z). Thus we suppose that none of the above condi-
tions holds. If y � z then z → y = y and (3) holds. If z � x then x → z = z
and (3) holds. It remains to consider the case where x ≡ z ≡ y. In this case,
since we have excluded that x&y is an idempotent, we have x ≺ y = y. Now
let C be the component which x, y, z belong to. If either C has no minimum or
z&y is not the minimum of C, then x ≺ y = z ≺ y = y, and (3) is verified. If C
has a minimum m and z&y = m, then x ≺ y = y ≤ z → m = z ≺ y and once
again (3) is verified. 2

Lemma 7.14. Let A be an MTL-chain which satisfies (1), (2) and (3). Then
A is the ordinal sum of an ordered family of weakly cancellative totally ordered
semihoops, whose first component is bounded.

Proof: By Theorem 4.54 any linearly ordered MTL-algebra can be decomposed
as an ordinal sum of sum-indecomposable totally ordered semihoops, with the
first bounded. So it is sufficient to prove that a sum-indecomposable linearly
ordered semihoop satisfying (1), (2) and (3) is weakly cancellative. Let C be
such a semihoop. We claim that C has no idempotent elements except from its
maximum and its minimum (if such a minimum exists). Suppose by contradic-
tion that u is idempotent and that there are a, b ∈ C with a < u < b. Then
x&u = u for all x ≥ u, and by (2), for all z ≤ u ≤ v one has z&v = z. Then
C = C1 ⊕ C2 where C2 = {z : z ≥ u} and C1 = (C \ C2) ∪

{
1C

}
, contradicting

our assumption that C is sum-indecomposable. We now prove that if both x and
y are not idempotent, then x&y < x ∧ y. The claim is obvious if x = y so we
can assume without loss of generality that x < y. The claim is also obvious if
x&y is the minimum m of C, because m is an idempotent and x, y are not such,
so m = x&y < x ∧ y. Thus suppose by contradiction that there is z ∈ C such
that z < x&y = x ∧ y = x < y. Since x&y is not an idempotent, by axiom
(3), for any u with x ≤ u ≤ y we have either x&u = x or u&y = u. Now let
C1 = {u : u&y = u} ∪

{
1C

}
and C2 = (C \ C2) ∪ {1}. C1 \

{
1C

}
is downwards

closed, so for all w ∈ C2 and for all z ∈ C1 \
{

1A
}

we have z ≤ w. We claim

that for all w ∈ C2 and for all z ∈ C1 \
{

1C
}

we have z&w = z. This implies

that C = C1 ⊕ C2, which is impossible. Thus let w ∈ C2 and z ∈ C1 \
{

1C
}

. We
can assume without loss of generality that z is not an idempotent, otherwise z
is the minimum of C and the claim is trivial. Moreover by the definition of C1

we have that z&y = z. So if w ≥ y, we have z&w = z as desired. If w < y, then
since z&y = z is not an idempotent, by axiom (3) with x replaced by z we have
that either w&y = w or z&w = z. But w&y = w is excluded, because w ∈ C2.
So z&w = z and the proof is complete. 2
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Thus we obtain a finite axiomatization for the variety generated by those
ordinal sums:

Theorem 7.15. K is the variety generated by the ordinal sums of weakly
cancellative totally ordered semihoops (with the first bounded), i.e. K =
Ω(WCMTL).

Now consider the variety Ω(ΠMTL). Adapting slightly the axiomatization
and the proof of the last theorem we obtain the following result.

Theorem 7.16. The variety Ω(ΠMTL) generated by ordinal sums of cancella-
tive semihoops (with the first bounded) is axiomatized by:
(1’) (x ∧ y → x&y) ∨ I(x) ∨ ((x→ x&y) → y) ≈ 1
(2) (x ≺ y)&(z → x) ≤ z ≺ y
(3) (x ≺ y)&(x→ z)&(z → y) ≤ (z ≺ y) ∨ (x ≺ z) ∨ I(x&y)

Accordingly, we define the corresponding logics. The logic Ω(WCMTL) is
the axiomatic extension of MTL obtained by adding the following schemata:

(a) (ϕ ∧ ψ → ϕ&ψ) ∨ I(ϕ&ψ) ∨ ((ϕ→ ϕ&ψ) → ψ)

(b) (ϕ ≺ ψ)&(χ→ ϕ) → χ ≺ ψ

(c) (ϕ ≺ ψ)&(ϕ→ χ)&(χ→ ψ) → (χ ≺ ψ) ∨ (ϕ ≺ χ) ∨ I(ϕ&ψ)

and the logic Ω(ΠMTL) is the axiomatic extension of MTL obtained by
adding the following schemata:

(a’) (ϕ ∧ ψ → ϕ&ψ) ∨ I(ϕ) ∨ ((ϕ→ ϕ&ψ) → ψ)

(b) (ϕ ≺ ψ)&(χ→ ϕ) → χ ≺ ψ

(c) (ϕ ≺ ψ)&(ϕ→ χ)&(χ→ ψ) → (χ ≺ ψ) ∨ (ϕ ≺ χ) ∨ I(ϕ&ψ)

Let (OS) be the conjunction of the schemata (a), (b) and (c), and let (OS’)
be the conjunction of the schemata (a’), (b) and (c). Adding combinations of the
schemata (WC), (PC), (OS), (OS’), (Div) and (Inv) to MTL we obtain the hier-
archy of logics depicted in figure 7.1, where CPC is the Classical Propositional
Calculus and the following two new logics appear:

• SΩ(WCMTL) is Ω(WCMTL) plus (PC).

• WCBL is BL plus (WC).

7.3 LF, FEP and FMP in weakly cancellative
fuzzy logics

We will study some properties of these logics and their corresponding varieties
of MTL-algebras.
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Lemma 7.17. Let A be an MTL-chain. Then, A is a WCBL-chain if, and only
if, it is an MV-chain or a Π-chain.

Proof: One direction is trivial. For the other one, let A be a WCBL-chain and
consider its decomposition as ordinal sum of Wajsberg hoops (with the first
bounded), A ∼=

⊕
i∈I Ci. If |I| = 1, then A ∼= Ci0 is an MV-chain. If |I| > 1

it must be of the form A ∼= B2 ⊕ C, with C cancellative (otherwise the weak
cancellation would not be satisfied), hence it is a Π-chain. 2

MTL

IMTLSMTL
Ω(WCMTL)

BL

WCBL

ŁП

CPC

WCMTL

SBL

ПMTL

(OS)
(Inv)

(WC)

(PC)

(Div)

(WC)

(Inv)(PC)

(Inv) (PC)

(PC)

(WC)

(Div)

(Div)

(WC)

(PC)

(PC)

(WC)

(Div)

SΩ(WCMTL)

Ω(ПMTL)

(OS')

(OS)

Figure 7.1: Graphic of axiomatic extensions of MTL obtained by adding combinations

of the schemata (WC), (PC), (OS), (Div) and (Inv). All the depicted inclusions are

proper.

Proposition 7.18. WCBL is the infimum of Π and  L in the lattice of axiomatic
extensions of MTL. Thus, WCBL = V([0, 1] L, [0, 1]Π) and WCBL enjoys the
FSSC.
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Proof: It follows directly from the previous lemma. 2

Therefore, WCBL is the logic  LΠ defined in [30] for which we have found
now an alternative axiomatization.

Corollary 7.19. WCBL does not have the finite model property.

Proof: Suppose WCBL has the FMP. Then, WCBL would be generated as
a variety by the finite WCBL-chains, but since there are no finite Π-chains
with more than two elements, it would be generated by finite MV-algebras, so
WCBL = MV, a contradiction. 2

Thus WCBL lacks also the FEP. Nevertheless, WCBL logic is still decidable,
since it is the infimum of Π and  L and those logics are decidable.

Proposition 7.20. Let A be an MTL-chain. Then, A is an SΩ(WCMTL)-
chain if, and only if, it is an ordinal sum of totally ordered weakly cancellative
semihoops such that the first one is a ΠMTL-chain.

Proof: One direction is trivial. For the other one, let A be an SΩ(WCMTL)-
chain. In particular it is an Ω(WCMTL)-chain, so it is decomposable as an
ordinal sum of totally ordered weakly cancellative semihoops with the first one
bounded. Then, it is obvious that the axiom (PC) implies that the first compo-
nent must be an SMTL-chain, hence a ΠMTL-chain. 2

Finally, we will prove that the FMP fails for all logics between Ω(WCMTL)
and ΠMTL (both included). First we need some lemmata.

Lemma 7.21. Each finite WCMTL-chain A is Archimedean, i.e. for any 0A <
x < y < 1 there is n such that yn ≤ x.

Proof: Suppose not. Then x < yn for all n. Since yn 6= 0A for all n, we
have y > y2 > y3 > . . . by weak cancellativity. Thus A must be infinite, a
contradiction. 2

Lemma 7.22. Let A be an MTL-chain and p, q ∈ A. If p → q = q then
q = max [q]F (p).

Proof: Assume that p → q = q. Suppose that z ∈ [q]F (p). Then z → q ∈ F (p).
Thus there exists n ∈ ω such that pn ≤ z → q. By residuation we get z ≤ pn → q.
Since we assume that p→ q = q, we have pn → q = pn−1 → (p→ q) = pn−1 →
q = q. Thus we obtain that z ≤ q. Hence q = max [q]F (p). 2

Lemma 7.23. Let A be an Archimedean MTL-chain. Then A is either a BL-
chain or it has a co-atom.
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Proof: Suppose that there is no co-atom. Then we will show that the divisibility
condition, a ∧ b = a&(a → b), holds in A. If a ≤ b or a equals 1A, then the
equality trivially holds. If a→ b = 0A then b = 0A and the equality again holds.
Thus suppose that a > b, a, b 6= 1A, and a → b > 0A. By residuation we get
a&(a → b) ≤ b. Suppose that a&(a → b) < b. Let M = A \ {1A}. Clearly∨
M = 1A because there is no co-atom. Since A is Archimedean, we get that

for each r ∈M there exists kr ∈ ω (possibly 0) such that

rkr+1 ≤ a→ b < rkr .

Thus we obtain for all r ∈M :

a&rkr+1 ≤ a&(a→ b) < b < a&rkr .

The last inequality holds since a → b is the maximal solution of the inequality
a&x ≤ b and a→ b < rkr .

Further, from the existence of residuum we get
∨
r∈M (b&r) = b&

∨
M = b.

Hence there must be an s ∈M such that a&(a→ b) < b&s. Thus we obtain

a&sks+1 ≤ a&(a→ b) < b&s ≤ a&sks+1 ,

a contradiction. 2

Lemma 7.24. In each Archimedean WCMTL-chain A the identity

((p→ q) → q)2 ≤ p ∨ q ∨ ¬q (7.2)

is valid.

Proof: If there is no co-atom, then by Lemma 7.23, A is a WCBL-chain hence
either a Π-chain or an MV-chain. But in any Π-chain or MV-chain the identity
(7.2) is valid.

Thus suppose that there is a co-atom a. The only interesting case is for
1A > p > q > 0A. We can also assume that p → q > 0A otherwise q = 0A.
Since A is Archimedean, there is n ∈ ω such that

an+1 ≤ p→ q < an .

Since an > p → q, we get an → q < p (if p ≤ an → q then an ≤ p → q). It
follows that

(p→ q) → q ≤ an+1 → q = a→ (an → q) ≤ a→ p .

Thus (p→ q) → q ≤ a→ p.
Now we claim that (p → q) → q ≤ a. If not then (p → q) → q = 1A,

i.e. p → q = q. Thus by Lemma 7.22 we have q = max [q]F (p). Since A
is Archimedean, F (p) equals either to A or to A \ {0A}. Thus q ∈ F (p) and
q = 1A. But we assume that 1A > p > q > 0A. Hence (p→ q) → q ≤ a.
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Finally, we get

((p→ q) → q)2 ≤ a&((p→ q) → q) ≤ a&(a→ p) ≤ p ≤ p ∨ q ∨ ¬q .

2

Let ϕ = (q → (p&q)) → p, ψ = (p→ q) → q, and χ = p ∨ q ∨ ¬q.

Lemma 7.25. In any finite Ω(WCMTL)-chain A the identity ϕ ∧ ψ2 ≤ χ is
valid.

Proof: If p ≤ q then ψ = q and ϕ ∧ ψ2 = ϕ ∧ q2 ≤ χ. Thus let us suppose that
p > q.

First, let p, q belong to different components. Then ϕ = (q → q) → p = p.
Thus ϕ ∧ ψ2 ≤ ϕ = p ≤ χ.

Second, let p, q be in the same component. This component is a 0-free
subreduct of a finite WCMTL-chain W. By Lemma 7.21 we know that W
is Archimedean. Thus by Lemma 7.24 we get that ψ2 ≤ χ is valid in W. Since
W is a subalgebra of A, we get that ϕ ∧ ψ2 ≤ ψ2 ≤ χ is valid in A. 2

Lemma 7.26. There is a ΠMTL-chain A such that ϕ ∧ ψ2 ≤ χ is not valid in
A.

Proof: Consider the algebra A defined as follows:

• The domain of A is {〈0, 0〉} ∪ ((0, 1]× (0, 1]).

• The lexicographic order ≤lex defines the lattice structure.

• Multiplication is defined componentwise.

• Implication ⇒ is defined as follows: if 〈a, b〉 ≤lex 〈c, d〉, then 〈a, b〉 ⇒
〈c, d〉 = 〈1, 1〉; if 〈a, b〉 6= 〈0, 0〉, then 〈a, b〉 ⇒ 〈0, 0〉 = 〈0, 0〉; if a, b, c, d > 0
and a ≥ c and b ≥ d, then 〈a, b〉 ⇒ 〈c, d〉 = 〈 ca ,

d
b 〉; if a > c and b ≤ d, then

〈a, b〉 ⇒ 〈c, d〉 = 〈 ca , 1〉.

It is readily seen that A is a ΠMTL-algebra. For e(p) = 〈1, 1
2 〉 and e(q) =

〈 12 , 1〉, we have e(ϕ) = e(ψ2) = 〈1, 1〉 and e(χ) 6= 〈1, 1〉. 2

Thus we get the following theorem.

Theorem 7.27. If K is a variety such that ΠMTL ⊆ K ⊆ Ω(WCMTL), then
K has not the FMP (and hence also the FEP is false in K).

Proof: Let A be the chain defined in the previous lemma. Therefore, A is an
infinite chain of K where ϕ ∧ ψ2 ≤ χ fails, but by Lemma 7.25, the equation is
valid in all the finite chains of K. 2
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7.4 On standard completeness theorems

In this section we discuss the standard completeness of the logics introduced so
far and of their first-order extensions.

Theorem 7.28. WCMTL enjoys the FSSC.

Proof: We will prove it by following the method used in [88] and its modification
from [89] for the FSSC of ΠMTL, so we will not check again the details that are
already done there. Take a finite set T ∪ {ϕ} ⊆ FmL such that T 6`WCMTL ϕ.
Then, there is a WCMTL-chain A = 〈A,&,→,∧,∨, 0A, 1A〉 and an evaluation
e : FmL → A such that e[T ] ⊆ {1A} and e(ϕ) 6= 1A. Consider the set G :=
{e(ψ) : ψ is a subformula of some formula of T ∪ {ϕ}}. G is finite because T is.
Let S be the submonoid of A generated by G. As in [88], S is residuated and
the residuum is given by: a → b = max{z ∈ S : a&z ≤ b}. Thus, the enriched
submonoid S = 〈S,&,→,∧,∨, 0A, 1A〉 is a countable MTL-chain. Moreover,
since its monoidal operation is just the restriction of the monoidal operation of
A, it is clear that it is also weakly cancellative, hence a WCMTL-chain. Now we
consider the evaluation e′ : FmL → S such that for every propositional variable
v,

e′(v) =
{
e(v) if v appears in some formula of T ∪ {ϕ}
0A otherwise.

One can prove by induction that e′(ψ) = e(ψ) for every ψ a subformula of
some formula of T ∪ {ϕ}. Furthermore, since S is generated from a finite set by
using the monoidal operation, then it has only a finite number of Archimedean
classes.

Now define a new chain over the set S′ := {〈s, r〉 : s ∈ S \ {0A}, r ∈ (0, 1]} ∪
{〈0A, 1〉}, with the lexicographical order ≤lex and the following operations:

〈a, x〉&′〈b, y〉 =
{
〈0A, 1〉 if a&b = 0A,
〈a&b, xy〉 otherwise.

〈a, x〉 →′ 〈b, y〉 =
{
〈a→ b, 1〉 if a&(a→ b) < b,
〈a→ b,min{1, y/x}〉 otherwise.

S ′ = 〈S′,&′,→′,≤lex, 〈0
A
, 1〉, 〈1A, 1〉〉 is an MTL-chain with a finite number

of Archimedean classes, and there is an embedding Ψ : S → S ′ defined by Ψ(a) =
〈a, 1〉. Moreover S ′ is weakly cancellative. Indeed, if 〈a, x〉, 〈b, y〉, 〈c, z〉 ∈ S′ are
such that 〈a, x〉&′〈b, y〉 = 〈a, x〉&′〈c, z〉 6= 〈0A, 1〉, then 〈a&b, xy〉 = 〈a&c, xz〉 6=
〈0A, 1〉. Thus, a&b = a&c 6= 0A and xy = xz 6= 0 which, using the weak
cancellation of A and the cancellation of the product of reals, implies b = c and
y = z.

Finally, as in [89] the set S′ is order isomorphic to the real unit interval [0, 1],
so there is a standard WCMTL-chain B and an isomorphism Φ : S ′ → B. This
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standard chain and the evaluation Φ◦Ψ◦e′ are a countermodel for the derivation
of ϕ from T . 2

Theorem 7.29. Ω(WCMTL), SΩ(WCMTL) and Ω(ΠMTL) enjoy the FSSC.

Proof: Consider first the Ω(WCMTL) case. The first part of the proof runs
parallel to the previous one. Take a finite set T ∪ {ϕ} ⊆ FmL such
that T 6`Ω(WCMTL) ϕ. Then, there is a Ω(WCMTL)-chain A = 〈A,&,→
,∧,∨, 0A, 1A〉 and an evaluation e : FmL → A such that e[T ] ⊆ {1A} and
e(ϕ) 6= 1A. Consider the set G := {e(ψ) : ψ is a subformula of some for-
mula of T ∪ {ϕ}}. G is finite because T is. Let S be the submonoid of A
generated by G. Again it is residuated, so we have an enriched submonoid
S = 〈S,&,→,∧,∨, 0A, 1A〉 such that is a countable MTL-chain (with a finite
number of Archimedean classes). Moreover, since its monoidal operation is just
the restriction of the monoidal operation of A, it is clear that it is also an ordi-
nal sum of weakly cancellative totally ordered semihoops with the first bounded,
hence a Ω(WCMTL)-chain. Since it is finitely generated, this ordinal sum must
have a finite number of components, say S =

⊕
i<k Ci for some natural number k.

Now we consider the evaluation e′ : FmL → S such that for every propositional
variable v,

e′(v) =
{
e(v) if v appears in some formula of T ∪ {ϕ}
0A otherwise.

Again, by induction, it is provable that e′(ψ) = e(ψ) for every ψ a subformula
of some formula of T ∪ {ϕ}.

Finally, applying to every weakly cancellative totally ordered semihoop of the
ordinal sum the construction of the proof of the previous theorem, we have for
every i < k an embedding Ci ↪→ [0, 1]&i

into a standard WCMTL-chain. There-
fore, there is an embedding f : S ↪→

⊕
i<k[0, 1]&i

. It is clear that
⊕

i<k[0, 1]∗i
is

isomorphic to a standard Ω(WCMTL)-chain. This standard Ω(WCMTL)-chain
with the evaluation f ◦ e′ gives the desired countermodel for the derivation of ϕ
from T .

For the cases of SΩ(WCMTL) and Ω(ΠMTL) the proof is similar. For the
first one we only need to realize that the first component of the ordinal sum of
S now is a ΠMTL-chain and it will be embedded into a standard ΠMTL-chain,
so in the end we will get a standard SΩ(WCMTL)-chain. For the second one,
notice that all the components of S are cancellative so they embed into standard
ΠMTL-chains, so in the end a standard Ω(ΠMTL)-chain is obtained. 2

Furthermore, taking into account that in the proofs of the last two theorems
the standard chains that are built have only finitely many Archimedean classes,
we can improve the finite standard completeness results by considering only the
semantics given by standard chains with a finite number of Archimedean classes.

Corollary 7.30. If L is a logic from the set {WCMTL, Ω(WCMTL),
Ω(ΠMTL), SΩ(WCMTL)}, then for every finite set of formulae T ∪{ϕ} ⊆ FmL
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we have:

T `L ϕ if, and only if, T |=A ϕ for every standard L-chain A with finitely
many Archimedean classes.

Now we will prove that no logic between Ω(WCMTL) and Π (both included)
enjoys the SSC. Consider the following set Γ of sentences in a language whose
propositional variables are p0, ..., pn, ..., pω:

1. pi ↔ p2
i+1 (i ∈ ω).

2. ¬¬p0.

3. pi → pω (i ∈ ω).

Claim (A). For any standard Ω(WCMTL)-algebra A one has:
Γ |=A p0 → pω&p0

Proof of Claim (A). Suppose that all formulas of Γ are satisfied in A under
some evaluation e. Let, for k = 0, 1, ..., n, ..., ω, ak = e(pk). Then by (2), a0 6= 0
and by (1) and (3), for all k ∈ ω we have a2

k+1 = ak and ak ≤ aω. So all ai with
i < ω are in the same component.

If aω = 1 the result is obvious. Suppose aω < 1. Let a = sup {ak : k ∈ ω}
(such a supremum exists by the completeness of [0, 1]). Then a ≤ aω.
Moreover by the left-continuity of the monoidal operation ·, we have a2 =
sup

{
a2
k+1 : k ∈ ω

}
= sup {ak : k ∈ ω} = a. So a is an idempotent, between

a0 and aω. It follows that aω and a0 are in different components, therefore
a0 · aω = a0, and the claim is proved.

Claim (B). There are a product algebra B and an evaluation e in B such
that e(A) = 1 for all A ∈ Γ and e(pω · p0) < e(p0).

Proof of Claim (B). Let B = {〈0, 0〉}∪{〈1, p〉 : 0 < p ≤ 1}∪((0, 1)×(0,+∞)),
ordered by the lexicographic order ≤lex (thus if 0 < a < b ≤ 1 then for any
c, d ∈ (0,+∞), one has 〈a, c〉 <lex 〈b, d〉) and having ordinary product (defined
componentwise) as monoidal operation. Thus our algebra consists of 〈0, 0〉 plus
the negative cone of the multiplicative group (0,+∞)2 ordered lexicographically.
Here the identity is 〈1, 1〉, therefore negative means less than 〈1, 1〉. In other
words, it is a product algebra. Now define inductively e(p0) =

〈
1
2 , 1

〉
, e(pi+1) =〈√

e(pi), 1
〉

. Further, define e(pω) =
〈
1, 1

2

〉
. It is immediate to verify that

e(A) = 〈1, 1〉 for any A ∈ Γ and that e(pω · p0) =
〈

1
2 ,

1
2

〉
<lex

〈
1
2 , 1

〉
= e(p0).

This concludes the proof of Claim (B).

Theorem 7.31. No propositional logic between Ω(WCMTL) and Product logic
Π (both included) enjoys the SSC.

Proof: Let L be such a logic and L the corresponding variety. Then the standard
elements of L are standard Ω(WCMTL)-algebras and the algebra B in Claim B
is in L. Hence Γ |=A p0 → pω&p0 holds in any standard algebra A in L, but not
in all algebras in L (B is a counterexample). It follows that Γ 6`L p0 → pω&p0.2
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Table 7.1: Logical and algebraic properties of weakly cancellative fuzzy logics
Logic LF FEP FMP Decidable FSSC SSC

Ω(WCMTL) No No No ? Yes No
SΩ(WCMTL) No No No ? Yes No

WCMTL No No No ? Yes No
Ω(ΠMTL) No No No ? Yes No

ΠMTL No No No Yes Yes No
WCBL No No No Yes Yes No

Π No No No Yes Yes No
 L No Yes Yes Yes Yes No

Corollary 7.32. The following logics do not enjoy the SSC: Π, WCBL, SBL,
BL, ΠMTL, Ω(ΠMTL), WCMTL, SΩ(WCMTL) and Ω(WCMTL).

7.5 Conclusions

We have introduced and studied the property of weak cancellation and we have
obtained the following results:

• In Chapter 4 we have proved a theorem of representation of MTL-chains
as ordinal sums of indecomposable totally ordered semihoops. A charac-
terization of such indecomposable semihoops is still not known, but weak
cancellation gives a big and interesting class of indecomposable totally
ordered semihoops.

• Weak cancellation gives a new way to define  Lukasiewicz logic from IMTL.

• Weak cancellation is exactly the difference between cancellation and pseu-
docomplementation, so it gives an alternative axiomatization of Π and
ΠMTL and allows to define a new hierarchy of fuzzy logics.

• The ordinal sums of weakly cancellative totally ordered semihoops define
a new logic, Ω(WCMTL), that it is analogous to BL, in the sense that
all BL-chains are decomposable as ordinal sums of Wajsberg hoops (hence
weakly cancellative).

• We have studied some properties of these weakly cancellative fuzzy logics,
but the decidability problem remains open in general. It has been proved
true very recently for ΠMTL in [90], but we do not whether this proof can
be extended to other weakly cancellative logics. The studied properties
are gathered in the Table 7.1.





Chapter 8

n-contractive MTL-algebras

8.1 The n-contraction

In [104] (it is an unpublished work, but all its results can be found in the mono-
graph [66]) Kowalski and Ono studied some varieties of bounded integral com-
mutative residuated lattices. In particular, they considered for every n ≥ 2 the
varieties defined by the following equations:

xn ≈ xn−1 (En)
(E2) corresponds, in fact, to the law of contraction, which defines the variety

of Heyting algebras. Therefore, for every n ≥ 3 the equation (En) corresponds
to a weak form of contraction that we will call n-contraction.

In [27] Ciabattoni, Esteva and Godo brought the equations (En) to the frame-
work of fuzzy logics. Indeed, for each n ≥ 2, they defined the n-contraction axiom
as:

ϕn−1 → ϕn (Cn)
and they called CnMTL (resp. CnIMTL) the extension of MTL (resp. IMTL)

obtained by adding this axiom.
Given n ≥ 2, the equivalent algebraic semantics of CnMTL (resp. CnIMTL)

is the class of n-contractive MTL-algebras (resp. IMTL-algebras), i.e. the sub-
variety of MTL (resp. IMTL) defined by the equation:

xn−1 ≈ xn

Strong standard completeness for these logics was also proved in [27]:

Theorem 8.1 ([27]). For every n ≥ 3, CnMTL and CnIMTL enjoy the SSC.

It is easy to see that C2MTL is Gödel logic and C2IMTL is the classical
propositional calculus. Moreover, for every n ≥ 3, WNM is a strict extension of
CnMTL, NM is a strict extension of CnIMTL, CnMTL is a strict extension of
Cn+1MTL and CnIMTL is a strict extension of Cn+1IMTL (see Figure 8.1).

103
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We say that an axiomatic extension of MTL L is n-contractive if, and only
if, `L (Cn). Of course, given any L we can make it n-contractive by adding the
schema (Cn). We call the resulting logic CnL.

For n-contractive logics it is easy to improve the Local Deduction-
Detachment Theorem to the following form of DDT:

Theorem 8.2. If L is an n-contractive axiomatic extension of MTL, then for
every Γ ∪ {ϕ,ψ} ⊆ FmL we have:
Γ, ϕ `L ψ if, and only if, Γ `L ϕ

n−1 → ψ.

MTL

IMTL

(Inv)

(Inv)

Cn+1MTL

Cn+1IMTLCnMTL

CnIMTLC4MTL

C4IMTLC3MTL

C3IMTL

NM
WNM

(WNM)

(WNM)

(C2)

(Inv)

(Inv)

C2MTL = G

C2IMTL = CPC

(C2)

Figure 8.1: Graphic of axiomatic extensions of MTL obtained by adding all com-

binations of the schemata (Inv), (Cn) and (WNM). All the depicted inclusions are

proper.

Moreover, in [104] Kowalski and Ono prove also the following result:

Proposition 8.3 (Prop 1.11, [104]). Let K be a variety of residuated lattices.
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Then, K has the property EDPC (equationally definable principal congruences)
if, and only if, K |= (En), for some n ≥ 2.

According to Theorem 2.21, an algebraizable logic has the DDT if, and only
if, its equivalent algebraic semantics has the EDPC. Therefore, in our framework
of fuzzy logics as axiomatic extensions of MTL, the contractive logics are a good
choice in the sense that they are the only finitary extensions of MTL enjoying
the global Deduction-Detachment Theorem.

Finally, in [104] the following equations where also considered for every n ≥ 2:
x ∨ ¬xn−1 ≈ 1 (EMn)

Notice that (EM2) is the algebraic form of the law of the excluded middle,
and for every n ≥ 3 (EMn) corresponds to a weak form of this law.

We will consider also the axioms corresponding to (EMn):
ϕ ∨ ¬ϕn−1 (Sn)

Given any axiomatic extension L of MTL, SnL will be its extension with
(Sn).

8.2 n-contractive chains

In this section we will study some basic properties of the n-contractive chains.
First, observe that this is an important and big class of chains since it contains
all the finite MTL-chains.

Proposition 8.4. All finite MTL-chains are n-contractive for some n.

Proof: Let A be a finite MTL-chain with n elements. Take an arbitrary a ∈
A \ {1A}. For every i > 0, ai ≤ ai−1, thus necessarily an−1 = an. 2

Proposition 8.5. Let A be an MTL-algebra and a ∈ Id(A). Then for every
b, c ∈ A,

(1) If b, c ≥ a, then b ∗ c ≥ a.

(2) If b ≥ a, then a ∗ b = a.

Proof: If b, c ≥ a, then a = a ∗ a ≤ b ∗ c. If b ≥ a, then a = a ∗ a ≤ a ∗ b, and the
other inequality is always true. 2

The idempotent elements are easily described in n-contractive chains and, in
addition, their number can be expressed equationally as the following proposi-
tions show.

Proposition 8.6. Let A be an n-contractive MTL-algebra. Then, Id(A) =
{an−1 : a ∈ A}.

Proof: If a ∈ A is idempotent, then a = a2 = . . . = an−1. Conversely, take any
a ∈ A and consider an−1. Then, an−1 ∗ an−1 = an ∗ an−2 = an−1 ∗ an−2 = . . . =
an−1, so an−1 ∈ Id(A). 2
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Definition 8.7. For every n ≥ 3 and k ≥ 2, we define the next formula:
Ink (x0, . . . , xk) :=

∨
i<k(xn−1

i → xn−1
i+1 ).

Proposition 8.8. For every n ≥ 3, every k ≥ 2 and every n-contractive MTL-
chain A the following are equivalent:

(1) A |= Ink (x0, . . . , xk) ≈ 1.

(2) | Id(A) |≤ k.

Proof: Suppose that | Id(A) |> k. Then we can take a0, . . . , ak ∈ Id(A) such
that a0 > a1 > . . . > ak. Then for every i, ai = an−1

i and ai+1 = an−1
i+1 ,

so an−1
i → an−1

i+1 6= 1A and the equation is not satisfied. Conversely, suppose |
Id(A) |≤ k and take arbitrary elements a0, . . . , ak ∈ A. an−1

0 , . . . , an−1
k ∈ Id(A),

so there are i < j ≤ k such that an−1
i = an−1

j . Hence there is a l < k such that

an−1
l → an−1

l+1 = 1A. 2

In n-contractive chains we can also give a nice description of Archimedean
classes:

Proposition 8.9. Let A be an n-contractive MTL-chain. Then, for every a, b ∈
A:

(i) a ∼ b if, and only if, an−1 = bn−1, and

(ii) an−1 = min[a]∼.

Proof: (i) One direction is obvious. For the other one, suppose that a ∼ b
and, for instance, a ≤ b. Then there is i ≥ 1 such that bi ≤ a ≤ b, hence by
the n-contraction law bn−1 ≤ a ≤ b. On one hand, we have an−1 ≤ bn−1,
since a ≤ b. On the other hand, since bn−1 is an idempotent smaller than
a using Proposition 8.5 we obtain bn−1 ≤ an−1.

(ii) It is clear that an−1 ∈ [a]∼. Take an arbitrary b ∈ [a]∼. By (i), an−1 =
bn−1, hence b ≥ bn−1 = an−1.

2

Corollary 8.10. Let A be an n-contractive MTL-chain and let a ∈ A. If [a]∼
has supremum, then it is the maximum.

Proof: Assume that b is the supremum of [a]∼. Then, bn−1 = (sup{x ∈ A |
xn−1 = an−1})n−1 = sup{xn−1 ∈ A | xn−1 = an−1} = an−1, hence b ∈ [a]∼. 2

Therefore, Archimedean classes with supremum in n-contractive chains are
always intervals of the form [bn−1, b]. Moreover, this implies that given a stan-
dard n-contractive chain A, in the set Id(A) none of the elements has neither
predecessor nor successor. In particular, 1 is an accumulation point of idempo-
tent elements.1

Next proposition characterizes the subdirectly irreducible n-contractive al-
gebras.

1These remarks on n-contractive left-continuous t-norms are already available in [114].
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Proposition 8.11. Let A be an n-contractive MTL-chain. Then:
A is subdirectly irreducible if, and only if, the set of idempotent elements has

a coatom.

Proof: First suppose that A is subdirectly irreducible and let F be the minimum
non-trivial filter. Given any a ∈ F \ {1A}, it is clear that an−1 is a coatom of
Id(A). Conversely, suppose a is the coatom in the set of idempotent elements.
Then for every b such that a < b < 1A, we have bn−1 = a, so [a, 1A] is the least
non-trivial filter and A is subdirectly irreducible. 2

Corollary 8.12. There are no subdirectly irreducible standard n-contractive
MTL-chains.

Nevertheless, notice that this does not contradict the fact that the varieties
CnMTL and CnIMTL are generated by their standard chains.

The generalized excluded middle equations (EMn) describe exactly the sim-
ple n-contractive chains.

Proposition 8.13. Let A be an MTL-chain. The following are equivalent:

(i) A |= (EMn).

(ii) A is n-contractive and simple.

Proof: (i) ⇒ (ii) : If A |= (EMn), then for every a ∈ A \ {1A}, an−1 = 0A.
Therefore, for every a ∈ A\{1A}, an−1 = an, and it is clearly simple. (ii) ⇒ (i) :
If A is n-contractive and simple, then for a ∈ A, an−1 is idempotent. Therefore,
if a 6= 1A, then an−1 = 0A, and hence A |= (EMn). 2

Recall that an algebra is semisimple if, and only if, it is representable as a
subdirect product of simple algebras. For an MTL-algebra A this is equivalent
to Rad(A) = {1A}.

Corollary 8.14. For each n ≥ 2, the class of semisimple n-contractive MTL-
algebras is the variety SnMTL.

For MV-algebras those varieties are easy to describe:

Lemma 8.15. Let A be an MV-chain. The following are equivalent:

(i) A |= (En).

(ii) A ∈ I({ L1, . . . ,  Ln}).

(iii) A |= (EMn).

Corollary 8.16. For each n ≥ 2, SnMTL ∩ MV = CnMTL ∩ MV =
V({ L1, . . . ,  Ln}).
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However, in MTL and in IMTL the situation is not so easy. In the first level
the varieties corresponding to (En) and (EMn) are still easy to compute. Indeed,
S2MTL = S2IMTL = C2IMTL = BA and C2MTL = G. For n = 3, we have
S3MTL ( WNM, in fact, the S3MTL-chains are those where the product of two
non-one elements is always zero, i. e. the so-called drastic product. When n = 3,
we also have S3IMTL = V( L3) = NM ∩MV ( NM ⊆ C3IMTL. Therefore for
each n ≥ 3, SnIMTL ( CnIMTL and SnMTL ( CnMTL. The variety S4IMTL
and its lattice of subvarieties have been studied in [72].

Now we will show that the varieties of semisimple n-contractive chains are
discriminator varieties.

Definition 8.17. For every n ≥ 3 we define δn(x, y) := (x↔ y)n−1.

Notice that if a, b are elements in a simple n-contractive MTL-chain, then:

• a = b if, and only if, δn(a, b) = 1A.

• a 6= b if, and only if, δn(a, b) = 0A.

With this term we can define a discriminator just by considering t(x, y, z) :=
(δ(x, y)∧z)∨(¬δ(x, y)∧x). It is clear that t(x, y, z) = x if x 6= y, and t(x, y, z) = z
otherwise. In fact, Kowalski has proved that the only discriminator varieties of
bounded integral commutative residuated lattice are those satisfying some of the
(EMn) equations:

Theorem 8.18 ([105]). For every variety K of bounded integral commutative
residuated lattices, the following are equivalent:

(i) K |= (EMn) for some n ≥ 2;

(ii) K is semisimple;

(iii) K is a discriminator variety.

Using δ one can also give an equational definition of the class of algebras
without negation fixpoint:

Proposition 8.19. Let A be a simple n-contractive MTL-chain. Then, A has
not the negation fixpoint if, and only if, A |= δn(x,¬x) ≈ 0.

Finally, we will study the existence of atoms and coatoms in n-contractive
chains.

Proposition 8.20. Let A be a simple n-contractive IMTL-chain and take
a1, . . . , an−2 ∈ A \ {1A}. If a1& . . .&an−2 6= 0A, then a1& . . .&an−2 =
minA \ {0A}.

Proof: Given any c 6= 0A we must prove a1& . . .&an−2 ≤ c. Take d :=
a1 ∨ . . . ∨ an−2 ∨ ¬c 6= 1A, so dn−1 = 0A. Then, a1& . . .&an−2 → c =
¬(a1& . . .&an−2&¬c) ≥ ¬dn−1 = 1A. 2
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Corollary 8.21. For every simple n-contractive non-trivial IMTL-chain A,
there is a ∈ A such that a = maxA \ {1A} and ¬a = minA \ {0A}.

Proposition 8.22. Every simple n-contractive non-trivial MTL-chain A has a
coatom.

Proof: Suppose there is no coatom. Hence,
∨
a<1

A a = 1A. But then 0A =∨
a<1

A an−1 = (
∨
a<1

A a)n−1 = 1A. 2

This implies that the n-contractive MTL-chains defined by a left-continuous
t-norm are not simple, i. e. there are no standard SnMTL-chains, which we
already knew from the fact that there are not even subdirectly irreducible n-
contractive standard chains.

8.3 Combining weakly cancellative and n-
contractive fuzzy logics

In Chapter 7 the variety WCMTL of weakly cancellative MTL-algebras was
defined to provide examples of indecomposable MTL-chains. Besides, the Ω
operator gave rise to the variety Ω(WCMTL) which was a kind of analog of BL
in the sense that here all the chains were also decomposable as ordinal sums of
weakly cancellative semihoops. Now it seems natural to consider the intersection
of these varieties with the classes of n-contractive algebras (or equivalently the
supremum of the corresponding logics) in order to obtain some new kinds of
algebras with a nice and simpler structure. Therefore, we will consider for every
n ≥ 2 the logics SnWCMTL and CnWCMTL.

Proposition 8.23. For every n ≥ 2, {(WC), (Cn)} `MTL (Sn).

Proof: Let A be an MTL-chain satisfying (WC) and (Cn). We will prove that it
is simple. Take an arbitrary a ∈ A\{1A}. Then, an−1 is an idempotent element,
hence an−1&an−1 = an−1&1A = an−1. Since the chain is weakly cancellative,
this implies an−1 = 0A. Therefore, A is simple, i. e. satisfies (Sn). 2

Corollary 8.24. Given any axiomatic extension L of WCMTL and n ≥ 2, the
extensions obtained by (Sn) and (Cn) coincide. In particular, SnWCMTL =
CnWCMTL.

It is straightforward to prove that the Ω operator and the schemata (Cn)
commute:

Proposition 8.25. Let L be an axiomatic extension of MTL. For every n ≥ 2,
Ω(CnL) = CnΩ(L).

Therefore, we have CnΩ(WCMTL) = Ω(CnWCMTL) = Ω(SnWCMTL).
Finally, we will consider for every n ≥ 2 the logic Ω(SnMTL) and we will

show that it is also finitely axiomatizable.



110 CHAPTER 8. N -CONTRACTIVE MTL-ALGEBRAS

Proposition 8.26. Let A be an n-contractive MTL-chain. The following are
equivalent:

(i) A is totally decomposable.

(ii) A is an ordinal sum of simple n-contractive chains.

(iii) A |= (yn−1 → x) ∨ (x→ x&y) ≈ 1.

Proof: (i) ⇒ (ii): If A is decomposable as the ordinal sum of its Archimedean
classes, then, by Proposition 8.9, it is decomposable as ordinal sum of simple
chains.
(ii) ⇒ (iii): Take arbitrary elements a, b ∈ A. If b ≤ a, then bn−1 ≤ a, so they
satisfy the equation. Suppose a < b. If they are in different components of the
ordinal sum, then a→ a&b = 1A. If they are in the same component, then, by
simplicity, bn−1 ≤ a.
(iii) ⇒ (i): Suppose that A satisfies the equation. Take a, b ∈ A\{1A} such that
a < b and they belong to different Archimedean classes. Then bn−1 → a 6= 1A,
so a → a&b = 1A, i. e. a&b = a. Therefore, A is the ordinal sum of its
Archimedean classes. 2

Corollary 8.27. Ω(SnMTL) is the variety generated by the totally decomposable
n-contractive chains, and it is axiomatized by (yn−1 → x) ∨ (x→ x&y) ≈ 1.

8.4 Some properties of n-contractive fuzzy logics

In this section we will study some logical and algebraic properties of the consid-
ered logics. First we focus our attention on local finiteness. n-contractivity is a
necessary condition for local finiteness:

Proposition 8.28. Let K ⊆ MTL be a variety. If K is locally finite, then there
exists some n ≥ 2 such that K |= xn ≈ xn−1.

Proof: Suppose that for every n ≥ 2, there is An ∈ K and an ∈ An
such that ann < an−1

n . Consider the algebra
∏
n≥2An and the element a =

〈a2, a3, a4, . . . , 〉 ∈
∏
n≥2An. Then for every n ≥ 2, we have an < an−1, thus the

subalgebra generated by a is infinite. 2

However, the sufficiency of this condition remains as an open problem, so
for each variety of n-contractive MTL-algebras we have to discuss whether it is
locally finite or not. It is straightforward that to show that G is locally finite.
The property has been proved true also for NM in [71], and we have generalized
the result to WNM in Chapter 9.

Theorem 8.29. Ω(S3MTL) is locally finite. (This case is isomorphic to the
case of WNM).
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Finally, S4IMTL is also proved to be locally finite in [72]. The property is
still unknown for any variety of contractive MTL-algebras not contained in the
previous ones.

We turn now to the finite embedding property. Ono2 and Montagna et al in
[28] proved it not only for MTL, IMTL and SMTL, but also for CnMTL and
CnIMTL, for every n ≥ 2. This allows us to prove the following result:

Proposition 8.30. MTL =
∨
n≥2 CnMTL and IMTL =

∨
n≥2 CnIMTL.

Proof: MTL and IMTL have the FEP, therefore they are generated by their finite
chains. Since all finite MTL-chains are n-contractive for some n, we obtain that
MTL is generated by the contractive MTL-chains and MTL is generated by the
contractive IMTL-chains. 2

Theorem 8.31. For every n ≥ 2, the following varieties have the FEP:

• SnMTL

• Ω(SnMTL)

• CnWCMTL

• Ω(CnWCMTL)

Proof: Let L be any variety from the class
{SnMTL,Ω(SnMTL),CnWCMTL,Ω(CnWCMTL) | n ≥ 2}. Let A be an
arbitrary L-chain and B ⊆ A be a finite subset of its carrier. Consider the
monoid M generated by B ∪ {0A, 1A}, i. e. the submonoid of 〈A,&, 1A〉
obtained by closing B ∪ {0A, 1A} under &. By the simplicity of A, M is finite,
so it is residuated. Expanding M with the residuum it becomes an MTL-chain.
Observe that, in fact, M is an L-chain, since the required properties are
preserved when we generate the monoid. Finally, it is clear that B can be
embedded in M, thus L has the FEP. 2

Open problems: FEP, FMP and decidability for SnIMTL.
Finally, we consider the standard completeness of n-contractive fuzzy logics.

As mentioned above, the SSC was proved by Ciabattoni, Esteva and Godo in
[27] for CnMTL and CnIMTL for every n ≥ 2.

Theorem 8.32. For every n ≥ 2, we have:

(a) SnMTL, SnIMTL and SnWCMTL do not enjoy SC because there are no
standard algebras in the corresponding variety.

(b) Ω(SnMTL) enjoys the SSC.

2Private communication.
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Proof: (a): It follows from Proposition 8.22.
(b): We will prove it by using the embedding method of Jenei and Montagna
(see [100]). Let A be a countable Ω(SnMTL)-chain. Consider the following set:

X := {〈s, q〉 : s ∈ A, s 6= 0A, q ∈ Q ∩ (0, 1]} ∪ {〈0A, 1〉}, equiped with the
lexicographical order and the operation

〈s, q〉 ◦ 〈s′, q′〉 :=
{

min{〈s, q〉, 〈s′, q′〉} if s&s′ = min{s, s′}
〈s&s′, 1〉 otherwise.

Let 〈s, q〉, 〈s′, q′〉 ∈ X be such that 〈s, q〉 < 〈s′, q′〉n−1. We must prove that
〈s, q〉 ◦ 〈s′, q′〉 = 〈s, q〉.

We have:

〈s′, q′〉n−1 =
{
min{〈s′, q′〉 if (s′)2 = s′

〈(s′)n−1, 1〉 otherwise.

Therefore, s ≤ s′. If s&s′ = s, we are done. Suppose that s&s′ < s.
If s′&s′ = s′, then, since A is totally decomposable, we have s&s′ = s; a
contradiction. If s′&s′ 6= s′, then 〈s′, q′〉n−1 = 〈(s′)n−1, 1〉, thus s ≤ (s′)n−1 and
this implies that s&s′ = s; a contradiction.

Consider now the completion of the operation in [0, 1]: for every a, b ∈ [0, 1],
define a⊗ b := sup{q ◦ p : q ≤ α, p ≤ β, q, p ∈ Q}. Let a, b ∈ [0, 1] be such that
a ≤ bn−1. We must prove that a⊗ b = a. It is clear that sup{q ◦ p : q ≤ a, p ≤
b, q < pn−1, q, p ∈ Q} = a, so it is enough to proof:

sup{q ◦ p : q ≤ a, p ≤ b, q, p ∈ Q} = sup{q ◦ p : q ≤ a, p ≤ b, q < pn−1, q, p ∈
Q}.

It is obvious that the second member of the equality is smaller or equal than
the first one. Let us prove the other inequality. Suppose q ≤ a, p ≤ b, q, p ∈ Q.
If q < pn−1, we are done. Suppose not. Then take b ≥ p′ > p such that
q < (p′)n−1. 2

Open problem: Standard completeness for Ω(CnWCMTL).

8.5 Conclusions

A new hierarchy of fuzzy logics has been defined in this chapter by using the
axioms of n-contraction, the generalized excluded middle axioms, the weak can-
cellation axioms and the Ω operator. We have studied some of their logical and
algebraic properties. The obtained results are gathered in Table 8.1 where the
remaining open problems are also highlighted.
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Table 8.1: Logical and algebraic properties of n-contractive fuzzy logics
Logic LF FEP FMP Decidable SC FSSC SSC

G Yes Yes Yes Yes Yes Yes Yes
WNM Yes Yes Yes Yes Yes Yes Yes
NM Yes Yes Yes Yes Yes Yes Yes

CnMTL ? Yes Yes Yes Yes Yes Yes
CnIMTL ? Yes Yes Yes Yes Yes Yes
SnMTL ? Yes Yes Yes No No No
SnIMTL ? ? ? ? No No No

Ω(SnMTL) ? Yes Yes Yes Yes Yes Yes
SnWCMTL ? Yes Yes Yes No No No

Ω(CnWCMTL) ? Yes Yes Yes ? ? ?





Chapter 9

The variety of Weak
Nilpotent Minimum
algebras

After the general results on varieties of n-contractive MTL-algebras given in
the previous chapter, now we focus on a particular kind of 3-contractive alge-
bras, namely the Weak Nilpotent Minimum algebras. The reason is that their
structure is quite simple and thus we are able to present several results on the
axiomatization of their subvarieties, local finiteness and standard completeness
properties. First, we survey the known results for their involutive members,
NM-algebras, and later we move to the more general case of WNM-algebras.

9.1 Varieties of NM-algebras

The lattice of subvarieties of NM has been completely described in [71]. We will
briefly present this description.

The structure of finite NM-chains is very simple. In fact, for every n ≥ 1
there is exactly one, up to isomorphism, NM-chain with n elements. Therefore,
we can consider the following canonical finite NM-chains.

For every n ≥ 1 the canonical NM-chain of 2n elements is defined as
N2n := 〈{−n,−(n − 1), . . . ,−1, 1, . . . , n − 1, n},&,→,∧,∨,−n, n〉 and the
canonical NM-chain of 2n + 1 elements is defined as N2n+1 := 〈{−n,−(n −
1), . . . ,−1, 0, 1, . . . , n− 1, n},&,→,∧,∨,−n, n〉, where:

a&b :=
{

min{a, b} if a > −b,
−n otherwise.

a→ b :=
{
n if a ≤ b,
max{−a, b} otherwise.

115
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a ∧ b := min{a, b} and a ∨ b := max{a, b}.
Recall also the definition of the unique (up to isomorphism) standard NM-

chain, [0, 1]NM, given in Chapter 3.
Notice that all these chains, in fact all NM-chains, are perfect or perfect plus

the fixpoint. Therefore, NM ⊆ IBP+1
0 .

Given an NM-chain C with fixpoint, we denote by C− the subalgebra obtained
by erasing the fixpoint. With this notation, it is clear that N2n = N−

2n+1 for
every n ≥ 1.

Theorem 9.1 ([71]). A variety of NM-algebras is a proper subvariety of NM if,
and only if, it does not contain Nn for some n ≥ 1.

Corollary 9.2 ([71]). If A is an infinite NM-chain with fixpoint, then V(A) =
NM.

Theorem 9.3 ([71]). NM is locally finite.

This fact, as already discussed, implies the FMP and the decidability of NM,
thus in particular we have that every variety of NM-chains is generated by its
finite chains. It leads to the following classification of the subvarieties of NM:

Theorem 9.4 ([71]). Every proper subvariety of NM is:

1. V([0, 1]−NM) = V({N2n : n ≥ 1}) or

2. V(N2n+1) or

3. V(N2n) or

4. V([0, 1]−NM,N2n+1) or

5. V(N2n,N2m+1), with m < n.

Furthermore, equational bases for these varieties are obtained by means of
the following terms: Sn(x0, . . . , xn) :=

∧
i<n((xi → xi+1) → xi+1) →

∨
i<n+1 xi,

for every n ≥ 2.

Theorem 9.5 ([71]). Let A be an NM-chain. Then:

1. A |= Sn(x0, . . . , xn) ≈ 1 if, and only if, it has less than 2n+ 2 elements.

2. A |= Bp(x) ≈ 1 if, and only if, it has no fixpoint.

Corollary 9.6 ([71]). The proper subvarieties of NM admit the following ax-
iomatizations (relative to NM):

1. V([0, 1]−NM) is axiomatized by Bp(x) ≈ 1.

2. V(N2n+1) is axiomatized by Sn(x0, . . . , xn) ≈ 1.

3. V(N2n) is axiomatized by Sn(x0, . . . , xn) ≈ 1 and Bp(x) ≈ 1.
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4. V([0, 1]−NM,N2n+1) is axiomatized by Bp(x) ∨ Sn(x0, . . . , xn) ≈ 1.

5. V(N2n,N2m+1) is axiomatized by (Bp(x) ∧ Sn(x0, . . . , xn)) ∨
Sm(x0, . . . , xm) ≈ 1.

Therefore, we have obtained a complete description of all axiomatic exten-
sions of NM. Let us denote by NM− the logic corresponding to V([0, 1]−NM), by
NMn the logic corresponding to V(Nn), by NMnm the logic corresponding to
V(Nn,Nm), and by NMn,NM− the logic corresponding to V(Nn, [0, 1]−NM). The
lattice of all these logics is depicted in Figure 9.1.

CPC

L3

NM4
NM6

NM2mNM4,3

NM5

NM7

NM6,3

NM6,5

NM8

NM8,7

NM8,3

NM8,5

NM9

NM2m,2n+1NM2n+1

NM2m+1

NM

NM7, NM

NM3, NM

NM5, NM

NM9, NM

NM2n+1, NM

NM
 

Axiomatic extensions of NM

Figure 9.1: Lattice of axiomatic extensions of NM.
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9.2 Weak nilpotent minimum algebras

Our aim now is to generalize the above results to the whole variety of WNM-
algebras.

The operations in WNM-chains are very simple as the following lemma states:

Lemma 9.7. Let A =
〈
A,&,→,∧,∨, 0, 1

〉
be a WNM-chain. Then for every

a, b ∈ A:

a&b =
{
a ∧ b if a > ¬b,
0A otherwise.

a→ b =
{

1A if a ≤ b,
¬a ∨ b otherwise.

Notice that the previous lemma generalizes the structure of standard WNM-
chains presented in Chapter 4. It turns out, that WNM-chains depend essentialy
on the negation operation, thus we need to recall some properties of such oper-
ations.

Lemma 9.8. Let A be a WNM-chain. Then for every a ∈ A:

(i) ¬a = ¬¬¬a,

(ii) a ≤ ¬¬a,

(iii) a = ¬¬a if, and only if, there is b ∈ A such that a = ¬b, and

(iv) ¬¬a = min{b ∈ A : a ≤ b and b = ¬¬b}.

The last one gives rise to the following definition:

Definition 9.9. Let A be a WNM-chain and let a ∈ A be an involutive element.
We define IAa := {b ∈ A : ¬b = ¬a} and we call it the interval associated to
a, where the negation function is constant with value ¬a. We say that a has a
trivial associated interval when IAa = {a}. When A is a standard WNM-chain
given by a t-norm ∗, we will sometimes write I∗a instead of IAa . We will write
just Ia when the algebra is clear from the context.

Now we can define the finite partition property for WNM-chains.

Definition 9.10. Let A be a WNM-chain and consider its negation operation
¬A. We say that A has a finite partition iff ¬A is constant in a finite number
of intervals, i.e. the set {a ∈ A : Ia 6= {a}} is finite. Let Ia1 , . . . , Ian

be these
intervals. In such a case we define the associated finite partition P defined in
the following way:

• Ia1 , . . . , Ian
∈ P .
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• Consider the set X = A\(Ia1∪. . .∪Ian
). It is clear that all the elements in

X are involutive. For every connected component Y of X ∩ A−, consider
the elements ¬ai1 < . . . < ¬aik ∈ Y , and then add every interval Y ∩
[0,¬ai1 ], (¬ai1 ,¬ai2 ], . . . , (¬aik−1 ,¬aik ], Y ∩ [¬aik , 1] to P . If there are no
elements of the form ¬ai in Y , we add Y to P . We do the same for every
connected component Y of X ∩A+.

Notice that this partition yields two kinds of intervals: those where the nega-
tion takes a constant value, and those where all elements are involutive. As a
matter of nomenclature, we call them constant intervals and involutive intervals,
respectively. Figure 9.2 shows an example of a WNM t-norm with a fixpoint, a3,
and with a finite partition where the constant intervals are [a4, a5] and [a6, a7],
while the involutive intervals are [0, a1], (a1, a2], (a2, a3], (a3, a4), (a5, a6) and
(a7, 1].

0           a1       a2     a3      a4      a5 a6     a7             1

1

x ∗ y = min(x, y)

x ∗ y = 0

Figure 9.2: An example of WNM t-norm with a finite partition.

Figure 9.3 shows three families of WNM t-norms with finite partition
parametrized with a real number c: c ∈ [0, 1) for ⊗c, c ∈ [1/2, 1) for ?c and
c ∈ [1/2, 1] for �c. Notice that ⊗0 = �1 = min and ?1/2 = �1/2 is the Nilpotent
Minimum t-norm. These families are actually the only WNM t-norms with a
finite partition of at most three intervals.

To refer to the class of WNM t-norms and those with a finite partition we
will use from now on the following notation:

WNM = {∗ is a weak nilpotent minimum t-norm}
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WNM-fin = {∗ ∈ WNM | ∗ has a finite partition}

0 c    1                 0       1-c         c        1                  0      1-c         c       1

1

0

c        c               c

1

0

1

0

Figure 9.3: Three parametric families of WNM t-norms with finite partition.

Definition 9.11. Let A be a WNM-chain. N(A) will denote the set of involutive
elements of A, i.e. N(A) = {¬a : a ∈ A}.

Proposition 9.12. Let A be a WNM-chain. Then N(A) is the universe of the
maximum NM-subalgebra of A. We denote it by N (A).

Proof: We must prove that N(A) is closed under all operations. Obviously,
0 = ¬1 ∈ N(A) and 1 = ¬0 ∈ N(A). Take ¬a,¬b ∈ N(A). Since A is linearly
ordered, ¬a ∧ ¬b,¬a ∨ ¬b ∈ N(A), hence ¬a&¬b ∈ N(A). Finally, if ¬a ≤ ¬b,
then ¬a→ ¬b = 1 ∈ N(A); otherwise ¬a→ ¬b = ¬¬a ∨ ¬b ∈ N(A). 2

Proposition 9.13. Let K ⊆ WNM be a variety. Then, K∩NM = V({N (A) : A
chain of K}).

Proof: The inclusion from right to left is clear, since for every chain of K, A,
we have that N (A) is an NM-chain and it is a subalgebra of an algebra in K,
so N (A) ∈ K ∩ NM. Conversely, if C is a chain of K ∩ NM, then C = N (C) ∈
{N (A) : A chain of K}, and by the subdirect representation theorem, we obtain
the inclusion. 2

Now we can prove that the variety of WNM-algebras is locally finite.

Lemma 9.14. Let A be a WNM-chain. Then, every finite subset of A generates
a finite WNM-chain.

Proof: Take a finite subset B = {b0, . . . , bn} ⊆ A. Due to Lemma 9.7 and (i) of
Lemma 9.8 it is obvious that the universe of the subalgebra generated by B is
{0A, 1A, b0, . . . , bn,¬b0, . . . ,¬bn,¬¬b0, . . . ,¬¬bn}, so it is finite. 2
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Proposition 9.15. WNM is a locally finite variety.

Proof: Let A be a WNM-algebra and take a finite set B ⊆ A. Suppose that B =
{b0, . . . , bn}. We must prove that 〈B〉A is also finite. If A is a chain, we apply
the previous lemma. Suppose that A is not a chain. Then, due to the theorem of
representation in subdirect products of chains, we have an embedding α : A ↪→∏
i∈I Ai, where for every i ∈ I, Ai is a WNM-chain. Consider the images of

the elements of B, α(bj) = (aji )i∈I , for every j ∈ {1, . . . , n}. We have seen that
for every i ∈ I, {a1

i , . . . , a
n
i } generates a finite chain Ci ⊆ Ai whose universe is

{0Ai , 1Ai , a1
i , . . . , a

n
i ,¬a1

i , . . . ,¬ani ,¬¬a1
i , . . . ,¬¬ani }. Notice that there is only a

finite number of such chains up to isomorphism, say {C0, . . . , Cn−1}, and 〈B〉A ∈
V({Ci : i < n}). Therefore, using that every variety generated by a finite number
of finite algebras is locally finite ([24], Theorem 10.16), we obtain that 〈B〉A is
finite. 2

We have the following easy consequences:

• WNM has the FEP.

• WNM has the FMP.

• WNM = V(WNMfin) = Q(WNMfin).

• Every subvariety of WNM is generated by its finite chains.

• WNM and all its axiomatic extensions are decidable.

Lemma 9.16. Let A be a WNM-chain, let F ∈ Fi(A) and consider the quotient
algebra A/F . Then:

• [1A]F = F

• [0A]F = F

• For every a, b ∈ A \ (F ∪ F ) such that a 6= b, we have [a]F 6= [b]F .

Proof: The first statement is trivial. As for the second, take an arbitrary a ∈ A.
Then, a ∈ [0A]F iff a → 0A ∈ F iff a ∈ F . Now consider a pair of different
elements a, b ∈ A \ (F ∪ F ). Suppose, for instance, that a > b. Then, a → b =
¬a ∨ b /∈ F , hence [a]F 6= [b]F . 2

Lemma 9.17. Let A and B be WNM-chains and let f : A → B a surjective
homomorphism. Then:

(i) If I
1
B = {1B}, then B is embeddable in A.

(ii) If I
1
B 6= {1B}, then there is a ∈ N(A) ∩ A+ such that Ia 6= {a} and B is

embeddable in A/F a.
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Proof: By the Homomorphism Theorem we know that A/Kerf ∼= B, thus, after
the previous lemma, we can assume that the carrier of B is (A\(F∪F ))∪{0A, 1A}.
(i) is obvious. Assume that I

1
B 6= {1B}. Take c ∈ I

1
B \ {1B}, then it is clear

that B is embeddable in A/F¬¬c. 2

Corollary 9.18. Let A be a WNM-chain. Then, H(A) = IS(A) ∪ IS({A/F a :
a ∈ N(A)∩A+ and Ia 6= {a}}). Moreover, if there exists the maximum positive
involutive element a such that for any other b ∈ N(A) ∩ A+, | Ib |≤| Ia |, then
H(A) = IS(A) ∪ IS(A/F a).

Notice that for every standard WNM-chain [0, 1]∗ whose t-norm is in
WNM-fin, there is a maximum positive involutive element a such that Ia 6= {a}
and, since all the constant intervals have the cardinal of the continuum, we have
H([0, 1]∗) = IS([0, 1]∗)∪IS([0, 1]∗/F a). Actually, the algebra [0, 1]∗/F a can also
be seen as a standard WNM-chain since it is clearly isomorphic to a chain over
[0, 1]. The reader can see an example of such situation in Figure 9.4.

0                                            a           1                                      0                                                      1  

[0, 1]
*

isomorphic to [0, 1]
* /Fa

1 1
x ∗ y = min(x, y) x ∗ y = min(x, y)

x ∗ y = 0
x ∗ y = 0

•

Figure 9.4: A WNM t-norm with a finite partition such that I1 = {1} (left) and its

corresponding t-norm on the quotient algebra [0, 1]∗/Fa (right).

Lemma 9.19. Let K be a class of WNM-chains closed under subalgebras. We
have: H(K)fin = H(Kfin).

Proof: One inclusion is trivial. As for the other one, take A ∈ H(K)fin, then A
is a finite chain and it is isomorphic to B/F for some B ∈ K and some filter F
of B. The subalgebra of B generated by B \ (F ∪F ) is in K, thus A ∈ H(Kfin).
2

Lemma 9.20. Let A be a WNM-chain. Then ISPU (A)fin = IS(A)fin.
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Proof: One direction is obvious. Due to the local finiteness of WNM, to
prove the other one is equivalent to prove that ISPU (A) is partially embed-
dable into IS(A)fin, which is equivalent by Proposition 2.8 to ISPU (A) ⊆
ISPU (IS(A)fin); finally the last inclusion is true because A ∈ ISPU (IS(A)fin).
2

Proposition 9.21. Let A be a WNM-chain. Then HSPU (A)fin = IS(A)fin ∪
IS({A/F a : a ∈ N(A) ∩A+ and Ia 6= {a}})fin.

Proof: HSPU (A)fin = H(ISPU (A))fin = [by Lemma 9.19] H(ISPU (A)fin) =
[by Lemma 9.20] H(IS(A)fin) = H(IS(A))fin = HS(A)fin = SH(A)fin =
SIS({A/F a : a = 1A or a ∈ N(A)∩A+ and Ia 6= {a}})fin = IS({A/F a : a = 1A

or a ∈ N(A) ∩A+ and Ia 6= {a}})fin. 2

Corollary 9.22. Let A be a WNM-chain such that it has the maximum positive
involutive element a with Ia 6= {a}, and for any other b ∈ N(A) ∩ A+, | Ib |≤|
Ia |. Then, HSPU (A)fin = IS(A)fin ∪ IS(A/F a)fin.

The description of the classes HSPU ( )fin leads to the following criterion to
compare varieties generated by a finite family of chains.

Theorem 9.23. Let n,m ≥ 1 be natural numbers and let A1, . . . ,An and
B1, . . . ,Bm be WNM-chains such that for every i there exists ai ∈ Ai and bi ∈ Bi,
positive involutive elements satisfying the conditions of the previous corollary.
The following are equivalent:

(i) V(A1, . . . ,An) ⊆ V(B1, . . . ,Bm)

(ii) IS(A1, . . . ,An,A1/F
a1 , . . . ,An/F an)fin ⊆ IS(B1, . . . ,Bm,B1/F

b1 ,
. . . ,Bm/F bm)fin.

(iii) 1. For every i ∈ {1, . . . , n}, there is j ∈ {1, . . . ,m} such that
IS(Ai)fin ⊆ IS(Bj)fin or IS(Ai)fin ⊆ IS(Bj/F bj )fin, and

2. for every i ∈ {1, . . . , n}, there is k ∈ {1, . . . ,m} such that
IS(Ai/F ai)fin ⊆ IS(Bk)fin or IS(Ai/F ai)fin ⊆ IS(Bk/F bk)fin.

Proof: First observe that V(A1, . . . ,An) ⊆ V(B1, . . . ,Bm) if, and
only if, V(A1, . . . ,An)FSI ⊆ V(B1, . . . ,Bm)FSI . By Jónsson’s
Lemma and being WNM locally finite, this is equivalent to
HSPU (A1, . . . ,An)fin ⊆ HSPU (B1, . . . ,Bm)fin. By the previous corol-
lary, this is equivalent to: IS(A1, . . . ,An,A1/F

a1 , . . . ,An/F an)fin ⊆
IS(B1, . . . ,Bm,B1/F

b1 , . . . ,Bm/F bm)fin. Therefore, we have proved (i) ⇔ (ii).
(iii) ⇒ (ii) is trivial.

(ii) ⇒ (iii): Suppose that (iii) does not hold. Then, for instance, there exists
i ∈ {1, . . . , n} such that for every j ∈ {1, . . . ,m}, IS(Ai)fin 6⊆ IS(Bj)fin and
IS(Ai)fin 6⊆ IS(Bj/F bj )fin. Therefore, there exist C1, . . . , Cm,D1, . . . ,Dm ∈
IS(Ai)fin such that for every j, Cj is not embeddable in Bj and Dj is
not embeddable in Bj/F bj . Consider the subalgebra C ⊆ Ai generated by
C1 ∪ . . . ∪ Cm ∪ D1 ∪ . . . ∪ Dm. Then, C is finite and it cannot belong to
IS(B1, . . . ,Bm,B1/F

b1 , . . . ,Bm/F bm)fin, so (ii) does not hold. 2
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Therefore, finite WNM-chains will play a central role in the task of classi-
fying varieties of WNM-algebras. Given a WNM-chain A, the negation in A
only depends on the negation in N (A), due to the properties of Lemma 9.8.
Therefore, every WNM-chain is characterized by the NM-subalgebra defined by
its involutive elements and by the number of non-involutive elements in their
associated intervals.

As in the case of NM-chains, some canonical representatives could be defined
for the finite chains. Given n ≥ 1, l1, . . . , ln ≥ 0, Anl1,...,ln will denote the
WNM-chain that has n involutive elements and li non-involutive elements in the
constant interval of the (i+1)-th involutive element. It is clear that these chains
generate pairwise different varieties. We can see an example in Figure 9.5.

0 1a b c d

Figure 9.5: Example of a canonical finite WNM-chain, A6
0,3,1,2,1. Squares rep-

resent involutive elements, while circles represent the non-involutive ones. b, c, d
and 1 have some associated non-involutive elements, while a (and, of course, 0)
has a trivial associated interval.

9.3 Generic WNM-chains

In this section we will study the WNM-chains that generate the variety WNM,
i.e. the generic chains.

Definition 9.24. Let A be a WNM-chain. A is generic if, and only if, V(A) =
WNM.

They can be characterized by using Proposition 9.21 in the following way.

Theorem 9.25. Let A be a WNM-chain. The following are equivalent:
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(1) A is generic.

(2) For every ϕ ∈ FmL, A |= ϕ ≈ 1 if, and only if, `WNM ϕ.

(3) For every finite WNM-chain C, either C is embeddable in A or there is
a ∈ N(A) ∩A+ such that Ia 6= {a} and C is embeddable in A/F a.

Some chains satisfy a condition stronger than (3), namely all finite chains are
embeddable into them. This situation is characterized in the next proposition.

Proposition 9.26. Let A be a WNM-chain. Then, all finite WNM-chains are
embeddable into A if, and only if, it satisfies the following conditions:

1. The set I1 is infinite,

2. A has a negation fixpoint f such that the set If is infinite, and

3. Either there is an increasing sequence 〈an : n ∈ ω〉 of involutive elements
in A− whose limit is not f such that for every n, k ≥ 1 there is m ≥ n
such that the sets Iam

and I¬am
have both more than k elements,

or there is an increasing sequence 〈an : n ∈ ω〉 of involutive elements in
A+ whose limit is not 1 such that for every n, k ≥ 1 there is m ≥ n such
that the sets Iam

and I¬am
have both more than k elements.

Proof: If A satisfies the conditions, it is obvious that every finite WNM-chain
is embeddable into A. In order to prove that the conditions are also necessary
suppose that A satisfies the first and the second condition but not the third (if
the first or the second condition fail, then it is easy to produce a finite chain that
it is not embeddable into A). Consider the set X = {a ∈ A− : a is involutive
and | Ia |, | I¬a |≥ ω}. This set must be finite (otherwise A would satisfy the
third condition); suppose that X has m elements. For each involutive element
a ∈ A−, we define r(a) := min{| Ia |, | I¬a |}. If {n(a) : a ∈ A− \X, a = ¬¬a} is
unbounded, we produce a sequence by choosing ak ∈ {a ∈ A− \X : a = ¬¬a and
r(a) = k} for every k ∈ ω such that {a ∈ A− \X : a = ¬¬a and r(a) = k} 6= ∅.
But then we would have a sequence satisfying the third condition, contradicting
our assumption. Hence, there is an upper bound k of {r(a) : a ∈ A− \ X, a =
¬¬a}. Then, it is clear that the finite chain A2m+4

k+1,k+1,...,k+1 is not embeddable
into A. 2

Figure 9.6 shows an example of a generic WNM-chain defined by a WNM-t-
norm satisfying this stronger condition.

Furthermore, we obtain the following characterization of generic standard
WNM-chains.

Theorem 9.27. Let A be a standard WNM-chain. Then, A is generic if, and
only if, it satisfies the following conditions:

1. A has a negation fixpoint f such that the set If is infinite, and
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Figure 9.6: Example of a generic chain A defined by a WNM-t-norm over the
real unit interval [0, 1]. It has a decreasing sequence 〈an : n ∈ ω〉 of involutive
elements in the negative part with a non-trivial associated interval, an increasing
sequence 〈bn : n ∈ ω〉 of involutive elements in the positive part with a non-trivial
associated interval, a fixpoint c with Ic 6= {c}, and I1 6= {1}.

2. Either there is an increasing sequence 〈an : n ∈ ω〉 of involutive elements
in A− whose limit is not f such that for every n, k ≥ 1 there is m ≥ n
such that the sets Iam

and I¬am
have both more than k elements,

or there is an increasing sequence 〈an : n ∈ ω〉 of involutive elements in
A+ whose limit is not 1 such that for every n, k ≥ 1 there is m ≥ n such
that the sets Iam

and I¬am
have both more than k elements.

Proof: Assume that A is generic. If there is a maximum constant interval Ia
(with possibly a = 1), then every finite WNM-chain is embeddable in A/F a.
Hence, by Proposition 9.26, A/F a satisfies the conditions, so also A satisfies
them. Suppose now that the maximum constant interval does not exist. Since
all finite chains are embeddable in A/F a for some suitable a, it is clear that A
has a negation fixpoint f and the set If is infinite. If it would not satisfy the
other condition, then the set {a ∈ A− : Ia and I¬a are infinite} would be finite,
and then it would be possible to find a finite chain which we could not embed
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in any quotient of A; a contradiction.
Conversely, suppose that A satisfies the two conditions. Then it is clear that

every finite WNM-chain is embeddable in some quotient of A. 2

9.4 T-norm based axiomatic extensions of the
Weak Nilpotent Minimum logic and their
standard completeness properties

In this section we focus on varieties generated by t-norm-algebras, i.e. standard
WNM-chains.

Lemma 9.28. Let [0, 1]∗ be a standard WNM-chain. If I1 6= {1}, then
HSPU ([0, 1]∗)fin = IS([0, 1]∗)fin

Proof: Just apply the Corollary 9.22 with a = 1. 2

This gives the following criterion to compare varieties generated by standard
WNM-chains such that I1 6= {1}.

Corollary 9.29. Let A and B be standard WNM-chains such that IA1 6= {1}
and IB1 6= {1}. Then the following are equivalent:

• V(A) ⊆ V(B)

• IS(A)fin ⊆ IS(B)fin.

We can obtain similar results for t-norms satisfying the FPP.

Lemma 9.30. Let [0, 1]∗ be a standard WNM-chain. If ∗ ∈ WNM-fin and
Ia is the maximum constant interval, then HSPU ([0, 1]∗)fin = IS([0, 1]∗)fin ∪
IS([0, 1]∗/F a)fin.

Proof: By Corollary 9.22. 2

Corollary 9.31. Let A and B be standard WNM-chains with finite partition
such that IAa and IBb are their maximum constants intervals respectively. Then
the following are equivalent:

• V(A) ⊆ V(B)

• IS(A)fin ∪ IS(A/F a)fin ⊆ IS(B)fin ∪ IS(B/F b)fin.

Notice that corollaries 9.29 and 9.31 give a classification of varieties gener-
ated by a standard WNM-chain (when the chains have I1 6= {1} or satisfy the
FPP). Indeed, if A and B are standard WNM-chains under these conditions,
the inclusion of the set of finite subalgebras of A into the of finite subalgebras
of B is easy to compute, since the possible finite subalgebras only depend on
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the partitions of A and B. The results can be easily generalized to varieties
generated by a family of standard WNM-chains.

Remark: It is easy to see that if ∗ ∈ WNM-fin, then all the chains in the
variety V([0, 1]∗) enjoy the FPP. Indeed, we can equationally express the maxi-
mum number of constant intervals that these chains can have in their partitions.
Suppose, for instance, that [0, 1]∗ is the standard WNM-chain depicted in Figure
9.3 and consider the following equations:

(E1) ¬¬n(x) → n(x) ≈ 1

(E2) (¬¬x0 ↔ ¬x0) ∨ (¬¬x1 ↔ ¬x1) ∨ (¬¬x2 ↔ ¬x2) ∨ (¬¬p(x0) →
p(x0))∨(¬¬p(x1) → p(x1))∨(¬¬p(x2) → p(x2))∨(¬¬p(x0) → ¬¬p(x1))∨
(¬¬p(x1) → ¬¬p(x2)) ≈ 1

It is not difficult to check that any WNM-chain satisfying (E1) has only
involutive elements in the negative part, and any WNM-chain satisfying (E2)
has at most 2 constant intervals in the positive part. Since these equations are
valid in [0, 1]∗, they are also valid in all the chains in V([0, 1]∗), and hence all
of them enjoy the FPP.

Given any standard WNM-chain [0, 1]∗ it is obvious that the logic L∗, i.e.
the logic corresponding to the variety V([0, 1]∗), enjoys the canonical SC with
respect to [0, 1]∗. Now we will study in which cases this standard completeness
result can be improved. We start with t-norms satisfying the FPP.

Proposition 9.32. Let ∗ ∈ WNM-fin, let Ia be its maximum constant interval
(with possibly a = 1) and let A be a countable L∗-chain. Then:

• If IA
1
A = {1A}, then there exists an embedding from A into [0, 1]∗.

• If IA
1
A 6= {1A}, then there exists an embedding from A into [0, 1]∗/F a.

Proof: We are assuming that [0, 1]∗ has a finite partition. Let r and s be the
number of intervals in the negative part, and respectively in the positive part, of
[0, 1]∗. Suppose that IA

1
A = {1A}. By the last remark we know that the number

of intervals in the negative part (resp. in the positive part) of A is at most r
(resp. s). Take a finite WNM-subchain B satisfying the following construction
rules:

1. Every unitary interval belonging to the partition of A is in B.

2. For every non-unitary constant interval of the partition of A, one interior
element of this interval and its upper bound belong to B.

3. For every involutive non-unitary interval in the negative part of the parti-
tion of A, two different elements and their negations belong to B.
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It is clear see that such a chain exists and it is a finite WNM-chain, subalgebra
of A, with the same number of intervals in the partition. By Lemma 9.30, there
is an embedding g : B ↪→ [0, 1]∗. Observe now that two different non-unitary
intervals of the partition of B must be embedded into two different intervals of
the partition of [0, 1]∗ and also that as subalgebra two different intervals of the
partition of B are contained in two different intervals of the partition of A. Thus,
remembering that the non-unitary intervals of A are countable and the ones in
[0, 1]∗ are continuous, and using that A and B have the same partition, we can
define an embedding f : A ↪→ [0, 1]∗. If IA

1
A 6= {1A}, the proof is analogous. 2

Corollary 9.33. Let ∗ ∈ WNM-fin and let Ia be its maximum constant inter-
val. Then:

• If a = 1, then the logic L∗ has the canonical SSC with respect to [0, 1]∗.

• If a 6= 1, then the logic L∗ has the SSC with respect to {[0, 1]∗, [0, 1]∗/F a}.

Now we turn to t-norms with an infinite partition.

Proposition 9.34. Given ∗ ∈ WNM \WNM-fin, an L∗-chain C and a finite
partial subalgebra B ⊆p C, we have:

• If I∗1 6= {1}, then B is partially embeddable in [0, 1]∗.

• If I∗1 = {1}, then B is partially embeddable in [0, 1]∗ or there is a posi-
tive involutive element a ∈ [0, 1] with I∗a 6= {a} such that B is partially
embeddable in [0, 1]∗/F a.

Proof: Since WNM is locally finite, the subalgebra of C generated by B is also
finite. Then, Proposition 9.21 gives the result. 2

Corollary 9.35. Given ∗ ∈ WNM \WNM-fin, we have:

• If I∗1 6= {1}, then the logic L∗ has the canonical FSSC with respect to [0, 1]∗.

• If I∗1 = {1}, then the logic L∗ has the FSSC with respect to {[0, 1]∗} ∪
{[0, 1]∗/F a : a is positive, involutive and Ia 6= {a}}.

Although in some cases the SSC holds for logics of WNM-t-norms with an
infinite partition (for instance, when [0, 1]∗ is a generic WNM-chain), it is false
in general as the following examples show.

Example 4. Let [0, 1]∗ a standard WNM-chain with an infinite partition such
that the number of positive constant intervals is finite, say I∗a1

, . . . , I∗an
. Assume

that I∗1 6= {1}. For every i, let Xi be the set of these discontinuity points of
the negation between I∗ai

and I∗ai+1
and let Yi1 the set of accumulation points of

Xi which are a limit of an increasing sequence of elements of Xi, and let Yi2
the set of accumulation points of Xi which are a limit of a decreasing sequence
of elements of Xi. Take a ∈ I∗1 \ {1} and let A be the countable subalgebra of
[0, 1]∗ generated by the rational numbers in [0, a]. It is clear that A is subdirectly
irreducible. Assume that there is i such that Xi is infinite and Yi1 or Yi2 is
finite. Then:
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1. If Yi1 is finite, we can produce a new countable WNM-chain B by adding
to A a new accumulation point to Yi1.

2. If Yi2 is finite, we can produce a new countable WNM-chain B by adding
to A a new accumulation point to Yi2.

In both cases, B ∈ V([0, 1]∗), since every finite subalgebra of B is embeddable
in [0, 1]∗, but clearly B is not embeddable in [0, 1]∗. Therefore, L∗ has not the
SSC.

An analogous reasoning is possible when the number of negative constant
intervals is finite.

Example 5. Let [0, 1]∗ a standard WNM-chain with an infinite partition such
that 1 is the only accumulation point of positive constant intervals. Consider the
formula ϕ>(x, y) := (y → x) ∧ ((x → y) → y). The following claim is easy to
check.

Claim: For every WNM-chain A and every a, b ∈ A we have:
ϕA>(a, b) = 1A iff a > b or a = b = 1A.
Using this formula, we can formulate an infinite semantical derivation,

{ϕ>(¬¬p(xi+1),¬¬p(xi)) : i ≥ 1} ∪ {ϕ>(¬¬p(xi), p(xi)) : i ≥ 1} ∪
{ϕ>(¬¬p(x0),¬¬p(xi)) : i ≥ 1} |=[0,1]∗ ¬¬p(x0) ∨ ¬¬p(x1), but it is not valid if
we consider only a finite subset of the premisses, so L∗ has not the SSC.

An analogous reasoning is possible when the only accumulation point of pos-
itive constant intervals is the infimum of the positive elements.

9.5 Axiomatization of some t-norm based exten-
sions of the Weak Nilpotent Minimum logic

In this section we give finite equational bases for some varieties generated by
standard WNM-chains, or equivalently finite axiomatizations for some t-norm
based extensions of WNM. Since every variety is generated by its finite chains,
the equational base essentially has to describe these finite chains. More precisely:

Lemma 9.36. Given a WNM-chain A, the following statements are equivalent:

1. The variety V(A) is axiomatized by the equations Σ ⊆ EqL.

2. For every finite WNM-chain C, C ∈ HSPU (A) iff C |= Σ.

3. For every finite WNM-chain C, C ∈ IS(A) ∪ IS({A/F a : a ∈ N(A) ∩ A+

and Ia 6= {a}}) iff C |= Σ.

We will focus on the last condition, which is the most descriptive.
First, we consider some easy observations on the equations in the language

of MTL.

Lemma 9.37. Let A be an MTL-algebra, let ϕ ≈ ψ ∈ EqL be an equation and
Σ = {ϕi ≈ ψi : i < n} ⊆ EqL be a finite set of equations. Then:
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1. A |= ϕ ≈ ψ if, and only if, A |= ϕ↔ ψ ≈ 1, and

2. A |= Σ if, and only if, A |= (ϕ0 ↔ ψ0)& . . .&(ϕn−1 ↔ ψn−1) ≈ 1.

Therefore, every finite equational base can be reduced to one single equation
whose second member is the constant for the neutral element of the monoid.
Using this and the following lemma we can produce an equational base for the
variety generated by a finite family of MTL-chains, whenever we have an equa-
tional base for the variety generated by each chain of the family.

Lemma 9.38. Let p0(x0), . . . , pn(xn) ∈ FmL, where x0, . . . , xn denote pairwise
disjoint sets of variables. Let A be an MTL-chain. Then, A |= p0(x0) ∨ . . . ∨
pn(xn) ≈ 1 if, and only if, there exists i ≤ n such that A |= pi(xi) ≈ 1.

Corollary 9.39. Let {C1, . . . , Cn} be a finite set of WNM-chains. Suppose that
for each i ∈ {1, . . . , n}, pi ≈ 1 is an equation axiomatizing V(Ci), in such a
way that the sets of variables of these equations are pairwise disjoint. Then, the
equation p1 ∨ . . . ∨ pn ≈ 1 axiomatizes the variety V({C1, . . . , Cn}).

In the following we provide some examples of t-norm based axiomatic ex-
tensions of WNM for which we are able to give efectively a finite axiomatization.

Examples: Let ∗ be a WNM-t-norm, let [0, 1]∗ be its corresponding standard
WNM-algebra and let L∗ be the axiomatic extension of WNM corresponding
to the variety V([0, 1]∗). Our aim is to find a set of axiom schemata such
that, added to the Hilbert-style system for WNM, give a calculus for L∗ (or
equivalently, to find a set of equations such that, added to the equational base
for WNM, give an equational base for V([0, 1]∗)).

1. If [0, 1]∗ is a generic WNM-t-norm (i.e. it satisfies the conditions of Theo-
rem 9.27), then L∗ is just WNM, and hence there is no need for additional
axioms.

2. Suppose that [0, 1]∗ satisfies the following conditions:

• The partition of [0, 1]∗ has no constant interval in the negative part.

• [0, 1]∗ has a negation fixpoint.

• The partition of [0, 1]∗ has infinitely many constant intervals in the
positive part (i.e. ∗ ∈ WNM \WNM-fin).

It is clear that for every finite WNM-chain C, C ∈ IS([0, 1]∗) ∪
IS({[0, 1]∗/F a : a ∈ N [0, 1]∗)∩([0, 1]∗)+ and Ia 6= {a}}) iff all the negative
elements in C are involutive. Therefore, the variety generated by [0, 1]∗ is
axiomatized by the following equation:1

¬¬n(x) ≈ n(x)

1Its associated logic has been already studied in [69] under with a different name, MTL[D∧],
and a different axiomatization. In particular, the authors proved the SSC for this logic.
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Notice that the symmetric situation (no constant intervals in the positive
part, while infinitely many in the negative part) is axiomatized by:

¬¬p(x) ≈ p(x)

Of course, the two equations together would give the variety generated by
[0, 1]NM, which can be axiomatized just by:

¬¬x ≈ x

3. Suppose that [0, 1]∗ satisfies the following condition:

• There is a sequence, either increasing or decreasing, 〈an : n ∈ ω〉 of
involutive elements in A− such that for every n ≥ 0 there is m ≥ n
such that the sets Iam

and I¬am
are non-trivial.

i.e. just the second condition required for generic standard WNM-chains
in Theorem 9.27. On the one hand, it is clear that for every finite WNM-
chain C, C ∈ IS([0, 1]∗) ∪ IS({[0, 1]∗/F a : a ∈ N [0, 1]∗) ∩ ([0, 1]∗)+ and
Ia 6= {a}}) iff C has no negation fixpoint. On the other hand, from the
results in Chapter 6, we know that a WNM-chain is perfect iff it has no
negation fixpoint. Therefore, the equation for perfect MTL-chains will be
enough to obtain an equational base for the variety we are considering
now:

(¬(¬x)2)2 ≈ ¬(¬x2)2

4. Take ∗ ∈ WNM-fin such that the partition of [0, 1]∗ has no involutive
intervals. Let r and s be respectively the number of constant intervals
in the negative and in the positive part. Then, due to the symmetry
properties of negation functions, we obtain that:

• If [0, 1]∗ has no negation fixpoint, then s = r + 1.
• If [0, 1]∗ has negation fixpoint, then s = r.

Observe that these chains (we can see two examples in Figure 9.7) have
a finite number of involutive elements: 0 and the right extreme of each
constant interval:

• If [0, 1]∗ has no negation fixpoint, then it has 2r + 2 involutive ele-
ments.

• If [0, 1]∗ has negation fixpoint, then it has 2r+ 1 involutive elements.

Therefore, in order to axiomatize this kind of varieties we only need an
equation giving an upper bound to the number of involutive elements. It
is easy to check that a WNM-chain A has at most k involutive elements
if, and only if, the following equation is valid in A:∨

i<k

(¬xi → ¬xi+1) ≈ 1



9.5. AXIOMATIZATION OF SOME T-NORM BASED EXTENSIONS 133
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1 1
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Figure 9.7: Two examples of standard WNM-chains satisfying the FPP with no
involutive intervals. The chain on the left hand side has no negation point, while
the chain on the right hand side has it.

For instance, to axiomatize the varieties corresponding to the chains in
Figure 9.7, we would take the equation with k = 6 (for the chain on the
left hand side) and the equation with k = 7 (for the chain on the right
hand side).

5. Finally, assume that ∗ ∈ WNM-fin and the partition of [0, 1]∗ has some
involutive intervals. We have not found an equational for every WNM-t-
norm under these conditions. However, we will illustrate with some ex-
ample how it could be done when the partition has a small number of
intervals. For instance, suppose that ∗ is the t-norm depicted in Figure
9.2. In this case the equational base only needs to force the chains to have
no constant intervals in the negative part and at most 2 in the positive
part. Thus we take the equations:

¬¬n(x) ≈ n(x)

and∨
i<3

(¬xi ↔ ¬¬xi)∨
∨
i<3

(¬¬p(xi) → p(xi))∨
∨
i<2

(¬¬p(xi) → ¬¬p(xi+1)) ≈ 1

Consider now the chain in Figure 9.8 where some more restrictions must
be described in the equations.

In this case we take the following equational base:
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Figure 9.8: An example of a standard WNM-chain satisfying the FPP with
involutive intervals.

∨
i<3(¬¬n(xi) → n(xi)) ∨

∨
i<2(¬¬n(xi) → ¬¬n(xi+1)) ≈ 1

(there are at most two constant intervals in the negative part)∨
i<2(¬xi ↔ ¬¬xi) ∨

∨
i<2(¬¬p(xi) → p(xi)) ∨ (¬¬p(x0) → ¬¬p(x1)) ≈ 1

(there is at most one constant interval in the positive part)∨
i<2(¬¬n(xi) → n(xi)) ∨

∨
i<2(¬¬n(xi) → ¬¬n(xi+1)) ∨ (¬¬n(y) →

¬¬n(x1)) ∨ (¬¬n(x0) → ¬¬n(y)) ≈ 1

(if there are two constant intervals in the negative part, then there are no
involutive elements between them)∨
i<2(¬¬n(xi) → n(xi)) ∨

∨
i<2(¬¬n(xi) → ¬¬n(xi+1)) ∨ (¬¬n(x0) ↔

¬n(x0)) ≈ 1

(if there are two constant intervals in the negative part, then the right
extreme of the second one is the negation fixpoint)

(¬¬n(x0) → n(x0)) ∨ (¬¬n(y0) → ¬¬n(y1)) ∨ (¬¬n(y1) → ¬¬n(x0)) ≈ 1

(if there is a constant interval in the negative part, then there is at most
one negative involutive element above it)

(¬x0 ↔ ¬¬x0) ∨ (¬¬p(x0) → p(x0)) ∨ (¬y0 ↔ ¬¬y0) ∨ (¬¬p(x0) →
¬¬p(y0)) ≈ 1

(if there is a constant interval in the positive part, then there are no positive
involutive elements below it)

9.6 Conclusions

In this chapter we have studied a particular variety of MTL-algebras, WNM,
which is a proper subvariety of the intersection of the varieties C3MTL and
BP+ω

0 , introduced in previous chapters. After presenting the description and
axiomatization of the varieties formed by the involutive members obtained in
[71], we have achieved the following new results:
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• WNM is a locally finite variety, so it has the FEP and the FMP and the
corresponding logic is decidable. Obviously, these properties are inherited
by all the subvarieties and axiomatic extensions, respectively.

• We have studied WNM-t-norms. In particular, we have characterized the
generic t-norms, we have given criteria to compare their generated varieties
and we have studied their standard completeness properties.

• We have given equational bases for some varieties generated by a finite
family of standard WNM-chains.





Part II

Partial truth in triangular
norm based logics





Chapter 10

Expansions with
truth-constants

T-norm based fuzzy logics are basically logics of comparative truth. In fact, the
residuum ⇒ of a (left-continuous) t-norm ∗ satisfies for every x, y ∈ [0, 1] the
condition x⇒ y = 1 if, and only if, x ≤ y. This means that a formula ϕ→ ψ is
a logical consequence of a theory if the truth-degree of ϕ is at most as high as the
truth degree of ψ in any interpretation which is a model of the theory. In fact
the logic of continuous t-norms as it is presented in Hájek’s seminal book [79],
only deals with valid formulae and deductions using 1 as the only designated
truth-value. This line is followed by the majority of logical papers written from
then in the setting of many-valued fuzzy logics.

But, in general, these systems do not exploit in depth neither the idea of
comparative truth nor the potentiality of dealing with explicit partial truth that
a many-valued logic setting offers. On the one hand, for instance, a logic which
is based exclusively on the idea of comparative truth is the system  L≤∞ (see [60])
where a deduction is valid if, and only if, the degre of truth of the premises
is less or equal than the degree of truth of conclusion . The system developed
there is based on  Lukasiewicz infinitely-valued logic  L but it could be defined
over any t-norm based logic. Actually, since Gödel logic G is the only t-norm
based logic enjoying the classical deduction-detachment theorem, it is the only
case in which the usual G logic coincides with G≤

∞.
On the other hand, in some situations one might be also interested to explic-

itly represent and reason with partial degrees of truth. To do so, one convenient
and elegant way is introducing truth-constants into the language. This approach
actually goes back to Pavelka [128] who built a propositional many-valued logical
system which turned out to be equivalent to the expansion of  Lukasiewicz Logic
 L by adding into the language a truth-constant r for each real r ∈ [0, 1], together
with a number of additional axioms. Although the resulting logic is not strongly
complete with respect to the intended semantics defined by the  Lukasiewicz t-
norm, (like the original  Lukasiewicz logic), Pavelka proved that his logic, denoted

139
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here PL, is complete in a different sense. Namely, he defined the truth-degree of
a formula ϕ in a theory T as ‖ϕ‖T = inf{e(ϕ) | e is a PL-evaluation model of T},
and the provability degree of ϕ in T as |ϕ|T = sup{r | T `PL r → ϕ} and proved
that these two degrees coincide. This kind of completeness is usually known as
Pavelka-style completeness, and strongly relies on the continuity of  Lukasiewicz
truth functions. Novák extended Pavelka’s approach to  Lukasiewicz first-order
logic [123]. Furthermore,  Lukasiewicz logic extended with truth-constants has
been extensively developed by Nóvak and colleagues in the frame of the so-called
fuzzy logic with evaluated syntax (see e.g. [124]).

Later, Hájek [79] showed that the logic PL could be significantly simplified
while keeping the Pavelka-style completeness results. Indeed he showed that it is
enough to extend the language only by a countable number of truth-constants,
one constant r for each rational in r ∈ [0, 1], and by adding to the logic the two
following additional axiom schemata, called book-keeping axioms:

r&s↔ r ∗ L s
(r → s) ↔ r ⇒ L s

where ∗ L and ⇒ L are the  Lukasiewicz t-norm and its residuum respectively. He
called this new system Rational Pavelka Logic, RPL for short. Moreover, he
proved that RPL is strongly complete (in the usual sense) for finite theories.

Similar rational expansions for other continuous t-norm based fuzzy logics can
be analogously defined, but Pavelka-style completeness cannot be obtained since
 Lukasiewicz Logic is the only fuzzy logic whose truth-functions are a continuous
t-norm and a continuous residuum.1

However, several expansions with truth-constants of fuzzy logics different
from  Lukasiewicz have been studied, mainly related to the other two outstand-
ing continuous t-norm based logics, namely Gödel and Product logic. We may
cite [79] where an expansion of G∆ (the expansion of Gödel Logic G with Baaz’s
projection connective ∆) with a finite number of rational truth-constants is
studied, [54] where the authors define logical systems obtained by adding (ra-
tional) truth-constants to G∼ (Gödel Logic with an involutive negation) and to
Π (Product Logic) and Π∼ (Product Logic with an involutive negation). In the
case of the rational expansions of Π and Π∼ an infinitary inference rule (from
{ϕ → r : r ∈ Q ∩ (0, 1]} infer ϕ → 0) is introduced in order to obtain Pavelka-
style completeness. Rational truth-constants have been also considered in some

1An easy argument shows that for logics based on other continuous t-norms Pavelka-style
completeness does not hold. Let L∗ be the logic of a continuous t-norm ∗ (not isomorphic
to  Lukasiewicz t-norm) and its residuum ⇒ (as defined in [53]). Then it is known that the
induced negation ¬x = x ⇒ 0 is not continuous in x = 0, i.e. sup{¬x | x > 0} < ¬0 = 1.

Let p be a propositional variable and let T = {p → r | r > 0}. One can show that
‖p → 0‖T 6= |p → 0|T . Indeed, ‖p → 0‖T = inf{e(p) ⇒ 0 | e(p) ≤ r for all r > 0} = 0 ⇒ 0 = 1,
and we show that |p → 0|T < 1. For this, it is enough to prove that T 6` r0 → (p → 0) for any
r0 < 1 such that r0 > sup{¬x | x > 0} (such an element exists because ∗ is not isomorphic to
 Lukasiewicz t-norm). Suppose not. In such a case, there would exist a finite theory T0 ⊆ T
such that T0 ` r0 → (p → 0). Then, by soundness, it should be r0 ≤ ¬e(p) for any evaluation
e such that e(p) ≤ s, where s = min{r | r → p ∈ T0}, which is a contradiction (e.g. take
e(p) = s).
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stronger logics like in the logic  LΠ 1
2 [53], a logic that combines the connectives

from both  Lukasiewicz and Product logics plus the truth-constant 1/2, and in
the logic P L [92], a logic which combines  Lukasiewicz Logic connectives plus an
additional conjunction, as well as in some closely related logics.

Following this line, Cintula gives in [37] a definition of what he calls Pavelka-
style extension of a particular fuzzy logic. He considers the Pavelka-style exten-
sions of the most popular fuzzy logics, and for each one of them he defines an
axiomatic system with infinitary rules (to overcome discontinuities like in the
case of Π explained above) which is proved to be Pavelka-style complete. More-
over he also considers the first-order versions of these extensions and provides
necessary conditions for them to satisfy Pavelka-style completeness.

In this chapter, the approach based on traditional algebraic semantics will be
considered in order to study completeness results (in the usual sense) for expan-
sions of t-norm based logics with truth-constants. Indeed, as already mentioned,
only the case of  Lukasiewicz logic was known after [79]. Now we will provide a
full description of completeness results for the expansions of logics of t-norms
with a set of truth-constants {r | r ∈ C}, for a suitable countable C ⊆ [0, 1],
when (i) the t-norm is either a finite ordinal sum of  Lukasiewicz, Gödel and
Product components or a WNM that has a finite partition and (ii) the set of
truth-constants covers all the unit interval in the sense that each component
(for continuous case) or interval of the partition (for the WNM case) contains
at least one value of C in its interior.

All the results included in this chapter have been obtained in a long-term
cooperation of the author with several researchers and they have been already
published (or submitted for publication) in form of several papers. More pre-
cisely, the expansion of Gödel (and of some t-norm based logic related to the
Nilpotent Minimum t-norm) with rational truth-constants and the expansion of
Product logic with countable sets of truth-constants have been studied in [55]
and in [132]. Later on, the basic cases of  Lukasiewicz, Gödel and Product logics
have been recently extended in [50] to the more general case of logics of con-
tinuous t-norms which are finite ordinal sums of the three basic components.
Finally, in [56] some other completeness results corresponding to the expansions
with truth-constants of logics of WNM t-norms with a finite partition have been
added. In these papers, the issue of canonical standard completeness (that is,
completeness with respect to the standard algebra where the truth-constants
are interpreted as their own values) for these logics has been determined. Also,
special attention has been paid to the fragment of formulae of the kind r → ϕ,
where ϕ is a formula without additional truth-constants. Actually, this kind
of formulae have been extensively considered in other frameworks for reasoning
with partial degrees of truth, like in Novák’s evaluated syntax formalism based
on  Lukasiewicz Logic (see e.g. [125]), in Gerla’s framework of abstract fuzzy
logics [70] or in fuzzy logic programming (see e.g. [138]).
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10.1 Adding truth-constants

In this section we introduce the basic definitions and first general results re-
garding the expansions with truth-constants for those extensions of MTL which
are the logic of a given left-continuous t-norm. In the following, for any left-
continuous t-norm ∗, [0, 1]∗ = 〈[0, 1], ∗,⇒,min,max, 0, 1〉 is its corresponding
standard MTL-chain and L∗ will denote its corresponding axiomatic extension
of MTL.

Definition 10.1 (logic L∗(C)). Let ∗ be a left-continuous t-norm, and let
C = 〈C, ∗,⇒,min,max, 0, 1〉 ⊆ [0, 1]∗ be a countable subalgebra. Consider the
expanded language LC = L ∪ {r : r ∈ C \ {0, 1}} where we introduce a new
constant for every element in C \ {0, 1}. We define L∗(C) as the expansion of
L∗ in the language LC obtained by adding the so-called book-keeping axioms:

r&s↔ r ∗ s
(r → s) ↔ r ⇒ s

for every r, s ∈ C.

Notice that in this definition the book-keeping axioms r∧s↔ min{r, s} that
would correspond to the other primitive connective in MTL, ∧, are not present,
since they are easily derivable in L∗(C) as actually defined.

The algebraic counterparts of the L∗(C) logics are defined in the natural way.

Definition 10.2. Let ∗ be a left-continuous t-norm and let C be a countable
subalgebra of [0, 1]∗. An L∗(C)-algebra is a structure

A = 〈A,&A,→A,∧A,∨A, {rA : r ∈ C}〉

such that:
1. 〈A,&A,→A,∧A,∨A, 0A, 1A〉 is an L∗-algebra, and
2. for every r, s ∈ C the following identities hold:

rA&AsA = r ∗ sA
rA →A sA = r ⇒ sA.

The canonical standard L∗(C)-chain is the algebra

[0, 1]L∗(C) = 〈[0, 1], ∗,⇒,min,max, {r : r ∈ C}〉,

i. e. the LC-expansion of [0, 1]∗ where the truth-constants are interpreted by
themselves.

Since the additional symbols added to the language are 0-ary, the condition
of algebraizability given in Chapter 2 is trivially fulfilled. Therefore, L∗(C) is
also an algebraizable logic and its equivalent algebraic semantics is the variety
of L∗(C)-algebras, denoted as L∗(C). In particular this means that the logics
L∗(C) are strongly complete with respect to the variety of L∗(C)-algebras. Fur-
thermore, reasoning as in the MTL case, we can prove that all L∗(C)-algebras
are representable as a subdirect product of L∗(C)-chains, hence we also have
completeness of L∗(C) with respect to L∗(C)-chains.
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Theorem 10.3. For any Γ∪ {ϕ} ⊆ FmLC
, Γ `L∗(C) ϕ if, and only if, {ψ ≈ 1 :

ψ ∈ Γ} |={L∗(C)−chains} ϕ ≈ 1.

This general completeness with respect to chains, can be refined by using
[35, Lemma 3.4.4], where Cintula proves a very general result for expansions of
fuzzy logics with rational truth-constants. Adapted to our framework, it reads
as follows.

Theorem 10.4 ([37]). Let ∗ be a left-continuous t-norm such that L∗ is strongly
complete with respect to a class K of L∗-chains. Then L∗(C) is strongly complete
with respect to the class of L∗(C)-chains whose L-reducts are in K.

Notice that when K is the class of all L∗-chains, then this theorem does not
provide anything new other than the result of Theorem 10.3. If K is the class of
standard L∗-chains, the condition that L∗ should be strongly complete is very
demanding. For instance if we restrict ourselves to continuous t-norm based
logics, then only Gödel logic G satisfies this condition (SSC). If we consider
logics of genuine left-continuous t-norms, then so far we can only additionally
consider the NM logic and some WNM logics (see previous section).

Since all the logics L∗(C) are expansions of MTL, sharing Modus Ponens as
the only inference rule, they have the same local deduction-detachment theorem
as MTL has. In fact, the proof for MTL or BL also applies here.

Theorem 10.5. For every Γ ∪ {ϕ,ψ} ⊆ FmLC
, Γ, ϕ `L∗(C) ψ if, and only if,

there is a natural k ≥ 1 such that Γ `L∗(C) ϕ
k → ψ.

One can also show the following general result about the conservativity of
L∗(C) w.r.t. L∗.

Proposition 10.6. L∗(C) is a conservative expansion of L∗.

Proof: Let Γ ∪ {ϕ} ⊆ FmL be arbitrary formulae and suppose that Γ `L∗(C) ϕ.
Then, there is a finite Γ0 ⊆ Γ such that Γ0 `L∗(C) ϕ. By the above deduction
theorem, there exists a natural k such that `L∗(C) (Γ0)k → ϕ, identifying the set
Γ0 with the strong conjunction of all its formulae. By soundness, this implies that
|=[0,1]L∗(C)

(Γ0)k → ϕ. Since the new truth-constants do not occur in Γ0 ∪ {ϕ},
we have |=[0,1]∗ (Γ0)k → ϕ, and by SC of L∗, `L∗ (Γ0)k → ϕ, and hence Γ `L∗ ϕ
as well. 2

In the rest of the chapter we will study the SC, FSSC and SSC properties for
the logics with truth-constants L∗(C), and also canonical standard completeness
properties, i.e. SC, FSSC and SSC restricted to the canonical standard algebra.

10.2 Structure of L∗(C)-chains

We have seen in Theorem 10.5 that the logics L∗(C) are complete with respect
to the L∗(C)-chains. To study standard completeness results for L∗(C) we need
to obtain a deeper insight into L∗(C)-chains. This is done in this section.
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Next we assume ∗ is a left-continuous t-norm and C is a countable subalgebra
of [0, 1]∗.

Lemma 10.7. For any L∗(C)-chain A = 〈A,&,→,∧,∨, {rA : r ∈ C}〉, let
FC(A) = {r ∈ C : rA = 1A} and FC(A) = {r ∈ C : ¬r ∈ FC(A)}. Then:

(i) FC(A) is a filter of C.

(ii) The set {rA : r ∈ C} forms an L-subalgebra of A, denoted as CA, isomor-
phic to C/FC(A), through the mapping rA 7→ [r]A, in such a way that

[1]A = FC(A) and [0]A = FC(A),

where [r]A denotes the equivalence class of r ∈ C w.r.t. to the congruence
defined by the filter FC(A).

Proof: (i) If r ∈ FC(A) and s ∈ C with s > r, then s ∈ FC(A) because by the

book-keeping axioms we have sA = max(r, s)
A

= rA ∨ sA = 1A. Moreover if
r, s ∈ FC(A) then r ∗ s ∈ FC(A) since r ∗ sA = rA&sA = 1A. Therefore FC(A)
is a filter.
(ii) Consider the function f : C → CA defined by f(r) = rA. It is clear that f is
a surjective homomorphism and Kerf = FC(A), so C/FC(A) ∼= CA. 2

In general, the equivalence classes of C with respect to a filter F , i.e. the
elements of C/F , are difficult to describe, but some interesting cases can be
indeed fully described. The next lemma refers to these cases, where we use the
following notation:

CONT = {∗ is a continuous t-norm}

CONT-fin = {∗ ∈ CONT | ∗ is a finite ordinal sum of the basic
components}

Lemma 10.8. Let ∗ ∈ CONT ∪ WNM and C be a countable subalgebra of
[0, 1]∗. For any F ∈ Fi(C) we have:

(i) for any r, s /∈ F ∪ F , [r]F = [s]F iff r = s;

(ii) moreover, if ∗ ∈ CONT then F = {0}.

Proof: If ∗ ∈ WNM, it follows from the description of quotients in WNM-chains
given in Chapter 9. Suppose that ∗ ∈ CONT and assume that r < s /∈ F ∪ F
and [r]F = [s]F . Then s→ r ∈ F , but this is a contradiction since:
If r, s ∈ (ai, bi) and [ai, bi] is a  Lukasiewicz component, then s → r is a nilpo-
tent element belonging to F which implies that the minimum of the component
belongs to F and therefore [ai, bi] ⊆ F , a contradiction.
If r, s ∈ (ai, bi) and [ai, bi] is a Product component, then s → r ∈ F which
implies: If r = 0, then 0 ∈ F , a contradiction; and if r 6= 0 then there exists n
such that r > (s→ r)n and thus r, s ∈ F , a contradiction.
Finally if r ∗ s = min{r, s} then s→ r = r ∈ F , a contradiction.
(ii) follows easily from the structure of the negation in standard BL-chains. 2
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This lemma shows that the interpretation of the constants over a L∗(C)-chain
A depends only on the filter FC(A). Roughly speaking, if i : C → {rA : r ∈ C}
denotes that interpretation, i.e. i(r) = rA for all r ∈ C, then i maps truth-values
r to 1A or 0A depending on whether r ∈ FC(A) or r ∈ FC(A) respectively, and
over the rest of the elements of C, i.e. those in C \ (FC(A) ∪ FC(A)), i is a
one-to-one mapping.

The standard chains of the variety L∗(C), i.e. the L∗(C)-algebras over [0, 1],
are the key to obtain standard completeness results for the logic L∗(C) when
using the technique of partially embedding L∗(C)-chains into standard ones. In
order to know when such embeddings are possible, it is necessary to study the
standard L∗(C)-chains in more detail. This question is in fact related to describe
the ways the truth-constants from C can be interpreted in [0, 1] respecting the
book-keeping axioms. We have seen in Lemmas 10.7 and 10.8 some necessary
conditions showing the preeminent role of the set Fi(C) of proper filters of C
plays in this question. Observe that each proper filter of C is either of type
F a = {x ∈ C : x ≥ a} or of type F>a = {x ∈ C : x > a} for some a ∈ C.

One can wonder whether, given a filter F ∈ Fi(C), there always exists a
standard L∗(C)-chain A such that FC(A) = F . Obviously, the simplest thing to
look at is whether the algebra

[0, 1]FL∗(C) = 〈[0, 1], ∗,⇒∗,min,max, {iF (r) : r ∈ C}〉,

where the mapping iF : C → [0, 1] is defined as

iF (r) =


1, if r ∈ F
0, if r ∈ F
r, otherwise

(10.1)

is always an L∗(C)-algebra over [0, 1]∗, or in other words, whether the mapping iF
is always a proper interpretation of the truth-constants, in the sense of satisfying
the book-keeping axioms.

It is easy to check that this is actually the case when ∗ ∈ CONT, and in
such a case [0, 1]FL∗(C) will be called standard algebra of type F . Moreover, when
∗ ∈ CONT-fin, one can show that these are all the standard chains over [0, 1]∗
one can define, in the sense that there are as many L∗(C)-algebras over [0, 1]∗
(up to isomorphism) as proper filters of C. To this end, first we need a technical
lemma, which is related to the so-called Hion’s Lemma (see e.g. [73, Lemma
4.1.6]).

Lemma 10.9. Let C be a subset of [0, 1] containing 0 and 1 and closed under
the product of real numbers. Let g : C → [0, 1] satisfy g(x · y) = g(x) · g(y) for
all x, y ∈ C and g(x) < g(y) for all x, y ∈ C such that x < y. Then there exists
α ∈ R+ such that g(r) = rα for all r ∈ C.

Proof: By the assumptions on g, we have for all r, s ∈ C, r, s > 0 and for all
i, j ∈ N:
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(i) if ri ≤ sj then g(r)i ≤ g(s)j

(ii) if ri ≥ sj then g(r)i ≥ g(s)j

Using logarithms in statements (i) and (ii) we obtain the following equivalent
statements for all i, j ∈ N:

(i’) if i · ln r − j · ln s ≤ 0 then i · ln g(r)− j · ln g(s) ≤ 0
(ii’) if i · ln r − j · ln s ≥ 0 then i · ln g(r)− j · ln g(s) ≥ 0

or equivalently,

(i”) if i
j ≥

ln s
ln r then i

j ≥
ln g(s)
ln g(r)

(ii”) if i
j ≤

ln s
ln r then i

j ≤
ln g(s)
ln g(r)

The fact that these inequalities hold for all natural numbers i, j implies that

ln s
ln r

=
ln g(s)
ln g(r)

Indeed, if ln s
ln r >

ln g(s)
ln g(r) , then there is a rational number i

j such that ln s
ln r >

i
j >

ln g(s)
ln g(r) . This contradicts (ii”). Similarly, ln s

ln r <
ln g(s)
ln g(r) contradicts (i”).

Finally, taking an arbitrary strictly positive r ∈ C and letting α =
ln g(r)/ ln r, the above equality leads to

g(s) = sα

for each s ∈ C. This ends the proof. 2

Proposition 10.10. Let ∗ ∈ CONT-fin. Then:
For any F ∈ Fi(C), the algebra [0, 1]FL∗(C) is an L∗(C)-algebra. Conversely, any
standard L∗(C)-chain whose L-reduct is [0, 1]∗ is (up to isomorphism) an algebra
[0, 1]FL∗(C), for some F ∈ Fi(C).
More precisely: Let X = {[A] : A standard L∗(C)-algebra over [0, 1]∗} be the
set of isomorphism classes of L∗(C)-algebras over [0, 1]∗. Then, the function
Φ : X → Fi(C) defined by Φ([A]) = FC(A) for every [A] ∈ X is a bijection.

Proof: Given F ∈ Fi(C), an easy computation shows that the algebra [0, 1]FL∗(C)
is an L∗(C)-algebra. Φ is well-defined: if A ∼= B, then it is clear that CA ∼= CB,
so FC(A) = FC(B).
Φ is clearly onto because Φ([0, 1]FL∗(C)) = F . We must prove that Φ is also
injective. Suppose that Φ(A) = Φ(B), i. e. FC(A) = FC(B). Then, we have
CA ∼= C/FC(A) = C/FC(B) ∼= CB, and we want to conclude that A ∼= B.

1. If ∗ is the  Lukasiewicz t-norm, the only proper filter of C is {1}. Thus,
CA ∼= CB(∼= C). Let h denote this isomorphism. If h 6= Id, then there is
a 6= h(a). Let b = h(a). Taking the restricition of h, it is clear that the
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generated subalgebras are also isomorphic, i. e. 〈a〉 ∼= 〈b〉, so a and b are
either both rational or either both irrational (otherwise, the rational one
would generate a finite subalgebra, and the irrational one would generate
an infinite subalgebra). If a and b are irrational, then by [65, Proposition 2
and Theorem 3] a = 1−b. Therefore one of them must be positive; suppose
that it is a. Then 2a = 1, so 2(1 − b) = 1. But, due to the isomorphism,
we also have 2b = 1, a contradiction. If a and b are rational we reason
analogously.

2. If ∗ is the minimum t-norm and FC(A) = FC(B) is any proper filter and
CA ∼= C/FC(A) = C/FC(B) ∼= CB, then we can define a function h such
that for every r ∈ C \ FC(A), h(rA) = rB, and then we extend it to an
isomorphism from A to B.

3. If ∗ is the product t-norm there are only two proper filters, {1} and C \{0}
and thus we have two types of Π(C)-chains over [0, 1]Π corresponding to
the cases that F = {1} (the corresponding type of Π(C)-chains are the ones
such that for each pair r < s in C, then rA < sA) and the case C \{0} (the
corresponding type of Π(C)-chains are such that rA = 1A for all r 6= 0).
If FC(A) = FC(B) = {1}, then CA ∼= CB ∼= C. By Lemma 10.9, there exist
positive reals α and β such that rA = rα and rB = rβ for each r ∈ C.
Therefore, the mapping h : [0, 1] → [0, 1] defined as h(x) = xβ/α defines
an isomorphism from A to B. If FC(A) = FC(B) = C \ {0}, the result is
trivial.

4. If ∗ is any continuous t-norm, then all possible proper filters are either of
the form [a, 1] where a is either in a Gödel component, or the minimum of
a  Lukasiewicz component or the minimum of a product component, or of
the form (a, 1] where a is either in a Gödel component or the minimum of
a product component. The result is proved by applying the previous cases
to each component of its decomposition not included in the filter.

2

For the case of L∗(C) logics where ∗ ∈ WNM-fin the situation is not so
simple. We illustrate the problem with an example. Let ∗ be the WNM t-
norm represented at left hand side of Figure 9.4 and take C = Q ∩ [0, 1]. Let a
be a positive involutive element such that I∗a 6= {a} and let Fa be the principal
filter generated by a. Then the mapping iFa

: C → [0, 1], defined as in expression
(10.1), is not a proper interpretation of the truth-constants since for each b ∈ I∗a ,
¬i(b) = ¬b = ¬a and i(¬b) = i(¬a) = 0, i.e. the book-keeping axioms are not
satisfied and hence the algebra [0, 1]FL∗(C) is not an L∗(C)-algebra. Thus the
mapping (10.1) used to interpret the truth-constants in the case of continuous
t-norms does not always work in the case of a WNM t-norm.

In fact, for the case ∗ ∈ WNM-fin, if we want to associate to each filter
F ∈ Fi(C) a standard chain of L∗(C) such that FC(A) = F , we need to proceed
in a different way. We will divide the job by cases.
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1. If the classes of C/F satisfy the condition that ¬[r]F = [0]F implies [r]F =
[1]F , then the interpretation used in the case of continuous t-norms works
well and the chain [0, 1]FL∗(C) is an L∗(C)-chain like in the continuous case.

2. If in C/F there are classes such that

[r]F 6= [1]F (that is, r /∈ F ) and ¬[r]F = [0]F ,

then the mapping iF : C → [0, 1] defined by expression (10.1) is not, in
general, an interpretation as the example above proves.

Thus in this case, we consider two further subcases:

(a) If [0, 1]∗ is such that I∗1 6= {1} (i.e. ¬x = 0 for some x < 1), then the
mapping i′F : C → [0, 1] defined by,

i′F (r) =


1, if r ∈ F
0, if r ∈ F
f(r), if ¬r = 0 and r /∈ (F ∪ F )
r, otherwise

(10.2)

where f : {r ∈ C | ¬r = 0, r /∈ (F ∪ F )} → I∗1 is an (arbitrary) one-
to-one increasing mapping, is an interpretation which satisfies the
book-keeping axioms. Then the algebra

[0, 1]FL∗(C) := 〈[0, 1], ∗,⇒∗,min,max, {i′F (r) : r ∈ C}〉

is an L∗(C)-chain over [0, 1]∗. chain of type F .

(b) If [0, 1]∗ is such that I∗1 = {1} (i.e. ¬x = 0 implies x = 1), then the
mapping i′F : C → [0, 1] defined in the previous case does not apply
here since having I∗1 = {1} makes impossible to define a one-to-one
mapping f as required there. In this case we take as initial chain,
not the standard chain [0, 1]∗, but the chain ([0, 1]∗)/Fa (which still
belongs to the variety L∗) where a ∈ C is the greatest element in the
constant intervals of [0, 1]∗. Notice that [1]Fa

= [a, 1], [0]Fa
= [0,¬a]

and [r]Fa
= {r} for any r ∈ (¬a, a). Hence, ([0, 1]∗)/Fa is isomorphic

to an L∗-chain [¬a, a]∗′ by identifying [1]Fa
with a, [0]Fa

with ¬a,
and [r]Fa

with r for all r ∈ (¬a, a), and by taking ∗′ as the obvious
adaptation to the interval [¬a, a] of the original ∗. Now it is clear that
[¬a, a]∗′ is such that I∗

′

1 6= {1} and therefore we can define a mapping
i′′F : C → [¬a, a] analogously to (10.2) which makes the algebra

〈[¬a, a], ∗′,⇒∗′ ,min,max, {i′′F (r) : r ∈ C}〉

an L∗(C)-chain. Finally, by means of an increasing linear transforma-
tion h : [¬a, a] → [0, 1], it is easy to obtain an isomorphic L∗(C)-chain
over [0, 1]

[0, 1]FL∗(C) := 〈[0, 1], ◦,⇒◦,min,max, {jF (r) : r ∈ C}〉
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where x ◦ y = h(h−1(x) ∗′ h−1(y)) and jF (r) = h(i′′F (r)) for all r ∈ C.
Notice that ◦ needs not coincide with ∗.

Thus, we have the following corollary.

Corollary 10.11. Let ∗ ∈ CONT-fin ∪WNM-fin and let C be a countable
subalgebra of [0, 1]∗. Then, for any filter F ∈ Fi(C), there exists a standard
L∗(C)-chain A such that FC(A) = F , namely A = [0, 1]FL∗(C).

Any standard L∗(C)-chain A such that FC(A) = F will be called from now
on standard L∗(C)-chain of type F .

10.3 Completeness results

In this section we will give completeness results for the logics L∗(C) in the fol-
lowing particular cases:

1. When ∗ ∈ CONT-fin and C is a countable subalgebra of [0, 1]∗ such that
C has elements in the interior of each component of the t-norm ∗, and in
addition every r ∈ C belonging to a  Lukasiewicz component generates a
finite MV-chain.

2. When ∗ ∈ WNM-fin and C is a countable subalgebra of [0, 1]∗ such that
has elements in the interior of each interval of the partition.

Thus, from now on we will assume that the algebra C satisfies these conditions.
In the following subsection we will focus on strong and finite strong standard

results while in the second subsection we will focus on the issue of canonical
standard completeness.

10.3.1 About SSC and FSSC results

We start with a general result on strong standard completeness when ∗ ∈
WNM-fin which is consequence of Theorem 10.4 and the SSC results given
in Corollary 9.33.

Theorem 10.12. For every ∗ ∈ WNM-fin and every suitable C, the logic L∗(C)
enjoys the SSC restricted to the family {[0, 1]FL∗(C) : F ∈ Fi(C)}.

As particular cases of the above theorem we obtain that the logics G(C) and
NM(C) enjoy the SSC restricted to the corresponding family {[0, 1]FL∗(C) : F ∈
Fi(C)}.

Notice that these results can never be improved to canonical SSC, as the
following example shows.

Example 6. For every non-trivial filter F (that exists in all these cases) and
every r ∈ F \ {1}, the derivation

(x→ y) → r |= y → x

is valid in [0, 1]L∗(C) but not in [0, 1]FL∗(C).
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Observe that by Proposition 5.8 and Theorem 5.9 and being L∗(C) a conser-
vative expansion of L∗, the SSC is false for the logics L∗(C) for each ∗ ∈ CONT
when ∗ 6= min.

Since there is no result relating the FSSC for logics without truth-constants
to the FSSC for the corresponding expanded logic with truth-constants, in order
to study the FSSC we need to use the bridge result given in Theorem 5.4 i.e. we
have to study partial embeddability for algebras with truth-constants.

Definition 10.13. The logic L∗(C) has the partial embeddability property if,
and only if, for every filter F ∈ Fi(C) and every subdirectly irreducible L∗(C)-
chain A of type F , A is partially embeddable into [0, 1]FL∗(C).

Obviously, the logics with truth-constants that enjoy the SSC restricted to
the family of standard chains of type F , being F a proper filter of C, enjoy the
partial embeddability property as well. Thus in the next theorem we consider
cases that in general do not enjoy the SSC. For  Lukasiewicz logic with rational
truth-constants the problem has been already solved by Hájek.

Theorem 10.14 ([79]). For every countable subalgebra C ⊆ [0, 1] L of rational
numbers, the logic  L(C) enjoys the canonical FSSC.

Open problem: In the previous theorem, is the condition C ⊆ Q ∩ [0, 1]
necessary?

The proof of the partial embeddability property for Π(C) will take a lot of
work. Let us denote by [0, 1]∗Π(C) the standard Π(C)-chain corresponding to the
filter (0, 1]. First, we will show that the variety generated by the Π(C)-algebras
on [0, 1] is V([0, 1]Π(C)). Therefore, we need to show that [0, 1]∗Π(C) belongs to the
variety generated by [0, 1]Π(C). In order to prove this in Theorem 10.17, we need
a method to convert a nonsatisfying evaluation e of a Π(C)-formula in [0, 1]∗Π(C)
to a nonsatisfying evaluation e′ of the same formula in [0, 1]Π(C). This is achieved
in the following paragraphs concluded by the specific result in Proposition 10.16.

Let e be an evaluation of Π(C)-formulae on the type II algebra [0, 1]∗Π(C). In
particular, for every r ∈ C \ {0}, we have e(r) = 1. Consider the following set
of evaluations e′t on the canonical standard algebra [0, 1]Π(C), parametrized by
positive real numbers t ∈ R+, defined as follows.

• e′t(r) = r for every truth-constant symbol r,

• e′t(x) = (e(x))t for every propositional variable x,

• composite formulae are evaluated according to the operations in [0, 1]Π(C).

We are going to prove that if e(φ) < 1, then e′t(φ) < 1 for every t large
enough. We start by making the following remarks.

The set [0, 1]R
+

of all functions from R+ into [0, 1] becomes a Π-algebra with
the operations · and ⇒Π defined pointwise and with the constant function 0 as
bottom and the constant function 1 as top.

Let F ⊆ [0, 1]R
+

be the set of all functions f : R+ → [0, 1] satisfying the
following condition:
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(E) There are 0 < c ≤ 1 and t0 > 0 such that c ≤ f(t) for all t ≥ t0.

It is immediate to verify that F is a filter of the Π-algebra [0, 1]R
+

(see e.g. [32,
Lemma 1.5]). Hence the congruence relation defined by F on [0, 1]R

+
, f ∼ g iff

f ⇒Π g ∈ F and g ⇒Π f ∈ F , turns out to be defined as

f ∼ g iff there are 0 < c, d ≤ 1 and t0 > 0 such that c · f(t) ≤ g(t) ≤ f(t)/d for
all t > t0,

Indeed, if c ≤ f(t) ⇒ g(t) for t > t1, then c · f(t) ≤ g(t), and if d ≤ g(t) ⇒
f(t), then d · g(t) ≤ f(t), for t > t2. Therefore c · f(t) ≤ g(t) ≤ f(t)/d, for
t > max(t1, t2).

Lemma 10.15. The congruence relation ∼ satisfies:
(i) f ∼ 0 iff there exists t0 such that f(t) = 0 for all t > t0
(ii) If f ∼ g then limt→∞ g(t) = 0 iff limt→∞ f(t) = 0.

Proof: Both statements are straightforward using the above equivalence. 2

Proposition 10.16. Let e and e′t be defined as above. For every formula φ let
gφ(t) = (e(φ))t and fφ(t) = e′t(φ). Then we have fφ ∼ gφ. In particular, if
e(φ) < 1, then limt→∞ e′t(φ) = 0.

Proof: Let us proceed by induction on the complexity of φ.

1. Constants.

r = 0. g0(t) = e(0)t = 0 and f0(t) = e′t(0) = 0, and 0 ∼ 0.

r > 0. gr(t) = (e(r))t = 1t = 1 and fr(t) = e′t(r) = r, and obviously r ∼ 1.

2. Variables.

Direct consequence of the definition (fx(t) = gx(t)).

3. φ = (ψ1&ψ2).

gψ1&ψ2(t) = e(ψ1&ψ2)t = e(ψ1)t · e(ψ2)t = gψ1(t) · gψ2(t).

fψ1&ψ2(t) = e′t(ψ1&ψ2) = e′t(ψ1) · e′t(ψ2) = fψ1(t) · fψ2(t).

Since ∼ is a congruence, if we suppose that fψ1 ∼ gψ1 and fψ2 ∼ gψ2 , we
can conclude that fψ1&ψ2 ∼ gψ1&ψ2 .

4. φ = (ψ1 → ψ2).

gψ1→ψ2(t) = e(ψ1 → ψ2)t = (e(ψ1) ⇒ e(ψ2))t = e(ψ1)t ⇒ e(ψ2)t =
gψ1(t) ⇒ gψ2(t).

fψ1→ψ2(t) = e′t(ψ1 → ψ2) = e′t(ψ1) ⇒ e′t(ψ2) = fψ1(t) ⇒ fψ2(t).

Using again the fact that ∼ is a congruence, from the hypothesis fψ1 ∼ gψ1

and fψ2 ∼ gψ2 , we obtain fψ1→ψ2 ∼ gψ1→ψ2 .
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The first statement of the proposition is proved. The second statement follows
from the first statement and (ii) of Lemma 10.15. 2

Theorem 10.17. [0, 1]∗Π(C) ∈ V([0, 1]Π(C)), hence the variety generated by the
class of Π(C)-algebras over the unit real interval [0, 1] is V([0, 1]Π(C)).

Proof: Let ϕ be not valid in [0, 1]∗Π(C). There exists an evaluation e on [0, 1]∗Π(C)
such that e(ϕ) < 1. By the above proposition, limt→∞ e′t(ϕ) = 0 as well, hence
for every large enough t, e′t(ϕ) < 1. Since e′t is an evaluation on [0, 1]Π(C), ϕ is
not valid in [0, 1]Π(C). 2

To show that the logic Π(C) has the partial embedding property we introduce
some notation. Given a linearly ordered Π(C)-algebra A and a finite subset E of
A, denote by CE the set {r ∈ C | rA ∈ E}. Let C̃E be the Π-algebra generated
by CE . Note that the Π-algebra generated by E is naturally a Π(C̃E)-algebra.
Let C̃E

∗
be C̃E without 0.

In the proof of the next proposition we make use of the ordered Abelian group
(R+)klex obtained as the lexicographic product of k copies of the multiplicative
groups of positive reals.

Proposition 10.18. Let A be a linearly ordered Π(C)-algebra of type I and let
E be a finite subset of A. Let AE be the linearly ordered Π(C̃E)-algebra generated
by E. Then AE is isomorphic to a Π(C̃E)-algebra D such that the following is
satisfied:

• D = P(G) with G being a subgroup of (R+)klex, where k is an integer.

• there is an integer l and a real number α > 0 such that for every r ∈ C̃E
∗
,

we have rD = ωk,l(rα),

where, for any x ∈ (0, 1] and natural 1 ≤ l ≤ k, ωk,l(x) = (1, ..., 1, x, 1, ..., 1) ∈
(R+)k with x being at coordinate with index l.

Proof: Taking AE as a Π-algebra, there is a linearly ordered Abelian group G′
such that AE = P(G′), i.e. AE \ {0} is the negative cone of a linearly ordered
group G′. Since AE is finitely generated, so is G′. Hence, applying Theorem 2.23
there is a natural k such that G′ is isomorphic to a subgroup G of (R+)klex (see
Chapter 2 for the definition of (R+)klex and the result).

Then AE is also isomorphic (through a mapping ι) to P(G) as Π-algebras.
For every r ∈ C̃E define rP(G) = ι(rA). Using this, P(G) is a Π(C̃E)-algebra
isomorphic to AE . Therefore, for simplicity, we may assume from now that
AE = P(G).

Since C̃E is an Archimedean Π-algebra, there is a unique l ≤ k such that for
each element rA, r < 1 and r ∈ C̃E

∗
, we have rA = (1, ..., 1, al, ..., ak) with al <

1. Indeed, suppose r, s ∈ C̃E
∗

such that s < r < 1 and rA = (1, ..., 1, ai, ..., ak)
and sA = (1, ..., 1, bj , ..., bk) with i > j. There is a natural m such that rm < s,
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but obviously (rA)m = (1, .., 1, (ai)m, ..., (ak)m) >lex (1, ..., 1, bj , ..., bk) = sA,
contradiction.

Let f1, ..., fk : C̃E
∗
→ R+ be functions such that for each r ∈ C̃E

∗
we have

rA = (f1(r), ..., fk(r)). Due to the validity of the book-keeping axioms, for each
i, fi : C̃E

∗
→ R+ is a homomorphism for the product. According to the above

paragraph, fl is the first of the functions fi which is not the constant 1. Since
the algebra AE is a Π(C̃E)-algebra of type I and, by the previous paragraph,
fl(r) < 1 for every r < 1, r ∈ C̃E

∗
, fl is one-to-one and preserves the order

(indeed if fl(r) = fl(s) for some r ≥ s, then fl(r ⇒ s) = 1). Hence, by Lemma
10.9, fl is a power and we have

rA = (1, 1, ..., rα, fl+1(r), ..., fk(r)) (∗)

for some real α > 0.
Now let M = {xl | (x1, ..., xl, xl+1, ..., xk) ∈ G} be the set of all l-components

of elements of G. By its definition, M with the multiplication is a subgroup of
R+ which is generated by the set of rα’s, for r ∈ C̃E

∗
, and additionally by a

finite number of values xl coming from the elements of E. Now, define mappings
gl+1, ..., gk : M → R+ as follows:

1. put gj(rα) = fj(r) for all r ∈ C̃E
∗

2. using Lemma 2.24, extend gj to the subgroup generated by C̃E
∗

3. finally, applying Lemma 2.25 for the l-component of each element of E,
which is not an interpretation of an element of CE , extend gj to the whole
M .

As a result, we obtain a homomorphism gj from M to R+ for each j ∈ {l +
1, ..., k}.

Finally, define a new mapping h : G → (R+)k by putting

h((x1, ..., xl, xl+1, ..., xk)) = (x1, ..., xl, xl+1/gl+1(xl), ..., xk/gk(xl)).

We claim that, so defined, h is a monomorphism. Indeed, since the gj ’s are
homomorphisms for the product on M , h is a homomorphism for the product
on G as well. If two elements of G differ in xi for i ≤ l, then their images are
ordered in the same way, since the first l coordinates are not changed by h. If two
elements of G agree in the first l coordinates and the first different coordinate is
xi for i > l, then their images are ordered in the same way, since xi is again the
first differing coordinate and xi is divided by the same number in both images.

Therefore, h(G) is a subgroup of (R+)klex which is isomorphic to G. Consider
the Π-algebra D = P(h(G)). By construction of h, we have h(rA) = ωk,l(rα) for
every r ∈ C̃E

∗
. Hence, by defining rD = h(rA) = ωk,l(rα) for every r ∈ C̃E

∗
, D

becomes a Π(C̃E)-algebra, and moreover, D is isomorphic to AE . This ends the
proof of Proposition 10.18. 2
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In the following we show that there is a partial isomorphism of any Π(C̃E)-
algebra of the special form guaranteed by Proposition 10.18 into the canonical
standard Π(C)-algebra.

Proposition 10.19. Let G be subgroup of (R+)klex such that D = P(G) is a
Π(C)-algebra, with rD = ωk,l(rα) for every r ∈ C∗, for some natural l and
positive real α, and 0D = (0, k..., 0). Then for every finite subset E of D there is
a mapping q : E → [0, 1] satisfying the following four conditions
(i) q preserves the order,
(ii) q(rD) = r for all r ∈ CE,
(iii) If x, y, x ∗ y ∈ E then q(x) · q(y) = q(x ∗ y).
(iv) If x, y, x⇒ y ∈ E then q(x) ⇒Π q(y) = q(x⇒ y).

Proof: The candidates for q are restrictions to E of functions g : G → R+ of the
form

g((x1, x2, ..., xk)) = (xε11 · xε22 · ... · xεk

k )β ,

where εi, β > 0. Each of these functions is a homomorphism w.r.t. the product
of G. Hence, for every choice of εi and β, the restriction of g to E satisfies (iii).
By the assumption, for every r ∈ C∗ rD = ωk,l(rα). Hence, for every choice of
εi and β, we have g(rD) = rα·εl·β , where α ·εl ·β > 0. By choosing β = 1/(α ·εl),
we obtain that the restriction of g to E satisfies (ii).

Let us prove that it is possible to choose the εi in such a way that the
restriction of g to E satisfies (i). Let us classify the pairs of distinct values in E
according to the first index i0, where the values differ. Pairs which satisfy i0 = k
are ordered correctly for any positive value of εk. Pairs satisfying i0 = k − 1
may be put into the right order by choosing εk−1 = 1 and εk small enough to
guarantee that the difference (measured as a ratio) in the (k − 1)-th coordinate is
always larger than the difference in the k-th coordinate. In fact, if the exponents
εk−1 = 1, εk guarantee the right order of the pairs with i0 = k − 1, then the
exponents εk−1 = t, t · εk, for any positive t, guarantee the order as well. Hence,
when it is necessary to put the pairs with i0 = k − 2 into the right order, we
choose εk−2 = 1 and t small enough so that the difference in the (k − 2)-th
coordinate is always larger than the differences contributed by (k − 1)-th and
k-th coordinates. Since we preserve the ratio between εk−1 and εk, we do not
destroy the already correct order of pairs with i0 = k − 1. We proceed in a
similar way for pairs with smaller and smaller i0.

The condition (iv), the preservation of existing implications in E, is a conse-
quence of h being order preserving (i) and the preservation of existing products
(iii). 2

Theorem 10.20. Let A be a linearly ordered Π(C)-algebra and let E be a finite
subset of A. Then there exists a one-to-one mapping h : E → [0, 1] satisfying
the following conditions:
(i) h preserves the order,
(ii) h(rA) = r for all r ∈ CE,
(iii) If x, y, z ∈ E and z = x ∗ y then h(x) · h(y) = h(z).
(iv) If x, y, z ∈ E and z = x⇒ y then h(x) ⇒Π h(y) = h(z).
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G(C) Π(C)  L(C) L∗(C), for other ∗ ∈ CONT-fin
SC Yes Yes Yes Yes

FSSC Yes Yes Yes Yes
SSC Yes No No No

Canonical FSSC No No Yes No
Canonical SSC No No No No

Table 10.1: (Finite) strong standard completeness results for logics of a t-norm
from CONT-fin.

Proof: Let D be the algebra guaranteed by Proposition 10.18 applied to AE .
Let E′ be the image of E under the isomorphism between AE and D. Applying
Proposition 10.19 to D and E′ with C = C̃E , we obtain an embedding q, whose
composition with the above isomorphism has the required properties of h. 2

Now we can finally prove the partial embeddability property for every L∗(C),
when ∗ ∈ CONT-fin and C satisfies the conditions required at the beginning of
the section.

Theorem 10.21. For every ∗ ∈ CONT-fin and every suitable C, the logic
L∗(C) enjoys the partial embeddability property, and therefore it has the FSSC
restricted to the family {[0, 1]FL∗(C) : F ∈ Fi(C)}.

Proof: Suppose that [0, 1]∗ =
⊕n

i=1Ai. By Theorem 4.52 we know that
the subdirectly irreducible chains of V([0, 1]∗) are members of HSPU (A1) ∪
(ISPU (A1) ⊕ HSPU (A2)) ∪ . . . ∪ (

⊕n−1
i=1 ISPU (Ai) ⊕ HSPU (An)). Knowing

this structure of A as ordinal sum of the three basic components and taking
into account that for every  Lukasiewicz component Ai, the condition that every
r ∈ C ∩ Ai generates a finite MV-chain amounts to say that in the isomorphic
copy of this component as [0, 1] L, every r ∈ C ∩ Ai is isomorphically mapped
to a rational number, the partial embeddability property for the three basic
components gives the result. 2

Observe that in the  Lukasiewicz case the subalgebra of constants C has a
unique proper filter F = {1} and thus the logic enjoys the canonical FSSC.
Moreover, the Example 6 also shows that the rest of the logics do not enjoy the
canonical FSSC.

All these results are collected in Tables 10.1 and 10.2.

10.3.2 About canonical standard completeness

From the results of the last sections, we already know that all the considered
logics enjoy the SC restricted to the family of standard chains associated to
proper filters of C, i.e, their theorems are exactly the common tautologies of
the chains of the family {[0, 1]FL∗(C) : F ∈ Fi(C)}. But although the logics
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G(C) NM(C) L∗(C), for other ∗ ∈ WNM-fin
SC Yes Yes Yes

FSSC Yes Yes Yes
SSC Yes Yes Yes

Canonical FSSC No No No
Canonical SSC No No No

Table 10.2: (Finite) strong standard completeness results for logics of a t-norm
from WNM-fin.

considered in the last sections have not in general the canonical SSC or the
canonical FSSC (only  L(C) when C ⊆ Q ∩ [0, 1] enjoys it), some of them still
enjoy the canonical SC, i. e. their theorems are exactly the tautologies of their
corresponding canonical standard algebra. In order to prove it, we need to show
that tautologies of the canonical standard chain are a subset of the tautologies
of each one of the standard chains associated to each proper filter of C. Of
course, this is the case of  L(C) since it has the canonical FSSC. We will study
this problem by cases in next subsections.

The case of WNM-fin t-norms

The question for the canonical SC for WNM-fin t-norms is fully answered.
Some cases are proved to be canonical standard complete, while in the other
cases we provide a counterexample showing that they are not canonical standard
complete. In fact in [55] it is proved that the expansions of Gödel logic, NM
logic and the logics corresponding to the t-norms ⊗c and ?c depicted in Figure
9.3 enjoy the canonical SC2. Here we give a new unified and simpler proof.

Theorem 10.22. If ∗ ∈ WNM-fin is such that its negation on the set of
positive elements is either both involutive and continuous, or it is identically 0,
then L∗(C) enjoys the canonical SC

Proof: Suppose ϕ is a tautology with respect to [0, 1]L∗(C). We will prove that ϕ
is also a tautology with respect to [0, 1]FL∗(C) for each F ∈ Fi(C), which implies
that `L∗(C) ϕ. Let e be an interpretation over the chain [0, 1]FL∗(C). Suppose that
A is the finite algebra generated by {e(ψ) | ψ subformula of ϕ} and α = min{r ∈
F | r occurs in ϕ}. Suppose that f : (¬α, α) → (0, 1) is a bijection such that
f(r) = r for all r /∈ F ∪ F such that r occurs in ϕ and f is a homomorphism
from A to the canonical standard chain. Then define an evaluation e′ on the
canonical standard chain defined by e′(p) = f−1(e(p)) if p is a propositional
variable that appears in ϕ and e′(p) = 1 otherwise. Since ϕ is a tautology for
the canonical standard chain, e′(ϕ) = 1. Take the algebra [0, 1]∗/Fα where Fα
is the principal filter generated by α. By hypothesis this algebra is isomorphic

2In [55] it is wrongly claimed that the expansions L∗(C) for ∗ = �c (see Figure 9.3) were
also canonical standard complete, in Example 7 we provide a counter-example.
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to [0, 1]∗. Define the evaluation e′′ on the quotient algebra obtained from e′ and
it obviously satisfies e′′(ϕ) = [1]Fα

. But a simple computation shows that the
algebra B generated by {e′′(ψ) | ψ subformula of ϕ} is isomorphic to A and
e′′(ϕ) over the quotient algebra corresponds to e(ϕ) over the chain [0, 1]FL∗(C)
and thus e(ϕ) = 1. 2

Actually, the only expansions of logics L∗ with ∗ ∈ WNM-fin that enjoy
the canonical SC are those falling under the hypotheses of last theorem. This is
proved below by showing counterexamples for the remaining cases, where p(x)
and n(x) denote the terms x∨¬x and x∧¬x respectively, as defined in Chapter
4.

Example 7. Let ∗ ∈ WNM-fin not falling under the hypotheses of last theorem.
We distinguish the following three cases:

• Suppose the negation is continuous on the set of positive elements and the
only constant interval formed by positive elements is I1. In such a case,
there is an interval I of involutive positive elements, followed by I1. Take
a truth-constant b in the interior of I. Then the formula,

(¬¬p(x) → p(x)) ∨ (b→ p(x))

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for any
F containing b. Take into account that in [0, 1]L∗(C) a positive element is
either involutive or greater than b.

• Suppose the negation is continuous on the set of positive elements and
there is some constant interval formed by positive elements different from
I1 (this is the case of the family of t-norms �c in Figure 9.3). Let b be the
minimum involutive positive element with a non-trivial associated interval.
Then the formula,

(¬¬p(x) → p(x)) ∨ (¬p(x) → ¬b)

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for any
F containing b. Notice that in this case [0, 1]FL∗(C) is such that either a
positive element is involutive or its negation is not greater than ¬b.

• Suppose the negation is continuous on the set of positive elements. Let b
be the minimum discontinuity point of the negation function in the set of
positive elements. Then I¬b is the greatest constant interval in the negative
part with biggest element ¬b and not containing the fixpoint. Then take

(¬¬n(x) → n(x)) ∨ (¬n(x) → ¬¬n(x)) ∨ (n(x) → ¬b)

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for
any F containing b. Notice that in [0, 1]L∗(C) a negative element is either
involutive or belongs to a constant interval whose greatest element is the
fixpoint (if it exists) or it is less or equal than ¬b.
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These three examples prove that a rather large family of expansions of the
logic of a t-norm from WNM-fin with truth-constants do not enjoy the canoni-
cal SC. In fact, only the following cases are not included in the previous examples:

• when the set of positive elements defines an involutive interval of the par-
tition (NM, ?c of Figure 9.3).

• when the set of positive elements defines a constant interval of the partition
(G, ⊗c of Figure 9.3).

The case of continuous t-norms

For the case of expansions  Lukasiewicz logic with truth-contrants, Hájek’s result
in [79] can be put as follows.

Theorem 10.23 ([79]).  L(C) has the canonical SC.

For the expansions of Gödel logic it has been already proved in Theorem
10.22.

Theorem 10.24. Π(C) has the canonical SC.

Proof: Let ϕ be a Π(C) formula such that 6`Π(C) ϕ. We can further assume ϕ
contains some truth constant r with 0 < r < 1 as subformula, otherwise the
standard completeness of Product Logic does the job. By general completeness,
there is a linearly ordered Π(C)-algebra A and an evaluation e on A such that
e(ϕ) < 1A. The task is to find an evaluation e′ on the canonical standard Π(C)-
algebra [0, 1]Π(C) such that e′(ϕ) < 1. Let E = {e(ψ) | ψ is a subformula of

ϕ} ∪ {0A, 1A}. We consider the following cases:

Case 1: FC(A) = {1}.
By applying Theorem 10.20 we obtain a partial embedding h of E into
[0, 1]. Now define a [0, 1]Π(C)-evaluation e′ by putting

e′(x) =
{
h(e(p)), if x is a prop. variable in ϕ
arbitrary, otherwise

It is easy to check then, by the properties of h, that e′(ϕ) = h(e(ϕ)) < 1.

Case 2: FC(A) = (0, 1].

By the well-known results of Π-algebras (see [31]), there is a partial em-
bedding f of E into the standard Π-algebra [0, 1]Π and the evaluation e′

on [0, 1]Π defined as follows

e′(p) =
{
f(e(p)), if p is a propositional variable in ϕ
arbitrary, otherwise

is such that e′(ϕ∗) < 1, where ϕ∗ is the Π-formula obtained from ϕ by
replacing all truth-constants r with 0 < r by 1. Now, the evaluation e′′ on
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[0, 1]∗Π(C), such that e′′(p) = e′(p) for all propositional variables p satisfies
e′(ϕ∗) = e′′(ϕ) < 1. Then, by Theorem 10.17, there is also an evaluation
e′′′ on the canonical standard Π(C)-algebra [0, 1]Π(C) such that e′′′(ϕ) < 1.
This ends the proof of Case 2 and hence of the theorem as well.

2

But the canonical SC is not valid in general for any logic L∗(C) with ∗ ∈
CONT-fin. It will be shown by providing counterexamples, i. e. by exhibiting
in each case a suitable formula ϕ that is a tautology of the canonical standard
algebra [0, 1]L∗(C) but not of the algebra [0, 1]FL∗(C) for some proper filter F of C.
Suppose that the first component of [0, 1]∗ is defined on the interval [0, a].

1. If [0, 1]∗ = [0, a] L ⊕ A and a ∈ C, then an easy computation shows that
the formula

a→ (¬¬x→ x)

is valid in the canonical standard algebra but it is not valid in the standard
chain [0, 1]FL∗(C) defined by the filter F = [a, 1] ∩C (where a is interpreted
as 1).

2. If [0, 1]∗ = [0, a]Π ⊕ A, take b ∈ C ∩ (0, a). Then an easy computation
shows that the formula

b→ ¬x ∨ ((x→ x&x) → x)

is valid in the canonical standard algebra but it is not valid in the standard
chain [0, 1]FL∗(C) defined by the filter F = (0, 1] ∩C (where b is interpreted
as 1).

3. If [0, 1]∗ = [0, a]G⊕A, take b as any element of C∩(0, a). Then the formula

b→ (x→ x&x)

is valid in the canonical standard algebra but it is not valid in the standard
chain [0, 1]FL∗(C) defined by the filter F = [b, 1] ∩ C (where b is interpreted
as 1).

Observe that for a t-norm whose decomposition begins with two copies of
 Lukasiewicz t-norm, the idempotent element a separating them has to belong to
the truth-constants subalgebra C. Indeed, take into account that, by assumption,
C must contain a non idempotent element c of the second component and for
this element there exists a natural number n such that cn = a and thus a ∈ C.
Hence this case is subsumed in the above first item.

The remaining cases (when the first component is  Lukasiewicz but its upper
bound a does not belong to C) are studied by cases:
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(1) If [0, 1]∗ = [0, a] L⊕ [a, 1]G or [0, 1]∗ = [0, a] L⊕ [a, 1]Π, then the logic L∗(C)
has the canonical SC. Actually, in that case the filters of C are the same
as the filters of C ∩ [a, 1]G or C ∩ [a, 1]Π respectively, and thus modified
versions of the proofs of the canonical SC for G(C) and Π(C) apply here.

Theorem 10.25. If [0, 1]∗ = [0, a] L ⊕ [a, 1]G, the logic L∗(C) has the
canonical SC if, and only if, a /∈ C.

Proof: If a ∈ C we have proved that the logic L∗(C) has not the canonical
SC. Now we will prove the canonical standard completeness in the case
that a /∈ C.
The proof is analogous (with adequate changes) to the one given for the
expansion of Gödel logic with truth-constants. We will sketch it. We know
that the logic enjoys the FSSC and thus we have to prove that tautologies
of the canonical standard chain are contained in the tautologies of any
other standard chain. The proof is by contraposition. Suppose that there
is a formula ϕ and an evaluation e over a standard chain defined by a
proper filter F such that e(ϕ) < 1 and we have to prove that there is an
evaluation e′ over the canonical standard chain such that e′(ϕ) < 1.

Take X = {e(ψ) | ψ subformula of ϕ} ∪ {0, 1} and let α = min{r ∈ F |
r appears in ϕ}. Now, define f : X −→ [0, α] by stipulating that its
restriction over X ∩ [0, a] is the identity function and its restriction over
X ∩ [a, 1] is an increasing function with f(a) = a and f(1) = α.

Then define e′ as the evaluation over the canonical standard algebra such
that

e′(x) =

 f(e(x)), if x propositional variable in ϕ
1, if x propositional variable not in ϕ
r, if x = r

By induction we can prove that for each subformula ψ of ϕ we have:

- e′(ψ) ≥ α, if e(ψ) = 1

- a < e′(ψ) < α, if a < e(ψ) < 1

- e′(ψ) = e(ψ), if either e(ψ) ∈ [0, a] or e(ψ) = e(x) for some x which
is a propositional variable or truth-constant appearing in ϕ.

In particular, from these properties, we see that the evaluation e′ over the
canonical standard chain is such that e′(ϕ) < 1, which ends the proof. 2

Theorem 10.26. If [0, 1]∗ = [0, a] L ⊕ [a, 1]Π, the logic L∗(C) has the
canonical SC if, and only if, a /∈ C.

Proof: The proof is rather analogous (with the adequate changes) to the
proof of canonical standard completeness for the expansion of Product logic
with truth-constants. If a ∈ C we have proved (by a counterexample) that
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L∗(C) has not the canonical SC. We will prove that if a /∈ C, then L∗(C)
has the canonical SC. In such a case it is obvious that there are only two
proper filters of C defining two chains over [0, 1]: the canonical one (defined
by the trivial filter) where each element of C is interpreted as itself, and
the chain defined by the filter F = (a, 1] ∩ C where each element of C
is interpreted as itself if it belongs to the first component and as 1 if it
belongs to F .

Take an arbitrary formula ϕ ∈ FmLC
and suppose that 6`L∗(C) ϕ. We want

to show that 6|=[0,1]L∗(C)
ϕ. By the FSSC we know that 6|={[0,1]L∗(C),[0,1]

F
L∗(C)}

ϕ, so what we have to prove is the following:
If 6|=[0,1]FL∗(C)

ϕ, then 6|=[0,1]L∗(C)
ϕ.

To this end, we first need to prove four claims.

Let the restriction of t-norm ∗ on the interval [a, 1] be defined by

u ∗ v = h−1(h(u) · h(v))

for some increasing bijection h : [a, 1] → [0, 1]. Let t > 0 and define
kt : [0, 1] → [0, 1] by

kt(z) =
{
z if z ∈ [0, a],
h−1((h(z))t) otherwise.

Furthermore, for any evaluation e into [0, 1]FL∗(C) we consider:

(i) e′t as the evaluation over the canonical standard chain [0, 1]L∗(C) defined
for any propositional variable x by,

e′t(x) = kt(e(x))

(ii) e∗t as the mapping defined by e∗t (ϕ) = kt(e(ϕ)).

Claim 1. For any formulae ϕ,ψ,
(i) e∗t (ϕ&ψ) = e∗t (ϕ) ∗ e∗t (ψ)
(ii) e∗t (ϕ→ ψ) = e∗t (ϕ) ⇒ e∗t (ψ)

Proof:
(i.1) If e∗t (ϕ&ψ) > a then e∗t (ϕ), e∗t (ψ) > a, and hence e(ϕ), e(ψ) > a
as well. In this case, e∗t (ϕ&ψ) = h−1((h(e(ϕ&ψ)))t) = h−1((h(e(ϕ) ∗
e(ψ)))t) = h−1((h(h−1(h(e(ϕ)) · h(e(ψ))))t) = h−1((h(e(ϕ)) · h(e(ψ)))t) =
h−1(h(e(ϕ))t · h(e(ψ))t) = e∗t (ϕ) ∗ e∗t (ψ).
(i.2) If e∗t (ϕ&ψ) ≤ a, then e∗t (ϕ&ψ) = e(ϕ&ψ) = e(ϕ) ∗ e(ψ), and hence
e(ϕ) ≤ a or e(ψ) ≤ a. W.l.o.g., assume e(ϕ) = min(e(ϕ), e(ψ)) ≤ a,
and hence e∗t (ϕ) = e(ϕ). Then, if e(ψ) > a then e∗t (ψ) > a and
e(ϕ) ∗ e(ψ) = e(ϕ) = e∗(ϕ) ∗ e∗t (ψ). Otherwise, if e(ψ) ≤ a, then
e∗t (ψ) = e(ψ).

(ii) It follows from (i). 2



162 CHAPTER 10. EXPANSIONS WITH TRUTH-CONSTANTS

Claim 2. For any formula ψ,
if e(ψ) ∈ (a, 1], then e′t(ψ) ∈ (a, 1],
if e(ψ) ∈ [0, a], then e′t(ψ) = e(ψ).

Proof: The proof is by induction:

– If ψ is a propositional variable, the statement is obviously true by
definition of e′t.

– If ψ is a truth-constant r, either r > a and then e(r) = 1 and e′t(r) =
r > a, or r < a and then e(r) = r = e′t(r).

– If ψ = δ&γ, then we have two cases:
1.- If e(ψ) ∈ (a, 1] then it is so for e(δ), e(γ). and thus for e′t(δ), e

′
t(γ)

and, as a consequence, for e′t(ψ).
2.- If e(ψ) ∈ [0, a], then at least one of e(δ), e(γ) must belong to [0, a].
Suppose that e(δ) ∈ [0, a], hence by hypothesis e′t(δ) ∈ [0, a] as well,
hence e′t(ψ) = e′t(δ) ∗ e′t(γ) ≤ a.

– If ψ = δ → γ, then we have several cases:
1.- If e(ψ) = 1, then e(δ) ≤ e(γ) and we have two cases:
1.1.- If e(δ), e(γ) belong to the same subinterval the statement is
obvious.
1.2.- If e(δ), e(γ) belong to different subintervals, the statement also
holds true by the induction hypothesis.
2.- If e(ψ) < 1 then e(δ) > e(γ) and we have also two cases:
2.1.- If e(ψ) > a, then e(δ) > e(γ) > a and thus e′t(ψ) ∈ (a, 1].
2.2.- If e(ψ) ≤ a, then e(δ) > e(γ) ∈ [0, a] and we have two possibil-
ities depending on which component e(γ) belongs. But, in any case,
the induction hypothesis proves easily that e′t(ψ) = e(ψ).

2

Remark that the set [0, 1]R
+

of all functions from R+ into [0, 1] becomes
an L∗-algebra with the operations ∗ and ⇒∗ defined pointwise and with
the constant function 0 as bottom and the constant function 1 as top.

Let F ⊆ [0, 1]R
+

be the set of all functions f : R+ → [0, 1] satisfying the
following condition:

(E) There exists c such that a < c ≤ 1 and t0 > 0 such that c ≤ f(t) for
all t ≥ t0.

It is immediate to verify that F is an implicative filter (as defined in [33,
Lemma 1.5]) on the L∗-algebra [0, 1]R

+
. The congruence relation defined

by F on [0, 1]R
+

, f ∼ g iff f ⇒ g ∈ F and g ⇒ f ∈ F , is defined by

f ∼ g iff there exist c, d ∈ (a, 1] and t0 > 0 such that
c ∗ g(t) ≤ f(t) ≤ d⇒ g(t) for all t > t0.
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Then, one can check that ∼ satisfies the following properties, where fa
stands for the constant function with value a.

Claim 3. The congruence relation ∼ satisfies:
(i) f ∼ fa if, and only if, there exists t0 such that f(t) = a for all t ≥ t0.
(ii) Suppose f ∼ g. Then limt→∞ g(t) = a if, and only if, limt→∞ f(t) = a.

Proof: Just recall that, if c, d ∈ (a, 1], then c ∗ a = d⇒ a = a. 2

Claim 4. Let e and e′t as above be given. For every formula φ such that
a < e(φ) < 1, let gφ(t) = e∗t (φ) and fφ(t) = e′t(φ). Then we have fφ ∼ gφ.
In particular, limt→∞ e′t(φ) = a.

Proof: Let us proceed by induction on the complexity of φ.

1. φ is a constant r. Then it must be r > a, hence e(r) = 1, and then
gr(t) = kt(e(r)) = kt(1) = 1 and fr(t) = e′t(r) = r, and obviously
r ∼ 1.

2. φ is a propositional variable. Then it is a direct consequence of the
definition (fx(t) = gx(t)).

3. φ = (ψ1&ψ2). If e(ψ1&ψ2) > a then e(ψ1), e(ψ2) > a, hence
gψ1 , gψ2 , fψ1 , fψ2 ∈ F . Then:
gψ1&ψ2(t) = e∗t (ψ1&ψ2) = e∗t (ψ1) ∗ e∗t (ψ2) = gψ1(t) ∗ gψ2(t).
fψ1&ψ2(t) = e′t(ψ1&ψ2) = e′t(ψ1) ∗ e′t(ψ2) = fψ1(t) ∗ fψ2(t).
Since ∼ is a congruence, if we suppose that fψ1 ∼ gψ1 and fψ2 ∼ gψ2 ,
we can conclude that fψ1&ψ2 ∼ gψ1&ψ2 .

4. φ = (ψ1 → ψ2). If a < e(ψ1 → ψ2) < 1 then e(ψ1), e(ψ2) > a, hence
gψ1 , gψ2 , fψ1 , fψ2 ∈ F . Then:
gψ1→ψ2(t) = e∗t (ψ1 → ψ2)) = e∗t (ψ1) ⇒ e∗t (ψ2) = gψ1(t) ⇒ gψ2(t).
fψ1→ψ2(t) = e′t(ψ1 → ψ2) = e′t(ψ1) ⇒ e′t(ψ2) = fψ1(t) ⇒ fψ2(t).
Using again the fact that ∼ is a congruence, from the hypothesis
fψ1 ∼ gψ1 and fψ2 ∼ gψ2 , we obtain fψ1→ψ2 ∼ gψ1→ψ2 .

The first statement of the proposition is proved. The second statement
follows from the first statement and (ii) of Claim 3. 2

Now we can obtain the result we are looking for:

Let ϕ be not valid in [0, 1]FL∗(C). There exists an evaluation e such that
e(ϕ) < 1. By last lemma, limt→∞ e′t(ϕ) = a as well, hence for some large
enough t, e′t(ϕ) < 1. Thus ϕ is not valid in the canonical standard chain.
2

(2) If [0, 1]∗ is an ordinal sum of three or more components, then L∗(C) has
not the canonical SC as the following examples show:
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[0, 1]∗ Canonical SC for L∗(C)
[0, 1] L Yes
[0, 1]G Yes
[0, 1]Π Yes

[0, a]G ⊕A No
[0, a]Π ⊕A No
[0, a] L ⊕A, a ∈ C No

[0, a] L ⊕ [a, 1]G, a 6∈ C Yes
[0, a] L ⊕ [a, 1]Π, a 6∈ C Yes

[0, a] L ⊕ [a, b]G ⊕A, a 6∈ C No
[0, a] L ⊕ [a, b]Π ⊕A, a 6∈ C No

[0, 1]NM Yes
[0, 1]⊗c Yes
[0, 1]?c Yes

[0, 1]∗, for other ∗ ∈ WNM-fin No

Table 10.3: Canonical standard completeness results for logics L∗(C) when
∗ ∈ CONT-fin ∪WNM-fin. Recall that ⊗c and ?c are those WNM t-norms
depicted in Figure 9.3.

2.1.- If [0, 1]∗ = [0, a] L ⊕ [a, b]G ⊕A, take d ∈ F = (a, b] ∩ C in the second
component. Then the formula,

d→ (¬¬x→ x) ∨ (x→ x&x)

is a tautology of the canonical standard algebra but not of [0, 1]FL∗(C).

2.2.- If [0, 1]∗ = [0, a] L ⊕ [a, b]Π ⊕A, take d ∈ F = (a, b] ∩ C in the second
component. Then the formula,

d→ (¬¬x&¬¬y&((x→ x&y) → y)&(y → x)&(x→ x&x) → x)

is a tautology of the canonical standard algebra and not of [0, 1]FL∗(C).

Summarizing (see Table 10.3) the canonical SC holds for the expansion of
the logic of a continuous t-norm ∗ which is a finite ordinal sum of the three
basic ones by a set of truth-constants if, and only if, [0, 1]∗ is either one of the
three basic algebras ([0, 1] L, [0, 1]G or [0, 1]Π) or [0, 1]∗ = [0, a] L ⊕ [a, 1]Π or
[0, 1]∗ = [0, a] L ⊕ [a, 1]G (with a 6∈ C).

All the results on the canonical SC are gathered in Table 10.3.

10.4 Completeness results for evaluated formu-
lae

This section deals with completeness results when we restrict to what we call
evaluated formulae, formulae of type r → ϕ, where ϕ is a formula without
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new truth-constants (different from 0 and 1). These formulae can be seen as
a special kind of Novák’s evaluated formulae, which are expressions a/A where
a is a truth value (from a given algebra) and A is a formula that may contain
truth-constants again, and whose interpretation is that the truth-value of A is
at least a. Hence our formulae r → ϕ would be expressed as r/ϕ in Novák’s
evaluated syntax. On the other hand, formulae r → ϕ when ϕ is a Horn-like rule
of the form b1&...&bn → h also correspond to typical fuzzy logic programming
rules (b1&...&bn → h, r), where r specifies a lower bound for the validity of the
rule.

From the previous sections we know that the FSSC is true for the expansion
of L∗ with a suitable subalgebra of truth-constants (not only for evaluated for-
mulae), but the canonical FSSC is only true for expansions of  Lukasiewicz logic.
Restricting the language to evaluated formulae these results can be improved.
To describe them we divide the subject by cases.

10.4.1 The case of continuous t-norms

Next theorems state the canonical FSSC restricted to evaluated formulae for the
expansions of Gödel and Product logics with truth-constants.

Lemma 10.27. Let a ∈ (0, 1] and define a mapping fa : [0, 1] → [0, 1] as follows:

fa(x) =
{

1, if x ≥ a
x, otherwise

Then fa is a homomorphism with respect to the standard Gödel truth functions.
Therefore, if e is a evaluation of the formulae, then ea = fa ◦ e is another
evaluation.

Proof: We have to prove: (i) fa(0) = 0, (ii) fa(min(x, y)) = min(fa(x), fa(y)),
and (iii) fa(x ⇒G y) = fa(x) ⇒G fa(y). (i) is obvious and (ii) is also easy
immediate since fa is a non-decreasing function. So let us prove (iii). We
consider two cases:

Case A : x ≤ y, x ⇒G y = 1. In this case, fa(x) ≤ fa(y) as well, hence
fa(x⇒G y) = f(1) = 1 = fa(x) ⇒G fa(y).

Case B : x > y, x⇒G y = y. Now we distinguish the following three sub-cases:

B.1 : a ≤ y < x, fa(x ⇒G y) = 1. In this case fa(x) = fa(y) = 1 and
hence fa(x) ⇒G fa(y) = 1;

B.2 : y < a ≤ x, fa(x ⇒G y) = y. In this case fa(x) = 1, fa(y) = y and
hence fa(x) ⇒G fa(y) = y;

B.3 : y < x < a, fa(x⇒G y) = y. In this case fa(y) = y, fa(x) = x, and
hence fa(x) ⇒G fa(y) = y.

So, in any of the subcases, fa(x⇒G y) = fa(x) ⇒G fa(y).
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This ends the proof. 2

Theorem 10.28. G(C) has the canonical FSSC if we restrict the language to
evaluated formulae, i.e. for any finite index set I we have:

{ri → ϕi}i∈I `G(C) s→ ψ iff {ri → ϕi}i∈I |=[0,1]G(C)
s→ ψ.

where ψ,ϕi ∈ FmL.

Proof: Suppose that I = {1, . . . , n}. One direction is easy. As for the difficult
one, by the Deduction-detachment Theorem, it is enough to prove that if there
is an evaluation e which is not a model of (

∧n
i=1(ri → ϕ) → (s → ψ), then we

can find another evaluation e′ which is model of {ri → ϕi}i∈I and not of s→ ψ.
So let e be such that e(

∧n
i=1(ri → ϕ) → (s→ ψ)) < 1. If e is a model of every

ri → ϕi, then we can take e′ = e and the problem is solved. Otherwise, there
exists some 1 ≤ j ≤ n for which rj > e(ϕj) and thus e(rj → ϕj) = e(ϕj) < 1.
Let J = {j | rj > e(ϕj)} and let a = e(

∧n
i=1 ri → ϕi) = min{e(ϕj) | j ∈ J}.

Then the evaluation e′ such that e′ = ea over the propositional variables does
the job. Namely, by Lemma 10.27, over Gödel formulae we have e′ = ea ≥
e, so e′ is still a model of ri → ϕi for every i ∈ {1, . . . , n} \ J . But now,
e′(ϕj) = 1 for every j ∈ J , so e′ is also a model of {ri → ϕi}i∈I . On the
other hand, since e(

∧n
i=1(ri → ϕ) → (s → ψ)) < 1, it must be s > e(ψ) and

a = e(
∧n
i=1(ri → ϕi)) > e(ψ). Now, by Lemma 10.27, e′(ψ) = ea(ψ) = e(ψ),

hence e′(s→ ψ) = e(s→ ψ) < 1. Therefore we have proved the theorem. 2

Theorem 10.29. Π(C) has the canonical FSSC if we restrict the language to
evaluated formulae, i.e. for any finite index set I we have:

{ri → ϕi}i∈I `Π(C) s→ ψ iff {ri → ϕi}i∈I |=[0,1]Π(C)
s→ ψ.

where ψ,ϕi ∈ FmL.

Proof: Actually, as always, one direction (soundness) is easy due to the book-
keeping axioms. To prove the converse direction it is enough to combine the
FSSC with the following result.

Claim: If {ri → ϕi | i ∈ I} |=[0,1]Π(C)
s → ψ then {ri → ϕi}i∈I |=[0,1]∗Π(C)

s→ ψ

Proof: Without loss of generality we may assume ri > 0 for all i and s > 0.
Suppose {ri → ϕi}i∈I 6|=[0,1]∗Π(C)

s→ ψ. Assume also I = {1, . . . , n}. Then there
exists a [0, 1]∗Π(C)-evaluation e such that e(r1 → ϕ1) = . . . = e(rn → ϕn) = 1
and e(s → ψ) < 1. Since e(ri) = e(s) = 1 for all i, we also have e(ϕ1) = . . . =
e(ϕn) = 1 and e(ψ) < 1.

Assume e(ψ) = 0. Then, letting e′ be the [0, 1]Π(C)-evaluation defined by
e′(p) = e(p) for any propositional variable p, we have e′(r1 → ϕ1) = . . . =
e′(rn → ϕn) = 1 and e′(ψ) = 0, hence {r1 → ϕ1, . . . , rn → ϕn} 6|=[0,1]Π(C)

s→ ψ.
Assume e(ψ) > 0. Let α ∈ R+ such that (e(ψ))α < s. Then the [0, 1]Π(C)-

evaluation e′, where e′(p) = (e(p))α for any propositional variable p, is such
that e′(ri → ϕi) = 1 for all i but e′(s → ψ) < 1, hence {r1 → ϕ1, . . . , rn →
ϕn} 6|=[0,1]Π(C)

s→ ψ. 2
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Finally, as a direct consequence of the FSSC and the above claim we obtain
the desired result. 2

Now, we will study the canonical SC and the canonical FSSC restricted to
evaluated formulae for other logics. Take any ∗ ∈ CONT-fin which is an ordinal
sum of more than one basic component and suppose that the first component is
defined on the interval [0, a]. In the following cases we can refute the canonical
SC (and hence the canonical FSSC as well):

1. The first component of the t-norm ∗ is a copy of  Lukasiewicz t-norm and
a ∈ C.

2. The first component of the t-norm ∗ is a copy of product t-norm.

3. The first component of the t-norm ∗ is a copy of minimum t-norm.

4. There are more than two components and the second component is a copy
of minimum t-norm.

5. There are more than two components and the second component is a copy
of product t-norm.

Indeed, for all these cases we can use the same counterexample that was given
in the previous section to show that the corresponding logics do not enjoy the
canonical SC, because the counterexamples were actually evaluated formulae.

The following theorem deals with the remaining case of ordinal sums of two
basic components. The case [0, 1]∗ = [0, a] L⊕ [a, 1] L is not considered here since
in such a situation, under the working hypothesis that there exists b ∈ (a, 1] such
that b ∈ C, necessarily a ∈ C as well.

Theorem 10.30. The restriction to evaluated formulae of the logic L∗(C) when
either [0, 1]∗ = [0, a] L ⊕ [a, 1]G or [0, 1]∗ = [0, a] L ⊕ [a, 1]Π, and a /∈ C has the
canonical FSSC.

Proof: The proof is an easy modification of the proofs given for G(C) and Π(C).
Here we only sketch the proof for [0, 1]∗ = [0, a] L ⊕ [a, 1]Π.
What we want to prove is:

{ri → ϕi | i = 1, . . . , n} `L∗(C) s→ ψ
if, and only if,

{ri → ϕi | i = 1, . . . , n} �[0,1]L∗(C)
s→ ψ

where ϕi and ψ are L∗(C)-formulae, i.e., formulae not containing truth-constants
different from 0 and 1. Actually, as always, one direction (soundness) is obvious.
To prove the converse direction

If {ri → ϕi | i = 1, .., n} |=[0,1]L∗(C)
s→ ψ, then

{ri → ϕi | i = 1, .., n} `L∗(C) s→ ψ

it is enough to combine the FSSC of L∗(C) with the following result:
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Claim 5. If {ri → ϕi | i = 1, .., n} |=[0,1]L∗(C)
s → ψ then {r1 → ϕ1, . . . , rn →

ϕn} |=[0,1]FL∗(C)
s→ ψ being F = (a, 1] ∩ C.

To prove it and without loss of generality we may assume ri > 0 for all i and
s > 0. Suppose {r1 → ϕ1, . . . , rn → ϕn} 6|=[0,1]FL∗(C)

s → ψ. Then there exists

a [0, 1]FL∗(C)-evaluation e such that e(r1 → ϕ1) = . . . = e(rn → ϕn) = 1 and
e(s→ ψ) < 1.

(i) If s ∈ (0, a], and hence e(s) = s and e(ψ) < s, then take the evaluation e′

over the canonical standard chain defined by e′(p) = e(p) for any propositional
variable p. Notice that, since e(r) ≥ e′(r) and e(ϕ) = e′(ϕ), it is easy to compute
that e′(r1 → ϕ1) = . . . = e′(rn → ϕn) = 1 and e′(s→ ψ) = e(s→ ψ) < 1.

(ii) If s ∈ (a, 1], and hence e(s) = 1 and e(ψ) < 1, we can assume e(ψ) ≥
s, otherwise the above evaluation e′ does the job. Then take the family of
evaluations e′t over the canonical standard chain defined by e′t(p) = kt(e(p)) for
any propositional variable p, where kt : [0, 1] → [0, 1] is the mapping defined in
the proof of Theorem 10.26, i.e.

kt(z) =
{
z if z ∈ [0, a],
h−1((h(z))t) otherwise.

By definition of kt it is easy to find a large enough t such that a < e′t(ψ) < s,
and hence e′t(s → ψ) < 1. Moreover, it is easy to check that we still have
e′t(r1 → ϕ1) = . . . = e′t(rn → ϕn) = 1. Indeed, if ri ∈ (a, 1], then e(ri) = 1 and
e(ϕ) = 1, hence e′t(ϕ) = 1 as well. If ri ∈ (0, a], then e′t(ri) = e(ri) = ri and
e(ϕi) ≥ ri. Now, if e(ϕi) ≤ a then e′t(ϕi) = e(ϕi), otherwise, if e(ϕi) > a then
e′t(ϕi) > a as well. In any case, e′t(ϕi) ≥ ri, hence e′t(ri → ϕi) = 1. 2

All these results are summarized in Table 10.4, where interestingly enough it
turns out that both standard completeness properties (SC and FSSC) restricted
to evaluated formulae are equivalent, for each ∗ ∈ CONT-fin.

10.4.2 The case of WNM-fin t-norms

For t-norms from WNM-fin we must restrict to evaluated formulae of the kind
r → ϕ where r is a positive constant. We will call them positively evaluated
formulae. The next example shows that the restriction to this kind of evaluated
formulae is indeed necessary.

Example 8. Let ∗ be a WNM t-norm different from the minimum t-norm and
let C be a countable subalgebra of [0, 1]∗ such that C− \ {0} 6= ∅. Take any
r ∈ C− \ {0}. Then, we have:

r → ¬(x→ y) |=[0,1]L∗(C)
y → x

and

r → ¬(x→ y) 6|=[0,1]F
¬r

L∗(C)
y → x
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hence, L∗(C) does not enjoy the canonical FSSC restricted to evaluated for-
mulae when we allow negative constants.

We obtain a positive result in the next theorem and several negative results
as a consequence of the examples given in the subsection 10.3.2. The positive
one corresponds to the three families of t-norms in Figure 9.3 and it is proved
analogously to the case of G(C), using now this analogous lemma:

Lemma 10.31. For every ∗ ∈ {⊗, ?,�}, let a ∈ (c, 1] and define a mapping
fa : [0, 1] → [0, 1] as follows:

fa(x) =

 1, if x ≥ a
0, if x ≤ n∗c

(a)
x, otherwise

Then fa is a morphism with respect to the operations of the algebra [0, 1]+c
.

Therefore, if e is a evaluation on [0, 1]L∗c (C), then ea = fa ◦ e is another evalu-
ation on [0, 1]L∗c (C).

Theorem 10.32. If ∗ is one of the three WNM t-norms depicted in Figure
9.3 then L∗(C) has the canonical FSSC if we restrict the language to evaluated
formulae. More precisely, given a finite index set I, we have:

{ri → ϕi}i∈I `L∗(C) s→ ψ iff {ri → ϕi}i∈I |=[0,1]L∗(C)
s→ ψ.

where ψ,ϕi ∈ FmL and ri ∈ (c, 1].

Notice that in all these logics, the positive constants coincide with the interval
(c, 1] ∩ C, except for the logics corresponding to �c with c > 1/2 where the
positive constants are those in (1− c, 1] ∩C. The case L∗ = NM appears above
when ∗ = ?1/2 = �1/2, and then the condition for the constants is ri ∈ ( 1

2 , 1]).
For ∗ ∈ WNM-fin other than ⊗c and ?c the canonical FSSC restricted to

positively evaluated formulae does not hold as the following counterexamples
show.

Example 9. Let ∗ = �c with c > 1/2. Let r ∈ C such that 1− c < r ≤ c. Then
the semantical deduction

¬¬p(x) → p(x) |= r → p(x)

is valid in [0, 1]L∗(C) but not in [0, 1]FL∗(C) for any F containing r. Obviously, in
[0, 1]L∗(C) any involutive and positive element is greater than r.

Example 10. Let ∗ ∈ WNM-fin be such that the first interval I of the partition
associated to ∗ formed by positive elements is involutive and there is a constant
interval on the right of it. In such a case, take a truth-constant r in the interior
of I. Then the semantical deduction,

(¬¬p(x) → p(x)) → p(x) |= r → p(x)

is valid in [0, 1]L∗(C) but not in [0, 1]FL∗(C) for any F containing r. Observe that
in [0, 1]L∗(C) the premise is true if, and only if, p(x) is not involutive or 1, and
for these cases p(x) is greater than r.
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Example 11. Let ∗ ∈ WNM-fin such that the first interval of the partition
associated to ∗ formed by positive elements is a constant interval with respect to
the negation (Ic being c the biggest element of the interval). Additionally suppose
that there is another interval of positive elements that is also a constant interval
with respect to the negation. In such a case, take a truth-constant r ∈ Ic. Then
the formula,

r → ¬¬p(x)

is a tautology for [0, 1]L∗(C) and it is not a tautology for [0, 1]FL∗(C) for any F con-
taining r. Obviously in [0, 1]L∗(C) any involutive and positive element is greater
than r.

Example 12. Let ∗ ∈ WNM-fin be such that there is a positive element which
is a discontinuity point of the negation function. Then, due to symmetry of
negation functions, there is a constant interval whose elements are negative and
whose greatest element is not the fixpoint. Denote by I the greatest constant
interval formed by negative elements whose greatest element is different from the
fixpoint and take r as the greatest element of I, i.e. I = Ir. Then the semantical
deduction, {

¬¬n(x) → ¬(¬¬n(x) → n(x)),
¬n(x) → ¬(¬n(x) → ¬¬n(x))

}
|= ¬r → ¬n(x)

is valid deduction in [0, 1]L∗(C) but it is not in [0, 1]FL∗(C) for any F containing r.
Observe that the first premise is true if, and only if, n(x) is either not involutive
or n(x) = 0 and the second premise is true if and only if n(x) does not belong
to a constant interval whose greatest element is the fixpoint. Thus, if x satisfies
the premises, it is clear that n(x) belongs to a constant interval which does not
contain the fixpoint, thus it is less or equal to r, and hence the conclusion is also
satisfied.

This four examples, as in the case of general SC studied in the last section,
prove that a rather large family of expansions of the logic of a WNM t-norm
with truth constants do not enjoy canonical FSSC even when we restrict the
language to positively evaluated formulae.

The reader can see a summary of all these completeness results in Table 10.4.
Notice that the canonical SC restricted to positively evaluated formulae remains
an open problem when ∗ ∈ WNM-fin is not one the t-norms ⊗c or ?c in Figure
9.3. In fact, in the cases considered in Example 11, the canonical SC does not
hold, but we still do not know whether it is true in other cases.

Furthermore, comparing this table with Table 10.3 we realise that for a logic
L∗(C) where ∗ ∈ CONT-fin ∪WNM-fin (except for the case which remains
open), the canonical SC turns out to be equivalent to the canonical SC (and to
the canonical FSSC) restricted to positively evaluated formulae.
Open problem: Are these equivalencies valid for wider classes of L∗(C) logics?
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Restricted to pos. evaluated formulae of L∗(C)
[0, 1]∗ Canonical SC Canonical FSSC
[0, 1] L Yes Yes
[0, 1]G Yes Yes
[0, 1]Π Yes Yes

[0, a]G ⊕A No No
[0, a]Π ⊕A No No
[0, a] L ⊕A, a ∈ C No No

[0, a] L ⊕ [a, 1]G, a 6∈ C Yes Yes
[0, a] L ⊕ [a, 1]Π, a 6∈ C Yes Yes

[0, a] L ⊕ [a, b]G ⊕A, a 6∈ C No No
[0, a] L ⊕ [a, b]Π ⊕A, a 6∈ C No No

[0, 1]NM Yes Yes
[0, 1]⊗c Yes Yes
[0, 1]?c Yes Yes

[0, 1]∗, for other ∗ ∈ WNM-fin ? No

Table 10.4: Canonical SC and FSSC results restricted to positively evaluated
formulae for logics L∗(C) when ∗ ∈ CONT-fin ∪WNM-fin.

10.5 Adding truth-constants to expansions with
∆ connective

Some algebraizable expansions of MTL have been introduced in the literature.
Among them, a remarkable set of expansions are those obtained by enriching
the language with the projection connective ∆ (see [7]). Namely, given any
axiomatic extension L of MTL, the expansion L∆ is defined by adding to the
language a unary connective ∆, and adding to the Hilbert-style system of L the
following axiom schemata:

(∆1) ∆ϕ ∨ ¬∆ϕ

(∆2) ∆(ϕ ∨ ψ) → (∆ϕ ∨∆ψ)

(∆3) ∆ϕ→ ϕ

(∆4) ∆ϕ→ ∆∆ϕ

(∆5) ∆(ϕ→ ψ) → (∆ϕ→ ∆ψ)

and the rule of necessitation:
ϕ

∆ϕ

This logic is algebraizable and its equivalent algebraic semantics is the variety
of L∆-algebras, i. e. expansions with ∆ of L-algebras satisfying the translation
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of the axioms (∆1), . . . , (∆5) and the equation ∆1 ≈ 1. It is easy to prove
that all L∆-algebras are representable as subdirect products of L∆-chains. The
interpretation of the ∆ connective in these chains is very simple, namely if A is
an L∆-chain, then ∆A(1A) = 1A and ∆A(a) = 0A for every a ∈ A \ {1A}.

Proposition 10.33. For every axiomatic extension L of MTL, L∆ is a conser-
vative expansion of L.

Proof: It is obvious that every L-chain is the reduct of an L∆-chain (just take
the same chain and define ∆ in the only possible way for chains), thus we can
apply Proposition 2.18. 2

Since there is a one-to-one correspondence between L-chains and L∆-chains,
we obtain the following result for the SSC and the FSSC of these logics.

Theorem 10.34. For every algebraizable expansion L of MTL, we have:
L has the SSC (resp. FSSC) with respect to a class of standard L-chains K if,
and only if, L∆ has the SSC (resp. FSSC) with respect to the class of standard
L∆-chains K∆, where K∆ denotes the class of ∆-expansions of chains in K.

Proof: It is an easy consequence of Theorems 5.3 and 5.2. 2

Now we will consider expansions with truth-constants for logics with ∆.
Given a left-continuous t-norm ∗ and a countable subalgebra C ⊆ [0, 1]∗, we
define the logic L∗∆(C) as the expansion of L∗∆ in the language LC obtained by
adding the following book-keeping axioms:

r&s↔ r ∗ s
(r → s) ↔ r ⇒ s
∆r ↔ ∆r

for every r, s ∈ C.
Again, using the general facts mentioned in the preliminaries we know that

L∗∆(C) is an algebraizable logic and we can axiomatize its equivalent algebraic
semantics, the variety of L∗∆(C)-algebras. Moreover, it can be easily checked
that L∗∆(C)-algebras are representable as subdirect product of chains.

Proposition 10.35. For every left-continuous t-norm ∗ and every countable
subalgebra C ⊆ [0, 1]∗, the logic L∗∆(C) is a conservative expansion of L∗∆,
whenever L∗∆ has the FSSC.

Proof: Let us denote by S is the class of standard L∗∆-chains and by S(C) is the
class of standard L∗∆(C)-chains. Let Γ ∪ {ϕ} be arbitrary formulae of L∗∆ and
suppose that Γ `L∗∆(C) ϕ. Then, there is a finite Γ0 ⊆ Γ such that Γ0 `L∗∆(C) ϕ,
and this implies that Γ0 |=S(C) ϕ. Since the new truth-constants do not occur
in Γ0 ∪ {ϕ}, we have Γ0 |=S ϕ, and by FSSC of L∗∆, Γ0 `L∗∆ ϕ, and hence
Γ `L∗∆ ϕ. 2
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Hence, for all ∗ ∈ CONT ∪WNM, L∗∆(C) is a conservative expansion of
L∗∆.

Since L∗∆-chains are simple, adding ∆ to L∗(C)-chains simplifies significantly
their structure as next lemma shows.

Lemma 10.36. Let A be a non-trivial L∗∆(C)-chain, ∗ be a left-continuous t-
norm and C ⊆ [0, 1]∗ be a countable subalgebra. Then, for every r, s ∈ C such
that r < s, we have rA < sA.

Proof: Suppose rA = sA. Then, 1A = ∆1A = ∆s→ rA = ∆(s→ t)
A

= 0A; a
contradiction. 2

Therefore, in the variety of L∗∆(C)-algebras there is only one (up to isom-
porphism) standard chain over [0, 1]∗, the canonical one that we denote by
[0, 1]L∗∆(C). This has several nice consequences, which generalize the results
for the continuous case given in [50].

Theorem 10.37. Let ∗ ∈ CONT-fin ∪ WNM-fin and let C ⊆ [0, 1]∗ be a
suitable countable subalgebra. Then:

1. L∗∆(C) has the canonical FSSC.

2. L∗∆(C) is a conservative expansion of L∗(C) iff L∗(C) has the canonical
FSSC, i.e. iff ∗ is  Lukasiewicz t-norm.

3. L∗∆(C) has the canonical SSC iff ∗ ∈ WNM-fin.

In Figure 10.1 we show which of the considered expansions of L∗ are always
conservative (the ones represented by bold arrows).

10.6 Conclusions

In this chapter we have focused on an algebraic approach to study expansions of
propositional logics of a left-continuous t-norm with truth-constants. Specially.
we have surveyed in detail completeness results for the expansions of logics of
left-continuous t-norms with a set of truth-constants {r | r ∈ C}, for a suitable
countable C ⊆ [0, 1], when (i) the t-norm is a finite ordinal sum of basic compo-
nents or is WNM t-norm with finite partition, and (ii) the set of truth-constants
covers all the unit interval in the sense that the interior of each basic component
of the t-norm (in the case of continuous t-norms) or of each interval of the par-
tition (in the case of the WNM t-norms) contains at least one value of C. From
a practical point of view, this latter condition seems to correspond to the most
interesting case for fuzzy logic-based systems, since they usually consider a set
of truth values spread all over the real unit interval, and hence it is natural to
assume there are elements of C in each component or partition of the t-norm.

Of course a lot of expansions with truth-contansts remain to be studied,
among them:
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L*Δ(C)

L*ΔL*(C)

L*
: conservative expansion

Figure 10.1: Diagram of expansions for ∗ ∈ CONT-fin ∪WNM-fin.

• the case of a logic of a t-norm with a  Lukasiewicz component containing
some r ∈ C which generates an infinite MV-chain (in other words, when r
corresponds to an irrational value in the isomorphic copy of the component
over [0, 1]);

• the case when the set of truth-constants does not cover the unit interval;

• the case of continuous t-norms which are the ordinal sum of infinitely many
components;

• the case of any other left-continuous t-norm, in particular WNM t-norms
with infinite partition.

It seems that for the cases when either the t-norm has infinite components
or the set C does not cover [0,1], a methodology similar to the one used in
this chapter could be applied. But in fact there is an explosion of cases to be
considered and the need of new definitions and tools seems unavoidable. Let us
show a couple of illustrative examples, the first when the set C does not cover
[0, 1] and the second when the t-norm has infinite components.

Example 1. Let [0, 1]∗ = [0, a]Π ⊕ [a, 1]Π and let C = {0, 1} ∪ {bn | n ∈ N}
for some b < a. Obviously, there are only two proper filters of C, F1 = {1} and
F2 = C \ {0} but there are (up to isomorphism) three standard L∗(C)-chains.
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One, of type F2 in the sense used in this chapter, is the L∗(C)-chain over
[0, 1]∗ where the constants different from 0 are interpreted as 1 and 0 is
interpreted as 0. The other two are of type F1. They are both L∗(C)-chains
over [0, 1]∗ where all constants are interpreted as different elements, either
as powers of an element of the first product component or as powers of an
element of the second product component. Of course, these two algebras are
not isomorphic. This example shows that in general there is not a bijection
between proper filters and standard algebras and, even though it seems possible
to have the partial embedding property, the notion and treatment of stan-
dard chains should be modified in the case that C does not cover all components.

Example 2. Let [0, 1]∗ =
⊕

n∈N[an, an+1] L, where an = n/(n + 1), be an
infinite ordinal sum of  Lukasiewicz components where the idempotent elements
form an increasing sequence with limit 1. For a given k > 2, let Ci the
carrier of the k-element MV-subalgebra of [ai, ai+1] L and denote its elements as
r1i = ai, r2i, . . . , rki = ai+1. Take C = ∪i∈NCi ∪ {1}. It is clear that C covers
all the components but there are standard algebras where the interpretations
of the truth-constants do not cover all the components. Indeed, let f be any
strictly increasing mapping f : N → N such that f(1) = 1. One standard
L∗(C)-algebra is the chain over [0, 1]∗ where rij is interpreted as rf(i)j . An
easy computation shows that this interpretation defines a standard L∗(C)-chain
where the interpretations of truth-constants do not cover the real unit interval.
In fact, if f(i+ 1) is not the successor of f(i) (there are some natural numbers
in between), the corresponding components contain no interpretations of
truth-constants.

We conjecture that the study of completeness results for the expansions of
the remaining logics of continuous t-norms, like the ones in the above examples,
will be more in a case-by-case basis rather than by means of a new general
theory. Another important issue to be addressed is the predicate calculi of these
expanded logics. All these issues are matters for future research.





Chapter 11

Final conclusions and open
problems

In this dissertation we have carried out an attempt to describe the axiomatic
extensions of the basic t-norm based logic, MTL. We have done it from an al-
gebraic point of view, by exploiting the fact that these logics are algebraizable
by varieties of MTL-algebras. Therefore, our study has resulted in an algebraic
study of subvarieties of MTL, where the final aim would be to obtain a de-
scription of the structure of the lattice of these subvarieties and their relevant
properties. Although this description has not been achieved yet, we have done
several significant advances in this direction that can be classified in two groups:
(a) those that spread some light over the amazing complexity of the lattice, and
(b) those that describe some well-behaved parts of the lattice. More precisely:

• By considering the connected rotation-annihilation method used to build
involutive left-continuous continuous t-norm, we have proposed a possible
way to decompose MTL-chains and we have studied some particular cases
of this decomposition. This has resulted in an extension of the theory of
perfect, local and bipartite algebras formerly used in varieties of MV and
BL-algebras, to the variety of all MTL-algebras.

• Perfect IMTL-algebras have been proved to be exactly (modulo isomor-
phism) the disconnected rotations of prelinear semihoops (a particular case
of the decomposition as connected rotation-annihilation).

• The lattice of varieties generated by perfect IMTL-algebras has been
proved to be isomorphic to the lattice of varieties of prelinear semihoops.

• A decomposition theorem of every MTL-chain as an ordinal sum of inde-
composable prelinear semihoops has been proved. Since all IMTL-chains
are indecomposable and, as the previous item states, we have the complex-
ity of all the lattice of varieties inside the involutive part, the description
of all indecomposable prelinear semihoops seems to be a hopeless task.

177
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• A particular class of indecomposable MTL-chains has been studied, namely
weakly cancellative chains. We have studied the logics associated to these
chains.

• We have studied the varieties of MTL-chains where a weak form of con-
traction, the so-called n-contraction law, holds. This condition yields a
global form of Deduction Detachment Theorem and allows to prove sev-
eral properties of their related logics.

• We have focused on a particular subvariety of 3-contractive MTL-algebras,
namely Weak Nilpotent Minimum, obtaining a number of results on axiom-
atization of their subvarieties, local finiteness, generic chains and standard
completeness.

• Finally, we have studied the expansions of t-norm based logics with truth-
constants and their standard completeness properties.

During the investigation many interesting problems have arised. Some of
them are still open and will be the object of future research:

1. The characterization of chains which are indecomposable as ordinal sum
seems to be a hopeless task, but maybe some advances can be done re-
garding indecomposable chains w.r.t. the connected rotation-annihilation
construction.

2. The decidability of Π and ΠMTL has been solved, but for the rest of weakly
cancellative fuzzy logics remains open.

3. Is the canonical FSSC true for expansions of  Lukasiewicz logic with irra-
tional truth-constants?

4. In Chapter 10 we have proved that for almost all the t-norms in
CONT-fin ∪ WNM-fin (except for one case that remains open), the
canonical SC turns out to be equivalent to the canonical SC restricted to
evaluated formulae, and to the canonical FSSC restricted to positively eval-
uated formulae. Can this be extended to a bigger class of left-continuous
t-norms?

5. Are all varieties of n-contractive MTL-algebras locally finite?

6. FEP, FMP and decidability for SnIMTL.

7. Standard completeness for Ω(CnWCMTL).

8. For all the axiomatic expansions of MTL considered so far there are two
standard completeness properties that turn out to be equivalent: the SC
and the FSSC. Is this true in general in the scope of algebraizable axiomatic
expansions of MTL?

9. Another pair of properties has revealed to be equivalent for all the consid-
ered varieties: the FEP and the FMP. Is this true in general in the scope
of algebraizable axiomatic expansions of MTL?
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of MTL-algebra, 41
principal, 42
proper, 14

finite embeddability property
(FEP), 18

finite model property (FMP), 18
fragment, 21
fusion, 31
fuzzy set, 2

Gödel negation, 37
Goguen implication, 37

Hilbert-style calculus, 20
homomorphic image, 13
homomorphism, 13
hoop, 45

basic, 45
cancellative, 45
Wajsberg, 45

idempotent element, 42
indecomposable totally ordered

semihoop, 52
inference rule, 20
interval associated to an involutive

element, 118
involutive interval, 119
isomorphism, 13

Jónsson’s Lemma, 17

lattice, 12
bounded, 12
complete, 13
distributive, 12
order, 13

lexicographic product, 24
logic

n-contractive, 104
L∗(C), 142
algebraizable, 21
BL, 29
decidable, 20
finitary, 20
finitely axiomatizable, 20
FLew, 31
G, 30
HBCK, 31
many-valued, 32
ML, 30
MTL, 29
Product (Π), 30
propositional, 19
sentential, 19
substructural, 31
t-norm based, 35

membership function, 2
MTL-algebra, 34

bipartite, 68
local, 71
locally finite, 72
order of an element, 67
peculiar, 72
perfect, 67
perfect plus n-points, 76
perfect plus fixpoint, 76

MTL-chain
weakly cancellative, 86

MTLH-algebra, 45
MV-algebra, 34

negative element, 43
nilpotent element, 42

ordinal sum
of t-norms, 50
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of totally ordered semihoops,
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partial embeddability property, 150
Pavelka-style extension, 141
positive element, 43
positively evaluated formulae, 168
propositional connective, 19
propositional language, 19
provability degree, 140

quasiequation, 17
generalized, 17

quasivariety, 17
equivalent quasivariety seman-

tics, 21

radical, 43
representation

as subdirect product, 15
residuated lattice, 32
rotation

connected, 55
diconnected, 54

rotation-annihilation
connected, 56, 75
disconnected, 55

semihoop, 45
prelinear, 45

Sorites Paradox, 1
standard algebra of type F , 145
standard completeness

canonical, 64
standard completeness (SC), 59

finite strong (FSSC), 59
strong (SSC), 59

strong finite model property
(SFMP), 18

strong negation function, 49
subalgebra, 13

partial, 18
substitution, 19
subuniverse, 13

theorem, 20

totally decomposable MTL-chain,
53

triangular t-norm (t-norm), 35
truth-degree, 140

ultrafilter, 14

variety, 16
arithmetic, 16
congruent distributive, 16
congruent permutable, 16
locally finite (LF), 18

Wajsberg algebra, 34
weak negation function, 49
WNM-chain

finite partition, 118
generic, 124

zero divisor, 43
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tions, In GÖDEL ’96 - Logical foundations of mathematics, computer sci-
ence and physics. Lecture Notes in Logic 6 (1996), P. Hájek (Ed.), Springer
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 Lukasiewicz logic that preserves degrees of truth. To appear in Archive for
Mathematical Logic.

[61] J. M. Font and R. Jansana, A general algebraic semantics for sentential
logics, Springer, 1996.

[62] J. M. Font, R. Jansana and D. Pigozzi, A Survey of Abstract Algebraic
Logic, Studia Logica 74 (2003) 13–97.
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[79] P. Hájek. Metamathematics of fuzzy logic, vol. 4 in Trends in Logic,
Kluwer, Dordrecht, 1998.
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[91] R. Horč́ık. Alternative proof of standard completeness theorem for MTL,
Soft Computing 11 (2007) 123–129.
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