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de Barcelona, 08193 Bellaterra, Barcelona, Spain.



I dedicate this piece of life to my father Alberto, my
mother Carla, and my brother Marco.





Contents

Foreword xix

Abstract xxi

Acknowledgements xxiii

1 Introduction 1
1.1 A hypothesis for the future: Wikinomics . . . . . . . . . . . . . . . . . 1
1.2 With the feet in the air & the head on the ground . . . . . . . . . . . . . 3
1.3 Supply Chain and Supply Chain Management . . . . . . . . . . . . . . 6
1.4 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Optimising make-or-buy decisions . . . . . . . . . . . . . . . . 7
1.4.2 Optimising make-or-buy-or-collaborate decisions . . . . . . . . 13

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Mathematical Background 23
2.1 Linear and Integer Programming . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Integer Programming . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Multi-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Operations on Multisets . . . . . . . . . . . . . . . . . . . . . 27

2.3 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 The state equation . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 State equation and reachability . . . . . . . . . . . . . . . . . . 33

2.4 Preliminaries on binary relations and graphs . . . . . . . . . . . . . . . 34
2.4.1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Graphs and Paths . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3 Order relations . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Related Work 39
3.1 Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Taxonomy of Auctions . . . . . . . . . . . . . . . . . . . . . . 40

ix



3.2 Combinatorial Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Bidding Languages . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Winner Determination Problem . . . . . . . . . . . . . . . . . 43
3.2.4 Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Supply Chain Scheduling and Supply Chain Formation . . . . . . . . . 45
3.3.1 Supply Chain Scheduling and Planning . . . . . . . . . . . . . 46
3.3.2 Supply Chain Formation . . . . . . . . . . . . . . . . . . . . . 47

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 MUCRAtR 51
4.1 Beyond Combinatorial Auctions . . . . . . . . . . . . . . . . . . . . . 51
4.2 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Communicating the RFQ . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Selecting the optimal decision . . . . . . . . . . . . . . . . . . 57

4.3 A first attempt: Place/Transition Nets . . . . . . . . . . . . . . . . . . 58
4.3.1 Modelling the internal production structure . . . . . . . . . . . 58
4.3.2 Incorporating Bids . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Weighted Place Transition Nets . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 WPTNSs and WPTNs . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Dynamics of WPTNs . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Representing auction outcomes with WPTNs . . . . . . . . . . . . . . 71
4.5.1 The Transformability Network Structure . . . . . . . . . . . . . 71
4.5.2 The Auction Net . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.3 Constrained Maximum Weight Occurrence Sequence Problem . 74

4.6 The Winner Determination Problem . . . . . . . . . . . . . . . . . . . 75
4.7 Solving the WDP by means of IP . . . . . . . . . . . . . . . . . . . . . 77

4.7.1 Solving the CMWOSP by means of IP . . . . . . . . . . . . . . 77
4.7.2 The IP Formulation in practise . . . . . . . . . . . . . . . . . . 79
4.7.3 Comparison with a traditional MUCRA IP solver . . . . . . . . 81

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Mixed Multi unit Combinatorial Auctions 83
5.1 Beyond CAs for Supply Chain Formation . . . . . . . . . . . . . . . . 84
5.2 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Bidding Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Supply Chain Operation . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.3 Atomic Bids . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.4 Combinations of Bids . . . . . . . . . . . . . . . . . . . . . . 95
5.3.5 Representing Quantity Ranges . . . . . . . . . . . . . . . . . . 96
5.3.6 Expressive Power . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.7 Examples of Bids . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Winner Determination . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.1 Informal Definition . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.2 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . 101

x



5.4.3 Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Subsumed Auction Models . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Solving the MMUCA Winner Determination Problem 111
6.1 Mapping MMUCA to WPTN . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.1 The intuitions behind the mapping . . . . . . . . . . . . . . . . 112
6.1.2 Representing Bids . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1.3 The Mixed Auction Net . . . . . . . . . . . . . . . . . . . . . 119
6.1.4 Expressing the MMUCA WDP as a CMWOSP . . . . . . . . . 122
6.1.5 Solving the MMUCA WDP with IP . . . . . . . . . . . . . . . 131
6.1.6 Advantages of the mapping to CMWOSP . . . . . . . . . . . . 133

6.2 Solving the WDP on Cyclic Mixed Auction Nets . . . . . . . . . . . . 135
6.2.1 Modifying the representation . . . . . . . . . . . . . . . . . . . 137
6.2.2 The general IP formulation . . . . . . . . . . . . . . . . . . . . 139

6.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . 142
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Connected Component-based Solver 145
7.1 Motivation and Example . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.2 SCO Dependencies and Solution Template . . . . . . . . . . . . . . . . 153

7.2.1 The SCO Dependency Graph (SDG) . . . . . . . . . . . . . . . 153
7.2.2 Computing the equivalence classes . . . . . . . . . . . . . . . . 157
7.2.3 Order Enforcing Function . . . . . . . . . . . . . . . . . . . . 157
7.2.4 Partial Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.3 The improved IP formulation . . . . . . . . . . . . . . . . . . . . . . . 161
7.3.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.3.2 Eliminating some Equations . . . . . . . . . . . . . . . . . . . 164
7.3.3 The CMWOSP-based solver is a special case of CCIP . . . . . 167
7.3.4 CCIP amounts to DIP when the SDG is connected . . . . . . . 168

7.4 Equivalence between solvers DIP and CCIP . . . . . . . . . . . . . . . 168
7.4.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.4.2 Reordering Sequences . . . . . . . . . . . . . . . . . . . . . . 170
7.4.3 Order Fulfilling Sequences . . . . . . . . . . . . . . . . . . . . 172
7.4.4 Properties of partial sequences of SCOs . . . . . . . . . . . . . 172
7.4.5 Equivalence between solvers . . . . . . . . . . . . . . . . . . 176
7.4.6 Proof of theorem 7.1 . . . . . . . . . . . . . . . . . . . . . . . 177
7.4.7 Proof of theorem 7.2 . . . . . . . . . . . . . . . . . . . . . . . 183

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8 Empirical Evaluation 187
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.2 The Artificial Data Set Generator . . . . . . . . . . . . . . . . . . . . . 188

8.2.1 Bid Generator Requirements . . . . . . . . . . . . . . . . . . . 188
8.2.2 An Algorithm for Artificial Data Set Generation . . . . . . . . 193

8.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xi



8.3.1 DIP versus CCIP . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.3.2 Performances of the CMWOSP-based solver . . . . . . . . . . 200

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9 Conclusions and Future Work 203
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.1.1 Make-or-Buy Decisions . . . . . . . . . . . . . . . . . . . . . 203
9.1.2 Make-Or-Buy-Or-Collaborate . . . . . . . . . . . . . . . . . . 207

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

A OPL models of the MMUCA WDP solvers 215
A.1 The CMWOSP-based Solver . . . . . . . . . . . . . . . . . . . . . . . 215
A.2 The DIP solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
A.3 The CCIP Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

xii



List of Figures

1.1 Apple pie production flow. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Example of a Place Transition Net. . . . . . . . . . . . . . . . . . . . . 28
2.2 Example of a Place Transition Net Structure. . . . . . . . . . . . . . . . 29
2.3 Place Transition Net of figure 2.1 after firingt1. . . . . . . . . . . . . . 31
2.4 Example of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 A graph and the corresponding SCCs . . . . . . . . . . . . . . . . . . . 37
2.6 The strict order≺ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 PTNS associated to example 4.1. . . . . . . . . . . . . . . . . . . . . . 59
4.2 PTNI associated to example 4.1. . . . . . . . . . . . . . . . . . . . . 60
4.3 PTNE. Incorporating bids into thePTNI of figure 4.2. . . . . . . . . 62
4.4 WPTNS associated to example 4.1. . . . . . . . . . . . . . . . . . . . . 66
4.5 WPTN associated to example 4.1. . . . . . . . . . . . . . . . . . . . . 68
4.6 Incorporating bids into the WPTN of figure 4.5. . . . . . . . . . . . . . 69
4.7 Auction Net of the MUCRAtR in example 4.1. . . . . . . . . . . . . . 72

5.1 TNS associated to example 5.1. . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Example of an SCO represented as a transition in a WPTN. . . . . . . . 112
6.2 Example of bids in a MMUCA represented as a WPTN. . . . . . . . . . 113
6.3 Bids on bundles of SCOs. . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 XOR of atomic bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5 XOR-of-OR of atomic bids . . . . . . . . . . . . . . . . . . . . . . . . 134
6.6 Example of a MMUCA in form of WPTN. . . . . . . . . . . . . . . . . 136

7.1 Graphical representation for the SCOs in bids in equations 7.1 to 7.8 . . 147
7.2 A PTN structure, the corresponding SDG, SCC, and Order Relation. . . 155
7.3 J(z̃) is forwardly swappedwith J(m̃) in g. . . . . . . . . . . . . . . . 173
7.4 Part of the SDG of example 7.1 . . . . . . . . . . . . . . . . . . . . . . 174

8.1 Components of a car engine. . . . . . . . . . . . . . . . . . . . . . . . 190
8.2 Market SCOs for a car’s engine. . . . . . . . . . . . . . . . . . . . . . 191
8.3 Modules of the bid generator and their interaction. . . . . . . . . . . . . 193
8.4 Comparison between DIP and CCIP. . . . . . . . . . . . . . . . . . . . 199

xiii



8.5 Number of instances solved within the time limit (4800 sec.). . . . . . . 200
8.6 Experiments with acyclic network topologies (reduced time scale). . . . 201

xiv



List of Tables

1.1 Summary of unfulfilled requirements. . . . . . . . . . . . . . . . . . . 12
1.2 Requirements associated tomake-or-buy-or-collaboratedecisions. . . . 17

4.1 Summary of requirements for themake-or-buydecision problem. . . . . 53
4.2 Request for quotes for different scenarios. . . . . . . . . . . . . . . . . 57
4.3 Execution of a manufacturing operation onPTNI. . . . . . . . . . . . 61
4.4 Applying the firing sequenceJ = 〈B1, makedough〉. . . . . . . . . . 64
4.5 Cost of executing a manufacturing operation on a WPTN. . . . . . . . . 69
4.6 Applying the firing sequenceJ = 〈B1, makedough〉. . . . . . . . . . 70

5.1 Requirements associated to themake-or-buy-or-collaborateproblem. . . 85
5.2 Requirements associated to themake-or-buy-or-collaborateproblem. . . 109

6.1 Resume of the IP formulation of solver DIP. . . . . . . . . . . . . . . . 141

7.1 Example of solution found by solver DIP. . . . . . . . . . . . . . . . . 148
7.2 Solutions equivalent to the solution in table 7.1 with same relative order. 148
7.3 Solutions equivalent to the solutions in table 7.1 with different order. . . 149
7.4 Solutions equivalent to the solutions in table 7.3 pushingt1 ahead. . . . 150
7.5 Solutions equivalent to the solutions in table 7.3 pushingt2 ahead. . . . 150
7.6 Assigning positions tot0 within a solution sequence. . . . . . . . . . . 151
7.7 Positions within the solution sequence assigned a-priori to SCOs. . . . . 152
7.8 Positions assigned a-priori without constraints. . . . . . . . . . . . . . 153
7.9 Interchanging the positions oft1 andt0. . . . . . . . . . . . . . . . . . 156
7.10 D-bounded enforcing function for example 7.1. . . . . . . . . . . . . . 158
7.11 Partial sequence fulfilling (K ′) and not fulfilling (K ′) S in table 7.10. . 161
7.12 Resume of the IP formulation of solver CCIP. . . . . . . . . . . . . . . 164
7.13 Example of solution found by solver DIP. . . . . . . . . . . . . . . . . 168
7.14 Examples of S-fulfilling (K ′) and not S-fulfilling (K ′′) reordering ofK. 170
7.15 Resume of the IP formulation of solver CCIP. . . . . . . . . . . . . . . 178

8.1 Artificial generator parameter values. . . . . . . . . . . . . . . . . . . . 198

9.1 Requirements of to themake-or-buyproblem. . . . . . . . . . . . . . . 204
9.2 Requirements of themake-or-buy-or-collaborateproblem. . . . . . . . 207

xv



xvi



Nomenclature

δ The overall number of SCOs mentioned anywhere in the bids with their multi-
plicities, page 102

ℓ Length of a valid solution sequence for a MMUCA, page 124

NG The set of multisets over the setG, page 102

D Themultisetof the overall SCOs submitted by all bidders with their multiplic-
ities, page 101

Dij The multiset of SCOs offered in bidBidij , page 101

Iijk The input multiset of the SCOtijk, page 120

M Marking in a PTN, page 30

Mm The multiset indicating the resources available to the auctioneer at them − th
step of a production process, page 102

Oijk The output multiset of the SCOtijk, page 120

Uin The multiset indicating an auctioneer’s initial stock, page 102

Uout The multiset indicating an auctioneer’s final requirements, page 102

Σ It represents an allcation sequence, i.e. a sequence of SCOs, page 102

Bidij Thej − th bid submitted by thei − th bidder, page 101

CT A vector representing the functionCFS , page 77

CFS Cost associated to a firing sequence on a WPTN, page 68

G The set of goods at auction, page 102

Mk A vector representing a markingMk, page 77

pij The valuation associated to bidBidij , page 101

PTNE Place Transition Net representing bids and internal production structure,
page 63

xvii



PTNI Place Transition Nets representing an auctioneer’s internal production struc-
ture, page 60

T The set of the overall SCOs submitted by all the bidders disregarding their
multiplicities, page 102

tijk Thek − th SCO in thej − th bid submitted by thei − th bidder, page 101

DIP Direct Integer Programming, page 138

CCIP Connected Component Integer Programming, page 145

Auction Net WPTN representing the MUCRAtR decision space, page 72

CA Combinatorial Auction, page 41

CMWOSP Constrained Maximum Weight Occurrence Sequence Problem, page 74

ILP Integer Linear Programming. An optimisation technique, page 24

IP Integer Programming. See ILP, page 24

MMUCA Mixed Multi-unit Combinatorial Auction, page 104

MUCA Multiunit Combinatorial Auctions, page 41

MUCRA Multiunit Combinatorial Reverse Auctions, page 41

MUCRAtR Multi-unit Combinatorial Reverse Auction with transformability Relation-
ships among goods, page 51

OR OR Bidding Language, page 42

PN Petri Nets, page 27

PTN Place Transition Nets, page 28

PTNS Place Transition Net Structure, page 28

SCC Strongly Connected Component, page 36

SCF Supply Chain Formation, page 47

SCO Supply Chain Operation, page 90

TNS Transformability Network Structure, page 54

WDP Winner Determination Problem, page 43

WPTN Weighted Place Transition Net, page 67

WPTNS Weighted Place Transition Net Structure, page 66

XOR XOR Bidding Language, page 42

xviii



Foreword

Nowadays we are witnessing an important transformation of the way organizations op-
erate to fulfill their objectives. We are moving from monolithic structures to collab-
orative structures whose components tend to reduce their sizes. This means that we
are moving toward the paradigm of virtual organizations. In this setting, the ability to
quickly and efficiently collaborate to design, develop, produce and sell a new product
has become a key competitive advantage.

In this environment, enterprises face critical strategic decisions on whether to col-
laborate with other firms to complete some tasks across its supply chain. In this setting
there is a need for an increased automation across the supply chain. Indeed, static and
vertical integrated supply chains are quickly giving way to more flexible value chains
composed of partners that can be assembled in real time to meet unique requirements.

This thesis is the result of a pioneer work on automating the process of collaborative
supply chain network formation. At this aim, it proposes a novel combinatorial auction
model, the so-called Mixed Multi-Unit Combinatorial Auction, that supports not only
to trade and exchange goods but also to trade and exchange manufacturing operations.
This model has achieved international recognition, has opened a new line of research in
our institute and shows a high potential for industrial application.
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Abstract

The need for automating the process of supply chain formation is motivated by the ad-
vent of Internet technologies supporting B2B and B2C negotiations: the speed at which
market requirements change has dramatically increased. In this scenario enterprises
must become flexible in the process of product customisation and order fulfilment. This
can be only achieved if the supply chain formation process is agile, and thus the need
for automation.

The main goal of this dissertation is to provide computationally efficient market-
based auction mechanisms for automating the process of optimal supply chain partner
selection. This is achieved by means of two progressive, non-trivial extensions of com-
binatorial auctions (CA).

On the one hand, we extend CAs to determine optimal outsourcing strategies. Thus,
we provide computational means, via the so-called Multi-unit Combinatorial Auctions
with Transformation Relationships (MUCRAtR), for an enterprise to optimise itsmake-
or-buydecisions across the supply chain, namely to decide whether to outsource some
production processes or not. At this aim, we add a new dimension to the goods at
auction. A buyer can express its internal production and cost structure. Firstly, we
introduce such information in the winner determination problem (WDP) so that an auc-
tioneer/buyer can assess what goods to buy, from whom, and what internal operations
to perform in order to obtain the required resources. In this way, an auctioneer can build
his supply chain minimising its costs. Secondly, since the decision problem faced by
the auctioneer is extremely hard, we also provide a formal framework to analyse the
computational properties of the WDP and to facilitate the classification of WDPs, and
hence to provide guidance for developing efficient solution algorithms.

On the other hand, we propose a novel CA, the so-called Mixed Multi-unit Combi-
natorial Auction (MMUCA), that automates the process of collaborative supply chain
network formation. The outcome of such a new auction is the coordinated plan of a to-
tally integrated supply chain (the selection of a set of supply chain partners along with
the ordered set of operations that each partner must perform). We manage to provide
computational means to optimisemake-or-buy-or-collaboratedecisions, and therefore
to tightly link sourcing, outsourcing, and collaboration strategies. In this context, make,
buy, and collaborate mean that a stakeholder of the supply chain decides whether to per-
form a set of services or operations by himself (make), to outsource them (buy), or to
perform them in collaboration with other stakeholders (collaborate). A MMUCA allows
agents to bid for bundles of goods to buy, to sell, and for bundles of (manufacturing)
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operations across the supply chain. One such operation can beregarded as a step in a
production process, and thus winner determination in a MMUCA amounts to choosing
the sequence in which the winning bids must be implemented while minimising total
cost. Furthermore, we introduce a bidding language for MMUCAs and analyse the
corresponding WDP. Finally, we succeed in providing very efficient optimisations to
the MMUCA WDP, based on a formal analysis of its topological structure, which can
found their practical application to actual-world scenarios.
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Chapter 1

Introduction

The main goal of this dissertation is to provide computationally efficient market-based
auction mechanisms for automating the process of optimal supply chain partner selec-
tion. This is achieved by means of two progressive, non-trivial extensions of combina-
torial auctions (CA). On the one hand, we extend CAs to determine optimal outsourcing
strategies. Thus, we aim at providing a useful tool to optimise make-or-buy decisions
across the supply chain. On the other hand, we propose a novel CA that automates the
process of collaborative supply chain network design, planning1, and formation. The
outcome of such a new auction is the coordinated plan of a totally integrated supply
chain (the selection of a set of supply chain partners along with the ordered set of op-
erations that each partner must perform). Analogously, in the latter case we aim at
providing a useful tool to optimise make-or-buy-or-collaborate decisions, and therefore
to tightly link sourcing, outsourcing, and collaboration strategies. In this context,make,
buy, andcollaboratemean that a stakeholder of the supply chain decides whether to
perform a set of services or operations by himself (make), to outsource them (buy), or
to perform them in collaboration with other stakeholders (collaborate).

This chapter is organised as follows. In section 1.1 we explain why some think
that our economy is undergoing profound changes in the next years. In section 1.2, we
go back to reality and explain what is currently changing in our economy and what is
required to adapt to such changes. In section 1.3 we recall some concepts and termi-
nology related to supply chain management. In section 1.4, we specify and thoroughly
exemplify the problems we cope with in this PhD thesis. In section 1.5 we highlight the
contributions of this dissertation with respect to the state-of-the-art. Finally, in section
1.6, we elaborate on the structure of this dissertation.

1.1 A hypothesis for the future: Wikinomics

In his recent article, Burkeman (Burkeman, 2005) summarises and discusses the eye-
opening new book of Don Tapscott calledWIKINOMICS: How Mass Collaboration
Changes Everything(Tapscott and Williams, 2006). According to Don Tapscott, a guru

1We remark thatsupply chain planningconsists in assessing who will do what and when in a supply chain.

1



2 Chapter 1. Introduction

of the Web, “we have barely begun to imagine how the Internet will change the way we
live and work”. We are living a revolution that is undermining the very basis of tradi-
tional economy. In his article, Burkeman recalls three examples of this transformation
from theWikinomicsbook:

• Self-Organisers: China’s flourishing motorbike industry is not composed of big
organised firms hiring thousand of employees and outsourcing tasks to small sub-
contractors. Instead, a myriad of smaller companies collaborate and self-organise
in order to share risks and profits. Their representatives meet in tea-shops or in
on-line places and jointly plan a product, to which they contribute with the ser-
vice they are best at. Even the final assembly is a service. A “self-organised
system of design and production” has emerged.

• Prosumers: when amateurs began to hack the computerised parts at the heart of
the Lego Mindstorm range (Shaeffer, 2007), the company initially threatened to
sue them. Then, perceiving the wind of change, Lego started to encourage them
to beprosumers, consumers that have an active role in the design of a product.
This lead to an increased satisfaction of customers without harming the enterprise
profit.

• The new gold rush: the Gold mine at the Red Lake in Ontario, owned by Gold-
corp, was in a terrible crisis in 1999. When the chief executive Rob McEwen
heard a talk about Linus Torvald, the inventor of Linux, he came up with a revo-
lutionary idea. If developers collaboratively code on the Web, why not share the
mining activity on the web? Then, he put Goldcorp secret geological data on the
web and set a 575,000 $ prize to reward the discovery of new gold veins in Red
Lakes’s mine. Around 80 valid targets were identified and the company value
turned from $100m to $9bn.

Those three cases above aim at showing that the collaborative structure, recently
emerged in social and collaborative networks as Wikipedia (Lih, 2003) and Sourceforge
(SourceForge, S.F., 2007), could be far more radical and change the way we think about
manufacturing. In his book, Tapscott introduces his revolutionary idea of “wikinomics”,
an idea that originates in a work that dates back to 1937 (Coase, 1937). At that time,
Ronald Coase, a Nobel prize economist, noticed something odd in capitalism. Capital-
ism predicates the free market and exchange. If capitalist theory was correct American
or British people should do business among them as individuals in an open market,
and not organise themselves in firms, as it happens. The motivation (Coase, 1937) is
that making things requires collaboration, and that finding and linking up all the people
who need to collaborate costs money. Companies emerge when it is cheaper gathering
people, materials, and tools under the same roof, rather than going out looking for the
best deal every time a few hours’ work is required. However, the Internet is radically
lowering the cost of collaborating. Consequently, big companies are doomed to reduce
their size in order to leave space to more agile and flexible collaborative structures. A
symptom of this new collaborative reorganisation is that, for instance, large companies,
from media outlets to clothes shops, are trying to make profit by incorporating final
customers in the creation of their products. However,Wikinomicsforecasts a further
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radical revolution: it is not given that the company will stay in the driving seat at all.
Quoting Tapscott: “We are talking about a new means of production. Collaboration can
occur at an astronomical scale, so if you can create an encyclopedia with a bunch of
people, could you create a mutual fund, a motorcycle?”.

Tapscott is not the only one prohetising a wiki future. For instance, Laubaucher and
Malone (Laubacher and Malone, 2003) claim that “The most radical new organisational
form, the virtual corporation, involves small firms and free-lancers, or even e-lancers
— electronically connected free-lancers, who post their qualifications and find assign-
ments on the Internet — joining forces on a temporary basis, working together on a
project, then disbanding when the work is completed. Virtual corporations of this sort
have long characterised film production and construction and are increasingly preva-
lent in the most dynamic and fastest-growing sectors of the economy — computers and
telecommunications, entertainment, biotechnology.”

Other terms employed to indicate analogous concepts arevirtual corporation, vir-
tual organisation(Mowshowitz, 2002), andextended enterprise(Dyer, 2000).

1.2 With the feet in the air & the head on the ground

The provocative title quotes The Pixies’ songWhere is my mind. It aims at highlight-
ing the fact that wikinomics is a far goal. However, any revolution takes its time to
entirely develop, and probably several intermediate steps are required to approach the
new economy envisaged by Tapscott and Couse. Then, in this section we stay withthe
head on the groundand we analyse what is going on in the business world now. We
will summarise what is changing and why. At the same time we will comment on the
requirements that originate from such changes.

We are witnessing an important transformation of the firm organisational structure.
Today’s business world is experiencing a progressive disintegration of the traditional
vertical integrity2 of the enterprises’ organisational structure. This is witnessed by a
heavy increment in the use of outsourcing. Quoting Greaver (Greaver, 1999), “Out-
sourcing is the act of transferring some of an organisation’s recurring internal activities
and decision rights to the outside providers, as set forth in a contract”. Outsourcing is
one of the success keys of western economies and is widely employed. Indeed, a re-
cent on-line news (DMReview.com online news, 2005) about outsourcing claims that,
“According to a newly released IDC study, the worldwide BPO (Business Process Out-
sourcing) market is vibrant and brimming with opportunity. The comprehensive BPO
report finds that worldwide BPO spending will experience a five-year compound annual
growth rate (CAGR) of 10.9 percent, growing from $382.5 billion in 2004 to $641.2 bil-
lion in 2009. This forecast covers eight BPO markets: human resources, procurement,
finance & accounting, customer service, logistics, sales & marketing, product engi-
neering, and training”. Another on-line news (DMReview.com online news, 2006) says
that “According to a newly released IDC study, the business outsourcing market pro-
gressed positively in 2005, experiencing a 33 percent increase in the volume of deals
signed. [...]. Small and mid-size deals are fuelling growth. Underlying this trend is

2In microeconomics and management the termvertical integrationdescribes the degree to which a firm
owns its upstream suppliers and its downstream buyers.
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an increase in the share of new deals versus extensions and renewals, which indicates
that a growing number of new organisations are buying into the business outsourcing
model. [...]. Manufacturing, financial services, and government verticals registered the
strongest adoption of business outsourcing overall”.

The trend is quite clear. We are moving from vertically integrated struc-
tures to collaborative structures whose components tend to reduce their sizes
(Lucking-Reiley and Spulber, 2001; Hammer, 2001). This means that we are slowly
moving towards the paradigm of virtual enterprises. This is a symptom endorsing the
Wikinomicstheory. Such transformation is due to many factors.

Firstly, today’s business environment is getting tougher and tougher. Indeed, nowa-
days customers are increasingly demanding better and innovative goods, as well as pro-
gressively more customised products. This new situation entails some implicit produc-
tion requirements and constraints like timeliness, convenience, responsiveness, quality,
and reliability. Moreover, ever lower prices are imposed by a fierce market competition.

Secondly, the rapid pace of innovation has entailed a shorter product and technology
life cycle (for instance, the PC or phone industries where new models are introduced
each 3 to 9 months), and an increased uncertainty in supply and demand. Notice that
the presence of technology, in particular the Internet, has also made the work of modern
organisations placeless. This has forced an increased specialisation of the operational
activities across an organisation.

Thirdly, we are experiencing a worldwide increment in competition (hyper-
competition). We are fastly moving from a best-in-class to a best-in-world paradigm,
barriers are dropping quickly, competition is just one click away from any customer.
Companies that recently were in separate fields now compete in the same narrow mar-
ket (for instance, Apple with the iPod efficiently entered into the MP3 player market).

Finally, we are witnessing a rapid commoditisation of goods3, due to the rapid price
decline and to the increased pressure for improved performances.

Thus, the ability to quickly and efficiently design, develop, produce and sell a new
product has become a key competitive advantage. That is why the structural integrity
of organisations is breaking down; the traditional vertically integrated organisations,
controlling as many of the production factors as possible, is being quickly replaced by
better focused and more specialised organisations. An increased number of capable
service providers, the pressure deriving from the hypercompetitivity, and the pervasive
presence of technology impose a new strategic vision. As a result, new supply chain
management (Simchi-Levi et al., 2000) strategies are emerging, like strategic outsourc-
ing (Quinn and Hillmer, 1995; Greaver, 1999; Corbett, 2004) and collaborative supply
chain network design (Viswanadham, 2002).

Notice that the intersection between portions of supply chains of different firms is
often non empty. For instance,original equipment manufacturers(OEM) are typical in
rapidly chaining markets. The termoriginal equipment manufacturer(OEM) refers to a
company that sells a manufacturing component to another company, that in turn resells
it as its own, usually as a part of a larger product.

3In essence, commoditisation occurs as a good or service becomes undifferentiated across its supply base
by the diffusion of the intellectual capital necessary to acquire or produce it efficiently. As such, many
products which formerly carried premium margins for market participants have become commodities, such
as generic pharmaceuticals and silicon chips (Schrage, 2007).
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In this environment, the selection of the right business partners is critical, which
are quickly moving from the role of suppliers, manufacturers, customers, to the role of
collaborators. Hence, many enterprises now face criticalmake-or-buy-or-collaborate
strategic decisions across their supply chain: different types of actors, as component
suppliers, contract manufacturers, service purchasers, logistic providers, and final cus-
tomers have to be efficiently integrated into the supply chain. In particular, one of
the main objectives of current supply chain management (Simchi-Levi et al., 2000) is
to integrate as much as possible theback-endof the supply chain (its production and
manufacturing portion) to thefront-end(the final customer).

Another fundamental requirement stemming from the business environmental
changes explained above is a need for an increased automation across the supply chain.
Indeed, static and vertically integrated supply chains are quickly giving way to more
flexible value chains composed of partners that can be assembled in real time to meet
unique requirements. This phenomenon is being accelerated by the Internet, that low-
ered the communication barriers transforming a game that was firm against firm into a
game that is supply chain network against supply chain network (Viswanadham, 2002).

A spectrum of possible solutions is possibly needed by enterprises. On the one ex-
treme, companies must make decisions about whether to outsource part of their produc-
tion processes (buy/make decisions) in business environments characterised by myriads
of possible partners (lower barriers caused an increment in competition). On the other
extreme of the spectrum, virtual enterprises may need agiledecision support systems
(DSSs) that allow them to automatically form self-organising supply chains.

Indeed, we do believe that nowadays firms, or group of firms, require DSSs that
allow them to nimbly and automatically select strategic business partners. With this
goal, those DSSs should allow firms to:

• automate the process of partner selection, optimising criticalmake-or-buydeci-
sions across the supply chain (i.e. trading off decisions of internal vs external
production) with myriads of potential partners. Clearly this entails a tight inte-
gration of the procurement and outsourcing strategies.

• decide whether to collaborate with other firms to complete some tasks across
its supply chain. In this case companies need to automatemake-or-buy-or-
collaboratecritical decisions across the supply chain with myriads of potential
partners.

• automate the process of collaborative supply chain network design and planning
with a large number of potential partners. In particular, the decision support
should allow them to self-organise by allowing to:

– integrate and coordinate all the supply chain stakeholders;

– include component suppliers, contract manufacturers, logistic providers and
final customers into the supply chain design process;

– optimise the overall performance of the supply chain (i.e. not a local opti-
misation);
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– easily support mass customisation4; and

– integrate potential suppliers and final customers into new product develop-
ments.

Obviously, decisions like the ones considered above can emerge as long as the sup-
ply chain stakeholders collaborate and share information like capacity, schedule, and
cost structures. However, full transparency and collaboration is rather unlikely. Then,
all the previous requirements should come with the possibility to share only part of a
stakeholder’s internal information, without being forced to reveal every piece of critical
production information.

With the above-mentioned requirements fulfilled, competitive companies could eas-
ily cope with a wide range of difficult business decisions: from the selection of optimal,
tightly connected procurement, outsourcing, and collaboration strategies, to the forma-
tion of virtual enterprises.

In the next section, we briefly introduce the definition of supply chain and we pro-
vide some terminology that will be useful in the remaining of the chapter.

1.3 Supply Chain and Supply Chain Management

According to (Simchi-Levi et al., 2000), “In a typical supply chain, raw materials are
procured and items are produced at one or more factories, shipped to warehouses, for
intermediate storage, and then shipped to retailers and customers. [...] The supply
chain, consists of suppliers, manufacturing centers, warehouses, distribution centers,
and retail outlets.”.

Supply chain management (SCM) “is a set of approaches utilised to efficiently in-
tegrate suppliers, manufacturers, warehouses, and stores, so that merchandise is pro-
duced and distributed at the right quantities, to the right locations, and at the right time,
in order to minimise system-wide costs while satisfying service level requirements”
(Simchi-Levi et al., 2000). One of the core objectives of the supply chain is to perform
a global optimisation across the supply chain. But many features of the way businesses
are run today prevent this from happening: the uncertainty underlying the supply, the
demand, the transportation time, the vehicles and the tools breakdowns. Furthermore
the various stakeholders across the supply chain locally maximise their utility disre-
garding the performances of the other elements within the supply chain. In fact, the
different components often have even conflicting objectives. Traditional SCM deals
with all these problems acting on different aspects of control: distribution network con-
figuration, supply contracts, distribution strategies, supply chain integration and strate-
gic partnering, inventory control, outsourcing and procurement strategies, information
technology and DSSs, etc.

In particular, aspects relevant to our work are:

(1) outsourcing and procurement strategies considered in the first part of this disser-
tation; and

4According to (Simchi-Levi et al., 2000) “mass customisation involves the delivery of a wide variety of
customised goods or services quickly and efficiently at low cost”.
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(2) supply chain integration and strategic partnering, considered in the second part
of the PhD thesis.

Since our work mainly focuses on outsourcing issues, in what follows we provide some
basic related terminology. Different operational aspects of the supply chain can be
outsourced. More specifically, we classify the types of possible supply chain partners
into four categories:

• component suppliers, also called providers, that supply raw or intermediate goods
across the supply chain;

• contract manufacturers, that provide services or manufacturing operations across
the supply chain;

• service purchasers, that require services or manufacturing operations across the
supply chain;

• logistic providers, in charge of the transportation, distribution, and storage of raw,
intermediate or manufactured goods; and

• final customers, at the end of the supply chain, be them either retailers, or, in the
new Internet era, final clients.

In this dissertation we narrow the focus of the investigation to the collaboration of
component suppliers, contract manufacturers, service purchasers, and final customers.
We deem necessary the incorporation of the logistic portion into the problem. However,
in this dissertation the collaboration with logistic providers is left out, and will be thor-
oughly discussed as a path of future work in chapter 9. Therefore, in this dissertation
we assume that logistics are negotiated independently.

1.4 The Problem

Once outlined in section 1.2 the requirements originating from the vertiginous changes
in today’s business world, we focus on the requirements that we tackle in this disserta-
tion. In particular, we present two motivating examples concerning the main issues we
intend to face in this thesis: the problem of efficiently solvingmake-or-buyandmake-
or-buy-or-collaboratedecisions across the supply chain. Both examples consider an
imaginary company devoted to produce and sell apple pies calledGrandma & co. The
examples, along with the emerging implicit requirements, are thoroughly presented in
sections 1.4.1 and 1.4.2.

1.4.1 Optimising make-or-buy decisions

The first example aims at making explicit the requirements regarding the automation of
make-or-buydecisions.
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Example 1.1. Consider a company, namedGrandma & co, devoted to produce and sell
apple pies. The internal production structure of the company, i.e. the way apple pies
are prepared, is presented in figure 1.1. Each circle represents a raw, intermediate or
manufactured good. Squares connecting goods represent manufacturing operations. An
arc connecting a good to an operation indicates that the good is aninput to the operation,
whereas an arc connecting an operation to a good indicates that the good is anoutput
of the operation. Then,butter, sugar, andflour are input goodsto theMake Dough
operation, whereasdoughis anoutput goodof theMake Doughoperation. The labels
on the arcs connectinginput goodsto operations, and the labels on the arcs connecting
output goodsto operations indicate the units required of eachinput goodto perform
an operation and the units generated peroutput goodrespectively. In our example, the
preparation of two units ofdoughrequires one unit ofbutter, three units ofsugar, and
two units offlour.

Each operation has an associated cost every time it is carried out. We label each
operation with a cost. In our example, theMake Doughoperation costs 5e .

butter

sugar

flour

apples

marga
rine

Make
Dough

e 5

Make
Filling

e 6

1

3

22

1

8

2

dough

filling

2

2

Baking

e 14

4

4

Apple
Pies

4

Figure 1.1: Apple pie production flow.

Consider that the marketing department atGrandma & coforecasts that two hun-
dred apple pies will be sold within a month. Therefore, the company starts an automated
sourcing (Minahan et al., 2002) process to acquire the basic ingredients needed for pro-
ducing pies, namelybutter, sugar, flour, apples, andmargarine.

However, the production management staff decides to test a new sourcing process.
Instead of limiting the procurement to basic ingredients, they decide to incorporate in
the sourcing process intermediate and final goods as well, namelydough, filling, and
apple piesin figure 1.1. More precisely, the production management wonders whether
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to outsourcepart of its production process. In fact, the executive staff noticed that more
and more specialised enterprises are entering the organic food market. SinceGrandma
& co is a well-known brand for pies, it decides that in order to reduce costs, it could be
suitable to negotiate and collaborate with those new brands.

As an additional constraint, the production management knows that strong com-
plementarities among the negotiated goods exist on the supplier side. For instance,
suppliers often sell margarine and butter as indivisible bundles. Thus, it is required that
those complementarities are taken into account.

Grandma & corealises that it faces a decision problem: shall it buy the required in-
gredients and internally produce apple pies, or buy already-made apple pies (outsource
all its production), or opt for amixed purchaseand buy some ingredients for internal
production and some already-made apple pies? This concern is reasonable since the
cost of ingredients plus preparation costs may eventually be higher than the cost of
already-made apple pies.Grandma & comust take a decision among many possible
mutually exclusive options:

• buy all the basic ingredients to internally produce all the pies;

• buy from suppliers all the pies and resell them under its name;

• buy already-made dough and filling from suppliers , and bake itself the cake;

• prepare part of the dough and part of the filling, and buy the rest from suppliers;

• buy part of the pies from suppliers and produce the rest itself;

• and so on.

Grandma & cois interested in quantitatively assessing what to buy and from whom, as
well as what to produce in house. Such assessment depends on many factors:

(1) the market cost of the basic ingredients (butter, sugar, flour, apples, and mar-
garine);

(2) the market cost of dough, filling, and pies;

(3) the stock goods atGrandma & co;

(4) the finally required goods (the sales forecast);

(5) the cost for performing atGrandma & cothe operationsMake Dough, Make
Filling , andBaking(the internal cost structure);

(6) the number of units of each good either produced or required for each operation
(the internal production structure); and

(7) the complementarity relationships among goods holding on the suppliers’ side.
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Hence,Grandma & corequires a complex decision support system along with a nego-
tiation mechanism that helps it in detecting which is the revenue maximising buying
configuration and the internal operations to perform in order to obtain the finally re-
quired goods. It is easy to understand from the example that the procurement and out-
sourcing decisions are tightly linked. Notice that there is a mutual dependency among
the outsourcing opportunity, the ingredients’ market prices (as Dough, Apples,etc.) and
other factors. This kind of dependencies must be absolutely captured by any proposed
solution.

The literature on procurement has introduced combinatorial reverse auctions to deal
with the problem of complementarities among goods on the bidders’ side. In the fol-
lowing section we briefly recall some knowledge about electronic sourcing and combi-
natorial auctions.

The procurement phase

In the everyday business world, the sourcing process of goods and services usually
involves complex negotiations. With the advent of the Internet, a plethora of commer-
cial products to electronically support this process (e-sourcing tools) have started to be
commercialised by a significant number of vendors (e.g. Ariba, Emptoris, Perfect, and
iSOCO to name a few5). Thus, e-sourcing tools have become an established part of the
business landscape (Team, 2001). Reverse6 auctions are at the heart of most of these
tools as the mechanism for buying companies to automate their negotiations with the
qualified providers in their supply chains.

Although reverse auctions are certainly valuable to swiftly negotiate with providers,
combinatorial (reverse) auctions may lead to more efficient allocations whenever com-
plementarities among the goods at auction hold, as argued in (Sandholm, 2002). A
combinatorial (reverse) auction (Cramton et al., 2006) is an auction where bidders can
sell (buy) entire bundles of goods in a single transaction. Although computationally
very complex, selling (buying) items in bundles has the great advantage of eliminating
the risk for a bidder of not being able to obtain (sell) complementary items at a rea-
sonable cost (price) in a follow-up auction (think of a combinatorial auction for a pair
of shoes, as opposed to two consecutive single-item auctions for each of the individual
shoes).

In particular, connected with the introduction of combinatorial auctions are
bidding languages (Nisan, 2006) and the winner determination problem (WPD)
(Lehmann et al., 2006). Winner determination is the problem, faced by the auctioneer,
of choosing what goods to award to which bidder so as to maximise its revenue. The
winner determination for combinatorial auctions is a complex computational problem.
In particular, it has been shown that the WDP is NP-complete (Rothkopf et al., 1998).
Bidding is the process of transmitting one’s valuation function over the set of goods at
offer to the auctioneer (or rathersomevaluation function — the bidders are of course
not required to reveal their true valuation —).

5We refer the reader to (Bartels et al., 2005) for an analysis of e-sourcing tools.
6An auction is calleddirect when the auctioneer aims at selling goods, whereas we talk aboutreverse

auction when the auctioneer is interested in buying goods.
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SinceGrandma & coaims at dealing with the case in which complementarities
among goods hold at the bidder’s side, combinatorial auctions is for sure the more
suitable sourcing method. Then, in order to cope withGrandma & co’s problem, we
employ combinatorial auctions. Anyway, combinatorial auctions cannot be directly
employed for the problem explained in example 1.1 due to some intrinsic limitations.

To the best of our knowledge, no author directly dealt with themake-or-buyde-
cision problem employing reverse combinatorial auctions. On the one hand, combi-
natorial reverse auctions solve the problem of procurement when complementarities
among goods exist on the supplier side. On the other hand, operations research has
studied the bestmake-or-buydecisions based on past production information, sell fore-
cast, providers’ offers, etc (Aissaoui et al., 2007)7. However, nobody embedded the
decision problem into the procurement problem when complementarities among goods
hold, nobody analysed the procurement decisions in conjunction with the outsourcing
decisions in a combinatorial scenario. Then, in what follows, we analyse the require-
ments associated with themake-or-buydecision problem that are not fulfilled by com-
binatorial auctions, and we discuss the extensions required in order to deal with such
decision problem.

Combinatorial Auction limitations

Say that Grandma & co opts for running a combinatorial reverse auction
(Sandholm et al., 2002) with qualified providers for the procurement of all the required
goods. Unfortunately, traditional combinatorial reverse auctions cannot be applied to
solve such a problem for three reasons. Firstly, because of expressiveness limitations,
namely an auctioneer (Grandma & co) cannot express:

• its internal manufacturing operations along with the producer/consumer relation-
ships holding among them (for instance, in figure 1.1, the output ofMake Dough
is an input ofBaking);

• the relationships between the manufacturing operations and the auctioned goods
(for instance, in figure 1.1, the input to theMake Doughoperation is three units
of sugar, two units offlour and one unit ofbutter, whereas its output is two units
of dough);

• the relationships between the received bids and the internal manufacturing oper-
ations;

• the requirements sent to bidders. This is clarified by observing that even though
the final requirements ofGrandma & coare two hundred apple pies, multiple
request configurations fulfil such outcome, for instance:

– two hundred already-made apple pies

– the basic ingredients plus in-house production of two hundred apple pies

7For a general review on decision support to supply chain management refer to (Erenguc et al., 1999).
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How canGrandma & coformally describe its requirements? What should be the
requirements sent to bidders? In fact, the optimal requirements depends on the
received offers, and therefore cannot be stated a priori.

• the cost associated to performing each internal operation or a set of internal op-
erations.

The second problem is that the outcome of a combinatorial auction only provides
information about what goods to buy and from whom. However, the information about
which internal manufacturing operations to perform and the order in which the auction-
eer has to perform them (in the example of figure 1.1, the auctioneer cannot perform
theBakingoperation beforeMake Doughor Make Filling) is not provided.

Table 1.1 summarises the requirements stemming from themake-or-buydecisions
that are not supported by any state-of-the art solution.

TYPE LIMITATION

Expressiveness

(1) internal manufacturing operations and the
producer/consumer relationships among
them

(2) specification of an auctioneer’s final re-
quirements

(3) relationships among the manufacturing
operations, the auctioned goods, and the
received bids

(4) specification of an auctioneer’s internal
cost structure

WDP
(5) information about which in-house opera-

tions to perform and in which order

Table 1.1: Summary of unfulfilled requirements.

Although combinatorial auctions help set the market price of each good, they do
not incorporate the notion of internal manufacturing operations. This is why all the
above-mentioned difficulties arise.

Summarising,Grandma & corequires an extended combinatorial reverse auction
that provides:

(1) a formal language to quantitatively express, analyse, and communicate its internal
production structure and requirements; and

(2) an efficient cost minimising winner determination solver that not only assesses
which goods to buy and from whom, but also the sequence of internal manufac-
turing operations needed to obtain the finally required goods.
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1.4.2 Optimising make-or-buy-or-collaborate decisions

In what follows, we further increase the complexity of the scenario illustrated in exam-
ple 1.1. Besides component suppliers,Grandma & cobrings contract manufacturers,
service purchasers, and final customers into the auction. We clarify what we stated
above by means of the following example.

Example 1.2. Consider again the example ofGrandma & co. The revolutionary pro-
duction management (PM) staff decides that, besides all the goods ,Grandma & cowill
negotiate all the operations along its supply chain. Thus, it invites to the auction sup-
pliers of goods, suppliers of manufacturing operations (asMake Doughor Baking), and
final customers/buyers of the final product (apple pies). SinceGrandma & cois often
asked to perform some service operations (asBakingfor instance) for other companies,
it decides to bring into the auction service purchasers as well. Summarising,Grandma
& co, acting as auctioneer, receives offers from four types of bidders, namely:

(1) component suppliers:bidders that offer goods (for instance, two hundreds units
of flour and a hundred units of sugar for 800e );

(2) contract manufacturers: bidders that offer manufacturing operations (for in-
stance, perform the operationMake Doughat 4e );

(3) service purchasers:bidders that require manufacturing operations (for instance,
willing to paye 42 for having the operationMake Fillingdone seven times); and

(4) final customers: bidders that ask for goods (for instance, two hundred units of
apple pies for 2400e ).

Resorting to example 1.2, in what follows we clarify what we intend for make-
or-buy-or-collaboratedecisions. Say that there is a contract manufacturer that is very
able to efficiently and cheaply perform theBakingoperation, i.e. at a cost ofe 10.
However, it performs very poorly theMake Fillingand theMake Doughoperations. In
such a case, the way to optimally produce apple pies for both firms is tocollaborate:
i.e Grandma & cowill be in charge of buying the basic ingredients to subsequently
transform them intoDoughandFilling , whereas the other firm of theBakingoperation.
Together they can offer a more competitive price.

Observe that it might be the case thatGrandma & coacts as a pure intermediary for
some or all the operations. Eventually, someone might perform theBakingoperation
and someone else might require theBakingoperation. In this case the operation is per-
formedby a bidderfor another bidder, andGrandma & coacts just as an intermediary
that makes profit by connecting the service provider and asker.

From example 1.2, we see that more stakeholders, besides component suppliers,
have to be brought into the negotiation. In particular, we need to incorporate contract
manufacturers, service purchasers, and final customers. Hence, it is compulsory to
introduce a unified formal language for describing all the possible types of operations
that supply chain stakeholder can negotiate upon. We classify such operations in four
types:
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(1) Supply of manufacturing, assembly, disassembly operations. For instance, the
cost of assembling a personal computer given a mother board, a CPU, two mem-
ory units and a hard drive costse 12. This type of operation will typically de-
scribe services offered by contract manufacturers.

(2) Demand of manufacturing, assembly, disassembly operations. For instance, a
bidder is willing to pay 5e to have his PC assembled given that he provides the
components (e.g. a mother board, a CPU, two memory units and an hard drive).

(3) Supply of goods. For instance, a supplier offers 100 units of RAM memories
and 100 units of CPUs ate 4000. This type of operation will typically describe
services offered by component suppliers.

(4) Demand of goods. For instance, a customer is willing to paye 5000 for 20 PCs.
This will typically describe operations associated to final customers.

We will refer to any of the possible operations mentioned above with the termsupply
chain operation(SCO).

Grandma & cofaces a decision problem more complex than the one explained in
section 1.4.1. Although the use of combinatorial reverse auctions may allowGrandma
& co to improve its supply chain, there are further limitations that prevent its use:

(1) Even though combinatorial auctions allow to express offers or requests on bun-
dles of goods, there exists no language to express offers or requests of manu-
facturing operations across the supply chain. Furthermore, along the lines of
expressive commerce (Sandholm, 2006a)8, it is desirable to provide bidders with
a language rich enough to compactly express several possible offer alternatives.

(2) Besides complementarities among goods, further relationships must be taken into
account. Those relationships link all the stakeholders of a supply chain by means
of producer/consumer relationships. For instance, there is a producer/consumer
relationship between any producer or supplier ofdoughand any supplier of the
Bakingoperation sincedoughis requested to perform theBakingoperation (see
figure 1.1). Those relationships have only been partially taken into account by
current combinatorial auction models despite being present in most real-world
scenarios. In fact, the inputs and outputs of a production process are strongly
connected since a manufacturer may risk:

• to produce unsold goods, thus losing money; and

• to fail to produce already sold goods when no able to obtain the required
inputs, thus losing credibility on the market.

Hence, a supply chain can be regarded as an intricate network of suppliers, man-
ufacturers (entities transforming input goods into output goods at a certain cost),
and consumers interacting in a complex way. The complementarities arising

8Expressive commerce is a new sourcing paradigm in which supply and demand are expressed in greater
detail than in traditional electronic commerce. A subsequent optimisation allows to discover the most prof-
itable alternatives.
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in the scenario of example 1.2 are different from the ones we do find in CAs.
They arise because of the preconditions and postconditions of manufacturing pro-
cesses: precedences and dependencies along the supply chain must be taken into
account. Hence, whilst in CAs the complementarities can be simply represented
as relationships among goods, in supply chains the complementarities involve
not only goods, but also interrelated manufacturing relationships across several
levels of the supply chain.

(3) Similarly to the case discussed in section 1.4.1, the outcome of a combinatorial
auction does not provide an ordered sequence of supply chain operation to per-
form. However, an auctioneer must know the sequence of operations to perform
in order to make its supply chain operate.

The most significant attempt to deal with the shortcomings exposed above has
been undertaken by Walsh et. al (Walsh et al., 2000). Although they mainly focus on
analysing the problem of distributed supply chain formation (SCF), in which no auc-
tioneer is leading the formation process, the underlying problem is similar to a certain
degree. Quoting Walsh et al. (Walsh and Wellman, 2003), “Supply Chain Formation
is the process of determining the participants in a supply chain, who will exchange
what with whom, and the terms of the exchanges”. They define a new type of auction,
the combinatorial auction for supply chain formation, which deals with scenarios in
which multiple agents must form a supply chain. In order to cope with some of the
above-mentioned combinatorial auction limitations, Walsh et al. (Walsh et al., 2000)
introduce the notion of task dependency network (TDN). TDNs offer the means to ex-
press:

• offers on bundles of goods;

• demands of bundles of goods; and

• offers on a single manufacturing operation (with only one output product and
multiple input components).

Furthermore, TDNs well describe the production complementarities we highlighted in
point (2) of the combinatorial auctions shortcomings listed above, which is the possi-
bility of expressing producer/consumer relationships.

Nonetheless, although TDNs are indeed valuable to model SCF, further require-
ments must be addressed to fully support automated negotiations across the supply
chain. In fact, Walsh et al. (Walsh et al., 2000) mainly focus on game theoretical and
economical issues, and do not elaborate on computational and expressiveness issues.
Hence, due to some intrinsic limitations, TDNs cannot cope with all the requirements
we exposed above. In particular, the requirements associated to themake-or-buy-or-
collaboratedecision problem that TDNs do not support are the following:

(1) the ability to represent all possible supply chain network topologies (TDNs only
supports acyclic networks);

(2) the possibility to express complementarities among supply chain operations (for
instance, ifMake Doughand Make Filling share some machine, they can be
cheaper if offered together) ;
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(3) the possibility for bidders to require supply chain operations (TDNs only allow
to offer them);

(4) the possibility to express resource sharing (for instance, an oven is a resource that
can be shared);

(5) the possibility to express minimum/maximum capacity constraints on the number
of times each supply chain operation can be performed (for instance, in presence
of economies of scale9 there is a critical number of operations that drastically
reduce the price of a manufacturing process);

(6) the possibility to express any type of manufacturing operation (for instance,
TDNs only allow operations with a single output);

(7) providing a coordinated scheduling plan among the supply chain stakeholders;

(8) solvingMake-or-Buy-or-Collaboratedecisions (i.e. not only supply chain for-
mation problems);

(9) the ability to specify the configuration an auctioneer aims to end up with (the
sales forecast forGrandma & co).

Then, although TDNs are indeed valuable to model SCF, further requirements (re-
gardingexpressivenessand computability) must be addressed to fully support auto-
mated supply chain network design and planning.

As toexpressiveness requirements, we shall need:

(1) to support a wide range of supply chain topologies beyond acyclic nets;

(2) to provide bidders with means for expressing several types of preferences over
supply chain operations;

(3) the configuration to end up with (i.e. the sale forecast);

As tocomputational requirements, we must ensure;

(1) that the outcome of the optimisation problem is not only the set of winning bids,
but also a coordinated and integrated plan of all the supply chain stakeholders;

(2) the computational tractability of supply chain network design and planning while
preserving optimality. This is an important requirement since, as explained in
section 1.2, myriads of agents could potentially participate.

In table 1.2 we list the requirements associated to themake-or-buy-or-collaborate
decision problem that are not currently supported by any state of the art methodology
or tool. Summarising,Grandma & coneeds:

9Economies of scale characterise a production process in which an increase in the scale of the firm causes
a decrease in the long run average cost of each unit.
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TYPE REQUIREMENTS

Expressiveness

(1) support any supply chain topology

(2) provide bidders with a language for ex-
pressing several types of preferences over
supply chain operations

(3) configuration to end up with

Computational

(4) compute the scheduled sequence of sup-
ply chain operations to perform

(5) computational tractability of supply chain
network planning while preserving opti-
mality

Table 1.2: Requirements associated tomake-or-buy-or-collaboratedecisions.

(1) a language for expressing the offers/requests of the different actors involved in the
auction. This language should be able to represent demands and offers of supply
chain operation, and should be expressive enough to overcome the shortcomings
of TDNs.

(2) a scalable winner determination solver that not only assesses the supply chain
partners that maximise the auctioneer’s revenue, but also provides an integrated
coordination/scheduling plan for the emerging supply chain. That is, it should
provide information about the synchronised sequence of supply chain operations
that must be performed.

In the previous two sections, we introduced the requirements connected with the
solution ofmake-or-buyand ofmake-or-buy-or-collaboratedecisions. In the following
section we will outline the approach we employed to fulfil such requirements.

1.5 Contributions

In this dissertation we contribute with two generalisations of combinatorial auctions
providing support to themake-or-buyandmake-or-buy-or-collaboratedecision prob-
lems.

In the first part of this dissertation we present an extension to combinatorial auctions
that we shall refer to asMulti-Unit Combinatorial Reverse Auction with Transforma-
bility Relationships Among Goods(MUCRAtR). MUCRAtR automatesmake-or-buy
decision problems in scenarios characterised by combinatorial preferences. This new
auction type provides an auctioneer with a framework to optimise its outsourcing and
procurement strategy. In particular, it allows an auctioneer:
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• to formally express its internal production structure; and

• to automatically and efficiently assess which goods to buy and from whom, along
with thesequenceof internal operations to perform in order to obtain some re-
quired resources.

In order to provide a language to express the internal production structure of an auc-
tioneer, we extend Petri Nets (refer to section 2.3 or to (Murata, 1989)), a well-known
graphical and formal tool to analyse discrete dynamical systems. We call such extended
modelWeighted Place Transition Nets(WPTNs). The semantics of WPTNs naturally
captures:

• the producer/consumer relationships holding among manufacturing operations;
and

• the relationships among goods at auction, auctioneer’s internal operations, and
bids.

Next, in order to provide a formal definition to the auctioneer’s decision problem, we
define a new optimisation problem on WPTNs, theConstrained Maximum Weighted
Occurrence Sequence Problem(CMWOSP). The resulting optimisation problem per-
fectly captures the nature of the auctioneer’s decision problem. We anticipate that
the newly introduced optimisation framework allows to import a wide body of anal-
ysis methods from Petri Nets theory and apply them to our decision problem, thus
providing methods and tools for its analysis. Subsequently, in order to practically
solve the auctioneer’s decision problem, we exploit analysis methods imported from
Petri Nets theory and manage to provide an efficient Integer Linear Programming (ILP)
(Hillier and Lieberman, 1986) formulation of the problem. However, this formulation
only works when an auctioneer’s internal production structure is acyclic. That is, there
are no cycles in a production process.

In the second part of the dissertation we present another extension of combinatorial
auctions, namelyMixed Multi-Unit Combinatorial Auctions(MMUCA), that allows to
deal with make-or-buy-or-collaboratedecisions. This new auction type provides an
auctioneer with an automatic method to optimally select supply chain partners. Our
contribution develops along three dimensions:

(1) Bidding Language. We provide a novel language that allows agents to express
a range of preferences over complementary operations across the supply chain.
We build this language by extending and generalising previous languages for
Combinatorial Auctions. In particular, we introduce the notion ofsupply chain
operation(SCO). The notion of SCO encompasses several types of operations
across the supply chain. Then, we provide bidders an expressive language to
trade SCOs.

(2) Winner Determination Problem. We provide a definition of the auctioneer’s
decision problem that selects, among the received bids, the revenue-maximising
ordered sequenceof SCOs to perform. More precisely, this definition, besides
fulfilling the semantics of the newly introduced bidding language, provides a
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sequenceof SCOs that is feasible. A feasible sequence guarantees that every
SCO can be performed whenever the preceding SCOs in the sequence are run.
Moreover, the definition of WDP also allows to specify the quantity of goods
initially available (the stock), and the quantity of goods the auctioneer aims to
end up with.

(3) Winner Determination Problem Solvers. We provide three different ILP-based
solvers to deal with the practical solution of the WDP for MMUCA.

(a) We succeed in mapping the auctioneer decision problem to a CMWOSP
(analogously to the case of MUCRAtR). In this way, we can import a body
of analysis tools. In this case as well, by relying on these analysis tools, we
obtain a very efficient way of solving the decision problem. Nonetheless,
this method can only be applied when the supply chain operations do not
form a cycle within the production process (acyclic supply chain network).
We shall refer to this as theCMWOSP-basedsolver.

(b) Afterwards, we show that limiting the supply chain network to be acyclic
prevents MMUCA’s application to many significant scenarios. Thus, we
provide a new Integer Linear Programming solver, called DIP, that solves
the winner determination problem in the general case.

(c) Although very general, the introduced method is computationally hard to
solve, and therefore hinders the applicability of MMUCA to small-size and
middle-size scenarios. In order to overcome such a problem, we introduce
a new solver, called CCIP, that exploits some domain specific knowledge to
reduce the search space.

Finally, we provide two empirical evaluations. The first one empirically quanti-
fies the scalability gain provided by the CCIP solver with respect to the DIP solver
in terms of computational time and size of solvable instances. The second one
assesses the performances of the CMWOSP-based solver. We test such methods
on acyclic instances and then we compare the obtained results with the results for
DIP and CCIP of the former experiment.

Finally, we claim that MMUCA generalises and extends a wide range of auction types,
namely:

• single-unit direct, reverse and double auctions (Krishna, 2002);

• multi-unit direct, reverse, and double auctions (Krishna, 2002);

• multi-unit combinatorial direct, reverse and double auctions
(Sandholm et al., 2002);

• MUCRAtR (the first contribution of this dissertation); and

• Combinatorial Auctions for Supply Chain Formation
(Walsh and Wellman, 2003).

Therefore, all the results that we can derive for MMUCA can be directly applied to the
above-listed auction types.
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1.6 Dissertation Outline

The remaining of this dissertation is organised as follows.

Chapter 2. We provide some background knowledge on Integer Programming (IP),
Place Transition Nets, order and graph theory. This chapter is needed for understanding
the concepts developed in chapters 3, 4, 6, and 7.

Chapter 3. We put in context our work with respect to the state of the art. Our work
is placed at the intersection of two sub-areas, combinatorial auctions and supply chain
management. Thus, firstly we introduce auctions and combinatorial auctions. In partic-
ular we elaborate on bidding languages, winner determination problem and test suites.
Next, we explore some aspects related to supply chain management. In particular, the
problem of centralised supply chain formation and centralised supply chain scheduling
and planning are thoroughly described.

Chapter 4. We present Multi-unit combinatorial auctions with transformability rela-
tionships among goods (MUCRAtR). This is an extension to Combinatorial Auctions
that allows to solve themake-or-buydecision problem. In this chapter, we also in-
troduce Weighted Place Transition Nets (WPTN) and we define a new optimisation
problem on them, the Constrained Maximum Weighted Occurrence Sequence Problem
(CMWOSP). Finally, we show that the CMWOSP on acyclic nets can be solved by
means of IP. The material contained in this chapter has been published in:

• Giovannucci, A., Rodriguez-Aguilar, J. A. and Cerquides, J.Auctioning substi-
tutable goods. Volume 131 ofLecture Notes in Artificial Intelligence, pages 381–
388.

• Giovannucci, A., Rodrı́guez-Aguilar, J. and Cerquides, J.Multi-unit combina-
torial reverse auctions with transformability relationships among goods. Proc.
Workshop on Internet and Networking Economics (WINE 2005), pages 858–867.
Volume 3828/2005 of Lecture Notes in Computer Science. Springer-Verlag.

• Giovannucci, A., Rodrı́guez-Aguilar, J. and Cerquides, J.Multi-unit combina-
torial reverse auctions with substitutability relationships among goods. Proc. of
the first Networking and electronic commerce research conference (NAEC 2005),
pages 324–337. Riva del Garda, Italy, 2005.

• Giovannucci, A., Rodriguez-Aguilar, J. A. and Cerquides, J.Benefits of combi-
natorial auctions with transformability relationships. Proc. of the 17th euro-
pean conference on artificial intelligence (ECAI 2006), pages 717–718. Riva del
Garda, Italy, 7/2006.

• Giovannucci, A., Rodriguez-Aguilar, J. A. and Cerquides, J.Savings in com-
binatorial auctions through transformation relationships. In O. Sheory and M.
Fasli, editors, The TADA AMEC joint workshop at aamas 2006 trading agent
design and analysis & agent mediated electronic commerce VII,Lecture Notes
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in Computer Science. Hakodate, Japan, 5/2006, pages 17–30, volume 4452/2007
of Lecture Notes in Computer Science.

• Giovannucci, A., Rodriguez-Aguilar, J. A. and Cerquides, J.Auctioning trans-
formable goods. Proc. of the fifth international joint conference on autonomous
agents and multi-agent systems (AAMAS 2006), pages 893–895. Hakodate,
Japan, 5/2006.

Chapter 5. We provide a further extension of combinatorial auctions, theMixed Multi-
unit Combinatorial Auction(MMUCA). By means of MMUCA, an auctioneer can au-
tomatemake-or-buy-or-collaboratedecisions. In particular, we provide an expressive
bidding language and a definition of the winner determination problem for MMUCA.
The material contained in this chapter has been published in:

• Cerquides, J., Endriss, U., Giovannucci, A. and Rodriguez-Aguilar, J. A.Bid-
ding languages and winner determination for mixed multi-unit combinatorial
auctions. Proc. of the 20th intl. joint conferences on artif. intelligence (IJCAI
2007), pages 1221–1226. Hyderabad, India, 1/2007.

Chapter 6. Analogously to chapter 4, we provide a mapping of the MMUCA WDP
to CMWOSP. With this purpose we introduce theMixed Auction Net, a WPTN that
compactly represents the whole search space associated to the MMUCA WDP. We
show the equivalence between the MMUCAs WDP and a CMWOSP on theMixed
Auction Net. As a consequence of this mapping, we obtain an IP formulation of the
WDP for a wide class of supply chain network topologies (acyclic). After showing
that the hypothesis that the underlying supply chain is acyclic sometimes may not hold,
we introduce a general IP model of the MMUCA WDP that deals with any network
topologies, namely the DIP. DIP is built applying a direct mapping of the definition of
the WDP to IP. The result is a solver that can find a solution to any instance of WDP.
The material explained in this chapter has been published in:

• Giovannucci, A., Rodriguez-Aguilar, J., Cerquides, J. and Endriss, U.Winner
determination for mixed multi-unit combinatorial auctions via petri nets. Twen-
tieth International Conference on Autonomous Agents and Multi Agent Systems
(AAMAS 2007). Hawaai, USA, 5/2007. To appear.

Chapter 7. We present the CCIP, an IP formulation of the MMUCA WDP that boosts
DIP. The new model exploits the precedence relationships among the SCOs to enforce
an a-priori ordering of the solution. In this way, we can prune a great part of the search
space. In this chapter we formally prove that CCIP is correct.

Chapter 8. The aim of this chapter is to empirically evaluate and compare the solvers
presented in chapters 6 and 7. For this purpose, firstly we describe the state-of-the-
art methodology for generating an MMUCA benchmark (Vinyals, 2007b). Then, we
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perform some preliminary experiments to compare the performances in terms of CPU
time of the three solvers.

Chapter 9. We draw some conclusions and thoroughly describe paths to future re-
search.



Chapter 2

Mathematical Background

In this chapter we introduce some technical background knowledge in order to ease the
understanding of this dissertation. In section 2.1 we summarise what Integer Program-
ming is, why it is useful for our purposes, and we argue on its pros and cons. Next, in
section 2.2 we briefly recall what multisets are, and we discuss some of their properties.
Next, in section 2.3, we thoroughly describe Petri Nets (PNs), and in particular Place
Transition Nets (PTNs), a formalism for analysing and simulating discrete dynamical
systems. Finally, in section 2.4, we summarise some properties of graphs and binary
relations from the perspective of order theory.

2.1 Linear and Integer Programming

In this section we introduce some basic concepts regarding linear and integer program-
ming. Both are widely employed for solving complex optimisation problems. The
former can solve bigger problems (in terms of decision variables) but is limited in its
expressiveness (only linear function can be employed), whereas the latter is more com-
plex but allows to solve a wider class of problems.

2.1.1 Linear Programming

Linear programming has been considered one of the technological breakthroughs of
the mid-20th century (Hillier and Lieberman, 1986). This standard tool has saved thou-
sands or even millions of dollars to companies that have employed it. At the heart
of linear programming lies the problem of “allocatinglimited resourcesamongcom-
peting activitiesin the best possible (i.eoptimal) way.” (Hillier and Lieberman, 1986).
In particular, linear programming helps in determining the level of each resource that
is allocated to each activity. This pattern applies to several real-world problems such
as allocation of production facilities to products, portfolio selection, shipping partners
selection, etc.

Linear programming employs mathematical models to represent the above-
mentioned problems. In particular, the adjectivelinear illustrates the fact that only

23
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linear functions can be employed to model problems. The wordprogrammingis in-
tended as semantically equivalent toplanning. Hence,linear programming“involves
the planning of activities to obtain an optimal result, i.e., a result that reaches the spec-
ified best goal among all the feasible alternatives.” (Hillier and Lieberman, 1986).

A very interesting characteristic of linear programming is that there exists a very ef-
ficient solution method called theSimplex Method(Papadimitriou and Steiglitz, 1982).
In particular, the simplex method can be applied to problems of enormous size. No-
tice that it has been shown that linear programming is in the class of the polynomial
algorithms (Papadimitriou and Steiglitz, 1982).

In what follows we present an example of linear programming model.

Example 2.1. A farmer has a piece of farm land, sayA square kilometres large, to be
planted with either wheat or barley or some combination of the two. The farmer has
a limited permissible amountF of fertiliser andP of insecticide which can be used,
each of which is required in different amounts per unit area for wheat (F1, P1) and
barley (F2, P2). Let S1 be the selling price of wheat, andS2 the price of barley. If
we denote the area planted with wheat and barley byx1 andx2 respectively, then the
optimal number of square kilometres to plant with wheat vs barley can be expressed as
a linear programming problem:

maximiseS1x1 + S2x2 revenue bound orobjective function (2.1)

subject tox1 + x2 ≤ A limit on total area (2.2)

F1x1 + F2x2 ≤ F limit on fertiliser (2.3)

P1x1 + P2x2 ≤ P limit on insecticide (2.4)

x1 ≥ 0, x2 ≥ 0 cannot plant a negative area (2.5)

The linear program in example 2.1 can be directly solved by commercial or free
solvers, like ILOG CPLEX (ILOG, 2007), LINDO (Lindo Systems Inc., 2007) (com-
mercial), and GLPK (Makhorin, 2001) (free). The reader can understand the reasons
of the tremendous impact of linear programming in recent decades: even knowing little
of the technical details it is possible to solve massive and highly complex optimisation
problems.

2.1.2 Integer Programming

One key limitation of linear programming is the fact that variables are allowed to take on
any fractional value. In some circumstances, this does not constitute a great problem.
For instance, if the result of the optimisation is that we have to build 400.5 bicycles,
rounding the result to 400 does not change the result a lot. Instead, if the result is to
employ 2.5 Boeing airplanes to perform a shipping, the rounding to 2 or 3 air planes
is not an easy decision. Moreover, in some problems the solution makes sense only
if some variables take on an integer value. Whenever the only deviation from a linear
programming approach is the fact the variables can only hold integer values, we have
the so calledInteger Programming.



2.1. Linear and Integer Programming 25

The modelling language underlying Integer Programming is exactly equivalent to
the one of linear programming, except that some variables are constrained to be integer.
In particular, if all the variables involved in a problem have to be integer, then we talk
aboutpure integer programming, whereas if both integer and fractional variables are
allowed we talk aboutmixed integer programming.

Other problems for which the use of integer programming is fundamental are the
problems involving interrelated “yes-or-no decisions”. For instance, should we make
an investment? Should we buy a new truck? And so on.

In what follows we present an example of integer program. It explains how to model
the knapsack problem (Kellerer et al., 2004).

Example 2.2(Knapsack problem). Given a set of items, each with an associated cost
and value, theknapsack problemconsists in determining the subset of items to include
in a collection so that the total cost is less than a given limit and the total value is as
large as possible. It is a very typical combinatorial problem, and can be easily expressed
by means of integer programming.

Say that there aren items. Each item is indexed byi ∈ [1, n]. Then, say that each
item i has associated the valuevi and the costci. The problem is thus finding the set of
items that costs less than a constantC and maximises the value. In order to model this
decision we assign a variablexi to each itemi. xi takes on value1 if item i is selected
and0 otherwise. Then, the function that we have to maximise is the value associated to
the selected items, namely:

n∑

i=1

xivi (2.6)

this is called theobjective functionof the integer program.
Additionally, we have to make sure that the cost of the selected items does not

exceed the permitted costC. Then, the following constraint must hold:

n∑

i=1

xici ≤ C (2.7)

These are called theside constraintsof the integer program.

In the previous example the decision variables can only take on values 0 or 1 (it
would make no sense accepting 0.33 of an item). All the problems sharing this feature
are calledbinary integer programmingproblems and the corresponding variables are
calledbinary variables. Analogously to linear programming, a lot of software packages
are available to solve integer linear programming problems as well. For instance, Excel
(Microsoft, 2007), ILOG CPLEX (ILOG, 2007), LINDO (Lindo Systems Inc., 2007)
are commercial solvers, whereas GLPK (Makhorin, 2001) is a free solver.

The case presented in example 2.2 is very simple. However, integer program-
ming models are often very difficult to formalise, since many different type of deci-
sion variables and constraints are required. Modelling languages are useful for easing
the implementation of such complex models. There exist a few modelling languages,
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the most famous being AMPL (Fourer et al., 1989), MathProg (Makhorin, ), and OPL
(Van Hentenryck, 1999). For a survey on modelling languages refer to (Kallrath, 2004).

Solving Integer Programming Problems

It may be tempting to think that Integer Programming problems are easier to solve
than Linear Programming problems. In fact, one could argue that since the deci-
sion variables can only hold few values instead of real values the search space is re-
duced, that only a finite number of solutions have to be enumerated. It is possible
to demonstrate that this argument is not valid: solving integer programming prob-
lems is much more difficult than solving linear programming problems in most cases
(Papadimitriou and Steiglitz, 1982)1.

For this reason, most algorithms for solving Integer Programming incorporate
the simplex method as a solution step. We will not get into those details, for
a detailed treatment of the subject refer to (Papadimitriou and Steiglitz, 1982) and
(Hillier and Lieberman, 1986). The only aspect we aim at highlighting is that the two
factors determining the computational hardness of an integer programming problem
instance are (Hillier and Lieberman, 1986):

(1) the number of integer decision variables; and

(2) any special structure in the problems.

Current solution methods and commercial solvers can deal with problems ranging
from hundreds to thousands of decision variables. The structure of the problem can
sometimes make smaller problems much more difficult to solve than bigger ones. In
general, reducing the number of constraints can help as well, although with a minor
effect.

We briefly mention that huge instances of integer programming can not be solved
optimally. For this reason, meta-heuristics have been recently employed to solve those
huge problems non-optimally. Even if they can not guarantee any bound on their per-
formances, they usually perform quite well. For a review on meta-heuristics refer to
(Blum and Roli, 2003).

2.2 Multi-sets

A multi-set(Blizard and File, 1988; Syropoulos, ) is an extension to the notion of set,
considering the possibility ofmultiple appearancesof the same element. An example
of multiset is2 A = {a, a, a, b, b, c}.

In general, amulti-setA over a setX is a functionA : X → N mappingX to the
cardinal numbers. In the example aboveX = {a, b, c}.

For anyx ∈ X , A(x) ∈ N is called themultiplicity of x. For instance, in the
example above, the cardinality of the elementa is 3 (A(a) = 3).

1There are some particular problems having a special structure that makes them as easy as a linear pro-
gram.

2Henceforth we employ calligraphic letters to indicate multi-sets.
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There are different ways of denoting multisets. We will show them by means of the
three representations below:

• A = {a, a, a, b, b, c}

• A = {(a, 3), (b, 2), (c, 1)}

• A = {3′a + 2′b + 1′c}

An elementx ∈ X belongsto the multi-setA if A(x) 6= 0 and we writex ∈ A.
We denote the set of multi-sets overX by NX .

The total number of elements in a multiset, including the repetitions is thecardinal-
ity associated to the multiset. The cardinality of multisets is denoted in the same way
as in the case of sets. For instance,|A| = 6 in the example above.

2.2.1 Operations on Multisets

In what follows we list the operations between multisets. Given two multisetsA,B ∈
NX , we have the following operations or relations among them:

• sum: A(x) ⊎ B(x) = A(x) + B(x) ∀x ∈ X

• intersection: A(x) ∩ B(x) = min(A(x),B(x)) ∀x ∈ X

• union: A(x) ∪ B(x) = max(A(x),B(x)) ∀x ∈ X

• subset:A(x) ⊆ B(x) → A(x) ≤ B(x) ∀x ∈ X

2.3 Petri Nets

In this section we introduce and describe carefully the Petri Nets formalism. Petri
Nets are a powerful mathematical and graphical tool for the description of discrete
distributed systems. Petri Nets (PNs) were firstly introduced in 1962 by Karl Adam
Petri in his seminal dissertation ((Petri, 1966) in English and (Petri, 1962) in German).
In particular PNs are suitable for describing systems in which parallelism, concurrency,
and synchronisation play an important role. For a very good review on Petri nets, refer
to (Murata, 1989).

Petri Nets can provide some distinctive advantages with respect to other approaches
(Reisig, 1985) like finite state machines:

• Causal dependencies or independence among the different components of the
system can be explicitly represented.

• They allow to describe a system that is not inherently sequential.

• They can represent different levels of abstraction without having to change the
description language. These abstraction levels range from the representation of
a single bit in a PC to the representation of the PC in its environment within the
same framework.
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Figure 2.1: Example of a Place Transition Net.

• They provide a set of formal tools useful to analyse and describe discrete dynam-
ical systems. For instance, it is possible to verify several system properties as
deadlock avoidance, boundedness, etc.

I will not get into the details of all those properties. We only remark that a vast
amount of analysis tools (Murata, 1989) are available for Petri nets. Thus, everything
that is modelled by means of Petri nets can directly employ all those tools.

An example of Petri net is shown in figure 2.1. A PN is a bipartite graph: it has
placenodes,transition nodes, and directed arcs connecting places to transitions and
transitions to places. The places connected to a transition by means of input arcs are
called theinput placesof the transition, and the ones connected by outgoing arcs from
the transition are theoutput placesof the transition. Places contain tokens. The graph-
ical representation of a PTNS is composed of the following graphical elements: places
are represented as circles, transitions are represented as rectangles, arcs connect places
to transitions or transitions to places, and anarc expression functionE labels arcs with
values.

Different classes of Petri Nets exist. A survey of the different existing types of Petri
nets is made in (Bernardinello and de Cindio, 1992). In this work, three levels of Petri
nets are identified:

(1) Level 1nets whose places can contain at most one token;

(2) Level 2nets whose places can contain more than one token; and

(3) Level 3nets whose tokens are labelled by a type (tokens of different type within
the same place can be distinguished).

We will focus on a particularlevel 2 net called Place Transition Net (PTN).
Place/Transition Nets are Petri Nets characterised by multiple tokens in the same place
and arc weights3. More formally, following (Murata, 1989),

Definition 2.1 (Place/Transition Net Structure). A Place/Transition Net Structure
(PTNS) is a tupleN = (P, T, A, E) such that:

3Actually, there should be a limit on the capacity of each place in term of contained tokens. However, it
is not crucial in our work and we can set it to infinite.
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(1) P is a set ofplaces;

(2) T is a finite set oftransitionssuch thatP ∩ T = ∅;

(3) A ⊆ (P × T ) ∪ (T × P ) is a set ofarcs;

(4) E : A → N+ is anarc expressionfunction (it represents the weights associated
to the arcs, standing for the number of input/output tokens consumed/produced
by the transition).

Furthermore, we have thatt• = {p ∈ P | (t, p) ∈ A} are theoutput placesof t,
and that•t = {p ∈ P | (p, t) ∈ A} are theinput placesof t.

p2 p3

p1

t1

2

1
2

Figure 2.2: Example of a Place Transition Net Structure.

Example 2.3. In figure 2.2 we illustrate a PTNS defined as:

(1) P = {p1, p2, p3} is the set ofplaces;

(2) T = {t1} is the set oftransitions;

(3) A = {(p1, t1), (t1, p2), (t1, p3)} is the set ofarcs;

(4) E(p1, t1) = 2; E(t1, p2) = 1; E(t1, p3) = 2; is thearc expression function.

Moreover, the input and output places oft1 are:

t•1 = {p2, p3} (2.8)
•t1 = {p1} (2.9)

A distribution of tokens over the set of places is called amarking, and it stands for
the state of the Petri net.

Definition 2.2 (Marking). A markingM : P → N of a PTNS is a multiset overP .
M(p) = k means that placep ∈ P containsk tokens for markingM.
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Example 2.4. The markingM0 of figure 2.1 is

M0(p1) = 2 (2.10)

M0(p2) = 0 (2.11)

M0(p3) = 1 (2.12)

or equivalently, employing the notation for multisets, we can represent marking in a
more compact form:

M0 = 2′p1 + 1′p3 (2.13)

A PTNS S with a given initial markingM0 is called aPlace/Transition Net(PTN)
and is noted(S,M0).

Given a markingM, we say that a transition isenabledif all its input places contain
at least as many tokens as required by the the transition’s input arcs. If the transition
is enable it canfire consuming tokens of the input places and producing tokens in the
output places. Intuitively, a transition is enabled if enough tokens are present in its input
places. In what follows we state more formally the concepts ofenabled transitionand
firing of a transition.

A transitiont ∈ T is said to beenabledif each input placep of t is marked with at
leastE(p, t) tokens, whereE(p, t) represents the weight of the arc connectingp to t.
More formally,

Definition 2.3 (Enabled Transition). Given a markingM, a transitiont ∈ T is enabled
iff:

M(p) ≥ E(p, t) ∀p ∈•t (2.14)

Example 2.5. For instance in figure 2.1 transitiont1 is enabled in markingM0 since
E(p1, t1) = 2 andM0(p1) = 2, thusM0(p1) ≥ E(p1, t1).

An enabled transition may or may not fire. If it fires, it changesthe current marking
to a new marking by removing tokens from the input places and putting tokens into the
output places. More formally

Definition 2.4 (Firing of an enabled transition). The firing of an enabled transitiont
removesE(pi, t) tokens from each input placepi and addsE(t, po) tokens to each
output placepo. The firing of a transitiont changes markingMk−1 to a markingMk.
The new marking can be computed employing the following equation4:

Mk(p) = Mk−1(p) + Z(t, p) ∀p ∈ •t ∪ t• (2.15)

whereZ(t, p) = E(t, p) − E(p, t). In this case we writeMk−1[t > Mk for denoting
that the firing of transitiont changes theMk−1 marking into theMk marking.

4Henceforth, for simplicity, we implicitly assume thatE(p, t) = 0 if (p, t) 6∈ A andE(t, p) = 0 if
(t, p) 6∈ A.
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Example 2.6. Consider figure 2.1, the firing oft1 in markingM0 leads to marking
M1 = 1′p2 + 3′p3. We illustrate in figure 2.3 the state of the PTN of figure 2.1 after
thatt1 fires.

• p2 •••p3

p1

t1

2

1
2

Figure 2.3: Place Transition Net of figure 2.1 after firingt1.

2.3.1 Reachability

An important property we are interested in is whether we can reach a particular state of
a PTN departing from a given initial state. This leads to the definition ofreachability.
Reachability is a fundamental concept that will be widely employed in this dissertation.
In this section, we will introduce several concepts related to reachability. Intuitively,
given an initial markingM0, and a final markingMd, the reachability problem consists
in deciding if there exists a sequence of firings leading fromM0 toMd.

The firing of an enabled transition changes the token distribution (marking) in a net
according to the firing rule of definition 2.4. Then, a sequence of firings will result in a
sequence of markings.

Definition 2.5 (Reachability). A markingMn is reachablefrom a markingM0 in a
PTN structureS if there exists a sequence of firings that transformsM0 intoMn. M0

is called thestart marking, whileMn is called theend marking.

All the markings reachable fromM0 in a PTN StructureS are noted asR(S,M0),
and are called thereachable setof a PTN.

Definition 2.6. (Firing Sequence) Given a PTN structureS and a markingM0, afiring
or occurrence sequenceJ : N → T is a sequence of transitions:

J = 〈t1, t2, . . . , tn〉

that changes the markingM0 into the markingMn. In this case we writeM0[J > Mn

as a shorthand to represent that the firing sequenceJ leads fromM0 toMn.
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Notice that in afiring sequenceall the transitions must be enabled and fire with the
order established by the very same sequence.

It can be shown that the start and end markings are related by the following equation:

∀p ∈ P Mn(p) = M0(p) +
∑

t∈J

Z(t, p). (2.16)

Definition 2.7. Thefiring count multi-setassociated to afiring or occurrence sequence
J is a multisetKJ ∈ NT such that the multiplicity of each transition stands for the
number of times it appears in the firing sequence. That is:

KJ (t) = |J−1(t)| ∀t ∈ T (2.17)

where|J−1(t)| is the number of times transitiont is fired in the firing sequenceJ .

2.3.2 The state equation

In this section we aim at providing an algebraic representation of Petri nets. Such
representation will allow us to compactly represent the reachability set in some cases.

For a Petri NetN with r transitions andn places, theincidence matrixA = [aij ]
is anr × n matrix of integers. Each entry is given byaij = a+

ij − a−
ij , wherea+

ij =
E(ti, pj) stands for the weight of the arc connecting theti transition to its output place
pj , anda−

ij = E(pj , ti) stands for the weight of the incoming arc connecting placepj

to transitionti.

Example 2.7. In the example of figure 2.2, the incidence matrix is:

a− = [2 0 0] (2.18)

a+ = [0 1 2] (2.19)

A =
[
−2 1 2

]
(2.20)

It is straightforward thata+
ij , a

−
ij , andaij represent the number of tokens added to,

removed from, and changed in placej when transitioni fires once.
Notice that in this new representation a transitionti is enabled in a markingM iff

a−
ij ≤ M(pj) j = 1, 2, . . . , n

Example 2.8. In the example of figure 2.1, transitiont1 is enabled in markingM0

sincea−
11 = 2 ≤ M0(p1).

In order to obtain an algebraic representation of a Petri net,we can represent a
markingMk as ann×1 column vectorMk such that thej− th entry ofMk represents
the number of tokens present in placepj after thek − th firing in some firing sequence
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(Mk[j] = Mk(pj)). For instance, the markings of the nets in figures 2.1 and 2.3 can
be represented as

M0 =





2
0
1





and

M1 =





0
1
3





Finally, we define thefiring vectoruk as anr × 1 column vector ofr − 1 zeros and
one nonzero entry. By setting a a1 in thei − th position (uk[i] = 1), we indicate that
transitionti fires at thek-th firing. We can now express equation (2.15) in matrix form:

Mk = Mk−1 + AT uk k = 1, 2, ... (2.21)

Example 2.9. The state equation associated to the firing of transitiont1, transforming
the PTN in figure 2.1 into the one in figure 2.3, is:

M1 = M0 + AT u1 =





2
0
1



 +





−2
1
2



 · 1 =





0
1
3



 (2.22)

u1[1] takes on value1 because transitiont1 is fired once.

Say thatMn is reachable fromM0 via the firing sequenceJ = 〈t1, t2, . . . , tn〉. We
represent the transitions inJ by means of their firing vectors〈u1, u2, . . . , un〉. Then,
by applying recursively equation (2.21), we obtain:

Mn = M0 +

n∑

k=1

AT · uk = M0 + AT

n∑

k=1

uk = M0 + AT KJ (2.23)

whereKJ is anr × 1 vector representing the firing count multisetKJ , defined in equa-
tion (2.17), namely:

KJ [i] = KJ (ti) = |J−1(ti)| ∀i ∈ [1, r] (2.24)

KJ is thefiring count vectorassociated to the firing sequenceJ .

2.3.3 State equation and reachability

All the results that we report from here to the end of the chapter are taken from
(Murata, 1989). Say thatMd is reachable fromM0, then there exists a firing se-
quence〈u1, u2, ..., ud〉 bringing fromM0 to Md. Therefore, anecessary condition
on reachabilitycan be expressed in terms of a matrix equation:
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Theorem 2.1. If Md is reachable fromM0, then the following equation has a non-
negative integer solutionx:

Md = M0 + AT
x (2.25)

wherex =
∑d

k=1 uk is ther × 1 column vector of non-negative integers we called
firing count vector.

Notice that thei − th entry of vectorx encodes the number of times a transitionti
must be fired to transformM0 intoMd.

Equation (2.25) is called theState Equation, since it describes the states that a Petri
net would reach if the transitions encoded inx were fired. However, notice that not
all the states encoded by the state equation are actually reachable. That means that
there may exist solutions to equation (2.25) that are not reachable states of a Petri net.
However, it can be shown that sometimes all the states reachable by a Petri net are
described by the state equation. In particular, this happens when the net is acyclic.

Before defining the concept of acyclicity, we have to explain what is a cycle. Since
a Petri Net is a bipartite graph, a cycle in a Petri net is a sequence of

Definition 2.8. A directed cyclein a Petri Net Structure(P, T, A, E) is a sequence of
places and transitions〈p1, t1, p2, t2, . . . , pn, tn, p1〉 such that∀i ∈ [1, n] (pi, ti) ∈ A
and(ti, pi+1) ∈ A.

Definition 2.9 (Acyclicity). A PTNS is said to be acyclic if it does not contain any
directed circuit.

In (Murata, 1989), it is shown that in anacyclic Petri Net, the condition expressed
by theorem 2.1 is not only necessary, but also sufficient.

Theorem 2.2. In an acyclic PTNS,Md is reachable fromM0 iff the following equation
has a non-negative integer solution inx:

Md = M0 + AT
x (2.26)

That is, if there exists a solution to equation (2.26), a firingsequence reachingMd

fromM0 is guaranteed to exist, andx represents its firing count vector.
Moreover, Murata further extends the class of Petri nets for which the condition is

still sufficient. These particular nets (trap-circuit and syphon-circuit nets) have special
topologies with particular types of circuits. For such nets, the state equation represents
all the reachable states if the initial markingM0 satisfies some constraints. Further
efforts have been made for extending the validity of the state equation to more classes
of Petri nets (Tarek and Lopez-Benitez, 2004).

2.4 Preliminaries on binary relations and graphs

In this section we recall some definitions about binary relations, graphs, and order re-
lations. In section 2.4.1 we will recall binary relations and some of their properties. In
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section 2.4.2 we will recall the definition of directed graphs, directed acyclic graph, and
we will summarise some concepts and properties related to graphs. In section 2.4.3 we
recall some concepts related to order relations, and we connect them to graphs.

All the definitions and theorems contained in this section are taken from
(Cormen, 2001), where the interested reader can find the the corresponding proofs.

2.4.1 Relations

In this section we will recall what a binary relation is along with the properties of such
relations that we are interested in.

A binary relationR on two setsA andB is a subset of the Cartesian productA×B.
If (a, b) ∈ A × B we writeaRb and we say thata is in relation withb. We say thatR
is a binary relation onA if it is a subset ofA × A.

Example 2.10.The less thanis a binary relation defined onN as follows

{(a, b) ∈ N × N : a < b} (2.27)

There are special features that are particularly important for binary relations. Thus,
a binary relationR ⊆ A × A is:

• reflexive: if ∀a ∈ A aRa. For instance, “=” and “≤” are reflexive onA, while
“<” is not.

• symmetric: if aRb ⇒ bRa. For instance, the “=” relation is symmetric, while
“≤” is not.

• transitive: aRb andbRc impliesaRc. For instance, “=” is transitive.

• antisymmetric: if aRb andbRa thena = b. For instance, “≤” is antisymmetric.

Equivalence classes

A binary relation that isreflexive, symmetricand transitive is called anequivalence
relation. For instance, “=” is an equivalence relation, whereas “<” is not. If R is an
equivalence relation on a setA, then for alla ∈ A we denote with[a] the set of element
in relation witha, and we call it theequivalence classof a.

A well known result about equivalence classes is

Theorem 2.3 (An equivalence relation is the same as a partition). The equivalence
classes of any equivalence relationR on a setA form a partition ofA, and any partition
of A determines an equivalence relation onA for which the sets in the partition are the
equivalence class.
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2.4.2 Graphs and Paths

In this section, we introduce the definition of graph, path in a graph, and strongly con-
nected components of a graph.

A directed graphG is a pair(V, E), whereV is a finite set, andE ⊆ V × V is a
binary relation onV . The setV is called thenodesor vertexesset, whileE is the set of
arcsor edges. If (u, v) ∈ E we say thatv is adjacentto u. Each edge of the type(u, u)
is called aself-loop. In figure 2.4 we show the graphical representation of a graph.

u v

z

x y

Figure 2.4: Example of a Graph

Definition 2.10(Path in a graph). A pathof lengthk from a vertexv to a vertexv′ in a
graph(V, E), is a sequence〈v0, . . . , vk〉 of vertexes such thatv = vo andv′ = vk, and
(vi, vi+1) ∈ E for i = {1, . . . , k}. There is always a0-length path fromv to v. The
path is said to besimpleif all the vertexes in the path are distinct.

For instance, in the graph of figure 2.4,〈x, y, v〉 is a path fromx to v.

Definition 2.11 (Cycle in a Graph). In a directed graph a path〈v0, . . . , vk〉 is a cycle
if v0 = vk and the path contains at least one edge. A cycle issimpleif all the vertexes
〈v1, . . . , vk〉 are distinct. Aself-loopis a cycle of length one.

For instance, in the graph of figure 2.4,〈u, u〉 is a self-loop.

Strongly Connected Components

A directed graph isstrongly connectedif for every pair of vertexesu andv there is a
path fromu to v and a path fromv to u, i.e. if every two vertexes are connected by a
directed path. Thestrongly connected components(SCC) of a graph are theequivalence
classesof the vertexes under the “are mutually reachable” relation, or equivalently its
maximal strongly connected sub-graphs (Cormen, 2001), (Harary, 1999). Figure 2.5(b)
shows the SCCs of the graph in figure 2.5(a).
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Figure 2.5: A graph and the corresponding SCCs

More formally, given a graph(V, E), we define a relationR ⊆ V ×V such thatuRv
iff there exists a directed path fromu to v and a path fromv to u. It is easy to check that
this relation is reflexive5, transitive, and symmetric. Thus, it is anequivalence relation.
The equivalence class associated to an elementu is such that:

[u] = {v ∈ V : exists a path from u to v and a path from v to u} (2.28)

2.4.3 Order relations

A relation that is antisymmetric, reflexive and transitive is apartial order, and we call
a set on which a partial order is defined apartially ordered set. In a partial order it is
possible to have some elements that are not in relation among them. Then, a partial
order R on a setA is a total or linear order if for all a, b ∈ A we haveaRb or bRa.
Notice that, given a directed acyclic graph, we can define a partial order. The partial
order is such that a nodeu comes beforea nodev if there exists a directed path fromu
to v. The relation is a partial order since it is trivially transitive and reflexive. It is also
antisymmetric since the acyclicity hypothesis implies that if there is a path from a node
u to a nodev there cannot be a path fromv to u without having a cycle.

Example 2.11. Consider the graph of figure 2.4 without the self-loop, it represents a
partial order such that:

u < z u < v (2.29)

x < y y < z (2.30)

y < v x < z (2.31)

x < v (2.32)

5Recall that there exists always a 0-length path from a node to itself.
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What happens when there is a cycle in the graph? Obviously, in this case the re-
lation exists a pathdoes not define anymore a partial order. We lose one property, the
antisymmetric property. In fact, if a cycle is present, all the nodes along the cycle will
be mutually connected by a two-way directed path. Consider for instance the graph of
figure 2.5, which is the order among transitionst2, t3 andt4? In such a case it is not
possible to define an order among them. This type of relationship is called apreorder
(Davey and Priestley, 2002).

More formally, a relation that is reflexive and transitive is apreorder. Normally, this
is due to the presence of a cycle in the precedence relation. In order theory, a preorder
is noted as.. Thus we will writeu . v when a path exists fromv to u.

scc0

scc234

scc9 scc5

scc1

scc10 scc67

scc8

Figure 2.6: The strict order≺

Given a preorder . on a set V , several interesting properties
(Davey and Priestley, 2002) hold:

• the relation∼ on V such thatv ∼ u if and only if v . u andv . u is an
equivalence relation

• the relation≺ on the quotient setV/∼ such that[v] ≺ [u] iff v . u is a (strict)
partial order. Intuitively, this operation eliminates the cycles by collapsing each
SCC to a single element. We say then that the cyclic graph collapses into an
acyclic graph,

• the equivalence classes defined by∼ are the Strongly Connected Components
(SCC) of the graph associated to the relation. Thus, from now on we will employ
equivalently the terms SCC and equivalence class.

Figure 2.6 graphically represents the strict preorder relation≺ corresponding to the
graph of figure 2.5(b).



Chapter 3

Related Work

In this chapter, we recall some related work. The problem dealt within this dissertation
is indeed original, and, to the best of our knowledge, has been only marginally treated
by different disciplines like operations research, artificial intelligence, manufacturing
engineering, and economics. Although a massive amount of work has been devoted
to cope with different aspects of themake-or-buyor make-or-buy-or-collaborateprob-
lems, to the best of our knowledge nobody has entirely treated them. In this chapter we
will summarise the literature close to our problem.

The chapter is organised as follows. In section 3.1, we will recall some basic con-
cepts about auctions. Next, in section 3.2, we will thoroughly explain combinatorial
auctions, a particular type of auctions. Then, in sections 3.3, we will introduce the
problems of supply chain scheduling and supply chain formation respectively. Next, in
section 3.4, we will put in relation the work presented in this dissertation with respect
to the state of the art.

3.1 Auctions

The most employed definition of auction is due to McAfee et. al
(McAfee and McMillan, 1987): ”An auction is a market institution with an ex-
plicit set of rules determining resource allocation and prices on the basis of bids from
the market participants”.

Auctions play an important role in economics. In their most basic form, they are
one of the ways in which various commodities, financial assets and concession rights
are allocated to individuals and firms, particularly in a market-oriented setting. Some
very famous examples of auction houses are Sotheby’s (Sotheby’s, 2007), Christie’s
(Christie’s, 2007), and Ebay (Ebay, 2007).

The introduction and use of auctions is motivated by the fact that the value of an
item (or of a set of items) is often not known a-priori. Then, an auction is a way to
“let the market decide” the value associated to the item. It is a very flexible mechanism
that is employed with several different variations. Furthermore, it is dynamic, since it
allows a meaningful interaction between buyers and sellers. From our point of view,
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the distinguishing feature of auctions is that they support full automation. In fact, they
are a mechanism with predetermined rules. Hence, they are ideal for computer imple-
mentation. Finally, they are in most cases economically efficient (Milgrom, 2004).

3.1.1 Taxonomy of Auctions

Klemperer (Klemperer, 2004) classifies auctions in four basic groups based both on the
modality the auction is run with and on the associated payment rule:

(1) theascending-bidauction, also known as English or Open-outcry;

(2) thedescending-bidauction, also known as Dutch;

(3) thefirst-price sealed-bidauction; and

(4) thesecond-price sealed-bidauction, also known as Vickrey auction.

In the ascending-bid auction, the price is raised successively until only one bidder re-
mains. Such bidder wins the object and pays the final price.There are two variants of
this auction. One (called Japanese) considers that the price is raised by the auctioneer,
and the bidders that are not willing to pay the corresponding price at a given round quit
the auction. The other one, known as English, let the bidderscall out the prices.

The descending auction works in exactly the opposite way, the price starts at a very
high price and it is successively decremented until some bidder expresses his willing-
ness to accept that price.

In the first-price sealed-bid auction, all the bidders submit their offer without seeing
the other bidders’ offers. The bidder offering the highest bid wins paying his bid (that
is the highest price, whereby the namefirst-price).

In the second-price sealed-bid, the process is similar, with the exception that the
bidder pays the price offered in the second highest bid, whereby the namesecond price.

Another classification can be done based on the number of buyers and sellers,
namely:

• direct auction when there is one seller and multiple buyers;

• reverseauction when there is one buyer and multiple sellers. In this case the item
at auction is bought and not sold; and

• doubleauction when there are multiple buyers and multiple sellers.

Finally, a classification can be done based on the quantity of items sold/bought and
on the features of the items (i.e. price is not the only discriminant of the value associated
to an item). In this case we shall refer tomultidimensional auctions. There are different
types of multidimensional auctions:

• multi-unit auctions when multiple identical items are bought/sold;

• multi-attributeauctions when the value associated to an object is determined by
a set of features (shipping time, quality, and so on); and
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• multi-item or combinatorialauctions when multiple distinguishable items are
bought/sold.

There exists a lot of hybrid auctions joining the features of different auction classes.
In particular, very relevant to our work are (Cramton et al., 2006):

• combinatorial reverse auctions;

• multi-unit combinatorial reverse auctions.; and

• multi-unit combinatorial auctions.

Since combinatorial auctions (CAs) are of central importance in our work, in what
follows we provide a detailed account on the state-of-the-art in CAs.

3.2 Combinatorial Auctions

A combinatorial (reverse) auction. (Cramton et al., 2006) is an auction where bidders
can sell (buy) entire bundles of goods in a single transaction. Although computation-
ally very complex (Sandholm et al., 2002), the fact that bidders can express their prefer-
ences over bundles of goods may help an auctioneer obtain better deals. In fact, buying
items in bundles has the great advantage of eliminating the risk for a bidder of not be-
ing able to sell/buy complementary items at a reasonable price in a follow-up auction
(think of a combinatorial auction to acquire a pair of shoes, as opposed to two con-
secutive single-item auctions for each of the individual shoes). Indeed, combinatorial
auctions may lead to more efficient allocations whenever complementarities among the
goods at auction hold. For a detailed survey on CAs refer to (Cramton et al., 2006;
de Vries and Vohra, 2003; Kalagnanam and Parkes, 2003).

CAs have a high potential to be employed as an allocation mechanism in a wide
variety of real-world domains. They have been proposed to be employed for allo-
cating loads to trucks in the transportation market (Caplice and Sheffi, 2006), routes
to buses (Cantillon and Pesendorfer, 2006), goods/services to buyers/providers in in-
dustrial procurement scenarios (Bichler et al., 2006), airport arrival and departure slots
(Ball et al., 2006), and radio-frequency spectrum for wireless communications services
(Pekec and Rothkopf, 2003). Walsh in (Walsh et al., 2000) employed them for supply
chain formation.

The study of the mathematical, game-theoretical and algorithmic properties of com-
binatorial auctions has recently become a popular research topic in AI. This is not only
due to their relevance to important application areas such as electronic commerce or
supply chain management, but also to the range of deep research questions raised by
this auction model.

In the last decades, different topics related to CAs have been considered, namely
the design of auction mechanisms, bidding languages, and algorithms for the Winner
Determination Problem. In the following sections, we summarise the most relevant
contributions on those topics.
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3.2.1 Mechanism Design

Auction theory studies the formal properties of auctions as shown in the sur-
veys of (Krishna, 2002) and (Milgrom, 2004). Nonetheless CAs have recently
attracted the attention of economists and game theorists. Associated to auc-
tion theory is also the design of auctionmechanisms, devoted to studyhow to
run an auction in order to guarantee some economic properties such as, for in-
stance, efficiency, incentive compatibility, individual rationality, etc. For instance,
(Ausubel and Milgrom, 2006b), (Parkes, 2006), (Ausubel and Milgrom, 2006a),
(Cramton, 2006), (Ausubel et al., 2006), and (Land et al., 2006) describe some
mechanisms for CAs.

3.2.2 Bidding Languages

Bidding is the process of transmitting one’s valuation function over the set of goods on
offer to the auctioneer (or rathersomevaluation function — the bidders are of course
not required to reveal their true valuation —). In principle, it does not matter how the
valuation function is being encoded, as long as sender (bidder) and receiver (auctioneer)
agree on the semantics of what is being transmitted,i.e. as long as the auctioneer can
understand the message(s) sent by the bidder. Indeed, it is possible to fully specify
an auction mechanism (allocation and pricing rules) without reference to a concrete
bidding language. In practice, however, the choice of a bidding language is of central
importance.

Early work on combinatorial auctions has typically ignored the issue of bidding lan-
guages. The standard assumption used to be that if a particular bidder submits several
atomic bids (a bundle together with a proposed price), then the auctioneer may accept
any set of bids from that bidder for which the bundles do not overlap, and charge the
sum of the specified prices. This is now sometimes called theOR language. But other
interpretations of a set of atomic bids are possible. For instance, we may take it to mean
that the auctioneer may accept at most one bid per bidder; this is now known as the
XOR language.

The first systematic study of bidding languages is due to Nisan (Nisan, 2006) (an
early version (Nisan, 2000) appeared in 2000). Nisan’s papers provide an excellent
introduction to the topic and clarify a number of issues that had previously remained
somewhat fuzzy. Nisan classifies several types of bidding languages, providing expres-
siveness results for each of them. At the basis of his exposition lies the concept of
atomic bid. Formally, an atomic bid is a pair(S, p), whereS is a subset of the items at
auction, andp is the price a bidder is willing to pay to obtain the goods inS. By com-
bining in different ways atomic bids we obtain several bidding languages. The most
widely employed are:

• OR. Each bidder submits an arbitrary number of atomic bids. The auctioneer is
allowed to accept any disjoint subset of them.

• XOR. Each bidder submits an arbitrary number of atomic bids. The auctioneer is
allowed to accept at most one among them.
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• OR-of-XOR. Each bidder can submit any number of XOR bids. The auctioneer is
allowed to accept any subset of these bids.

• XOR-of-OR. Each bidder can submit an arbitrary number of OR bids. The auc-
tioneer is allowed to accept at most one of these bids.

Consider the following example explaining the semantics ofOR andXOR bids.

Example 3.1. Say that the set of goods at auctions is{A, B, C}. Then, we have:

• OR: ({A}, 3) OR ({B, C}, 3) means that if the bidder is allocated{A, B, C},
then he will pay 6.

• XOR: ({A}, 3) XOR ({B}, 3) XOR ({A, B}, 5) means that if he is allocated
{A, B} he will pay 5 (not 6).

Another interesting paper about bidding languages is (Boutilier and Hoos, 2001),
where Boutilier et al. present a logical bidding language that allows the expression
of complex utility functions in a natural and concise way. In this language bids are
given by propositional formulae whose sub-formulae can be annotated with prices, thus
allowing for a natural and concise formulation of bidders’ utility functions.

To the best of our knowledge, no bidding language has considered so far services or
manufacturing operations as entities that can be traded. As explained in chapter 1, in or-
der to apply combinatorial auctions to themake-or-buyof make-or-buy-or-collaborate
decisions, it is required to predicate about manufacturing operations and services across
the supply chain.

3.2.3 Winner Determination Problem

Connected with the introduction of combinatorial auctions is the winner determina-
tion problem (WDP). Winner determination is the problem, faced by the auction-
eer, of choosing which goods to award to which bidder so as to maximise its rev-
enue. The winner determination for combinatorial auctions is a complex computa-
tional problem. Indeed, one of the fundamental issues limiting the applicability of CAs
to real-world scenarios is the computational complexity associated to the winner de-
termination problem. In particular, it has been proved that the WDP is NP-complete
(Rothkopf et al., 1998). General IP solvers (Andersson et al., 2000) and special pur-
pose algorithms (Sandholm, 2002; Fujishima et al., 1999; Leyton-Brown et al., 2000)
have been employed to solve the WDP, but it is well known that a general solver that
performs well in all situations does not exist. For an extended review on the winner
determination problem and related issues refer to (Lehmann et al., 2006; Muller, 2006;
Sandholm, 2006b).

Here we aim at presenting the traditional ILP (see section 2.1.2) formulation em-
ployed to model the combinatorial auction winner determination problem, given that its
comprehension is required to understand the remaining of the dissertation.
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ILP formulation for the Combinatorial Auction WDP

Say that an auctioneer wants to selln goods. Each good is denoted asgi, where1 ≤ i ≤
n. In a combinatorial auction bidders can sendall-or-nothingoffers over a set of goods.
Say that each of them bidders participating in the auction only submits one bid1 bj ,
1 ≤ j ≤ m. Each bid is represented by a pairbj = (Sj , pj) such thatpj is the price that
the bidder is willing to pay for obtaining the set of goodsSj . How can the auctioneer
select the bids that maximise his revenue? This problem can be easily modelled by
means of Integer Programming (refer to section 2.1.2 for a detailed explanation). We
associate to each bidbj a binary decision variablexj ∈ {0, 1} that takes on value1
if bid bj is selected, and0 otherwise. Then, the function that the auctioneer wants to
maximise is his revenue, namely:

m∑

j=1

xjpj (3.1)

that is theobjective functionof the integer program.
Additionally, we have to make sure that each good is sold to at most one bidder

since the auctioneer only owns one copy of each good. Thus, we employ coefficients
cij to model that either goodgi is required in bidbj (cij = 1), or not (cij = 0). Then,
the following constraints must hold:

m∑

j=1

cijxj ≤ 1 1 ≤ i ≤ n (3.2)

In what follows we list some attempts carried out in the past to deal with the gener-
ation of benchmarks for testing combinatorial auctions WDP algorithms.

3.2.4 Test Suites

No real-world benchmark of CAs has been reported in the literature. Many efforts
have been done so far to generate plausible data sets to be employed to test WDP al-
gorithms. Some experiments have been run with human bidders (Banks et al., 1989).
Nonetheless, as pointed out in (Leyton-Brown and Shoham, 2006), such data sets are
not useful for assessing the WDP computational complexity. In the absence of test
suites, it is common practice to artificially generate data sets. Some examples are
(Fujishima et al., 1999; Boutilier et al., 1999; de Vries and Vohra, 2003) for single-unit
CAs, and (Leyton-Brown et al., 2000) for multi-unit CAs. Multi-unit CAs have also
been tested employing multidimensional knapsack problem benchmarks, borrowed
from the operations research community. A more realistic approach to generate bids
is presented in (Leyton-Brown and Shoham, 2006), where complementarity relation-
ships among goods are made explicit at bid generation time. Another realistic approach
is taken in (An et al., 2005), where the authors design bidding strategies that efficiently

1We do this simplified hypothesis for the sake of comprehension. The extension to the OR or XOR bidding
language is easy (Lehmann et al., 2006).
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identify desirable bundles in the framework of the transportation industry domain (fo-
cusing therefore on single-round, first-price, sealed-bid forward CAs).

Finally, a master student has elaborated on subjects related to this thesis. Vinyals
(Vinyals, 2007b; Vinyals et al., 2007a; Vinyals et al., 2007b) has implemented a very
powerful simulator of the behaviour of agents bidding in an MMUCA, and has tested
the performances of some of the algorithms presented in this dissertation.

In what follows we change of subject and introduce the work in the state-of-the-art
related to supply chain scheduling and supply chain formation.

3.3 Supply Chain Scheduling and Supply Chain For-
mation

In this section, we will talk about supply chain scheduling and planning, and supply
chain formation. On the one hand, the problem of supply chain formation concerns the
selection of the participants to the supply chain and the terms of the exchange, with
the purpose of maximising the efficiency of the supply chain. Informally, supply chain
formation is the problem of decidingwho will supply what, who will do what, and
who will buy what. On the other hand, the problem of supply chain scheduling and
planning is more focused on the coordination among the different operations across
the supply chain with the purpose of minimising the cost of performing operations and
transportation, and the time required to perform all the operations. Informally, supply
chain scheduling and planning is the problem of decidingwheneach agent within the
supply chain has to perform a given operation or job in order to finish all the operations
before a given deadline.

There is a fundamental difference between the problem of supply chain formation
and the problem of supply chain scheduling and planning. The former deals with finding
a set of supply chain partners, whereas the latter deals with the problem of coordinating
them. Nevertheless, the two problems are tightly connected. In fact, in order to ef-
fectively select the participants to the supply chain, agents should make sure that there
exists a feasible scheduling of their operations. This is needed since each stakeholder
along the supply chain:

• provides resources subsequently employed by other stakeholders; or

• employs or consumes resources previously produced by other stakeholders; or

• produces resources subsequently employed by other stakeholder, requiring as in-
puts resources previously supplied by other stakeholders.

Then, the selection of partners can be greatly improved if the feasibility of the schedul-
ing is taken into account.

In the literature there have been many attempts to solve the problem of supply chain
planning and scheduling and some attempts dealing with the supply chain formation
problem. However, to the best of our knowledge, no attempt to solve the problem of
supply chain formation taking into account the feasibility of the scheduling has been
done so far.
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3.3.1 Supply Chain Scheduling and Planning

There exist two approaches to supply chain planning and scheduling (Lau et al., 2006):
centralisedanddistributed.

The Centralised Approach

The centralised approach to supply chain scheduling has been investigated for many
years. In this approach a central authority collects all the information from the peers
and then computes the optimal planning (Cohen and Lee, 1988; Ertogral et al., 1998;
Sabri and Beamon, 2000; Jayaraman and Pirkul, 2001; Lee et al., 2002). A good sur-
vey on centralised planning can be found in (Erenguc et al., 1999).

The information required to optimise the scheduling may either be centralised or
distributed, according to the nature of the problem. For instance, inside an enterprise
there may be a central repository of information, whereas in a consortium of enterprises
each firm holds its private information. The information that must be provided in or-
der to compute the planning concerns the production features of the participants (the
required time to perform an operation, the associated cost, the precedence relationships
among operations, and so on). One of the firm acts as a coordinator, and, after receiving
the production data, computes an optimal plan, that is subsequently communicated to
the other supply chain stakeholders. In this approach, there must be information sharing
among the supply chain stakeholders in order to obtain an efficient plan.

Many methods have been proposed to solve the underlying plan-
ning problem, for instance metaheuristics (Kallrath, 2002), stochastic
algorithms (Alonso-Ayuso et al., 2003), or mixed-integer programming
(Gaonkar and Viswanadham, 2001).

The centralised approach suffers from some drawbacks. Firstly, some firms may be
reluctant to share very sensitive internal information. Secondly, the computational time
required to solve even small instances is huge. Finally, the centralised approach makes
it difficult to react to fails and breakdowns across the supply chain. In case some of
these events occur, the scheduled plan must be recomputed from scratch.

The Distributed Approach

In the distributed approach, the decisions about the scheduling are taken locally. That
is, a supply chain stakeholder builds its schedule relying on the communications with its
neighbours along the supply chain. The decision is based on the local information and
objectives of each supply chain stakeholder. The interactions among the supply chain
participants continue until a global scheduling is found or some termination condition
is met.

The major advantages of the distributed approach versus the centralised one are:

• the information is shared only at a local level;

• the computational complexity of the problem is reduced, since the problem solved
locally by each supply chain stakeholder is by far less difficult than the global
optimisation problem; and
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• since enterprises act locally, the capacity of reacting to breakdowns or shortcom-
ings is increased with respect to the centralised approach.

Many methods have been proposed to solve the scheduling problem with a decen-
tralised approach. For a good review, refer to (Lau et al., 2006). The most celebrated
distributed approach for centralised supply chain scheduling and planning has been
the Contract Net Protocol (CNP), along with all its variants. In his original formula-
tion, the CNP specifies a bidding approach that enables task allocation among mul-
tiple agents (Smith, 1980). The multi agent system (Wooldridge and Jennings, 1995)
based approach has been widely employed in the past as well (Collins, 2002;
Zhang, 2002; Reis et al., 2001; Lee et al., 2003; Wagner et al., 2003; Lau et al., 2006;
He et al., 2003; Norman et al., 2004).

The distributed approach suffers as well from some drawbacks. The main short-
comings regard the feasibility and optimality of solutions. It has been shown
(Jennings and Wooldridge, 1998) that, since agents act and reason locally, they disre-
gard the other agents’ constraints and the global performance of the supply chain.

To conclude, choosing between a centralised or a distributed approach strongly de-
pends on the problem to be solved and on the availability of computational resources.

3.3.2 Supply Chain Formation

Very little work has been devoted to the problem of automating supply chain forma-
tion. In this chapter, we will not consider the literature on non-automated supply chain
formation because its contributions stem from the areas of economics and negotiation
rather than from optimisation. Thus, it is out of the scope of the dissertation.

Supply chain formation studies the problem of automating the process of determin-
ing the supply chain partners, under the assumption that the information required by the
decision making process is decentralised.

In the area of supply chain formation two approaches have been considered as well,
namely the centralised and the distributed approach.

The Centralised Approach

As far as we are concerned, little effort has been devoted to the centralised approach to
the supply chain formation problem.

A significant attempt to provide a mechanism to select the right business partners in
a supply chain has been undertaken by (Gaonkar and Viswanadham, 2005). This work
is probably at the edge between supply chain planning and supply chain formation.
This very interesting paper focuses on the problem from a real-world point of view:
what happens when there is a roll-over of products in a market? Should a firm maintain
the same business partners? Should it change them? The authors provide a mixed
integer programming formulation of the underlying decision problem. This approach
suffers from some limitations:

(1) it is not completely automated, because the interaction between the supply chain
stakeholders is performed through an Internet-enabled platform;
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(2) there is no communication language among the supply chain stakeholders (like,
for instance, a bidding language); and

(3) it has a high computational cost and subsequent poor scalability.

However, it substantially differs from our approach, since it is not based on a market
mechanism. It is more a static decision support system to help strategic decision making
under particular market conditions.

In (Walsh, 2001; Walsh et al., 2000), Walsh et. al introduce combinatorial auctions
for supply chain formation. These represent an extension of combinatorial auctions in
which a whole supply chain is negotiated via an auction. In such a context, askers,
sellers and manufacturers participate and submit bids within the same auction. In order
to cope with this new auction Walsh et. al introduce the Task Dependency Network
(TDN), a network representing all the producer/consumer relationships among the bid-
ders. We consider that this work has dealt with a problem very similar to ours. In fact
both our and their work:

• are built upon a market-based mechanism, namely combinatorial auctions;

• explicitly represent producer-consumer relationships holding across the supply
chain; and

• model resource contention (i.e. the fact that in the system there are less resources
available than the overall required ones).

However, as explained in section 1.4.2, Task Dependency Networks and combinatorial
auctions for Supply Chain Formation are limited along several dimensions: they do not
possess the expressiveness, computational, and formal analysis tools required to deal
with themake-or-buy-or-collaboratedecision problem.

Collins et. al in (Collins, 2002; Babanov et al., 2003) deal with a problem similar
to the supply chain formation introducing time and precedence constraints. However
they do not explicitly model the multiple levels within a supply chain and the resource
contention across it. They also provide a bidding language including information about
the time required to perform operations.

Finally, Norman et. al (Norman et al., 2004) describe a combinatorial auction to
form virtual organisations. They also provide an advanced bidding language for ex-
pressing offers in which the time dimension is considered as well. Although very in-
novative, we find that its applicability to the problem of supply chain formation is lim-
ited since neither resource contention nor the producer-consumer relationships present
across a supply chain can be modelled.

The Distributed Approach

Distributed approaches to supply chain formation are not so closely related to our work.
However, we will point out the two most relevant works in the field that employ a market
based mechanism.

Rosenschein and Zlotkin in (Rosenschein and Zlotkin, 1994;
Zlotkin and Rosenschein, 1996) introduce Task Oriented Domains (TODs). A
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TOD is a set of tasks that must be completed, and a cost function over bundles of tasks.
They fix a set of negotiation rules and provide some theoretical results on the properties
of the negotiation outcome.

Walsh and Wellman in (Walsh and Wellman, 2003) provide a decentralised version
of the auction mechanism provided in (Walsh et al., 2000), which is based on a variation
of the Contract Net Protocol.

We stress that both approaches suffer from limitations. On the one hand, TODs
do not incorporate nor implicitly neither explicitly the dependencies among operations
across a supply chain, whereas the model in (Walsh and Wellman, 2003) suffers from
the same expressiveness, computation and formal analysis shortcomings as combinato-
rial auctions for supply chain formation do.

3.4 Conclusions

Little work has been done so far to solvemake-or-buyor make-or-buy-or-collaborate
decisions with a centralised market-based approach. Many papers have focused on sim-
ilar problems though none of them captures all the requirements expressed in sections
1.4.1 and 1.4.2.

Our work is placed somewhere in betweencentralised supply chain planningand
centralised supply chain formation. Our work is not entirely included in the field of sup-
ply chain formation because we do not only assess the participants to a supply chain,
but we also provide a feasible sequence of supply chain operations to perform. Anal-
ogously, our work is not completely included in the field of supply chain scheduling
since the participants to the supply chain are not fixed a-priori, but determined on the
fly based on a market mechanism. Furthermore, we do not need to include the time
dimension into the problem to provide a feasible schedule. In fact, the precedence rela-
tionships among operations are implicitly represented in the formalism that we employ
to model resource contention at each level of the supply chain.

Summarising, in the state of the art we find solutions to both supply chain schedul-
ing and planning and to supply chain formation problems. However, none of the solu-
tions we are aware of possesses all the features required to solve bothmake-or-buyand
make-or-buy-or-collaboratedecision via a market-based approach.

(1) As thoroughly explained in sections 1.4.1 and 1.4.2,combinatorial auctionslack
of the possibility to express manufacturing operations, or equivalently production
relationships among the goods at auction. However, they provide a good model
to build upon because they allow to express complementarities among the goods
at auction (Cramton et al., 2006); they can count on theoretically well-founded
bidding languages (Nisan, 2006), and there have been significant contributions to
the study of their winner determination problem (Lehmann et al., 2006).

(2) As detailed in section 1.4.2, combinatorial auctions for supply chain formation
and the associated Task Dependency Networks help negotiating manufacturing
operations. However, they suffer fromformal, computational, andexpressiveness
limitations.
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(3) We deem that distributed approaches are not suitable to our problem. In fact,
to the best of our knowledge, they do not guarantee nor optimality nor feasi-
bility. The literature in combinatorial auctions has thoroughly demonstrated the
efforts in finding optimal solutions to the winner determination problem. In to-
day’s business world, to provide methodologies that sacrifice optimality when big
quantities of money are in play is a risky business.



Chapter 4

MUCRAtR

In this chapter we deal with themake-or-buydecision problem when complementarities
among goods hold at the bidders’ side. With this aim, we introduce a new type of com-
binatorial auction, theMulti-unit Combinatorial Reverse Auction with transformability
Relationships among goods (MUCRAtR), extending traditional combinatorial auctions.
We also provide a mapping of the MUCRAtR winner determination problem to an opti-
misation problem on Place/Transition Nets (PTN). Such a mapping allows to efficiently
solve the WDP for some problem classes, and provides a set of powerful formal tools
for describing the underlying optimisation problem.

This chapter is organised as follows. In section, 4.1 we introduce the problem we
aim at solving and informally outline the proposed solution. In section 4.2, by means
of some examples and intuitions, we introduce the limitations associated to CAs with
respect to themake-or-buydecision problem in a combinatorial scenario. In section
4.3, we introduce a formalism, based on PTN, that overcomes part of such problems.
In section 4.4 we extend PTN in order to amend the expressiveness shortcomings of the
PTN model. In particular, we introduce a new type of PTN calledWeighted Place Tran-
sition Net(WPTN). Moreover, we define a new reachability problem over WPTN, the
Constrained Maximum Weight Occurrence Sequence Problem(CMWOSP). In section
4.5, relying on WPTNs, we succeed in formally representing an auctioneer’s internal
production and cost structure along with the set of received offers from bidders under a
unified formalism. Building upon such framework, we formally define the WDP for the
new auction as a particular CMWOSP. In section 4.7, we prove that the CMWOSP, and
thus the WDP formalised in section 4.6, can be solved by means of IP under suitable
conditions. Finally, section 4.8 draws some comments and concluding remarks.

4.1 Beyond Combinatorial Auctions

In the introductory chapter we mentioned that we are dealing with two main issues
in this dissertation. The first one is the automation ofmake-or-buydecisions across the
supply chain, and the second is the automation ofmake-or-buy-or-collaboratedecisions
across the supply chain. In this chapter we focus on themake-or-buydecision problem,
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namely the problem of selecting what to produce in-house and what to outsource in
order to obtain some required goods. We argued in section 1.4.1 that this concern is
reasonable because the cost of the raw materials plus the cost of the manufacturing
operations could eventually be higher than the cost of already-made goods. As an ad-
ditional constraint, we require that the complementarities among goods on the bidders’
side are taken into account: bidders should be allowed to composeall-or-nothingoffers
over bundles of goods.

In section 1.4.1, through the example of theGrandma & cofirm, we showed that
themake-or-buydecision problem represents a challenging problem in a scenario with
complementarities among the goods. We highlighted thatGrandma & corequires a
complex decision support system along with a combinatorial negotiation mechanism
that helps it in detecting the cost-minimising buying configuration and the internal op-
erations to perform in order to obtain the finally required goods.

For this reason, we decided to build upon combinatorial auctions to cope with the
make-or-buydecision problem. We recall that the distinguishing feature of combinato-
rial auctions is that bidders can submitall-or-nothingoffers over bundle of goods. This
allows to mitigate the risks connected with markets with strong complementarities, like
for instance depressed bidding1.

Unfortunately, as we thoroughly showed in section 1.4.1, some limitations prevent
the application of combinatorial auctions to themake-or-buydecision problem. That
is mainly due to two types of limitations:expressivenessand winner determination
problem. We recall in table 4.1 the limitations of combinatorial auctions thoroughly
explained in section 1.4.1.

Hence, in this chapter we extendMultiunit Combinatorial Reverse Auctions(MU-
CRA)2 in order to overcome the intrinsic limitations of CAs for dealing with themake-
or-buy decision problem. The resulting auction model is calledMulti-unit Combina-
torial Reverse Auction with transformability Relationships among goods (MUCRAtR).
This new auction type allows a buyer/auctioneer to express and communicate to bidders
its internal production structure and its final requirements. Bidders can then formulate
appropriate offers and send them back to the auctioneer. Upon receiving the offers,
an auctioneer can determine, by means of a public selection rule, the cost minimising
combination of bids along with the internal operations leading to its final requirements.

Then, firstly we try to model an auctioneer’s internal manufacturing operations by
means of Place Transition Nets (PTNs, thoroughly described in section 2.3). They per-
fectly represent the manufacturing operations by specifying the quantity of resources
both required an produced by each manufacturing operation. Furthermore, they natu-
rally model the producer/consumer relationships holding among them. Then, the PTN
representing the internal manufacturing operations fulfills requirement (1) in table 4.1.

Next, we incorporate the offers received by the auctioneer into the PTN encoding
the auctioneer’s production structure. This idea is based on the intuition that the selected
offers inject goods into the auctioneer production process: without ingredients it is not
possible to produce pies. This solves issue (3) in table 4.1.

1Depressed bidding is a phenomenon associated to the fact that bidders may risk to obtain only a part of
a set of complementary goods, and therefore bid less aggressively.

2We recall that a MUCRA is simply a combinatorial reverse auction in which multiple copies of each item
are auctioned3 (Sandholm, 2002).
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TYPE REQUIREMENTS

Expressiveness

(1) specification of the internal manufactur-
ing operations and the producer/consumer
relationships among them

(2) specification of an auctioneer’s final re-
quirements

(3) relationships among the manufacturing
operations, the auctioned goods, and the
received bids

(4) specification of an auctioneer’s internal
cost structure

WDP
(5) information about which in-house opera-

tions to perform and in which order

Table 4.1: Summary of requirements for themake-or-buydecision problem.

More in details, we build two PTNs: one representing the internal manufacturing
operations of an auctioneer, that we namePTNI (I from Internal), and another one
extendingPTNI to incorporate offers, calledPTNE (E from Extended).

The dynamic behaviour of PTNs serves to describe the set of possible outcomes of
a MUCRAtR. In particular, PTNs can naturally model:

(1) the preconditions of each manufacturing operation (the required inputs must be
present);

(2) the resources consumed and produced by each manufacturing operation;

(3) the quantity of resources injected into the system when an offer is selected; and

(4) the quantity of resources available to an auctioneer after performing a given man-
ufacturing operation.

According to item (4) in the list above, an auctioneer can model its resource availability
at any step of its manufacturing process. Consequently,PTNE can compactly encode
the outcomes (in terms of finally available resources) of all the possible decisions an
auctioneer may take4. The encoded information concerns the level of resources avail-
able at the end of a production process fed by a set of offers and composed of a sequence
of internal operations. Furthermore, the rules governing the dynamics of PTNs enforce
that each of the possible decisions is implementable, i.e. all the manufacturing opera-
tions are run in the correct order and only if the required input resources are provided.

4Notice that by decision we mean the selection of a set of offers and of a set of internal manufacturing
operations.
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However, an auctioneer is not simply interested in choosing the bids and the internal
operations leading to a satisfactory level of available resources. Above all he is inter-
ested in minimising its costs while doing this. Unfortunately, PTNs allow to express
neither the cost associated to performing manufacturing operations nor the cost asso-
ciated to selecting a set of bids. Due to this expressiveness limitation, we decided to
extend the notion of PTN to incorporate the cost associated to a manufacturing opera-
tion and the cost associated to a bid. Such extension, calledWeighted Place Transition
Nets (WPTN), allows associating a cost to each transition of a PTN.

With this tool at hand, we firstly associate a cost to each transition ofPTNI . This
creates a WPTN allowing to reason about the manufacturing operations internal to an
auctioneer. I name such WPTNTransformability Network Structure(TNS). It incor-
porates the following information about an auctioneer’s internal manufacturing opera-
tions:

(1) the required input goods;

(2) the produced output goods;

(3) the cost associated to each operation; and

(4) the eventual producer/consumer relationships with other operations.

By means of a TNS, an auctioneer can also compactly communicate to bidders all the
possible RFQ configurations leading to its final requirements. Summarising, the infor-
mation contained in a TNS along with the auctioneer’s finally required goods provide
to bidders sufficient information to compose meaningful offers. This overcome require-
ment (2) of table 4.1.

As mentioned above, our strategy shall be to map the internal manufacturing op-
erations and the received offers into a PTN (PTNE). If we associate a cost to each
of its transitions, we obtain a WPTN that provides a unified description framework for
themake-or-buydecision problem. I call such extensionAuction Netbecause it permits
to encode the information about an auctioneer’s internal production and cost structures
and about the offers it receives. The formal language offered by anAuction Nethelps
fulfill expressiveness requirements (1), (3) and (4) of table 4.1.

By means of anAuction Netan auctioneer can compactly express the outcome of
any of its possible decisions (acceptance of some bids and execution of some internal
operations), and also quantify the cost associated to each of such outcomes. Further-
more, theAuction Netallows to incorporate the information about an auctioneer’s initial
stock.

We recall that the goal of the auctioneer is selecting a cost minimising outcome
fulfilling its final requirements. This can be achieved only if he can express constraints
over possible outcomes. Then, the last requirement for expressing the decision problem
is allowing an auctioneer to express constraints over the set of possible outcomes.

Against this background, the MUCRAtR winner determination problem can be
stated as a problem over anAuction Net(a WPTN), where the goal is minimising the
cost associated to a sequence of steps that brings to a final state fulfilling some con-
straints. Then, we define a new optimisation problem on WPTNs: theConstrained
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Maximum Weighted Occurrence Sequence Problem(CMWOSP). The objective of a
CMWOSP is finding a cost minimising sequence of steps leading to a final state fulfill-
ing a set of constraints. This provides a solution to requirement (5) in table 4.1.

Notice that the result of a CMWOSP is afiring sequence, i.e. an ordered sequence of
transitions. This reflects a critical feature of themake-or-buydecision problem. An auc-
tioneer cannot run its internal manufacturing operations in a random order. Because of
producer/consumer relationships among manufacturing operations, an auctioneer must
be aware of the implementation order. For instance, ifGrandma & codecides to only
buy the basic ingredients and to perform all the manufacturing operations internally, it
cannot perform theBakingoperation before theMake Doughor Make Filling opera-
tions, since the latter ones provide the inputs to the former one (cf. figure 1.1).

Then, the definition of the winner determination problem does not only assess the
optimal set of goods to buy, but also the optimal ordered sequence of in-house opera-
tions to perform in order to obtain the goods finally required by the auctioneer.

Two direct benefits stem from the mapping of the MUCRAtR WDP to WPTNs.
Firstly, it is possible to directly import all the PTNs analysis tools and theoretical re-
sults and apply them to our problem. This provides the techniques for dealing with
requirement (5) in table 4.1. In fact, we manage to model, for a wide class of problems,
the WDP via integer programming (see section 2.1.2), and efficiently solve it by means
of black-box solvers as ILOG CPLEX (ILOG, 2007) or GNU GLPK (Makhorin, 2001).

4.2 The problem

In what follows we further specify the extensions to CAs needed for dealing with the
make-or-buydecision problem. With this aim we extend example 1.1 in chapter 1. We
recall that the example was aboutGrandma & co, a company devoted to produce and
sell apple pies. According to the example, the marketing department atGrandma &
co has forecast a sale of two hundreds apple pies within the next month, and therefore
Grandma & costarts an automated sourcing process.Grandma & coopts for running
a combinatorial auction to source the required ingredients. However, as explained in
section 1.4.1, besides inviting providers of basic ingredients (butter, sugar, flour, apples,
margarine), Grandma & coinvites providers of intermediate goods (dough, filling),
and even of final goods (apple pies). The production management department aims at
evaluating the opportunity to outsource part of the production process.

Unfortunately,Grandma & cofaces a decision problem that cannot be solely treated
by means of combinatorial auctions because of the intrinsic limitations listed in table
4.1. In example 4.1 we provide an extended version of example 1.1 that explicitly
illustrates such limitations.

Example 4.1. The data characterising theGrandma & co’s decision problem are:

(1) The cost of its internal manufacturing operations:

(a) A Make Doughoperation costse 5 each time it is carried out. It requires
one unit ofbutter, three units ofsugar, and two units offlour as inputs; and
it produces two units ofdoughas output.
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(b) A Make Fillingoperation costse 6 each time it is carried out It requires one
unit of flour, eight units ofapple, and two units ofmargarineas inputs; and
it produces two units offilling as output.

(c) A Bakingoperation costse 14 each time it is carried out. It requires four
units ofdoughand four units offilling as inputs; and it produces four units
of apple pieas output.

(2) A sale forecast of 200 apple pies. This represents the final requirements of
Grandma & co.

(3) A stock of one hundred units offloor and two hundreds units ofsugar.

Then, if Grandma & cointends to run a combinatorial auction and to invite all its
providers, it must be able to

• send them a request for quotes (RFQ) containing the number of required units for
each good; and

• once received all bids, it must be able to determine which bids to accept and
which internal manufacturing operations to perform in order to obtain the 200
apple pies.

Unfortunately, life is not that easy forGrandma & co. Firstly, it is not possible to a
priori establish how many units of each good the auctioneer (Grandma & co) requires.
In fact, this depends on the production plan, that can only be decided upon receiving
the offers. Secondly, once received all bids,Grandma & coneeds a winning rule for the
optimal, efficient and automatic selection of the best set of bids and in-house operations.
In the two following sections we illustrate the first and second problem.

4.2.1 Communicating the RFQ

In a traditional Multi-Unit Combinatorial Reverse Auction (MUCRA) scenario, aRe-
quest for Quotation(RFQ) (Reyes-Moro et al., 2003) expresses the number of required
units for each good. However, whenever an auctioneer (Grandma & co) facesmake-or-
buydecision problems, it happens that the requirement sent to bidders (the RFQ) is not
equivalent to the quantity of goods that the auctioneer actually requires (the 200 apple
pies). When internal manufacturing operations are taken into account, an auctioneer
has to distinguish between the objective quantity of goods at the end of its production
process and what to ask providers for. This occurs because an auctioneer (Grandma &
co) can opt for several, possible buying options and several, possible levels of internal
production. All these options differ in the number of required units and in the level of
internal production. For instance,

• if Grandma & codecides to buy only already-made pies without producing any-
thing, then it must ask providers offers for two hundred units of apple pies. This
results in the RFQ expressed in table 4.2(a) and in the internal operations quanti-
fied in table 4.2(b).
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Resource Required Units
butter 0
sugar 0
flour 0

apples 0
margarine 0

dough 0
filling 0

apple pies 200

Resource Required Units
butter 100
sugar 500
flour 300

apples 800
margarine 200

dough 0
filling 0

apple pies 0

(a) Request for quotes for apple pies only. (c) Request for quotes for basic ingredients only.

Operation Quantity
Make Dough 0
Make Filling 0

Baking 0

Operation Quantity
Make Dough 100
Make Filling 100

Baking 50

(b) Internal operations to perform. (d) Internal operationsto perform.

Table 4.2: Request for quotes for different scenarios.

• if Grandma & codecides to produce everything in house, then it must require
for each ingredient the quantity needed for producing 200 apple pies, and must
perform theMake Dough, Make Filling,andBakingoperations as many times
as required. This corresponds to the RFQ expressed in table 4.2(c) and in the
internal operations quantified in table 4.2(d).

It is easy to understand whyGrandma & cocannot completely specify its exact require-
ments a-priori (limitation (2) in table 4.1). The number of acquired units will depend
on the received offers.

In order to overcome such difficultyGrandma & coshould be able to communicate
to bidders its internal production relationships along with the producer/consumer rela-
tionships among them (limitation (1) in table 4.1). When bidders have this information
available,Grandma & cosimply has to communicate to bidders the quantity of each
good it aims at obtaining at the end of the production process (in our case two hundred
apple pies). The bidders can then infer the required quantity for each good (limitation
(2) in table 4.1).

4.2.2 Selecting the optimal decision

Even under the hypothesis thatGrandma & cowas able to uniquely communicate its
requirements to bidders, once received the bids it would not be able to decide which
bids to accept and which internal operations to perform in order to minimise its costs
and to obtain the 200 apple pies. More importantly, it would not have any public rule
stating how to win in the auction. How can bidders participate and submit bids if they



58 Chapter 4. MUCRAtR

are not aware of the winning bids’ selection mechanism? IfGrandma & cocannot
determine who the winners are, there can be no auction.

In order to express all the possible outcomes of any of its possible decisions, an
auctioneer must be able to link its internal production and cost structure, the received
offers, and its final requirements (the 200 apple pies).

If it also wants to select the best among those possible decisions, then it must be
able to quantify the cost associated to each of the above-mentioned decision outcomes.

Then, in the following section, we make a first attempt at solving the above-
mentioned problems relying on PTNs (section 2.3). In this way, we will succeed in
modelling all the possible decisions an auctioneer may take.

4.3 A first attempt: Place/Transition Nets

PTNs (see section 2.3) are a very powerful tool to describe discrete dynamical systems,
like for instance operating systems, workflows, finite state machines, parallel activities,
data-flow computation, producers-consumers systems with priority, and so on. The
firing of a transition in PTNs represents a state change in a discrete system. Such a
state change can only take place if some preconditions occur (i.e. the transition must be
enabled). For instance, if we model manufacturing operations by means of transitions in
a PTN, the execution of a manufacturing operation changes the state of the production
system: some goods are consumed, while other goods are produced, whenever enough
input goods are available.

In this section we try to model the problem ofGrandma & coby means of PTNs. In
section 4.3.1 we model via PTNs the internal production structure of an auctioneer, and
in section 4.3.2, we complement such PTN model by incorporating the offers received
by the auctioneer.

4.3.1 Modelling the internal production structure

In this section we model an auctioneer internal production structure by means of PTN.
Consider the following example.

Example 4.2. In figure 4.1, we associate a Place/Transition Net Structure (PTNS5) to
the internal production structure ofGrandma & co, characterised in example 4.1. In
doing this we associateplaces(P ) to goods,transitions(T ) to manufacturing opera-
tions, and input/output arcs (A) and their weights (E) to the quantity of goods con-
sumed/produced by each manufacturing operation. Formally,

• The set of places isP = {butter, sugar, f lour, apples, margarine, dough,
filling, applepie}

• The set of transitions isT = {makedough, makefilling, baking}

• The set of arcs isA = {(butter, makedough), (sugar, makedough),
(flour, makedough), (sugar, makefilling), (flour, makefilling),

5Refer to definition 2.1.



4.3. A first attempt: Place/Transition Nets 59
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Figure 4.1: PTNS associated to example 4.1.

(apples, makefilling), (margarine, makefilling), (makedough, dough),
(makefilling, filling), (filling, baking), (dough, baking),
(baking, applepie)}.

• The arc weight functionE is:

E(butter, makedough) =1 E(sugar, makedough) = 3

E(flour, makedough) =2 E(sugar, makefilling) = 2

E(flour, makefilling) =1 E(apples, makefilling) = 8

E(margarine, makefilling) =2 E(makedough, dough) = 2

E(makefilling, filling) =2 E(filling, baking) = 4

E(dough, baking) =4 E(baking, applepie) = 4

Then, with this tool at hand, we can quantitatively represent the input resources
needed and consumed by each manufacturing operation, the output resources produced,
and the producer consumer relationships among the manufacturing operations.

We recall that a PTN is a PTNS with associated an initial markingM0 (see section
2.3). The initial marking in a PTN usually represents the initial state of a discrete
dynamic system. In the case ofGrandma & cowe can provide a similar semantics. The
following example clarifies this point.

Example 4.3. The initial markingM0 stands for the initial stock atGrandma & co.
Indeed, the stock of a firm represents the “initial state” of its supply chain. The initial
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stock atGrandma & cois two hundreds units of sugar and a hundred units of flour (see
example 4.1). The multiset (refer to section 2.2) representation of the initial state would
be:

M0 = 200′sugar + 100′flour

Thus, in figure 4.2, we graphically depict the initial marking of the PTN by means
of numbers within places (circles). We call the resulting PTNPTNI (I stands for
Internal).
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Figure 4.2:PTNI associated to example 4.1.

Recall from section 2.3 that a transition in a PTN is enabled only if its input places
contain enough tokens. For instance, in figure 4.2, transitionMake Doughis enabled
only if at leastone unit ofbutter, three units ofsugar, and two units offlour are within
its input places. This is exactly what we require for a manufacturing operation to be
enabled: it can not be performed unless the required goods are available. Moreover,
looking at theBakingoperation in figure 4.2, we observe that the producer/consumer
relationships betweenMake DoughandBakingon one side, and betweenMake Filling
andBakingon the other side, is quantitatively described by the PTN. Notice that the
enabling condition guarantees that a producer/consumer relationship is not only quan-
titatively represented, but also it is constrained to be implemented in its dynamics.

If a transition is enabled in a marking it canfire (see definition 2.4). If a transition
fires it consumes some input goods and produces some output goods. Once more, this
is the semantics we require for a manufacturing operation: a manufacturing operation
consumes a set of input resources and produces a set of output resources.
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Example 4.4. In table 4.3 we show what happens when theMake Doughtransition
fires. In the left imageMake Doughis enabled. The execution ofMake Doughprovides
some inputs to theBakingoperation, as shown in the image on the right, thus perfectly
describing the producer/consumer relationship among them.
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Table 4.3: Execution of a manufacturing operation onPTNI .

What does it happen when there is a sequence of firings? As explained in section
2.3.1, the PTN will pass through a succession of markings (states). What does a marking
represent in the case ofGrandma & co? We recall that amarking is a distribution of
tokens over the set of places. It associates an integer value to each place. What is the
meaning of associating value100 to flour? The answer is that amarkingstands for the
state of a production process, i.e. it describes the resources available at each state of the
transformation process. In fact, it associates to each state the number of units of each
good available to the auctioneer in that state. Accordingly, a manufacturing operation
can be performed in a given state only if enough tokens are available in its input places
in that state. The firing of a transition adds tokens into its output places likewise a
manufacturing operation produces new available resources to the auctioneer.

If markingsdescribe the level of resources currently available to an auctioneer, they
naturally apply to describe the requirements of an auctioneer as well. An auctioneer
aims atreachinga marking that fulfils its requirements (at least two hundreds tokens
in the applepieplace). This helps linking an auctioneer’s requirements to its internal
production structure.

In section 2.3.1, we illustrated the problem of reachability, i.e. the problem of
reaching a given markingMd departing from an initial markingM0. We explained
that it is a well studied problem in the PTN literature. The reader can imagine that the
auctioneer is dealing with a similar problem: reaching amarkingthat fulfils its needs.

Summarising, by means of the PTN representation we partially fulfill requirements
(1) and (2) in table 4.1. However, we still need to express:

• the relationships between the internal manufacturing operations and the received
offers (limitation (3) in table 4.1); and
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• the information about the cost associated to bids’ selection and to manufacturing
operations’ carrying out (limitation (4) in table 4.1).

Then, in the next section we incorporate the description of the received offers into
PTNI .

4.3.2 Incorporating Bids

In this section we cope with limitation (3) in table 4.1. That is, to establish a relation-
ship among an auctioneer’s internal production structure, the goods at auction, and the
received offers. This entails relating the PTN description of section 4.3 (PTNI) with
the bidders’ offers and the goods at auction.

Firstly, notice that the relation between the auctioned goods and the manufacturing
operations is already accounted byPTNI . It quantitatively specifies the goods required
and produced by each manufacturing operation. Hence, it only remains linking the
received combinatorial offers to thePTNI . In fact, the utility ofPTNI is very limited
if an auctioneer cannot link it to the received bids. For instance, the PTN (production
process) described in figure 4.2 cannot work: there are not enough tokens (goods) to
fire (run) any of the transitions (manufacturing operations). The problem is that the
auctioneer (Grandma & co) needs tobuygoods to feed its production process. Buying
goods is equivalent to injecting tokens into the corresponding places. For instance, if
Grandma & codecides to accept a bid offering 100 units ofbutter, this will inject 100
units into thebutterplace and will correspondingly increment the marking of the PTN.
The counterpart of this operation would be putting a100 into thebutterplace of figure
4.2.
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Figure 4.3:PTNE. Incorporating bids into thePTNI of figure 4.2.

As a consequence, incorporating bids into the PTN is quite natural. Indeed, they can
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be easily modelled by means of transitions as well. If a bid is selected, it must increase
the amount of some available resources. Correspondingly, a transition adds tokens into
its output places when fired. However, two features distinguish bids from manufactur-
ing operations. Firstly, bids do not consume any resource. Secondly, bids can be run
only once (it is not possible to accept a bid twice in our semantics). Therefore, each bid
will be represented by a special type of transition, whose single input place will not be
a good, but a sort of controller. Such a controller, namedbid place,will enforce that a
transition representing a bid is selected at most once. We will call this type of transitions
bid transitions. In contrast, we will call the transitions corresponding to manufacturing
operationsoperation transitions, and the places representing goodsgood places. We
make clear the process of bid incorporation by means of an example.

Example 4.5. Say thatGrandma & coreceives the combinatorial offers in equations
(4.1) to (4.5) below from bidders. We represent an offer sent by a provider as a multiset6

B ∈ NG, whereG is the set of goods (in our case represented by places in figure 4.2),
along with a cost. The multiplicity associated to each element of the multiset stands for
the number of offered units for the element.

B1 → 100′butter + 200′margarine ate 200 (4.1)

B2 → 200′flours + 300′sugar ate 100 (4.2)

B3 → 800′apples ate 200 (4.3)

B4 → 200′dough + 200′filling ate 1300 (4.4)

B5 → 200′apple pies ate 2400 (4.5)

For instance,B4 → 200′dough + 200′filling ate 1300 stands for a combinatorial bid
offering two hundred units ofdough andtwo hundred units offilling ate 1300.

In figure 4.3 we intuitively show how to incorporate bids in equations (4.1) to (4.5)
into thePTNI on figure 4.2.PTNI is shadowed, whereas the incorporated bids are in
dark black. We will refer to the PTN in figure as thePTNE (E from Extended). Notice
that:

(1) The input places ofbid transitions(transitions associated to bids and represented
by B1,B2,B3,B4,B5 in figure 4.3) only contain one token and their input arcs
weigh one. Therefore, a bid transition can fire once at most.

(2) A bid transitiondoes not have any other input place except from abid place.
Thus, it does not consume any resources.

(3) The output places ofbid transitionsare the goods offered in the corresponding
bids, whereas the output arcs’ weights are the number of offered units.Therefore,
they increase the number of tokens present on the net if fired.

In table 4.4 we graphically depict the evolution of the PTN in figure 4.2 when ap-
plying the firing sequenceJ = 〈B1, makedough〉. The upper picture shows the initial

6Refer to section 2.2.
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Table 4.4: Applying the firing sequenceJ = 〈B1, makedough〉.

markingM0 = 100′butter + 200′margarine (the stock atGrandma & co). The cen-
tral picture shows the marking obtained after firing transitionB1 (i.e. after accepting bid
B1). Finally, the lower picture shows the marking obtained after firingmakedough (af-
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ter performing theMake Doughoperation). Notice that in both cases transitionsB1 and
Make Doughare enabled. Notice also that transitionB1 cannot fire anymore, whereas
Make Doughcan.

Summarising, with the PTN in figure 4.3Grandma & cocan express:

(1) its internal manufacturing operations along with the producer/consumer relation-
ships among them (requirement (1) in table 4.1);

(2) the relations among the auctioned goods, the received offers, and the manufac-
turing operations (rquirement (2)); and

(3) its final requirements (requirement (3)).

Furthermore, it can obtain all the possible production states reachable by means
of any legal combination of bids and internal operations. That is, it characterises the
combinatorial problem by providing a formalism to enumerate all the possible solutions.
This can be achieved thanks to the dynamics of PTN (the firings). This is a crucial point:
thePTNE in figure 4.3 compactly represents all the possible decisions thatGrandma
& co can take.

Unfortunately,Grandma & cois not interested insimplyreaching a state that fulfils
its final requirements, it wants tominimiseits costs as well. How can we quantify that
performing manufacturing operations costs money? How can we quantify that buying
goods costs money? It is under this point of view that PTNs lack of the necessary
expressiveness and need to be extended. In the next section, we explain how to deal
with such extension.

4.4 Weighted Place Transition Nets

There is a feature of some discrete systems (in particular the one we consider) that, to
the best of our knowledge, has never been considered so far in the PTN literature, and
that we deem fundamental. A change in the state of a system may have an associated
cost. For instance, in our case, a manufacturing operation has a cost associated to each
time it is carried out. Thus, in order to model manufacturing operations, we need to
extend Place Transition Nets to incorporate the notion oftransition cost. Such extension
will allow us not only to represent the fact that a cost is associated to each transition
firing, but also to easily compute the cost associated to afiring sequence.

The extension of PTN to incorporate the costs of operations and bids is quite natural
and consistent with all the properties of PTN. If we aim at representing the fact that
performing a manufacturing operation costs money, we simply have to associate a cost
to the firing of anoperation transition. Similarly, if we aim at representing that buying
goods costs money, we have to associate a cost to the firing of eachbid transition. In
general, since both bids and manufacturing operations can be represented by means of
PTNs, we have to associate a cost to each transition in a PTN.



66 Chapter 4. MUCRAtR

4.4.1 WPTNSs and WPTNs

We extend the notion of Place Transition Net (see section 2.3) by associating acost
to each transition. This leads us to the definition ofWeighted Place Transition Net
Structure(WPTNS) andWeighted Place Transition Net(WPTN).

Definition 4.1 (WPTNS). A WPTNS is a a tuple(P, T, A, E, C) where:

• P, T, A, E are defined exactly like in a PTNS.

• C : T → R is a cost function that associates a cost to each transition.
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Figure 4.4: WPTNS associated to example 4.1.

Example 4.6. Let us associate a WPTNS to the internal production structure of
Grandma & cospecified in example 4.1. At this aim we associateplaces(P ) to
goods,transitions(T ) to manufacturing operations, transition costs (C) to manufac-
turing costs, and input/output arcs (A) and their weights (E) to the quantity of goods
consumed/produced by each manufacturing operation. A WPTNS employs the same
graphical representation as a PTN (see section 2.3), the only difference being that a
cost labels each transition. We depict in figure 4.4 the resulting WPTNS, formally de-
fined as:

• The set of places isP = {butter, sugar, f lour, apples, margarine, dough,
filling, applepie}

• The set of transitions isT = {makedough, makefilling, baking}
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• The set of arcs isA = {(butter, makedough), (sugar, makedough),
(flour, makedough), (sugar, makefilling), (flour, makefilling),
(apples, makefilling), (margarine, makefilling), (makedough, dough),
(makefilling, filling), (filling, baking), (dough, baking),
(baking, applepie)}.

• The arc weight functionE is:

E(butter, makedough) =1 E(sugar, makedough) = 3

E(flour, makedough) =2 E(sugar, makefilling) = 2

E(flour, makefilling) =1 E(apples, makefilling) = 8

E(margarine, makefilling) =2 E(makedough, dough) = 2

E(makefilling, filling) =2 E(filling, baking) = 4

E(dough, baking) =4 E(baking, applepie) = 4

• The cost functionsC is defined as7:

C(makedough) = − e 5

C(makefilling) = − e 6

C(baking) = − e 14

In figure 4.4, the values ofC and the values ofE label respectively transitions and
arcs.

Analogously to a PTNS, we define a WPTN by associating to a WPTNS an initial
markingM0.

Definition 4.2 (WPTN). A WPTN is a pair(N,M0), whereN is s WPTNS, andM0is
a multiset of places that stands for its initial marking.

The initial marking in a PTN represents the initial state of a discrete dynamic sys-
tems. The very same semantics is inherited by WPTNs.

Example 4.7. The initial markingM0 for the WPTNS in figure 4.4Grandma & cois:

M0 = 200′sugar + 100′flour

In figure 4.5, we graphically depict the initial marking of the WPTNS in figure 4.4.

4.4.2 Dynamics of WPTNs

WPTNSs and WPTNs preserve all the properties of PTNSs and PTNs respectively, but
allow the quantitative representation of the cost of a transition. Therefore, we can natu-
rally extend to them all the concepts employed for PTNs. Those include the concepts of

7The sign convention employed is negative values each time an auctioneer incurs in a cost.
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Figure 4.5: WPTN associated to example 4.1.

enabling of a transition, firing of a transition, marking, firing sequence, and so on (refer
to section 2.3).

In a PTN, if a transition is enabled in a marking it canfire. If a transition fires it
consumes some input goods and produces some output goods. In a WPTN, something
more happens. If a transition fires it carries out a cost, the cost associated to the fired
transition.

Example 4.8. In table 4.5 we show what happens when theMake Doughtransition
fires. The transition generates a cost ofe 5. In the upper right corner we show the
quantity of money spent by the auctioneer in the corresponding state.

What does it happen when there is a sequence of firings? Firstly, the WPTN will
evolve through a succession of markings (states); and secondly, a cost will be associated
to such a sequence of transitions (firing sequencein section 2.3.1). Considering this,
we can define the notion ofcost of a firing sequence(CFS) as:

Definition 4.3 (Cost of a firing sequence). The costCFS associated to a firing sequence
J = 〈t1, t2, ..., td〉 is the sum of all the costs of the transitions contained in the sequence:

CFS(J) =

d∑

i=1

C(ti) (4.6)

If a transition fires more than once, sayk times, then its cost will be addedk times.
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Table 4.5: Cost of executing a manufacturing operation on a WPTN.

Example 4.9. In figure 4.6, analogously to figure 4.3, we incorporate into a WPTN
the bids expressed in equations (4.1) to (4.5). Notice that the costs labellingbid
transitions is the cost associated to the bids. Furthermore, in table 4.6, we repeat
the firing sequence of table 4.4 (J = {B1, makedough}) when a cost is associ-
ated to each transition. In this case, the cost associated to the firing sequence is
CFS(J) = C(B1) + C(makedough) =-e 200− e 5 =- e 205. In upper right cor-
ner of each frame of table 4.6 we highlight the cost associated to the corresponding
firing.
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Table 4.6: Applying the firing sequenceJ = 〈B1, makedough〉.
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4.5 Representing auction outcomes with WPTNs

In the previous section we introduced WPTNs and showed their powerful modelling
features. The examples tried to give the intuitions behind the application of WPTN to
our problem. In fact, we saw that the auctioneer faces amake-or-buydecision prob-
lem, and decides to solve it by means of combinatorial auctions. In this section, we
aim at representing each of the outcomes of such auction given a description of the
internal manufacturing operations, of the received bids, and of the auctioneer’s final
requirements . However, since an auctioneer is mostly interested in assessing the cost
associated to each of such outcomes, we also associate an auctioneer’s cost to each of
the outcomes.

Then, firstly we introduce theTransformability Network Structure(TNS), a WPTN
for modelling and communicating the internal manufacturing operations of an auction-
eer. Secondly, we extend the TNS in order to incorporate the information regarding the
received bids. This will result in the introduction of theAuction Net. This structure
compactly expresses all the possible decisions an auctioneer may take, and quantifies
the cost associated to each of such decisions. With those formal tools at hand, we can
then define what a MUCRAtR is by providing an operational definition of valid auction
outcome.

4.5.1 The Transformability Network Structure

In what follows we formally define theTransformability Network Structure. This cor-
responds to the net presented in figure 4.4. TNSs are useful for expressing the internal
manufacturing operations of an auctioneer. This tool will have to quantitatively rep-
resent the input resources needed and consumed by each manufacturing operation, the
output resources produced, the producer consumer relationships among the manufactur-
ing operations, and the cost associated to each manufacturing operation. Summarising,
a TNS describes the different ways in which goods can be transformed and at which
cost. More formally,

Definition 4.4 (TNS). A transformability network structureis a Weighted
Place/Transition NetN = (P, T, A, E,M0, C) such that we associate:

(1) theplacesin P to a set of goodsG to negotiate upon8.

(2) thetransitionsin T to a set of internal manufacturing operations;

(3) thedirected arcsin A along with their weightsE to the specification of the num-
ber of units of each good that are either consumed or produced by a manufactur-
ing operation.

(4) theinitial markingM0 to the quantity of each good initially available to the auc-
tioneer (the stock). We indicate this particular initial marking with the multiset
Uin ∈ NP . Then,M0 = Uin.

8Notice that a place represents a good. Thus, in what follows we will talk indifferently ofgood placesand
goods. That is, P and G are employed indifferently.
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(5) a costC : T → R
+ to each manufacturing operation.

In the next section we show how to incorporate the received bids into the TNS. The
resulting WPTN is calledAuction Net.

Example 4.10. The WPTN introduced in example 4.7 is the TNS associated to the
problem ofGrandma & co, previously described in example 4.1.

Notice that if an auctioneer communicates to the bidders its TNS along with some
constraints on the final marking (for instance, at least 200 tokens in the apple pie place),
the bidders have all the information for composing meaningful offers. This completely
fulfills the CAs expressiveness limitation in communicating to bidders an auctioneer’s
requirements (issue (2) in table 4.1).

4.5.2 The Auction Net

In this section, we will thoroughly explain how to transform a TNS (figure 4.4) into an
Auction net(figure 4.6). In the remaining of the chapter it is assumed thatB is the set
of received bids. Each bid is represented by a multisetB ∈ NP and has associated a
cost encoded by functionCB : B → R+ ∪ {0}.
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Figure 4.7: Auction Net of the MUCRAtR in example 4.1.

Definition 4.5 (Auction Net). Given a set of bidsB, and a TNS N =
(P, T, A, E,Uin, C), an Auction Netis a WPTN S∗ = (P ∗, T ∗, A∗, E∗,M∗

0, C
∗)

where: 





P ∗ = P ∪ PB

T ∗ = T ∪ TB

A∗ = A ∪ AB



4.5. Representing auction outcomes with WPTNs 73

(1) PB is the set ofbid places. That is, for each bidB ∈ B add a placepB.

(2) TB is the set ofbid transitions. That is, for each bidB ∈ B add a transitiontB.

(3) AB is the set ofbid arcs. It is built as follows:

AB = Ai
B ∪ Ao

B

where

Ai
B = {(pB, tB) ∈ PB × TB | ∀B ∈ B} (4.7)

Ao
B = {(tB, p) ∈ TB × P | p ∈ B} (4.8)

are theinput bid arcsandoutput bid arcsrespectively.

(4) The arc expressionE∗ function is built as follows:

E∗(x, y) = E(x, y) (x, y) ∈ A (4.9)

E∗(tB, p) = B(p) (tB, p) ∈ Ao
B (4.10)

E∗(pB, tB) = 1 (pB, tB) ∈ Ai
B (4.11)

(5) The cost functionC∗ : T ∪ TB → R is built as follows:

C∗(t) = C(t) t ∈ T

C∗(tB) = CB(B) tB ∈ TB

(6) The initial marking is defined as

M∗
0(p) =

{

Uin(p) p ∈ P

1 p ∈ PB

(4.12)

Example 4.11. We extend theTNSof example 4.6 with the bids listed in equations
(4.1) to (4.5). This gives raise to theAuction Netin figure 4.7. (P, T, A, E,M0, C)
have been defined in example 4.6. Then,S∗ = (P ∗, T ∗, A∗, E∗,M∗

0, C
∗) is defined as

follows:

(1) P ∗ = P ∪ {pB1, pB2 , pB3 , pB4 , pB5}

(2) T ∗ = T ∪ {tB1 , tB2 , tB3 , tB4 , tB5}

(3) A∗ = A ∪ Ai
B ∪ Ao

B where

Ai
B = {(pB1 , tB1), (pB2 , tB2), (pB3 , tB3), (pB4 , tB4), (pB5 , tB5)}

Ao
B = {(tB1 , butter), (tB1 , margarine), (tB2 , sugar), (tB2 , f lour), . . .}
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(4) E∗(x, y) = E(x, y) if (x, y) ∈ A. When(x, y) ∈ AB we have:

E∗(tB1 , butter) = 100 E∗(tB1 , margarine) = 200

E∗(tB2 , sugar) = 300 E∗(tB2 , f lour) = 200

. . . . . .

E∗(pB1 , tB1) = 1 E∗(pB2 , tB2) = 1

. . . . . .

(5) C∗(t) = C(t) whent ∈ T . Whent ∈ TB we have:

C∗(tB1) = -e 200 C∗(tB2) = -e 100

C∗(tB3) = -e 200 C∗(tB4) = -e 1300

C∗(tB5) = -e 2400

Recall that by means of the PTN defined in example 4.5, an auctioneer was able to
compactly represent all the possible outcomes associated to any of its decisions. How-
ever, he had the problem to assess the cost associated to each of such outcomes. Notice
that by means of the auction net, the auctioneer can now express both the outcomes of
its decisions and the cost associated to each of them.

In order to define the winner determination problem for MUCRAtR one further
step is required. We have to define an optimisation problem whose solution retrieves
the optimal firing sequence to apply to the auction net in order to obtain a desired final
marking (in the case ofGrandma & comore than 200 tokens in the apple pie place).
This is the purpose of the following section.

4.5.3 Constrained Maximum Weight Occurrence Sequence Prob-
lem

Since there is a cost associated to each transition, one may be interested in finding a
maximum (minimum9) cost firing sequence leading from an initial marking to some
final marking. More importantly, one may be interested in finding a maximum cost
firing sequence leading from an initial markingM0 to a final markingMd that fulfils
a set of inequality constraints. For instance, we may want to impose that in a final
markingMd each place contains exactly one token (Md(p) = 1, ∀p ∈ P ), or at
least 200 tokens in a given place (for instance, theApple Pieplace in example 4.1
Md(applepie) ≥ 200). With this aim we define theConstrained Maximum Weight
Occurrence Sequence Problem(CMWOSP).

Definition 4.6 (CMWOSP). Given a WPTNN = (P, T, A, E,M0, C), a set of in-
equality/equality constraints that a final markingMd must fulfil, expressed as:

∀p ∈ P Md(p)∆php (4.13)

9In any optimization problem maximising and minimising are two dual representations of the very same
problem. We will talk about maximisation in what follows, but all the results can be easily applied to a
minimisation.
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where∆p ∈ {<,≤, =,≥, >} andhp ∈ N ∪ {0}, find an occurrence sequenceJopt =
〈u1, u2, ..., ud〉 that brings the initial markingM0 to a final markingMd such that: (1)
Md fulfils all the constraints in equation (4.13); and (2)Jopt maximises the total cost
CFS .

We can express the inequations (4.13) in matrix form:

Md∆h (4.14)

whereMd is a vector whosei− th component represents the number of tokens in place
i, ∆ is a vector whosei−th element contains{<, >,≤,≥, =}, andh is a vector whose
i − th element containshp. We will call the constraints in equation (4.13) or (4.14) the
final marking constraints.

Proposition 4.1. CMWOSP is at least EXPSPACE-hard.

Proof. The reachability problem for PTN can be reduced to a CMWOSP. It has been
proved that the reachability problem is EXPSPACE-hard (Lipton, 1976).

4.6 The Winner Determination Problem

In this section, we formally define thewinner determination problemfor MUCRAtR.
Informally, given a TNS expressing the internal manufacturing operations of an

auctioneer over a set of goodsG, an auctioneer’s final requirementsUout ∈ NG, and a
set of received bidsB, thewinner determination problemamounts to finding the set of
bids and internal operations that minimise the auctioneer’s cost and produce at least the
required goods.

The formal definition of the WDP relies on theAuction Net.

Definition 4.7 (Winner Determination Problem). Given an auction expressed as
〈N,Uout, B〉, where N = (P, T, A, E,M0) is a TNS, Uout ∈ NG expresses
the auctioneer final requirements, andB is the set of received bids. LetS∗ =
(P ∗, T ∗, A∗, E∗,M∗

0, C
∗) be the correspondingAuction Net. The Winner Determi-

nation Problemamounts to selecting the set of bidsB∗ and the sequence of internal
operationsJ∗ that both minimise the auctioneer’s cost and satisfy the the following
final marking constraintson theAuction Net:

Md(p) ≥ Uout(p) ∀p ∈ P (4.15)

Md(p) ≥ 0 ∀p ∈ PB (4.16)

Proposition 4.2. The WDP for a MUCRAtR〈N,Uout, B〉 can be reduced to a CM-
WOSP on the corresponding auction net. Such a CMWOSP is characterised by the
followingfinal marking constraints:

Md(p) ≥ Uout(p) ∀p ∈ P (4.17)

Md(p) ≥ 0 ∀p ∈ PB (4.18)

Proof. The proof is by construction:
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(1) Solve the CMWOSP on theAuction NetNB. We name the CMWOSP solution
Jmin.

(2) The set of winning bidsB∗ corresponds to thebid transitionscontained inJmin:

B∗ = {B ∈ B|tB ∈ Jmin} (4.19)

(3) The sequenceJ∗ of internal manufacturing operations that an auctioneer has to
perform internally is obtained by removing fromJmin all the transitions that are
notoperation transitions. We denote this as follows:

J∗ = Jmin
|T (4.20)

Notice carefully that in a CMWOSP the sum of the weights associated to the overall
transitions is maximised. However, since negative costs are associated to both bid tran-
sitions and operation transitions, maximising the sum of the weights implies minimising
the auctioneer’s costs.

Example 4.12. If Grandma & coreceives the bids in equations (4.1) to (4.5), the deci-
sion minimising its costs and allowing it to obtain the 200 apple pies is:

(1) to select bidB4 to obtaindoughandfilling; and

(2) to subsequently bake them atGrandma & coafter running fifty times theBaking
operation.

If we look at it on the WPTN, this corresponds to the firing sequence

J = 〈B4, Baking, Baking, Baking, . . . , Baking
︸ ︷︷ ︸

〉 (4.21)

50 times

Then, the cost of this decision is assessed as follows:

cost(B4) + 50 · cost(Baking) = −e 1300 − e 700= −e 2000. (4.22)

The reader can check that this is the best possible option for the auctioneer: it exploits
the initial stock, it brings to a marking that fulfilsGrandma & corequirements, it min-
imises the costs.

Finally, the optimisation problem of the auctioneer is clearly stated, and there is a
rule for selecting the winners. Thus, we have solved issue (4) in table 4.1 as well. Since
we obtained this result by directly employing place transition nets, we can import all
the techniques employed for them. As a first example, we show how to solve the winner
determination problem by means of Integer Programming (see section 2.1). With this
aim, we just show that some particular CMWOSP can be solved by means of Integer
Programming.
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4.7 Solving the WDP by means of IP

In this section, firstly we show that the CMWOSP can be solved by means of Integer
Programming under some special conditions. Then, we show that those conditions are
fulfilled when the underlying PTN is acyclic. Finally, we explicitly state the IP solving
the WDP.

4.7.1 Solving the CMWOSP by means of IP

In section 2.3.2, we showed that under some hypothesis on a PTN, it is possible to
express its overall reachability set by means of an equation, the state equation (see
section 2.3.3). The state equation describes all the states that an acyclic PTN can reach,
and it is a linear equation. That is all we need to generate our integer program.

We recall also that, by means of thestate equation, it is possible to represent in
matrix form the firings and markings of a PTN (see section 2.3.2):

• Let us associate to each placepi ∈ P a positioni in a vectorMk ∈ N|P |.
The integer contained in thei − th position of theMk vector corresponds to
the number of tokens contained in a a placepi afterk firings in some sequence.
Then,M0 is the initial marking,M1 is the marking obtained after the firing of
some transition, and so on.

• Let us associate to each transitiontj ∈ T a positionj in a vector of integers
x ∈ N|T |. The integer contained in thej − th position ofx encodes the number
of times transitiontj has been fired.

With this representation, the state equation can be written as:

M = M0 + AT
x (4.23)

The very same formalism holds for WPTN. In fact, the only difference is that there
is a cost associated to each transition. Then, can we represent in matrix form the cost
of a sequence bringing fromM0 to M via the transitions encoded inx as well? The
answer is quite easy. Notice thatx in equation (4.23) stands for the number of times
each transition is fired for transforming markingM0 into markingM . Then, if we
know the cost of each transition, according to definition in equation (4.6), we have to
multiply the cost of each transition by the number of times it is fired. Then, we define a
vectorCT ∈ R|T | whosej − th position represents the cost associated to transitiontj
(CFS(tj)). Hence, the cost associated to the firing sequence represented byx, noted as
Jx, is:

CFS(Jx) = x
T CT (4.24)

The idea behind the mapping to IP is finding a set of linear equations that:

(1) constrains the decision variables associated to transitions to hold a value encoding
a valid firing sequence;

(2) constrains the marking obtained by firing the selected transitions to fulfil a set of
equality/inequality constraints; and
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(3) maximises the sum of the costs associated to the selected transitions.

Notice that point (1) can be easily fulfilled when the net is acyclic by means of the
state equation. Since thestate equationrepresents all the reachable states, it is enough
to apply to it a set of inequality/equality constraints to fulfil point (2). Finally, since in
a WPTN a cost is associated to each transition, maximising the cost associated to the
selectedfiring sequencewe satisfy point (3) as well.

In what follows we go into the formal details of what we explained above. The
following theorem states that if we can represent all the reachable states of a PTN by
means of the state equation, then the CMWOSP can be solved by means of IP.

Theorem 4.1. Consider an WPTN(P, T, A, E,M0, C) with incidence matrix10
A.

If the state equation describes all the reachable statesM of the WPTN, then all the
non-negative integer solutions the following integer program:

max x
T cT (4.25)

subject toM0 + A
T
x ∆h (4.26)

represent the firing count vectors of all the optimal solutions to the CMWOSP defined
by 〈∼,h〉

Proof. Notice that equation (4.26) simply imposes that the end marking fulfils the
constraints defined by〈∼,h〉 in equation (4.13). Equation (4.25) maximises the cost
CFS(Jx), associated to the firing sequence represented byx (see equation (4.24)). As
a result, a solutionx∗ to the IP defined by equations (4.25) and (4.26) optimises the
sum of the costs associated to fired transitions, while ensuring that the final marking is
reachable and fulfils the constraints defined by〈∼,h〉.

According to the results stated in theorem 2.2, it is possibleto express the reacha-
bility set with the state equation when the PTN is acyclic. Then, we apply this result to
our problem via the following corollary:

Corollary 4.1. Provided that a WPTN is acyclic, every CMWOSP defined on it can be
mapped into integer linear programming.

Proof. . Since the WPTN is acyclic, in virtue of theorem 2.2, all the reachable states
M are the non-negative integer solutions of equation (2.26). Then, for theorem 4.1 the
firing count vectors of all the solutions to the CMWOSP are the solutions to the IP in
equations (4.25) and (4.26).

Hence, we solve the CMWOSP problem in two steps. First, we determine the opti-
mal firing count vectorxopt by solving the Integer Linear Program (ILP) in equations
(4.25) and (4.26). Then, we constructJopt from x

opt, for which each step is enabled.
SinceS is acyclic, we can establish a partial order among transitions so thatt1 < t2
iff t2 uses as input some output oft1. We can construct an occurrence sequenceJopt

by ordering the transitions in the firing count vectorxJopt
non-decreasingly according

to our partial ordering. Every step in the so ordered occurrence sequence is guaran-
teed to be enabled. The occurrence sequenceJopt is consequently the solution to our
CMWOSP.

10Refer to section 2.3.3.
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Thus, we can also cope with requirement (5) in table 4.1.

4.7.2 The IP Formulation in practise

We have shown that the CMWOSP can be solved by means of an ILP in the case that
the underlying WPTN is acyclic in section 4.7.1. We showed in section 4.6 that the
winner determination problem for MUCRAtR is a CMWOSP. In this section we show
that the WDP for MUCRAtR can be solved by means of IP when the auctioneer’s TNS
is acyclic. Furthermore we will explicitly write down the IP model.

The first assumption is that no cycles are added when we extend a TNS into an
Auction Net. This is very easy to show.

Proposition 4.3. Given an acyclic TNS(P, T, A, E,M0, C), the corresponding Auc-
tion Net(P ∪ PB, T ∪ TB, A ∪ AB , EB,MBid

0 , CBid) will also be acyclic.

Proof. Say that there is abid transitiontB that includes a cycle that was not present in
the TNS. The output places of bid transitions are always inP (see definition 4.5). Then,
in order to have a cycle, there should be a transition with input places inP that has the
input place oftB as an output place. However, this is impossible since, according to
definition 4.5, the input places ofbid transitionshave only output arcs.

Naturally, it follows that:

Corollary 4.2. When the TNS is acyclic, the WDP can be solved by means of IP.

Next, we explicitly express the IP model solving themake-or-buydecision problem,
or equivalently solving the WDP for MUCRAtR.

The mathematical model is built according to the following rules:

(1) there aren goods, indexed withi ∈ {1, 2, . . . , n}

(2) there arem internal manufacturing operations, indexed withj ∈ {1, 2, . . . , m}

(3) there arel multi-unit combinatorial bids, indexed withk ∈ {1, 2, . . . , l}

(4) aij is the difference between the weight of the arc connecting operation transition
j to goodi and the weight of the arc connecting goodi to operation transitionj
in the auction net. Formally, in the WPTN languageaij = E(j, i) − E(i, j).
Informally, this represents the flow of tokens in placei when transitionj is fired.

(5) uin
i is the quantity of goodi initially available to the auctioneer (the stock).

(6) uout
i is the quantity of goodi finally required by the auctioneer (the sale forecast).

(7) bki is the weight of the arc connecting bid transitionk to goodi.

(8) bpk is the weight of the arc connecting the bid placep to the bid transitionk.

(9) buin
k is the quantity of tokens initially available in bid place of bidk11.

11Notice that we know that this is always one. However, for the sake of generality we consider it as a
parameter.



80 Chapter 4. MUCRAtR

(10) ck is the cost associated to internal operationj.

(11) pk is the price associated to bidk.

(12) yk ∈ N ∪ {0} is an integer decision variable (for each bidk ∈ {1, 2, . . . , l})
taking on valuew if bid k has been selectedw times12.

(13) xj ∈ N ∪ {0} is an integer decision variable (for each transitionj ∈
{1, 2, . . . , m}) taking on valuew if transformationj is firedw times in the opti-
mal firing sequence.

With this in mind, the IP model is expressed with the following equations:

max
∑

k

yk · pk +
∑

j

xj · cj (4.27)

uin
i +

∑

k

yk · bki +
∑

j

xj · aij ≥ uout
i ∀i (4.28)

buin
k − yk · bpk ≥ 0 ∀i (4.29)

Equation (4.27) minimises (recall the the costs are negative) the sum of the costs asso-
ciated to bids plus the costs associated to internal manufacturing operations. Equations
(4.29) and (4.28) correspond to equation (4.13) of the CMWOSP. We split it into two
equations since they implement different inequalities. This is made clear if compared
with equations (4.12), (4.17), and (4.18). Indeed, equation (4.28) implements equation
(4.17), whereas equation (4.29) implements equation (4.18).

If we observe equation (4.29), and recall thatbuin
k = 1 for all k (see equation 4.12),

and thatbpk = 1 for all k (see equation 4.11), the equation becomes:

1 − yk ≥ 0 ∀k (4.30)

Considering thatyk is an integer decision variable, it turns out clear that it becomes
a binary decision variableyk ∈ {0, 1}. Hence, the whole optimisation problem in
equations (4.27) to (4.29) can be rewritten under this hypothesis:

max
∑

k

yk · pk +
∑

j

xj · cj (4.31)

uin
i +

∑

k

yk · bki +
∑

j

xj · aij ≥ uout
i ∀i (4.32)

This ILP can be readily implemented with the aid of an optimisation library (see
section 2.1.2). The number of decision variables needed to encode this problem is
|T | + |B|, whereT is the set of internal supply chain operations andB is the set of
received bids. The number of required constraints is|G|, whereG is the set of goods.

12Notice carefully that we know that this variable can take only value 0 or 1. Then, it is a binary decision
variable. However, in order to be formal, we hypothesise that is an integer variable for the moment.
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4.7.3 Comparison with a traditional MUCRA IP solver

In what follows we compare the IP formulation of the MUCRAtR WDP with the IP for-
mulation of a traditional Multi-unit Combinatorial Reverse Auction (MUCRA) WDP.
In order to solve the WDP for a MUCRA, as formalised in (Sandholm et al., 2002),
we exploit the equivalence to the multi-dimensional knapsack problem pointed out in
(Holte, 2001). Sandholm et al. in (Sandholm et al., 2002) show how MUCRA can be
solved by means of IP. In this case the problem is stated by means of the following
parameters and variables:

(1) there aren goods, indexed withi = {1, 2, . . . , n}

(2) there arel multi-unit combinatorial bids, indexed withk = {1, 2, . . . , l}

(3) uout
i is the quantity of goodi finally required by the auctioneer.

(4) bki is the quantity of goodi offered in bidk.

(5) pk is the price associated to bidk.

(6) yk ∈ {0, 1} is a binary decision variable (for each bidk ∈ {1, 2, . . . , l}) taking
on value1 if bid k has been selected and0 otherwise.

Then, the problem of selecting the best offers can be expressed with the following IP
model:

max
∑

k

yk · pk (4.33)

∑

k

yk · bki ≥ uout
i ∀i (4.34)

In this case the number of decision variables is|B|, and the number of constraints is
|G|. Then, our formulation of the WDP can be clearly regarded as an extension of the
ILP we must solve for a MUCRA (as formalised above). In fact, the second component
of expression 4.31 changes the overall cost as transformations are applied, whereas the
second component of expression 4.32 makes sure that the units of the selected bids
fulfil a buyer’s requirements taking into account the units consumed and produced by
transformations.

Observe the analogy between the IP in equations (4.31) and (4.32), and the IP in
equations (4.33) and (4.34).

The first terms of both IP are equivalent. In the MUCRAtR IP we add the contribu-
tions due to the firing of transformations. It seems a trivial extension. However, notice
carefully that we showed that this cannot be done for every possible class of nets.

4.8 Conclusions

In this chapter we dealt with themake-or-buydecision problem when combinatorial
offers are received by an auctioneer. We identified and overcome all the limitations
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that prevent the applicability of CAs tomake-or-buydecisions. These are grouped into
Expressiveness, Winner Determination,andFormal Analysislimitations.

We showed that PTNs are very useful for overcoming some of the CAs expressive-
ness limitations. However, due to their inability to express costs, we had to extend PTNs
in order to fully represent the internal production and cost structure of an auctioneer.
This lead to the definition of Weighted Place/Transition Nets (WPTN), PTNs in which
it is possible to associate a cost to each transition firing.

By means of WPTN all the expressiveness issues are solved. Then, an auction-
eer can employ WPTNs to define its production and cost structure. We called such a
representation aTransformability Network Structure(TNS).

However, the TNS must be linked someway with the offers received from bidders
(the bids). Then, we extended the TNS in order to incorporate the information about the
received combinatorial bids. This lead to the definition of theAuction Net. An Auction
Net is a WPTN that incorporates all the information about the running auction: internal
manufacturing operations and received offers.

Once the decision problem input is conveniently expressed, we formalise its output.
With this aim, we introduced a new reachability problem on WPTNs, theConstrained
Maximum Weight Occurrence Sequence Problem(CMWOSP). We subsequently em-
ployed the CMWOSP to formally define the auctioneer decision problem, or equiva-
lently, the winner determination problem.

Next, via the exploitation of some well-known results of PTN theory, we succeeded
in mapping the optimisation problem to an IP model, that can be directly solved by
means of commercial or free optimisation libraries. However, such a solver can be
applied only in the case that the net is acyclic.

Notice as well that the representation via WPTN allows to import a wide body of
methods and tools associated toPTNs. As a first example of this powerful approach,
we provided the above mentioned mapping to integer programming of the MUCRAtR
WDP.

It seems quite natural at this point to consider an extension. If an auctioneer can
incorporate into the auction its internal operations, why not to incorporate information
about the bidders’ internal operations as well? That is, in a MUCRAtR an auctioneer
decides whether to produce in-house or to buy as already made the goods he requires.
However, there is a third possibility, a bidder may offer toperforman operation for the
auctioneer. In such a case, the auctioneer would be able to outsource not only goods,
but manufacturing operations or services as well. In the following chapters we discuss
in depth such extension.



Chapter 5

Mixed Multi unit Combinatorial
Auctions

Along the lines of what we have done in chapter 4, where we introduced MUCRAtR
to cope with themake-or-buydecision problem, in this chapter we provide a new
type of combinatorial auction (CA) to deal withmake-or-buy-or-collaboratedecision
problems. This new auction type is calledMixed Multi-unit Combinatorial Auction
(MMUCA). It supports the trading of any operation across a supply chain: from supply
and request of goods to the request and offer of manufacturing operations and services.
In this chapter we introduce:

• a formal language that allows bidders to express offers and requests over such
supply chain operations;

• a formalisation of the optimisation problem faced by an auctioneer when select-
ing the set of bids that maximises its revenue;

This chapter and the two following deal with different aspects of themake-or-buy-
or-collaboratedecision problem. In particular, this chapter deals withexpressiveness
requirements and formalises thedecision problemfaced by the auctioneer, whereas
chapters 6 and 7 deal with computational and formal analysis aspects associated to the
decision problem.

This chapter is organised as follows. In section 5.1, we describe the requirements
of CAs when applied to themake-or-buy-or-collaboratedecision problem. In section
5.2, we introduce an example that helps clarifying themake-or-buy-or-collaboratede-
cision problem. In section 5.3 we introduce a novel formal language that supports the
negotiation of supply chain operations. In section 5.4, we formally define an allocation
rule that automates themake-or-buy-or-collaboratedecision, that is, we formalise the
decision problem that the auctioneer faces. In section 5.5 we list the auction models
subsumed by MMUCA. Finally, in section 5.6, we draw some conclusions and remarks
about the expressiveness of the defined formal language and about the types of auction
subsumed by our model.

83
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5.1 Beyond CAs for Supply Chain Formation

In chapter 4, we studied themake-or-buydecision problem under the hypothesis that
complementarities among goods exist on the bidder side. In order to solve such a prob-
lem, we introduced a new type of combinatorial auction, the Multi Unit Combinatorial
Reverse Auction with transformability Relationships among Goods (MUCRAtR). In
this chapter instead, we deal with themake-or-buy-or-collaboratedecision problem,
namely the problem of selecting the most convenient supply chain partners. In this
case, a new dimension is added to the decision problem. In order to find a profitable
agreement, the parts negotiating a collaboration across the supply chain, have to make
explicit and share some information about their internal production structure.

We approach this problem employing a market-based mechanism. Analogously to
chapter 4, we build upon combinatorial auctions since they help capturing the produc-
tion complementarities arising within a supply chain. We introduce a new type of com-
binatorial auction that allows an auctioneer to trade, besides goods, operations across
the supply chain. As thoroughly explained in section 1.4.2, the operations that can be
negotiated across a supply chain are:

(1) Supply of manufacturing, assembly, disassembly operations.

(2) Request of manufacturing, assembly, disassembly operations.

(3) Supply of goods.

(4) Request of goods.

Combinatorial auctions for supply chain formation (SCF), introduced by Walsh et al.
in (Walsh and Wellman, 2003), have been the first attempt to deal with the problem of
supply chain formation by means of combinatorial auctions. Supply chain formation is
the problem of selecting the set of participants in a supply chain, and of assessing who
will exchange what with whom, while maximising the utility of the participants. We
consider the supply chain formation problem similar to a certain degree to themake-
or-buy-or-collaborateproblem. In fact, the objective of SCF is to provide to the supply
chain stakeholders a mechanism to select the best way of collaborating among them.
Combinatorial auctions for SCF relies on the Task Dependency Networks (TDN) to
represent the production relationships among the supply chain stakeholders. However,
as illustrated in chapter 1, some intrinsic limitations of TDNs hinder their application
to themake-or-buy-or-collaboratedecision problem.

In table 5.1 we illustrate the requirements that we aim at fulfilling when dealing
with themake-or-buy-or-collaboratedecision problem. In the table, we also mark the
requirements that are fulfilled by CAs and TDNs. Summarising, we can classify the
emerging requirements in three types:

(1) expressivenessrequirements (1–8 in table 5.1);

(2) WDPrequirements (9–13 in table 5.1); and

(3) computationalrequirements (14–19 in table 5.1); and
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Requirements CAs TDN
1 express an offer/request on bundles of goods X X

2 express an offer of a SCO with a single output product X

3 express an offer of a SCO with multiple output products
4 express a request of a SCO
5 express the offer/request of a bundle of SCOs
6 express combinations of bids X

7 express the min/max number of times SCOs are performed
8 express resource sharing
9 express an auctioneer’s initial stock
10 express the auctioneer’s final requirements
11 supportacyclic supply chain networks X

12 supportcyclic supply chain networks
13 compute thescheduled sequenceof SCOs to perform
14 ensure computational tractability while preserving optimality
15 solve SCF decision problem X

16 solve themake-or-buy-or-collaboratedecision problem
17 formally represent the search space
18 graphically represent the search space
19 assess the computational tractability based on the problem structure

Table 5.1: Requirements associated to themake-or-buy-or-collaborateproblem.

As to expressiveness requirements, it is clear that an auctioneer intending to trade
any possible operation across the supply chain must provide bidders with a language
for expressing their preferences over such operations (requirements 1–8 in table 5.1).
Since we build upon CAs, in this chapter we firstly introduce a novel bidding language
that extends and generalises bidding languages for combinatorial auctions (bidding lan-
guages for CAs are summarised in section 3.2.2). The purpose of CA bidding languages
is to predicate about goods, in particular about bundles of goods. However, in our case
the language must also allow to predicate about operations across the supply chain. In
order to cope with this requirement, we definesupply chain operations(SCOs). A sup-
ply chain operation is a concept that unifies under the same name some1 of the supply
chain operations, namely:

• supplyof a manufacturing operation;

• supplyof a bundle of goods; and

• requestof a bundle of goods.

This abstraction considers that the only distinguishing features of a supply chain oper-
ation are:

• the set of required and consumed inputs

• the set of produced outputs

1We saysomeof the operations since therequestof a supply chain operation cannot be expressed as an
atomic operation. This point is clarified further on.
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Thus, while in combinatorial auctions a bidder bids on bundles of goods, in this case
the objects predicated in the bidding language are bundles of SCOs. More precisely, as
pointed out by requirement (5) in table 5.1, bidders must be able to express preferences
over bundles of supply chain operations, and in particular to utter offers for operations,
requests of operations, and offer/request alternatives. Hence, we solve those problems
by letting bidders:

(1) specify valuations over bundles of supply chain operations. Anatomic bidwill
allow bidders to associate a value to a bundle of supply chain operations. The
semantics of atomic bids will be rich enough to specify both requests and offers
for bundles of supply chain operations (requirement (5) in table 5.1);

(2) specify combinations of atomic bids (requirement (6) in table 5.1).

Thus, on the one hand formingatomic bidsjoining supply chain operationsperfectly
captures potential complementarities among such operations. On the other hand, we
provide bidders a way to express combinations of bids representing alternative offers.
This is needed because the preferences of a bidder cannot be fully expressed only by
atomic bids. For this purpose, we introduce a bidding language with several constructs
allowing the representation of several types of preferences over set of atomic bids. For
instance,XOR bidsallow a bidder to express a set of atomic bids such that only one of
them can be selected by an auctioneer.OR bidsallow to express that any subset of its
atomic bids can be selected by an auctioneer. Other constructs enable the representation
of quantity ranges, volume-based discounts, and so on.

Next, we cope with the firstWDP requirements of CAs for SCF, represented by
requirements (9–13) in table 5.1. With a suitable language for representing the bidders’
offers at hand, we can provide an operational definition of the problem of selecting the
winning bids while respecting the bidders’ constraints. In other words, we have to pro-
vide a definition of the winner determination problem. With respect to the traditional
combinatorial auction WDP a new dimension comes into play and must be considered:
the production preconditions of supply chain operations. In fact, when supply chain op-
erations are dealt, not only it is important what SCOs to select, but also their execution
order. In fact, it must happen that at each step of the production process each SCO has
available the resources it requires to be performed. Since a supply chain is achainof
SCOs, it may be the case that some SCOs provide the required inputs to other SCOs.
Hence, the former ones must be performed before the latter ones. Then, an auctioneer
must select asequenceof SCOs such that it:

(1) fulfils the constraints imposed by the bidders through the bidding language (e.g.
if two atomic bids are in XOR, the auctioneer has to select at most one of them);

(2) is scheduled correctly, i.e. that each SCO has available the required input re-
sources; and

(3) produces as outputat leastas many resources as required by the auctioneer (i.e.
after performing the sequence of supply chain operations, the auctioneer ends up
with the quantity of goods he initially required).
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Only in the case that the solution fulfils the above conditions can be consideredvalid
and implementable. Then, we will consider that avalid solution that maximises the
auctioneer’s revenue is a solution to the winner determination problem.

The provided definition of winner determination problem is not limited to any par-
ticular supply chain topology or SCO type. Then, by means of the definitions of bid-
ding language and WDP we overcome requirements 1–13 in table 5.1. The remaining
requirements (14–19) in table 5.1 are not considered in this chapter, and will be solved
in the next chapter. Summarising, in this chapter we focus onexpressivenessrequire-
ments, and formalise thedecision problemfaced by the auctioneer.

With a bidding language and an allocation rule (winner determination problem), the
new auction type is completely defined. We shall call the resulting auction modelMixed
Multi-unit Combinatorial Auctions(MMUCAs).

5.2 The problem

In this section we continue the example ofGrandma & cointroduced in section 1.4.2.
Relying on such example, we specify the auctioneer’s problem we aim at solving.

Example 5.1.Grandma & cois a company devoted to producing and selling apple pies.
Traditionally, it was used to buying the basic ingredients to internally produce apple
pies ready to sell. However, its revolutionary sourcing department is experimenting the
most bizarre innovations. In example 1.1, we explained thatGrandma & codecided
to bring into the sourcing process producers of intermediate (Dough, Filling ) and final
goods (Apple Pies) across the supply chain. This led to the introduction of a new type
of auction, MUCRAtR, as explained in chapter 4.

In this example, we show how the restless sourcing department decides to imple-
ment a newer sourcing process. Besides inviting to the sourcing event suppliers of all
the goods across the supply chain, it also invites suppliers and requesters ofmanufac-
turing servicessuch as, for instance,Make Doughor Baking. Then,Grandma & co
runs a new type of combinatorial auction that involves:

• providers of goods (dough, filling, flour, and so on);

• requesters of goods (apple pies);

• providers of manufacturing operations (e.g. ofMake Dough, Make Filling, or the
Bakingoperations); and

• requesters of manufacturing operations.

All these potential supply chain partners are bidders in the auction.
The data regardingGrandma & cointernal production costs is equal to the one

defined in example 4.1 and is expressed in figure 5.1. We summarise it in the following:

(1) theMake Doughoperation costse 5 each time it is carried out, it requires as in-
puts one unit ofbutter, three units ofsugar, and two units offlour, and it produces
two units ofdoughas output;
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(2) theMake Filling operation costse 6 each time it is carried out, it requires as
inputs one unit offlour, eight units ofapple, and two units ofmargarine, and it
produces two units offilling as output; and

(3) theBakingoperation costse 14 each time it is carried out, it requires as inputs
four units ofdoughand four units offilling, and it produces four units ofapple
pieas output.

Furthermore, the data about the initial stock and the final requirements are:

(1) a stock of a hundred units offlour and two hundred units ofsugar;

(2) Grandma & cowants to end up with at least two hundred apple pies in its ware-
house.

Say thatGrandma & coreceives the following bids (expressed in natural language)
from all the invited bidders:

(1) Bidder 1offers 100 units of butterAND200 units of margarine ate 200. Bidders
1 to 4 express multi-unit bids that offer combinations of goods.

(2) Bidder 2offers 200 units of floursAND300 units of sugar ate 100.

(3) Bidder 3offers 800 units of apple pies ate 200.

(4) Bidder 4offers 200 units of doughAND 200 units offilling ate 1300.

(5) Bidder 5requests 200 units of apple pies fore 2400. This bidder express a multi-
unit request of goods.

(6) Bidder 6offers 100 units of butter ate 150OR (non-exclusive)offers 200 units of
margarine ate 100. This bidder proposes two alternative, not mutually exclusive,
multi-unit offers. Notice that if the auctioneer accepts both bids, it must pay
e 250.

(7) Bidder 7offers 200 units of margarine ate 200XOR (exclusive OR)offers 200
units of butter ate 200. This bidder proposes two alternative mutually, exclusive,
multi-unit offers. The auctioneer can accept at most one of them.

(8) Bidder 8offers 200 units of filling ate 1400XOR requests 100 units of apple
pies fore 200.

(9) Bidder 9offers to perform theMake Doughoperation 50 times ate 200. This
bidder, a contract manufacturer, offers to perform a SCO for the auctioneer ex-
actly fifty times.

(10) Bidder 10requests to have the operationBakingperformed 50 times, and he is
willing to paye 210 for it. This bidder requests that an operation is performed
for him exactly fifty times.
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(11) Bidder 11offers to transform 2 units of dough and 2 units of filling into 1 unit of
apple pie ate 20 each time the operation is performed. He offers to perform the
operation at most 50 times and at least 10 times. This bidder offers an operation
that was not previously present in the auctioneer’s internal supply chain (figure
5.1). Moreover, he expresses the operation can be performed a minimum and a
maximum number of times.

(12) Bidder 12offers theBakingoperation:

• ate 10 each time it runs if the operation is performed between 10 and 30
times; and

• at e 8 each time it runs if the operation is performed between 31 and 50
times.

This bidder issues an offer for an operation that includes a value-based discount.

(13) Bidder 13offers between 100 and 200 units of apples in bundles of 4 units ate 2
per bundle. This bidder expresses quantity ranges.

(14) Bidder 14offers to transform 3 units of flour, 2 units of sugar, 1 unit of butter, 4
units of apples, and 2 units of margarine into 2 units of dough and 2 units of filling
ate 10 each time the operation is performed. The operation can be performed at
least 10 and at most 40 times. Similar to the offer of bidder 11, with the difference
that this operation has multiple output goods.

(15) Bidder 15offers to perform both theMake Dough ANDtheMake Filling opera-
tion ate 20. This bidder issues an offer over abundleof SCOs.

(16) Bidder 16offers to perform theMake Doughoperation ate 20 only if provided
with an oven (it will give the oven back after performing the operation). This
bidder expresses an offer in which there is a resource shared (the oven). In fact,
it can be employed again afterwards.

The reader can understand that not only the requirements are difficult to express, but
also the underlying decision problem is actually very complex. Which is the best option
for Grandma & co? How to select the bids that maximise its revenue? The problem
of Grandma & cois thus twofold: on the one hand to provide a bidding language for
expressing the bidders’ preferences, and on the other hand to find an allocation rule for
assessing the revenue maximising sequence of SCOs that allows it to obtain at least two
hundred apple pies at the end of the production process.

5.3 Bidding Language

In this section, we firstly define the notions ofsupply chain operationandvaluation
oversupply chain operations, and subsequently we define a bidding language that can
be used to transmit an agent’s valuation (which may or may not be its true valuation)
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to the auctioneer. We also formally define the semantics of the language and introduce
a number of additional language constructs that allow for the concise encoding of typ-
ical features of valuation functions. Finally, we discuss the expressive power of the
language.

5.3.1 Supply Chain Operation

In what follows we provide a formal definition of supply chain operation.

Definition 5.1. Let G be the finite set of all the types of goods under consideration. A
Supply Chain Operation(SCO) is a pair of multisets2 overG: (I,O) ∈ NG × NG.

An agent offering the SCO(I,O) declares that it can deliverO after having re-
ceivedI. As we mentioned in section 5.1, in our setting bidders can offer any number
of such SCOs, including several copies of the same SCO. That is, agents will be nego-
tiating overmultisets of SCOs, formally over elements ofN(NG×N

G).
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Figure 5.1: TNS associated to example 5.1.

Example 5.2. In figure 5.1 we graphically represent the internal manufacturing opera-
tions ofGrandma & coemploying the TNS introduced in in section 4.5.1. TheMake
Doughoperation is represented as the following SCO:

Make Dough= (1′butter + 3′sugar + 2′flour, 2′dough) (5.1)

2Refer to section 2.2 for some background on multi-sets.



5.3. Bidding Language 91

TheMake Fillingoperation is represented as:

Make Filling = (2′sugar + 1′flour + 8′apples + 2′margarine, 2′filling) (5.2)

Example 5.3. {(∅, 1′a), (1′b, 1′c)} means that the agent in question is able to delivera
(no input required) and that it is able to deliverc if provided withb. Note that this is not
the same as{(1′b, 1′a + 1′c)}. In the former case, if another agent is able to produce
b if provided with a, we can getc from nothing; in the latter case this would not be
possible.

Notice that the formalism employed for describing SCOs allows the representation
of:

• offers for bundles of goods, expressed as SCOs with no inputs. That means that
nothing is taken as input (I = ∅), andO is provided as output. For instance, the
offer of 200 units of butterand100 units of margarine can be expressed as:

{1′(∅, 100′margarine + 200′butter)}

• requests of bundles of goods, expressed as SCOs with no output. That means that
I is taken as input, and nothing (O = ∅) is provided as output. For instance, the
request of 200 units of apple pie can be expressed as:

{1′(200′applepie, ∅)}

• offers for bundles of SCOs, expressed as:

{α′
1(I1,O1) + α′

2(I2,O2) + . . . + α′
m(Im,Om)}

whereα′
i ∈ N represents the multiplicity of the SCO(Ii,Oi). For instance, an

offer to perform 10 times theMake Doughoperationand5 times theMake Filling
operation can be expressed as:

{10′Make Dough+ 5′Make Filling} = (5.3)

{10′(1′butter + 3′sugar + 2′flour, 2′dough)+

5′(2′sugar + 1′flour + 8′apples + 2′margarine, 2′filling)}

• requests of bundles of SCOs. In order to understand how to represent this type of
request, we have to define what is meant by requiring a service. In fact, a bidder
requiring theBakingservice (see figure 5.1) provides the inputs to perform the
Bakingoperation (dough and filling), and he is expected to receive the output of
the required operation (apple pie).
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Example 5.4. Consider the following multi-set of SCOs:

{1′(∅, 4′dough + 4′filling), 1′(4′apple pie, ∅)}

This means that a bidder provides the dough and the fillingand he is expected
to receive 4 apple pies. Notice that no precedence constraint between the two
operations is specified. The bidder is happy receiving the apple pies both before
and after giving away the dough and filling.

If a bidder expresses his willingness to paye 20 for having this multiset of SCOs
allocated, this means that he is requiring theBakingoperation fore 20.

Notice that this isnot the same as

{1′(4′apple pie, 4′dough + 4′filling)}

In this case, the meaning would be that the bidderrequiresthe apple pies as input
beforegiving away the dough and filling. It is not what the bidder means.

In direct multi-unit combinatorial auctions, thoroughly explained in chapter 3, it is
typical to assumefree-disposalfor bidders. Say that a bidder is willing to paye 10
for three units of dough. The free-disposal assumption says that the bidder is willing
to payat leaste 10 for four units of dough. This is a reasonable assumption, since
the bidder receives more than he has required paying the same amount. Conversely, in
a multi-unit combinatorialreverseauction thefree-disposalassumption says that if a
bidder is willing to be paide 10 for three units of dough, then it is willing to be paid
at moste 10 for two units of dough. This is reasonable as well since the bidder gives
away less than offered and receives the same payment.

In the general case, thefree-disposalassumption says that a bidder is willing to
pay/be paid at least/at most the same amount if he is allocated a superset/subset of the
required/offered goods.

In what follows, we generalise this idea to supply chain operations first, and then to
multisets of supply chain operations. The idea of superset/subset is substituted with the
idea of subsumption.

We define asubsumption relation⊑ over supply chain operations as follows:

(I,O) ⊑ (I ′,O′) ⇔ I ⊆ I′ ∧ O ⊇ O′ (5.4)

Intuitively, this means that the second supply chain operation is at least as good as
the first (for the bidder), because he receives more and has to give away less.

Example 5.5. For instance, we have that:

(2′a + 2′b, 1′c) ⊑ (3′a + 3′b, 1′c) (5.5)

The following definition extends this subsumption relation to multisets of supply
chain operations. It applies to multisets of the same cardinality, where for each SCO in
the first set there exists a (distinct) SCO in the second set subsuming the former.
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Definition 5.2 (Subsumption). LetD,D′ ∈ N(NG×N
G). We say thatD is subsumed by

D′ (D ⊑ D′) iff:

(i) D andD′ have the same cardinality:|D| = |D′|.

(ii) There exists a surjective mappingf : D → D′ such that, for all SCOst ∈ D, we
havet ⊑ f(t).

Example 5.6. Employing a simplified notation for the innermost sets, we have3:

{(a, bb), (cc, dd)} ⊑ {(cc, d), (aaa, b)} (5.7)

Notice that the functionf is such that the element(a, bb) maps to(aaa, b), and the
element(cc, dd) maps to(cc, d). In fact, we have that(a, bb) ⊑ (aaa, b) and(cc, dd) ⊑
(cc, d).

Property(i) of definition 5.2 is needed, because giving less supply chain operations
in some cases may diminish the valuation of a bidder. This is clarified by the following
example.

Example 5.7. Consider that a bidder is willing to paye 10 for receiving two units ofb
and two units ofc, namely for the SCO{(bb, ∅), (cc, ∅)}. Most probably, the bidderis
not willing to pay at least the same quantity for having the multiset{(bb, ∅)}, since he
is receiving less goods! Alternatively, consider the case in which a bidder is willing to
be paide 10 for providing two units ofb and two units ofc, namely{(∅, bb), (∅, cc)}.
Most probably, the bidder in this caseis willing to pay at least the same quantity for
being allocated the multiset{(∅, bb)}, since he is giving away less goods!

Then, as shown in example 5.7, there is not a general rule stating that less supply
chain operations allocated is considered a better outcome for a bidder.

5.3.2 Valuations

Our goal is having agents negotiating over bundles of SCOs. Then, we have to introduce
a formalism that allows an agent to express preferences over bundles of SCOs. Hence,
in what follows we provide a definition of valuation.

Definition 5.3. A valuationv : N(NG×N
G) → R is a (typically partial) mapping from

multisets of SCOs to the real numbers.

3 This is equivalent to

{(1′a, 2′b), (2′c, 2′d)} ⊑ {(2′c, 1′d), (3′a, 1′b)} (5.6)
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Intuitively, v(D) = p means that the agent equipped with valuationv is willing to
make a payment ofp in return for being allocated all the SCOs inD (in casep is a
negative number, this means that the agent will accept the deal if itreceivesan amount
of |p|).

Example 5.8(Valuations).

• v(1′(1′oven + 1′dough, 1′oven + 1′cake)}) = −20 means that a bidder can
produce a cake fore 20 if given an oven and some dough, and that it will return
the oven again afterwards.

• v({1′(1′butter + 3′sugar + 2′flour, 2′dough)}) = −4 means that a bidder is
able to perform theMake Doughoperation fore 4.

We write v(D) = ⊥ to express thatv is undefinedover the multisetD. Again
intuitively, this means the agent would be unable to accept the corresponding deal.
Valuation functions can often be assumed to be bothnormalisedandmonotonic:

Definition 5.4 (Normalised valuation). A valuationv is normalised iffv(D) = 0 when-
everI = O for all (I,O) ∈ D.

That is, a valuation is normalised iff exchanging a multiset of goods for an identical
multiset does not incur any costs (this includes the special case ofI = O = ∅, i.e. the
case of not exchanging anything at all). The next definitions refer to our subsumption
relation⊑ (see Definition 5.2).

Definition 5.5 (Monotonic valuation). A valuationv is monotonic iffv(D) ≤ v(D′)
wheneverD ⊑ D′.

That is, an agent with a monotonic valuation does not mind taking on more goods
and giving fewer away. This assumption is the generalisation of thefree-disposalas-
sumption we mentioned above when supply chain operations are traded.

Any given valuation function can beturned intoa monotonic valuation by taking its
monotonic closure4:

Definition 5.6(Monotonic closure). The monotonic closurêv of a valuationv is defined
asv̂(D) = max{v(D′) | D′ ⊑ D}.

As we are working with multisets of goods, observe that there could be infinitely
many bundles an agent may want to assign a (defined) value to. As we shall see in
Section 5.3.6, our bidding languages can only express valuations that arefinitely-peaked
(or that are the monotonic closure of a finitely-peaked valuation):

4Here and throughout this chapter, we assume that any occurrences of⊥ are being removed from a set
before computing its maximum element, and that the maximum of the empty set is⊥.
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Definition 5.7 (Finitely-peaked val.). A valuationv is finitely-peaked iffv is only de-
fined over finite multisets of pairs of finite multisets and{D ∈ N(NG×N

G) | v(D) 6= ⊥}
is finite.

5.3.3 Atomic Bids

An atomic bidBID({α′
1(I1,O1)+ . . . +α′

n(In,On)}, p), whereα′
i ∈ N represents the

multiplicity of the SCO(Ii,Oi), specifies a finite multiset of finite SCOs and a price.
To make the semantics of such an atomic bid precise, we need to decide whether or
not we want to make afree disposalassumption. We can distinguish two types of free
disposal:

• Free disposalat the bidder’s sidemeans that a bidder would always be prepared
to accept more goods and give fewer goods away, without requiring a change in
payment. This affects the definition of the valuation functions used by bidders.

• Free disposalat the auctioneer’s sidemeans that the auctioneer can freely dispose
of additional goods,i.e. accept more and give away fewer of them. This affects
the definition of what constitutes a valid solution to the winner determination
problem (see Section 5.4).

Under the assumption of free disposal at the bidder’s side, the bidBid = BID(D, p)
defines the following valuation:

vBid(D
′) =

{
p if D ⊑ D′

⊥ otherwise

To obtain the valuation function defined by the same bid without the free disposal as-
sumption, simply replace⊑ in the above definition by equality.

5.3.4 Combinations of Bids

A suitablebidding languageshould allow a bidder to encode choices between alter-
native bids and the like. To this end, several operators for combining bids have been
introduced in the literature (Nisan, 2006), which we are going to adapt to our purposes
here. Informally, an OR-combination of several bids signifies that the bidder would be
happy to accept that any combination of the sub-bids specified is selected by the auc-
tioneer, if he gets paid/pays the sum of the associated prices. An XOR-combination of
bids expresses that the bidder is prepared to accept that at most one of them is selected5.

We also suggest the use of an IMPLIES operator to express that accepting one bid
forces the auctioneer to also take the second. We shall take an AND-combination to
mean that the bidder will only accept if the respective sub-bids are selected together.

As it turns out, while all these operators are very useful for specifying typical val-
uations in a concise manner, any complex bid can alternatively be represented by an

5 As Nisan (Nisan, 2006) put it, “purists may object” to the name XOR, as this is not the same as the
exclusive-or operator familiar from propositional logic (ONE-OF may be a better name).
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XOR-combination of atomic bids. To simplify presentation, rather than specifying the
exact semantics of all of our operators directly, we are simply going to show how any
bid can be translated into such anormal form. Firstly, any occurrences of IMPLIES and
OR can be eliminated by applying the following rewrite rules:

X IMPLIES Y ; (X AND Y ) XOR Y
X OR Y ; X XOR Y XOR (X AND Y )

Note that for single-unit auctions, OR cannot be translated into XOR like this (ifX and
Y overlap, then they cannot be accepted together; in an MMUCA this depends on the
supply of the auctioneer). Next we show how to distribute AND over XOR, so as to
push AND-operators to the inside of a formula:

(X XOR Y ) AND Z ; (X AND Z) XOR (Y AND Z)

Finally, we need to define how to turn an AND-combination of atomic bids into a single
atomic bid:

BID(D, p) AND BID (D′, p′) ; BID(D ⊎D′, p + p′)

Recall from section 2.2.1 that the⊎ symbol is asum of multiset, meaning that the
multiplicity of the sum multiset for an element is the sum of of the multiplicities of the
addend multisets.

Observe that these rewrite rules together allow us to translate any expression of the
bidding language into an equivalent XOR-combination of atomic bids. We also call
this theXOR-language. To formally define the semantics of this language, it suffices
to define the semantics of the XOR-operator. Suppose we are givenn bidsBid i, with
i ∈ {1..n}. Let Bid = Bid1 XOR · · · XOR Bidn. This bid defines the following
valuation:

vBid (D) = max{vBidi
(D) | i ∈ [1, n]}

That is, XOR simply selects the atomic bid corresponding to the valuation giving max-
imum profit for the auctioneer.

5.3.5 Representing Quantity Ranges

As we prove in the next section, the XOR-language is expressive enough to describe
any (finitely-peaked) valuation. Nevertheless, it may not be possible to express a given
valuation in a succinct manner. From a practical point of view, it is therefore useful to
introduce additional constructs that allow us to express typical features more succinctly.
Here we consider the case of quantity ranges. We want to be able to express that a
certain number of copies of the same SCO are acceptable to a bidder.

Let n ∈ N. To express that up ton copies of the sameBid are acceptable, we use
the following notation:

Bid≤n = (Bid OR · · · OR Bid)
︸ ︷︷ ︸

n times
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This allows us to expressbundling constraintsin a concise manner: the bid
({a, a, a, b},−10)≤50 expresses that we can sell up to 50 packages containing three
items of typea and one item of typeb each, for 10e a package (for simplicity, we omit
O here). We also use the following shorthand:

Bidn = (Bid AND · · · AND Bid)
︸ ︷︷ ︸

n times

Now we can express quantity ranges. Letn1, n2 ∈ N with 0 < n1 < n2. The following
expression says that we may accept betweenn1 andn2 copies of the sameBid:

Bid[n1,n2] = Bid≤(n2−n1) IMPLIES Bidn1

These constructs also allow us to express important concepts such as quantity discounts
in a concise manner. For instance, the bid

[(a, 20)≤100 IMPLIES (a, 25)50] XOR (a, 25)≤50

says that we are prepared to buy up to 50 items of typea for 25 e each, and then up to
100 more for20 e each.

5.3.6 Expressive Power

Next we are going to settle the precise expressive power of the XOR-language, and
thereby of the full bidding language. We have to distinguish two cases, as we have
defined the semantics of the language both with and without free disposal.

Proposition 5.1. The XOR-language without free disposal can represent all finitely-
peaked valuations, and only those.

Proof. Let v be any finitely-peaked valuation. To expressv in the XOR-language, we
first compose one atomic bid for eachD = {α′

1(I1,O1) + . . . + α′
n(In,On)} with

v(D) = p 6= ⊥:

BID({α′
1(I1,O1) + . . . + α′

n(In,On)}, p)

Joining all these bids together in one large XOR-combination yields a bid that expresses
v. Vice versa, it is clear that the XOR-language cannot express any valuation that is not
finitely-peaked.

Proposition 5.2. The XOR-language with free disposal can represent all valuations
that are the monotonic closure of a finitely-peaked valuation, and only those.

Proof. The construction of a bid representing any given valuation works in analogy to
the proof of Proposition 5.1. Note that for the semantics with free disposal we precisely
obtain the monotonic closure of the valuation we would get if we were to drop the free
disposal assumption.
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These results correspond to the expressive power results for the standard XOR-language
for direct single-unit combinatorial auctions. With free disposal (the standard assump-
tion), the XOR-language can express all monotonic valuations (Nisan, 2006); and with-
out that assumption it can represent the complete range of valuations (note thatany
valuation is finitely-peaked if we move from multisets to sets). Notice that this result
on the expressiveness shows that the provided bidding language overcomes successfully
requirements (1–8) of table 5.1.

Given those expressiveness results, in the remaining of the dissertation we assume
that bidders express their preferences by means of the XOR language.

5.3.7 Examples of Bids

In this section we provide some examples of bids in order to highlight the better expres-
siveness offered by our bidding language. For this reason, we encode the bids presented
in example 5.1.

(1) Bidder 1offers 100 units of butterAND 200 units of margarine ate 200:

BID(1′(∅, 100′butter + 200′margarine),−200)

(2) Bidder 2offers 200 units of floursAND300 units of sugar ate 100:

BID(1′(∅, 200′flour + 300′sugar),−100)

(3) Bidder 3offers 800 units of apple pies ate 200:

BID(1′(∅, 800′apple),−200)

(4) Bidder 4offers 200 units of doughAND 200 units offilling ate 1300:

BID(1′(∅, 200′dough + 200′filling),−1300)

(5) Bidder 5requests 200 units of apple pies fore 2400:

BID(1′(800′apple pie, ∅), 2400)

(6) Bidder 6offers 100 units of butter ate 150OR (non-exclusive)offers 200 units
of margarine ate 100:

BID(1′(∅, 100′butter),−150) ORBID(1′(∅, 200′margarine),−100)

(7) Bidder 7offers 200 units of margarine ate 200XOR (exclusive OR)offers 200
units of butter ate 200:

BID(1′(∅, 200′margarine),−200) XORBID(1′(∅, 200′butter),−200)
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(8) Bidder 8offers 200 units of filling ate 1400XOR requests 100 units of apple
pies fore 200:

BID(1′(∅, 200′filling),−1400) XORBID(1′(100′apple pie, ∅), 200)

(9) Bidder 9offers to perform theMake Doughoperation 50 times ate 200:

BID(50′(1′butter + 3′sugar + 2′flour, 2′dough),−200)

(10) Bidder 10requests the operationBakingperformed 50 times, and he is willing to
paye 210 for it:

BID(1′(∅, 4′dough + 4′filling) + 1′(4′apple pie, ∅), 4.2)50

(since4.2 ∗ 50 = 210)

(11) Bidder 11offers to transform 2 units of dough and 2 units of filling into 1 unit of
apple pie fore 20 each time the operation is performed (whenever the operation
is performed at least 10 times and at most 50 times):

BID(1′(2′dough + 2′filling, 1′apple pie), 20)[10,50]

(12) Bidder 12offers theBakingoperation at:

BID(1′(4′dough + 4′filling, 4′apple pie), 10)[10,30]

XOR

BID(1′(4′dough + 4′filling, 4′apple pie), 8)[31,50]

(13) Bidder 13offers between 100 and 200 units of apples in bundles of 4 units ate 2
per bundle:

BID(1′(∅, 4′apple pie),−2)[25,50]

(14) Bidder 14offers to transform 3 units of flour, 2 units of sugar, 1 unit of butter, 4
units of apples, 2 units of margarine into 2 units of dough and 2 units of filling
ate 10 each time the operation is performed. The operation can be performed at
least 10 and at most 40 times:

BID(1′(1′butter + 2′sugar + 3′flour + 4′apple + 2′margarine,

2′dough + 2′filling),−10)[10,40]

(15) Bidder 15offers to perform both theMake Dough ANDtheMake Filling opera-
tion ate 20:

BID(1′(1′butter + 3′sugar + 3′flour, 2′dough)+

1′(8′apple + 2′margarine + 1′flour, 2′filling),−20)
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Notice carefully that the offer of bidder 15 cannot be rewritten as

BID(1′(1′butter + 3′sugar + 3′flour + 8′apple + 2′margarine + 1′flour,

2′dough + 2′filling),−20)

The two bids do not represent the same thing. In the former case, the two opera-
tions could be performed at different steps in the production process. In the latter
case, it is a one shot operation that needsat the same timeall the input resources

1′butter + 3′sugar + 3′flour + 8′apple + 2′margarine + 1′flour

available.

(16) Bidder 16offers to perform theMake Doughoperation fore 20 only if provided
with an oven (it will give the oven back after performing the operation):

BID(1′(4′dough + 4′filling + 1′oven, 4′apple pie+ 1′oven), 10)

In what follows we provide an example showing that the introduced bidding lan-
guage can be employed not only to express bidders’ preferences, but also to encode
information about a particular market. As an example, we consider how to incorpo-
rate into the auction information about the expected sales in function of the sale price.
Consider the following example.

Example 5.9. Here we extend example 5.1 taking into account that more information
about the apple pie market becomes available toGrandma & co. Such information is
the sale forecast in function of the sale price:

• two hundreds apple pies if the sale price ise 12 each, for a total ofe 2400;

• a hundred and thirty apple pies if the selling price is set toe 13, for a total of
e 1690;

This information can be easily included in the auction by means ofbids from the mar-
kets:

BID(1′(∅, 200′apple pies), 2400) XORBID(1′(∅, 130′apple pies), 1690) (5.8)

5.4 Winner Determination

In this section, we define the winner determination problem (WDP) for MMUCAs. We
first give an informal outline of the problem, and then a formal definition. We also
briefly comment on mechanism design issues.
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5.4.1 Informal Definition

The input to the WDP consists of a complex bid expression for each bidder, a multi-
setUin of goods the auctioneer holds to begin with, and a multisetUout of goods the
auctioneer expects to end up with.

In standard combinatorial auctions, a solution to the WDP is a set of atomic bids
to accept. In our setting, however, theorder in which the auctioneer “uses” the ac-
cepted SCOs matters. For instance, if the auctioneer holdsa to begin with, then
checking whether accepting the two bidsBid1 = ({1′(1′a, 1′b)}, 10) and Bid2 =
({(1′b, 1′c)}, 20) is feasible involves realising that we have to use the SCO contained
in Bid1 before the one contained inBid2. Thus, asolution to the WDP will be a
sequence of SCOs. A valid solution has to meet two conditions:

(1) Bidder constraints:The multiset of SCOs in the sequence has torespect the bids
submitted by the bidders. This is a standard requirement. For instance, if a bidder
submits an XOR-combination of SCOs, at most one of them may be accepted.

(2) Auctioneer constraints:The sequence of SCOs has to beimplementable:

(a) check thatUin is a superset of the input set of the first SCO (there are enough
goods available to perform the first SCO);

(b) then update the set of goods held by the auctioneer after each SCO and
check that it is a superset of the input set of the next SCO (at each step there
are enough goods available to perform the remaining SCOs);

(c) finally check that the set of items held by the auctioneer in the end is a
superset ofUout (i.e. the auctioneer ends up with the resources initially
required).

Requirement 2 is specific to MMUCAs. Anoptimal solution is a valid solution that
maximises the sum of prices associated with the atomic bids selected.

5.4.2 Formal Definition

For the formal definition of the WDP, we restrict ourselves to bids in the XOR-language,
which we have showed to be fully expressive (over finitely-peaked valuations) in propo-
sition 5.1. For each bidderi, letBidij be thejth atomic bid occurring within the XOR-
bid submitted byi.

Recall that each atomic bid consists of a multiset of SCOs and a price:Bidij =

(Dij , pij), whereDij ∈ N(NG×N
G) is a multiset of SCOs andpij ∈ R is the associated

cost/price. We will employ the following notation:

• For eachBidij , let tijk be thekth SCO inDij .

• LetDij(tijk) be the multiplicity oftijk in Dij .

• Let D =
⊎

ij Dij be the multiset of the overall SCOs received with their multi-
plicity.
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• Let δ be the overall number of SCOs mentioned anywhere in the bids, i.e.

δ =
∑

ij

|Dij | =
∑

ijk

Dij(tijk)

• Let T = {tijk : ∀ijk} be the set of the overall SCOs in the bids disregarding
their multiplicity.

• Let G be the set of negotiated goods.

• Uin ∈ NG is a multiset of goods standing for the initial stock of the auctioneer.

• Uout ∈ NG is a multiset of goods standing for the number of goods the auctioneer
desires to end up with.

• Mm ∈ NG is a multiset of goods standing for the number of goods available to
the auctioneer after applyingm supply chain operations in a production process.

The auctioneer has to decide which SCOs to accept and in which order to implement
them. Thus, we define anallocation sequenceas

Definition 5.8 (Allocation Sequence). An allocation sequenceΣ is a sequence of
SCOs:

Σ : {1, 2, . . . , ℓ} → T

whereℓ ∈ N is the length of the sequence.

We will say that a SCOtijk is contained in the allocation sequence to say that the
kth SCO in thejth atomic bid of bidderi belongs to the allocation sequence. More
formally, with an abuse of notation, we will write

tijk ∈ Σ ⇐⇒ ∃m ∈ {1, . . . , ℓ} s.t.Σ(m) = tijk (5.9)

Furthermore, let(IΣ(m),OΣ(m)) be the input and output multisets of the transition
holding them-th position ofΣ; and let|Σ−1(tijk)| be the number of timestijk occurs
within the sequenceΣ.

Given an allocation sequenceΣ we can obtain the set of goods held by the auction-
eer after each SCO. We illustrate this fact by means of the following example.

Example 5.10.Say that an auctioneer begins withUin = {2′a + 2′d}. If we apply the
first SCO in a sequence(IΣ(1),OΣ(1)) = (2′a, 1′c) (from two units ofa produce one
unit of c), the auctioneer ends up withM1 = {1′c + 2′d}. Formally, we can express
this operation as an equation over multisets:

M1(g) = Uin(g) + OΣ(1)(g) − IΣ(1)(g)

The application of the SCO above is only possible because two units of gooda are
available. This condition maps to:

Uin(g) ≥ IΣ(1)(g)
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Let Mm ∈ NG be the goods held by the auctioneer after applying themth SCO in
an allocation sequenceΣ. We can generalise the two equations above as follows (let
M0 = Uin):

Mm(g) = Mm−1(g) + OΣ(m)(g) − IΣ(m)(g) (5.10)

Mm−1(g) ≥ IΣ(m)(g) (5.11)

Notice that the length of the solution sequenceℓ = |Σ| will be at most equal to the
overall number of atomic transformations submitted, i.e.ℓ ≤ δ.

Equation 5.11 can be written in a more synthetic form by embedding into one for-
mula its recursive structure:

Uin(g) +

m−1∑

l=1

(
OΣ(l)(g) − IΣ(l)(g)

)
≥ IΣ(m)(g) (5.12)

since

Mm(g) = Uin(g) +
m∑

l=1

(
OΣ(l)(g) − IΣ(l)(g)

)
(5.13)

Notice that an allocation sequence will not necessarily be a valid solution to the
MMUCA WDP. We are now ready to define under what circumstances a sequence of
SCOs constitutes a valid solution:

Definition 5.9 (Valid Solution Sequence). Given a multisetUin of available goods and
a multisetUout of required goods, an allocation sequenceΣ for a given set of XOR bids
over SCOstijk is said to be avalid solution sequenceiff:

(1) Σ either contains all or none of the SCOs belonging to the same atomic bid. That
is, the semantics of the BID operator is fulfilled:

∃k : tijk ∈ Σ ⇒ ∀k |Σ−1(tijk)| = Dij(tijk)

Intuitively, this means that ifΣ contains a SCOstijk of bid Bidij = (Dij , pij),
then it must contain all thetijk′ ∈ Dij with the corresponding multiplicity.

(2) Σ does not contain two SCOs belonging to different atomic bids by the same
bidder. That is, the semantics of the XOR operator is fulfilled:

tijk, tij′k′ ∈ Σ ⇒ j = j′

(3) Equation (5.11) holds at each step of the solution sequenceΣ:

Mm−1(g) ≥ IΣ(m)(g) ∀m ∈ [1, ℓ], ∀g ∈ G (5.14)

that is equivalent to equation (5.12):

Uin(g) +

m−1∑

l=1

(
OΣ(l)(g) − IΣ(l)(g)

)
≥ IΣ(m)(g) (5.15)

∀m ∈ [1, ℓ], ∀g ∈ G
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This condition ensures that all SCOs have enough input goods available at each
step of the SCO sequence.

(4) The set of goods held by the auctioneer after implementing the SCO sequence is
a superset of the goods the auctioneer is expected to end up with:

Mℓ(g) ≥ Uout(g) ∀g ∈ G (5.16)

that is equivalent to:

Uin(g) +

ℓ∑

m=1

(
OΣ(m)(g) − IΣ(m)(g)

)
≥ Uout(g) ∀g ∈ G

The revenuefor the auctioneer associated with a validsolution sequenceΣ is the
sum of the prices of the bids associated to the supply chain operations in the solution
sequence. Then, according to item (1) of definition 5.9, a bidBidij = (Dij , pij) is in
the winning set if all the transitions inDij are in the winning set. Then, it is easy to see
that the set of winning bids can be expressed asB∗ = {Bidij ∈ B|∃k s.t. tijk ∈ Σ}.
Then, the revenue of the auctioneer is computed as:

∑

Bidij∈B∗

pij (5.17)

Definition 5.10 (WDP). Given a set of XOR bids and multisetsUin andUout of ini-
tial and final goods, respectively, the winner determination problem is the problem of
finding a valid solution sequenceΣ that maximises the revenue for the auctioneer.

Before going on, a comment on the definition of allocation sequence is in place. In
the definition given above, we make the hypothesis that only one SCO is performed at
each step of the solution sequence. However, it is clear that the nature of our problem
admits an eventual concurrency of SCOs. For instance, it may be the case that two
SCOs can be performed in parallel, i.e. at the very same step. For this reason we notice
that it is possible to extend the definition of allocation sequence to capture concurrency.
We leave out such generalisation as a matter of future work.

With this allocation rule at hand, plus the bidding language introduced in section
5.3, theMixed Multi-unit Combinatorial Auctionmodel is completely defined.

5.4.3 Mechanism Design

An important issue in auction design concerns theirgame-theoreticalproperties. We
note here that the central result inmechanism design, on the incentive-compatibility of
the Vickrey-Clarke-Groves (VCG) mechanism (Ausubel and Milgrom, 2006b), carries
over from standard combinatorial auctions to MMUCAs. Recall that the VCG mecha-
nism allocates goods in the most efficient manner and then determines the price to be
paid by each bidder by subtracting from their offer the difference of the overall value
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of the winning bids and the overall value that would have been attainable without that
bidder taking part. That is, this “discount” reflects the contribution to the overall pro-
duction of value of the bidder in question. The VCG mechanism is strategy-proof:
submitting their true valuation is a (weakly) dominant strategy for each bidder. As an
inspection of standard proofs of this result reveals (Mas-Colell et al., 1995), this does
not depend on the internal structure of the agreements that agents make. Hence, it also
applies to MMUCAs.

However, notice that our focus is centred on an efficient allocation rule, and we do
not argue about mechanism design issues.

5.5 Subsumed Auction Models

Our model of mixed multi-unit combinatorial auctions subsumes a range of combinato-
rial auction models discussed in the combinatorial auctions literature (see section 3.2.1),
namely:

• Single-unitdirect and reverse auctions;

• Multi-unit direct and reverse auctions, where there may be several indistinguish-
able copies of the same good available in the system;

• Multi-unit direct and reverse combinatorial auctions;

• Double auctions, or combinatorial exchanges, where the auctioneer will be
able to both sell and buy goods within a single auction. We should stress
that there are important differences between our mixed auctions and models
known asdouble auction(Wurman et al., 1998) orCombinatorial exchanges
(Sandholm et al., 2002). The most important difference is that these mod-
els do not incorporate the concept of asequenceof exchanges, which is re-
quired if the intention is to model some sort of production process. In
the formulation of the WDP for combinatorial exchanges given by Sandholm
et al. (Sandholm et al., 2002), for instance, accepting “circular” bids such as
BID({(1′a, 1′b)}, 10) andBID({(1′b, 1′a+1′c)}, 10), to obtainc for 20e , would
be considered a solution sequence. With our semantics in mind, however, this al-
location sequence isnot valid: the first agent needs to receivea before it can
produceb, but the second agent needs to receiveb before it can producea and
c. Hence, no deal should be possible. In fact, the MMUCA can be used to
simulate combinatorial exchanges (and double auctions). For instance, the bid
BID(1′(1′a, 1′b), 10) can be rewritten asBID(1′(1′a, ∅) + 1′(∅, 1′b), 10) to ex-
press that a bidder will only deliverb if it receivesa, but that the order does not
matter. Of course, if no true SCOs (imposing an order) are used, then the simpler
model of combinatorial exchanges is to be preferred.

• Multi-Unit Combinatorial Reverse Auctions with transformability Relationships
among Goods. A MUCRAtR, as proposed in chapter 4, can be modelled by
allowing the auctioneer to submit bids representing its internal SCOs along with
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their costs. In fact it increments its expressiveness as well, allowing to represent
XOR combinations of multisets of internal SCOs.

• Combinatorial Auctions for supply chain formation, introduced in
(Walsh and Wellman, 2003). Walsh and Wellman (Walsh and Wellman, 2003)
tackle a similar problem to ours, focusing on supply chain formation. Although
their contribution is very significant, we find limitations along three dimensions.
Firstly, they do not allow a provider to submit bids on bundles of SCOs.
Secondly, they do not define a bidding language (in fact, their agents submit a
bid with a single SCO each). Finally, the SCO net that defines the supply chain
has to fulfil strict criteria: acyclicity, SCOs can only produce one output good,
etc.

Our bidding language as well can be viewed as a generalisation of the state-of-the-art
bidding languages for combinatorial auctions (Nisan, 2006). In fact, it can be easily
applied as well to all the above mentioned auctions6:

• in single-unitdirect auctions, we only have atomic bids of the type

BID({(I, ∅)}, p)

whereI is a set such that|I| = 1.

• in multi-unit direct auctions|I| = I(g) ≤ n, wheren is the number of units of
goodg at auction (there is a single good at auction).

• in multi-unitdirect combinatorial auctionsI(g) ≤ ng whereng is the number of
units of goodg at auction (there are multiple goods at auction).

• in combinatorial exchangeswe have bids of the type:

BID({(I, ∅)}, p)

and
BID({(∅,O)}, p)

• in MUCRAtRbidders can send bids of the type

BID({(∅,O)}, p)

and the auctioneer itself can send bids in the form:

BID({(I,O)}, p)≤γ

whereγ is an upper bound on the maximum number of times an operation can
be performed by the auctioneer. We clarify this point by means of the following
example:

6We provide here the direct cases. The reverse cases are easily obtained with small changes.
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Example 5.11(MMUCA as MUCRAtR). This example aims at representing, by
means of the bidding language introduced in section 5.3, the auction described
in example 4.5. The bids, sent by the very same auctioneer, and representing its
internal production structure, are (from figure 1.1):

BID(1′(1′butter + 3′sugar + 2′flour, 2′dough),−5)≤γ1 OR

BID(1′(2′margar. + 2′sugar + 1′flour + 8′apples, 2′filling),−6)≤γ2 OR

BID(1′(4′filling + 4′dough, 4′apple pie),−14)≤γ3

They represent theMake Dough, Make Filling, andBakingoperations respec-
tively. Notice thatγ1, γ2, andγ3 represent the maximum number of times each
internal operation can be performed by the auctioneer. This is an example of the
richer expressiveness of our bidding language, since in the case of MUCRAtR
we hadγ1 = γ2 = γ3 = ∞. It is obvious that there always exists an upper bound
on the number of times each physical operation is performed. The bids sent by
the bidders, as expressed in equations (4.1) to (4.5), can be easily encoded in our
bidding language as follows:

B1 = BID(1′(∅, 100′butter + 200′margarine),−200) (5.18)

B2 = BID(1′(∅, 200′flours + 300′sugar),−100) (5.19)

B3 = BID(1′(∅, 800′apples),−200) (5.20)

B4 = BID(1′(∅, 200′dough + 200′filling),−1300) (5.21)

B5 = BID(1′(∅, 200′apple pies),−2400) (5.22)

• in Combinatorial Auctions for SCFbidders can send bids in the form:

BID({(I,O)}, p)

such that:

– there are not cycles in the supply chain network topology

– |O| = 1

5.6 Conclusions

In this chapter we provided a solution to requirements 1–13 of table 5.2. In what follows
we list the solution provided by MMUCAs to the requirements associated to themake-
or-buy-or-collaboratedecision problem:

(1) MMUCAs support the representation of both cyclic and acyclic supply chain
network topologies, since the bidding language and the definition of the WDP
are independent on the topology of the network;
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(2) MMUCAs allow to express complementarities among supply chain operations,
since they allow the submission of bids on multisets of SCOs;

(3) MMUCAs allow bidders to require supply chain operations, as explained by
means of example 5.4;

(4) MMUCAs allow to express resource sharing, as showed in item 16 of section
5.3.7;

(5) MMUCAs allow to express minimum/maximumcapacity constraints on the num-
ber of times each supply chain operation can be performed via the constructs
introduced in section 5.3.5;

(6) MMUCAs allow to express manufacturing operations with multiple outputs, as
shown in item 14 of section 5.3.7;

(7) MMUCAs provide a coordinated scheduling plan among the supply chain stake-
holders: the output of the MMUCAs WDP is an ordered and implementable
sequence of SCOs;

(8) MMUCAs allow to solveMake-or-buy, Make-or-buy-or-collaborate, and SCF
decision problems;

(9) MMUCAs support the specification of the configuration the auctioneer expects
to end up with via theUout multiset; and

(10) MMUCAs support the specification of the initial stock via theUin multiset.

Summarising, the main extension introduced in this chapter with respect to CAs for
SCF is that bidders can send bids in the form:

BID({α′
1(I1,O1) + . . . + α′

n(In,On)}, p) XORBID(. . .)

i.e. to submit XOR combinations of atomic bids onmultisets of supply chain operations.
Hence, in particular, it improves the expressiveness and the range of solvable problems
when employing Combinatorial Auctions for SCF.

Another important contribution of this chapter is the incorporation of the concept of
a sequenceof supply chain operations as a solution to the WDP. This is required if the
intention is to model some sort of production process. We provide as a solution to the
WDP the sequence of operations maximising an auctioneer’s revenue and fulfilling the
bidders’ constraints.

Notice that there are two different ways in which an MMUCA can be employed.
The hypothesis underlying both possibilities is that there is a mutual agreement between
bidders and providers on which goods are negotiated7. Given this, we envisage two
possibilities:

• the first one is that bidders are constrained to bid on a fixed set of previously
defined supply chain operations. For instance, an auctioneer may constrain the
bidding on supply chain operations like the ones in figure 5.1.

7We call the set of goods at auction thenegotiated goods.
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Requirements MMUCA TDN
1 express an offer/request on bundles of goods X X

2 express an offer of a SCO with a single output product X X

3 express an offer of a SCO with multiple output products X

4 express a request of a SCO X

5 express the offer/request of a bundle of SCOs X

6 express combinations of bids X

7 express the min/max number of times SCOs are performed X

8 express resource sharing X

9 express an auctioneer’s initial stock X

10 express the auctioneer’s final requirements X

11 supportacyclic supply chain networks X X

12 supportcyclic supply chain networks X

13 compute thescheduled sequenceof SCOs to perform X

14 ensure computational tractability while preserving optimality ?
15 solve SCF decision problem X X

16 solve themake-or-buy-or-collaboratedecision problem X

17 formally represent the search space ?
18 graphically represent the search space ?
19 assess the computational tractability based on the problem structure ?

Table 5.2: Requirements associated to themake-or-buy-or-collaborateproblem.

• the second one is that there is a complete freedom of bidding on any supply chain
operation, as long as it only involves thenegotiated goodsas inputs or outputs.
For example, unlike in the previous point, a bidder may send a bid offering the
supply chain operationMake Pie, that takes as inputs all the basic ingredients and
provides a finished apple pie. Notice that this operation is not present in figure
5.1.

With the introduction of MMUCAs and of the associated bidding language, we
consider solved requirements 1–13 in table 5.2. However, we have not provided any
computational method for solving the WDP (requirements (14-19) in table 5.2). In the
following chapters we provide some solutions to this issue.





Chapter 6

Solving the MMUCA Winner
Determination Problem

By means of the MMUCA bidding language we make possible to express any possi-
ble type of supply chain operation over any type of supply chain network topology.
Moreover, the MMUCA winning rule on the one hand accounts for the semantics of
the bidding language, and on the other hand automates the supply chain formation and
planning process. However, the auctioneer lacks of a computational method to solve
the WDP. In this chapter, we provide a solution to such issue.

Firstly, applying a technique similar to the one employed for MUCRAtR in section
4.7, we succeed in mapping the MMUCA WDP to aConstrained Maximum Weight Oc-
currence Sequence Problem(CMWOSP). Likewise MUCRAtR, two benefits stem from
this mapping. As a first benefit, we can inherit and import all the Place Transition Nets
theoretical and formal results. As a second benefit, we succeed in efficiently solving
the MMUCA WDP by means of Integer Programming (IP) for a wide class of supply
chain network topologies, namely the acyclic ones.

The fact that the WDP can be solved by means of IP only for acyclic supply chain
network topologies poses a serious requirement to the applicability of MMUCAs to
some real-world scenarios. Thus, as a second result of this chapter, we extend the
class of solvable MMUCA WD problems at the price of an efficiency decrement. We
provide an IP model, built directly upon the definition of MMUCA WDP, that allows
solving any class of problem on any network topology. However, the price to be paid is
that the computational complexity of the underlying optimisation problem significantly
increases.

This chapter is organised as follows. In section 6.1.1 we present a mapping of the
MMUCA WDP to a CMWOSP. In section 6.2 we provide an IP formulation of the
MMUCA WDP that applies to any network topology. Next, in section 6.3 we discuss
briefly on computational complexity. Finally, in section 6.4 we draw some conclusions.
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6.1 Mapping MMUCA to WPTN

In this section we demonstrate that an instance of the MMUCA WDP can be trans-
formed into an instance of the Constrained Maximum Weight Occurrence Sequence
Problem (CMWOSP), introduced in section 4.5.3. We recall that a CMWOSP is an op-
timisation problem defined on Weighted Place Transition Nets (WPTNs). WPTNs are
an extension of Place Transition Nets (PTNs) in which a cost is associated to the firing
of each transition (see section 4.4). We introduce this mapping because it allows:

• to incorporate analysis methods to analyse behavioural properties of WPTNs;

• exploiting such analysis methods we provide an IP formulation for some classes
of WPTNs, and therefore some classes of supply chain network topologies.

6.1.1 The intuitions behind the mapping

The idea behind the mapping of the WDP to a CMWOSP is that an atomicsupply chain
operation(SCO) can be viewed as a transition in a WPTN. Consider the following offer,
expressed by a bidder in the bidding language introduced in section 5.3:

Bid1 = BID(1′(2′H2O, 1′O2 + 2′H2),−8) (6.1)

This represents an offer over an hydrolysis process: 2 moles of water are transformed
into 1 mole of oxygen and two moles of hydrogen at a price ofe 8. Then, consider
the transition depicted in figure 6.1, and say that each place represents a good. Let the
place labelled withH2O be water ,H2 be hydrogen , andO2 be oxygen. The transition
in figure perfectly captures the semantics of a supply chain operation: the input places
of the transitions are the input goods of the SCO, its output places are the output goods
of the SCO, and the transition cost is the cost associated to the SCO. Analogously, an
SCO offering goods can be represented as a transition with only output places, whereas
an SCO asking for goods as a transition with only input places.

O2 H2

H2O

Bid1e 8

2

1
2

Figure 6.1: Example of an SCO represented as a transition in a WPTN.

Example 6.1. Say that the following bids, expressed in the bidding language of sec-
tion 5.3 and graphically represented in the WPTN of figure 6.2, are submitted to an
MMUCA:
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(1) Bid bid1 offers two moles of water ate 10 (the minus represents the fact that the
bidder gets paid):

bid1 = BID(1′(∅, 2′H2O),−10) (6.2)

(2) Bid bid2 offers two moles of water ate 14:

bid2 = BID(1′(∅, 2′H2O),−14) (6.3)

(3) Bid bid3 stands for an offer to perform the hydrolysis process fore 8:

bid3 = BID(1′(2′H2O, 1′O2 + 2′H2),−8) (6.4)

(4) Bid bid4 represents an offer to buy the products resulting from the reaction for
e 23 (the positive cost represents the fact that the bidder pays money):

bid4 = BID(1′(2′H2 + 1′O2, ∅), 23) (6.5)

(5) Bid bid5 represents an offer to buy the products of the reaction fore 25:

bid5 = BID(1′(2′H2 + 1′O2, ∅), 25) (6.6)

bid1 e−10 bid2 e−14

bid4e 23 bid5e 25

O2 H2

H2O

bid3e−8

2

1
2

2
2

1 2
1

2

Figure 6.2: Example of bids in a MMUCA represented as a WPTN.

In example 6.1 finding the revenue maximising solution is straightforward. Firstly,
buy two moles of water frombid1, then process the water through the SCO inbid3, and
then sell the products of the reaction tobid5. The total revenue of the supply chain is
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25 − 8 − 10 =e 7. Notice carefully that this solution is the solution to the CMWOSP1

defined on the WPTN in figure 6.2 with initial marking empty and destination marking
Md satisfying the following constraints2:

Md(H2O) ≥ 0 (6.7)

Md(O2) ≥ 0 (6.8)

Md(H2) ≥ 0 (6.9)

Given the example above, we argue that if we:

(1) build a WPTN joining all the atomic SCOs received within bids;

(2) set the initial marking to the goods initially available to the auctioneer; and

(3) set some constraints on the final marking,

then the solution to the CMWOSP corresponds to the solution to the MMUCA WDP.
Informally, this is the kind of mapping we intend to demonstrate. We obtain several

advantages from this mapping. We can readily import a series of results and tools valid
for PTNs, as for instance tools to analyse the reachability problem on the PTN. As a
major benefit, we manage to efficiently encode the MMUCA WDP by means of IP. In
particular, in response to the requirements 17–21 of table 5.1 of chapter 5, this mapping
also allows us: (1) to visually and formally explicit the search space associated to the
WDP; (2) to assess the computational tractability of the WDP based on the problem
structure; and (3) to study structural and behavioural properties of the resulting supply
chain. However, we have to take some more details into account:

• In the previous example, given the WPTN representation, each SCO can be used
an arbitrarily number of times. Instead, the semantics of the bidding language
imposes that SCOs must be used a limited number of times. Recall that we solved
such problem in the case of MUCRAtR introducingbid places(see figure 4.3).

• How can we express on the WPTN an offer/demand over a bundle of (comple-
mentary) SCOs? That is, how could we express a bid like

BID(1′(1′butter + 3′sugar + 3′flour, 2′dough)+ (6.10)

1′(8′apple + 2′margarine + 1′flour, 2′filling),−20)

offering to perform both theMake DoughandMake Fillingoperations?

• How can we express on the WPTN a set of mutually exclusive (XOR) atomic
bids? That is, how could we express a bid like:

BID(1′(∅, 200′margarine),−200) XORBID(1′(∅, 200′butter),−200)

In the following section we provide an answer to all these questions.

1So far under the hypothesis that transitions can fire at most once. We will solve the issue of limiting the
number of times each transition can fire further on.

2In case of no free-disposal on the auctioneer side replace≥ with =.
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6.1.2 Representing Bids

Firstly, we must recall the notation employed in section 5.4.2:

• Thej−th an atomic bid of bidderi is represented by a pair

Bidij = (Dij , pij)

wherepij is the price a bidder is willing to pay/be paid to have allocated the
multiset of SCOsDij .

• For eachBidij , let tijk be thekth SCO inDij .

• LetDij(tijk) be the multiplicity oftijk in Dij .

• Let D = ∪ijDij be the multiset of the overall SCOs received with their multi-
plicity.

• Let δ be the overall number of SCOs mentioned anywhere in the bids, i.e.δ =
|D| =

∑

ij |Dij |.

• Let T be the set of the overall SCOs in the bids without their multiplicity, that is
T = {tijk : ∀ijk};

• G is the set of negotiated goods

• Uin ∈ NG is a multiset of goods standing for the initial stock of the auctioneer.

• Uout ∈ NG is a multiset of goods standing for the number of goods the auctioneer
desires to end up with.

• Mm ∈ NG is a multiset of goods standing for the number of goods available to
the auctioneer after applyingm supply chain operations in a production process.

In example 6.1, we restrict ourselves to the case in which agents can only submit one
atomic bid. Moreover, we only consider bids over a single atomic SCO, i.e.|Dij | =
1. Next, we progressively relax all these constraints. First of all, we explain how to
represent on a WPTN a bid on a bundle (multiset) of SCOs.

Expressing bids on bundles of SCOs

For a bidBidij , combinatorial on SCOs, we have to ensure that:

• if an atomic SCOtijk in bid Bidij is included in the solution sequence,

– it must be included in the solutionDij(tijk) times;

– all the other atomic SCOstijk′ within the same atomic bid (all the SCOs in
Dij) must be includedDij(tijk′ ) times as well;

this maps to item (1) of the definition of valid solution sequence (definition 5.9);
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• the price that has to be paid to (received by) the bidder is the price of the whole
bid (pij).

We achieve this by introducing some auxiliary places and transitions. The example in
figure 6.3 represents the following bid:

Bidij = BID(1′(2′p1, 1
′p2 + 2′p3) + 3′(1′p4, 1

′p6 + 1′p7) + 2′(1′p5, 1
′p8 + 1′p9),−20)

If we refer to the three atomic SCOs as:

tij1 = (2′p1, 1
′p2 + 2′p3)

tij2 = (1′p4, 1
′p6 + 1′p7)

tij3 = (1′p5, 1
′p8 + 1′p9)

We can rewrite the bid in a more readable way:

Bidij = BID(1′tij1 + 3′tij2 + 2′tij3,−20)

This is a bid on a bundle of SCOs{tij1, tij2, tij3} with associated pricepij = −20e .

tij3tij2

p2 p3

p1 p4 p5

p6 p7 p8 p9

tij1

2

1
2

1 1

1
1

1
1

cij1 cij2 cij3

•

cij

tij e−20

1 1 1

1

1 3
2

Figure 6.3: Bids on bundles of SCOs.

In general, in order to incorporate a bid over multiple SCOs we proceed as follows:

• for each bidBidij we introduce an auxiliary transitiontij (bid transition) and an
auxiliary placecij (bid place).

• for each atomic SCOtijk within bid Bidij , we add an auxiliary placecijk

(cij1, cij2, andcij3 in figure 6.3), calledSCO place.
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• we attach the valuationpij of bid Bidij to the correspondingbid transitiontij .
In the example, we associate the bid costpij=-e 20 to transitiontij . Hence,
whenevertij fires, the cost/gainpij is added to the cost of the firing sequence.

It is easy to check that the WPTN if figure 6.3 allows for firing any subset
of {tij1, tij2, tij3} (depending on the tokens) with the corresponding multiplicities
(1, 3, 2). Notice also that firing at least one of the three transitions requires to previ-
ously fire transitiontij , because this guarantees having the required tokens in the input
placescijk. In this way, we guarantee that firing at least one of the transitions im-
plies firing alsotij , and therefore that the corresponding money is added to the overall
cost/revenue (recall that we are dealing with a WPTN).

Any legal firing sequence on the WPTN in figure 6.3 guarantees that selecting at
least one of thetijk implies also selectingtij . However, we need a further requirement:
either none of thetijk fires, or all of them fire. If they all fire, they have to fire as many
times as expressed by their multiplicities in the bids. In the figure, we have to enforce
that if tij fires, thentij1 fires once (Dij(tij1) = 1), tij2 three times (Dij(tij2) = 3),
andtij3 twice (Dij(tij3) = 2).

The topology in figure 6.3 cannot guarantee such property by itself. For instance, a
firing sequence in which only transitionstij1 andtij2 fire (nottij3) is legal but does not
comply with our all-or-none assumption. In order to enforce it, we simply impose some
constraints on the final configuration of the net. Say that we impose that in the final
configurationcij1, cij2, andcij3 contain no tokens. More formally, the final marking
should fulfil the constraints:







Md(cij1) = 0

Md(cij2) = 0

Md(cij3) = 0

(6.11)

This implies that all the legal firing sequences leading to the final configurationMd

contain either none or the three transitionstij1, tij2, tij3 with multiplicities1, 2, and3
respectively. In fact the only possible firing sequences are either no firingsJ = {}, or

J = 〈tij , tij1, tij2, tij2, tij2, tij3, tij3〉 (6.12)

J = 〈tij , tij3, tij3, tij2, tij1, tij2, tij2〉 (6.13)

J = . . . (6.14)

We remark that the semantics of multiplicity of the SCOs offered in bidBidij is
completely captured by the provided WPTN. The weights of the arcs connecting bid
transitionstij and SCO placescijk , along with the constraints on the final marking,
enforces that none of the SCOs inDij is used, or all of them are used as many times as
indicated by their multiplicities inDij .

Expressing XOR of atomic bids

We are now able to represent an atomic bid on a WPTN. However, we still have to
express the XOR relationships among the atomic bids that come from the same bidder
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p2 p3

p1 p4 p5

p6 p7 p8 p9

tij1 tij2 tij3

2

1
2

1 1

1
1

1
1

tij′1

3

2

2

tij′2

2

2
cij1

cij2

cij3

cij′1

cij′2

tije−20 tij′e−10

1
1

1

1 3
2

1

1

1

1

•

pXOR
i

1
1

Figure 6.4: XOR of atomic bids

to fully represent our bidding language. Consider the following bid:

BID(1′(2′p1, 1
′p2 + 2′p3) + 3′(1′p4, 1

′p6 + 1′p7) + 2′(1′p5, 1
′p8 + 1′p9),−20)

XOR

BID(1′(∅, 2′p4 + 2′p5) + 1′(3′p5, 2
′p8 + 2′p9),−10)

If we refer to the five atomic SCOs as:

tij1 = (2′p1, 1
′p2 + 2′p3)

tij2 = (1′p4, 1
′p6 + 1′p7)

tij3 = (1′p5, 1
′p8 + 1′p9)

tij′1 = (3′p5, 2
′p8 + 2′p9)

tij′2 = (∅, 2′p4 + 2′p5)
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We can rewrite the bid in a more readable way as follows:

BID(1′tij1 + 3′tij2 + 2′tij3,−20) (6.15)

XOR (6.16)

BID(1′tij′1 + 1′tij′2,−10) (6.17)

We refer to the two bids submitted by a bidderi in XOR as toBidij andBidij′ . This
means that an auctioneer can select at most one of them (see section 5.3).

Figure 6.4 depicts bidsBidij andBidij′ . Bid Bidij is over SCOstij1, tij2, and
tij3, whereas bidBidij′ is over SCOstij′1 andtij′2. The cost associated toBidij is
c(tij) = −e 20, and the cost associated toBidij′ is c(tij′ ) = −e 10.

In order to incorporate the semantics of the XOR operator into the WPTN, we in-
troduce a new place, labelled withpXOR

i , calledXOR place. Notice thatbid placescij

andcij′ have been substituted by theXOR place. This WPTN topology enforces that at
most one of the two transitionstij andtij′ can fire. When either of them fires, it con-
sumes the unique token inpXOR

i inhibiting the firing of the other one. It is clear from
previous section that transitiontij represents bidBidij and transitiontij′ represents
bid Bidij′ . This corresponds to selecting at most one bid out of bidsBidij andBidij′ .
This reasoning applies to the case ofm bids in XOR among them as well.

6.1.3 The Mixed Auction Net

In the previous section, we showed the intuitions behind the mapping of the MMUCA
WDP to a CMWOSP. We recall that the CMWOSP is an optimisation problem defined
on WPTNs, thoroughly explained in section 4.5.3.

In section 4.6 we succeeded in mapping the MUCRAtR Winner Determination
Problem to a CMWOSP. In order to perform such mapping we had to build a WPTN
departing from the internal production structure of an auctioneer and from the received
bids. This WPTN was called theAuction Net. Along the lines of such strategy, in this
section we build a WPTN with a similar function for the MMUCA WDP. We shall call
such WPTN theMixed Auction Net, a WPTN that shall allow us to define the MMUCA
WDP as a CMWOSP.

We will now provide the definition ofMixed Auction Net. Informally, such net is
composed of three types of places, namely:

• good places, representing goods at auction;

• SCO places, useful to control the number of times each SCO is performed

• XOR places, useful to control that at most one bid per bidder is selected

Then, it is composed of two types of transitions, namely:

• SCO transitions, that represent the SCOs submitted by the bidders

• bid transitions, useful to control the number of times each SCOs is employed
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The arc weights are associated so that some properties are fulfilled. Finally, we asso-
ciate a cost to eachbid transition, corresponding to the valuation associated to a bundle
of SCOs.

In what follows the notation employed for describing bids is the one defined at the
beginning of section 6.1.2. Moreover, we indicate withIijk andOijk respectively the
input and output multisets of SCOtijk.

Definition 6.1. Given a finite set of bidsB in theXORbidding language over a set of
goodsG, aMixed Auction Netis a WPTNS∗ = (P ∗, T ∗, A∗, E,M0, C) where







P ∗ = PG ∪ P
SCO

∪ PXOR

T ∗ = TB ∪ T
SCO

A∗ = A
SCO

∪ AB ∪ AXOR

and

(1) PG is the set ofgood places. For each goodg ∈ G add a placepg.

(2) P
SCO

is the set ofSCO places. For each atomic SCOtijk ∈ T add a placecijk .

(3) PXOR is the set ofXOR places. For each bidderi add a placepXOR
i .

(4) TB is the set ofbid transitions. For each bidBidij ∈ B add a transitiontij .

(5) T
SCO

is the set ofSCO transitions. For each atomic SCO3 tijk ∈ T add a transi-
tion tijk.

(6) A
SCO

is the set ofSCO arcs. It is built as follows:

A
SCO

= Ai
SCO

∪ Ao
SCO

where

Ai
SCO

= {(pg, tijk) ∈ PG × TB | g ∈ Iijk}

Ao
SCO

= {(tijk, pg) ∈ TB × PG | g ∈ Oijk}

are theinput SCO arcsandoutput SCO arcsrespectively.

(7) AB is the set ofbid arcs. It is built as follows

AB = Ai
B ∪ Ao

B

where

Ao
B = {(tij , cijk) ∈ TB × P

SCO
}

Ai
B = {(cijk, tijk) ∈ P

SCO
× T

SCO
}

are theinput bid arcsandoutput bid arcsrespectively.

3Henceforth, we indicate with the same label transitions on the WPTN and the corresponding supply chain
operations.
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(8) AXOR is the set ofXOR arcs. It is built as follows:

AXOR = {(pXOR
i , tij) ∈ PXOR × TB}

(9) The arc expression function is built as follows:

E(pg, tijk) = Iijk(g) (pg, tijk) ∈ Ai
SCO

(6.18)

E(tijk , pg) = Oijk(g) (tijk , pg) ∈ Ao
SCO

(6.19)

E(cijk , tijk) = 1 (cijk, tijk) ∈ Ai
B (6.20)

E(tij , cijk) = Dij(tijk) (tij , cijk) ∈ Ao
B (6.21)

E(pXOR
i , tij) = 1 (pXOR

i , tij) ∈ AXOR (6.22)

(10) The bid cost functionC : B → R is built as follows:

C(tijk) = 0 tijk ∈ T
SCO

C(tij) = pij tij ∈ TB

(11) The initial marking is defined as

M0(p) =







Uin(g) pg ∈ PG

1 p ∈ PXOR

0 p ∈ P
SCO

(6.23)

Informally, PG represents the set of negotiated goods,TB the set of atomic bids,
PXOR the set of bidders,T

SCO
the set of atomic supply chain operations, andP

SCO
the

set of places thatcontrolsthe execution of SCOs.
Then,A

SCO
connects the places representing the input goods and output goods of

each atomic SCOstijk to the transition representing it (tijk). The input goods are con-
nected by incoming arcs whereas the output goods by outgoing arcs. For instance,
transition tij1 in figure 6.4 corresponds to the atomic SCOtij1 = (Iij1,Oij1) =
(2′p1, 1

′p2+2′p3). Therefore, placep1, representing the input good totij1, is connected
to transitiontij1 by means of an incoming arc; and placesp2 andp3, representing its
output goods, are connected totij1 by means of outgoing arcs.

Then,AB is a set of arcs such that: (1) bid transitiontij is connected to SCO places
cijk; and (2) SCO placescijk are connected to atomic transitionstijk:

AXOR is the set of arcs that connects all thepXOR
i places to the bid transitionstij

corresponding to bids coming from the same provideri.
The bid cost functionC : B → R is built in a way such that:

• the cost of a SCO is 0:c(tijk) = 0; and

• the cost of a bid transitionstij is the price of bidBidij (c(tij) = pij).

Example 6.2. TheMixed Auction Netassociated to example in figure 6.4 is defined as
follows:



122 Chapter 6. Solving the MMUCA Winner Determination Problem

• PG = {p1, ..., p9}.

• TB = {tij , tij′}.

• PXOR = {pXOR
i }.

• T
SCO

= {tij1, tij2, tij3, tij′1, tij′2}.

• P
SCO

= {cij1, cij2, cij3, cij′1, cij′2}.

• A
SCO

= {(p1, tij1), (tij1, p2), (tij1, p3), . . . , (p5, tij′1), (tij′1, p8), (tij′1, p9)}.

• AB = {(tij , cij1), (cij1, tij1), (tij , cij2), (cij2, tij2), ..., (tij′ , cij′1), (cij′1, tij′1)}.

• AXOR = {(pXOR
i , tij), (p

XOR
i , tij′ )}.

• TheE function is4:

E(p1, tij1) = 2

E(tij1, p2) = 1

E(tij1, p3) = 2

E(tij , cij2) = 3

. . .

• The cost function is:

C(t) =







−20 t = tij

−10 t = tij′

0 otherwise

(6.24)

• The initial markingM0 is:

M0(p) =

{

1 p = pXOR
i

0 otherwise
(6.25)

6.1.4 Expressing the MMUCA WDP as a CMWOSP

In this section we introduce a CMWOSP on theMixed Auction Net, whose solution can
be easily transformed into a solution to the corresponding MMUCA WDP. In this way,
we can exploit several results valid for CMWOSPs, WPTNs and PTNs. In particular,
by means of this mapping, we can solve the MMUCA WDP by means of ILP whenever
the associatedMixed Auction Netis acyclic (see section 4.7). Our aim in this section
is showing that, from the firing sequence associated to a particular CMWOSP on the
Mixed Auction Net, we can derive an optimal solution sequence to the corresponding
MMUCA WDP.

4We only provide a sample of its definition. The whole definition is represented in figure 6.4.
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This mapping is based on the analogy between a valid solution sequence and a fir-
ing sequence solution to a CMWOSP. In fact, we can prove that a sequence of SCOs
solution to the MMUCA WDP and a sequence of transitions solution to a CMWOSP
are objects fulfilling similar constraints. In fact, we want to show that there is a strong
analogy between the SCOs in a MMUCA and the SCO transitions in the Mixed Auction
Net, as well as between the bids in a MMUCA and the bids transitions in the Mixed
Auction Net. In section 6.1.2 we provided some intuitions about this mapping. Obvi-
ously, theMixed Auction Netwill play a fundamental role in this sense. The central
point is that, as mentioned in section 6.1.2, we have to impose some conditions on the
number of tokens each place contains at the end of the firing sequence (sections 6.1.2
and 6.1.2) in order to ensure that:

• the auctioneer fulfils its requirements; and

• the semantics of the bidding language is fulfilled.

In particular, we have to ensure that:

• (Auctioneer) thegood placeswill contain at least5 the number of tokens corre-
sponding to the number of goods the auctioneer expects to end up with (specified
by Uout).

• (Bidding language)

– theXOR placewill contain at leastzero tokens. This ensures that at most
one among the XOR bids is selected6. We sayat leastsince it may be that
no bid is selected, thus leaving a token in the place.

– the SCO placeswill contain exactlyzero tokens. This will enforce that
SCOs of a same atomic bid are either all selected with the correct multiplic-
ity, or none of them is selected7.

With these constraints in mind when considering solutions to a MMUCA WDP, we can
finally link the solutions to the MMUCA WDP with the solutions to a CMWOSP over
a Mixed Auction Netas follows.

Theorem 6.1. Given a MMUCA with a multiset of available goodsUin, a set of re-
quired goodsUout, and a set of bidsB in the XOR language8 over the goods inG,
solving MMUCA WDP amounts to solving the CMWOSP defined on theMixed Auc-
tion Net S∗ = (P ∗, T ∗, A∗, E,M0, C), with destination markingMd fulfilling the
following constraints9:

Md(p) ≥ Uout(g) pg ∈ PG (6.26)

Md(p) = 0 p ∈ P
SCO

(6.27)

Md(p) ≥ 0 p ∈ PXOR (6.28)

5Substituteat leastfor Exactly in the case ofno-free-disposalon the auctioneer’s side.
6Under the hypothesis that theXOR placecontains one token in the initial marking.
7Under the hypothesis that theSCO placecontains zero tokens in the initial marking.
8Notice that in the case of OR language we could state exactly the same if we make appropriate changes

to the WPTN. We should just represent all the bids as in figure 6.3, i.e. omitting the XOR places.
9In case of no free disposal on the auctioneer’s side simply substitute= for ≥ in equation (6.26).
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Proof. ⇒) First, we begin proving that a solution to the CMWOSP can be transformed
into a solution to the MMUCA WDP. Recall that each atomic bid consists of a multiset
of SCOs and a price:Bidij = (Dij , pij), whereDij ∈ N(NG×N

G) is a multiset of SCOs
andpij ∈ R is the associated cost/price. The notation employed is the one introduced
in section 6.1.2.

We recall that asolution sequenceis a mappingΣ from positions to SCOs:

Σ : {1, 2, . . . , ℓ} → T

whereℓ ∈ N is the length of the sequence, andT is the overall set of SCOs contained
in all bids. Then, in WPTN terms, we can regard thesolution sequenceΣ as a sequence
of SCO transitionson the mixed auction net.

Say thatJ∗ is the solution to the CMWOSP described in the theorem we are prov-
ing and thatΣ∗ is the sequence obtained byJ∗ restricted to the elements ofT

SCO
(or,

equivalently, without the elements ofTB). Recall thatJ∗ contains bothbid transitions
andSCO transitions.

Σ∗ = J∗|T
SCO

(6.29)

and say thatB∗ is thesetof transitions removed fromJ∗ to obtainΣ∗ :

B∗ = {tij ∈ J∗|TB
} (6.30)

Obviously,B∗ ⊆ TB is a subset of thebid transitions.
We aim at showing thatΣ∗ is the solution to the corresponding MMUCA WDP and

that B∗ is the set of selected bids. Recall that each transition inT
SCO

represents an
SCO. ThenΣ∗ can be seen as a sequence of SCOs as well:

Σ∗ : {1, 2, . . . , ℓ} → T
SCO

(6.31)

Notice thatT
SCO

≡ T .
For this reason we have to check thatΣ∗ it is a valid solution sequence. That is, it

must fulfil each of the constraints expressed in definition 5.9:

(1) Σ∗ either contains all or none of the SCOs belonging to the same atomic bid, so
that the semantics of the BID-operator is fulfilled:

∃k : tijk ∈ Σ∗ ⇒ ∀k |Σ∗−1(tijk)| = Dij(tijk)

In section 6.1.2 we gave the intuitions that this is the case. However, to prove it
formally, we write the state equation (see equation (2.25)) at a genericSCO place
cijk ∈ P

SCO
:

Md(cijk) = M0(cijk) + AT · x (6.32)

Notice from figure 6.4 that that both transitionstij ∈ TB andtijk ∈ T
SCO

can
add/remove tokens to/fromcijk. Notice also that according to equation (6.23) no
tokens are present initially incijk. Then, we can rewrite the equation as:

Md(cijk) = 0 + xtijk
− xtij

· Dij(ttjk) (6.33)
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wherextij
andxtijk

stands for the number of timestij andtijk fire in the firing
sequenceJ∗ respectively.

Then, applying constraint (6.27) over placecijk we obtain:

Md(cijk) = 0 ∀ijk (6.34)

Merging with equation (6.33) we obtain:

0 = xtijk
− xtij

· Dij(ttjk) ∀ijk (6.35)

xtijk
= xtij

· Dij(tijk) ∀ijk (6.36)

From equation (6.36) we can derive the following chain of implications:

∃k : tijk ∈ Σ∗ ⇒ ∃k : tijk ∈ J∗ ⇒ tij ∈ J∗ ⇒ tij ∈ B∗ ⇒ . . . (6.37)

. . . ⇒ ∀k|J∗−1(tijk)| = Dij(tijk) ⇒ ∀k|Σ∗−1(tijk)| = Dij(tijk) (6.38)

Then, taking the first premise and the last consequence, we have:

∃k : tijk ∈ Σ∗ ⇒ |Σ∗−1(tijk)| = Dij(tijk)∀k (6.39)

That is what we wanted to show.

(2) Σ∗ does not contain two SCOs belonging to different atomic bids by the same
bidder, and thus the semantics of the XOR operator is fulfilled:

tijk, tij′k′ ∈ Σ∗ ⇒ j = j′

In order to demonstrate this result, we write the state equation at each of the
pXOR

i ∈ PXOR place and we proceed similarly to the previous demonstration.
We obtain:

Md(p
XOR
i ) = 1 −

∑

j

xtij
(6.40)

and then applying the constraint in equation (6.28), we have:

1 −
∑

j

xtij
≥ 0 (6.41)

∑

j

xtij
≤ 1 (6.42)

From equation (6.37) we know that:

tijk ∈ Σ∗ ⇒ tij ∈ J∗ (6.43)

tij′k′ ∈ Σ∗ ⇒ tij′ ∈ J∗ (6.44)
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However, for the constraint in equation (6.42) we have that:

tij , tij′ ∈ J∗ ⇒ j = j′ (6.45)

Then, joining the implications we have:

tijk, tij′k′ ∈ Σ∗ ⇒ j = j′ (6.46)

As we wanted to demonstrate.

(3) Equations (5.10) and (5.11) hold at each step of the solution sequenceΣ∗.

Mm(g) = Mm−1(g) + OΣ∗(m)(g) − IΣ∗(m)(g) (6.47)

Mm−1(g) ≥ IΣ∗(m)(g) (6.48)

This condition ensures that all SCOs have enough input goods available at each
step of the SCO sequence.

We recall that the places inPG represent the goods inG. For the sake of clarity
we rewrite here both equations:

Mm(p) = Mm−1(p) + E(t, p) − E(p, t) ∀p ∈ •t ∪ t• (6.49)

Mm−1(p) ≥ E(p, t) p ∈•t (6.50)

We recall that these equations represent the change in theMm−1 marking after
the firing of a transitiont (equation (6.49)), and the condition of activation of
transitiont in markingM (equation (6.50)).

Next, we aim at writing equations (2.15) and (2.14) at each place inPG and at
each step of the firing sequenceJ∗. Notice from figure 6.4 that the only transi-
tions that add/remove tokens from/to the places inPG are the transitions inP

SCO
.

Then, instead ofJ∗, we can employΣ∗ of equation (6.29):
{

Mm(pg) = Mm−1(pg) + OΣ∗(m)(pg) − IΣ∗(m)(pg)

Mm−1(pg) ≥ IΣ∗(m)(pg)
(6.51)

That is exactly what we required.

(4) The set of goods held by the auctioneer after implementing the SCO sequence is
a superset of the goods the auctioneer is expected to end up with :

Uin(g) +

ℓ∑

m=0

(
OΣ∗(m)(g) − IΣ∗(m)(g)

)
≥ Uout(g)

Considering the constraints on the final marking of equation (6.26) and the initial
marking of equation (6.23), we obtain:

Uin(pg) +

ℓ∑

l=0

(OΣ∗(l)(pg) − IΣ∗(l)(pg)) ≥ Uout(pg) (6.52)
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Observe that since the only transitions that have associated non-null costs are the
bid transitionsin TB, and according to equation (6.39), the cost associated to the firing
sequence is:

CT (J∗) =
∑

tij∈J∗

C(tij) =
∑

tij∈B∗

C(tij) =
∑

tij∈B∗

pij (6.53)

It is obvious from equation (6.37) that having transitiontij in the solution sequence
means that bidBidij is in the winning set. Then, we have:

∑

tij∈B∗

pij =
∑

Bidij∈Winning Set

pij (6.54)

Then, the quantity maximised by the CMWOSP is equivalent to the auctioneer’s rev-
enue. Hence,Σ∗ is a valid solution and maximises the auctioneer revenue. Then, it is
the solution to the MMUCA WDP according to definition 5.10.
⇐) We prove the converse as well. Given a solution to the MMUCA WDP, it can be
transformed into a solution to the CMWOSP described in the theorem we are proving.
SayΣ is the solution to the MMUCA WDP. Then, consider the following constructs.

• The sequence of SCO transitionsΣ∗ : N → T
SCO

such that:

∀m ∈ [1, |Σ|] Σ∗(m) = tijk ⇐⇒ Σ(m) = tijk (6.55)

Recall thatT ≡ T
SCO

.

• The set of bid transitionsB∗ ⊆ TB such that:

tij ∈ B∗ ⇐⇒ ∃k s.t. tijk ∈ Σ∗ (6.56)

• The sequence of bid transitionsJ∗
B : N → TB formed by arranging in a random

order the elements ofB∗. More formally, the sequence must be such that:

|J∗−1
B (tij)| =

{

1 ∀tij ∈ B∗

0 otherwise
(6.57)

• J∗ : TB ∪T
SCO

→ [1, |J∗
B|+ |Σ∗|] is a sequence of transitions obtained concate-

nating the sequencesJ∗
B andΣ∗. Observe that the sequences are concatenated in

such a way that the elements ofJ∗
B are placed before the elements ofΣ∗.

Σ∗ corresponds to the sequence of SCOs solution to the MMUCA WDP, whereas the
sequenceJ∗

B contains the bid transitions corresponding to the winning bids. That is, if
tij ∈ J∗

B, thenBidij is in the winning set.
Then, we aim at showing that the sequenceJ∗ is a solution to the CMWOSP on the

mixed auction net with final constraints in equations (6.26), (6.27), and (6.28). With
this purpose, we have to perform three steps.

(1) we have to make sure that the final marking constraints are fulfilled;
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(2) we have to make sure that all the transitions inJ∗ are enabled at the step they are
executed; and

(3) we have to make sure that the solution is optimal, i.e. that there is not another
solution to the CMWOSP with higher associated cost.

In order to solve item (1), we make the hypothesis that all the transitions inJ∗ are
enabled. This hypothesis will be confirmed later on. Under this hypothesis, we can
write equations (2.14) and (2.15) at them − th step ofJ∗ in the following form:

Mm−1(p) ≥ E(p, J∗(m)) (6.58)

Mm(p) = Mm−1(p) + E(J∗(m), p) − E(p, J∗(m)) (6.59)

Embedding the recursion, we can obtain the marking at stepm as:

Mm(p) = M0 +

m∑

l=1

(E(J∗(l), p) − E(p, J∗(l))) (6.60)

Then, we write this equation in the final state for all the places in the mixed auction
net. Then, say thatℓ = |J∗| is the length of the sequenceJ∗. Analogously, we note
ℓB = |J∗

B | andℓΣ = |Σ∗| We know from section 6.1.3 that the auction net has three
types of places (PG, P

SCO
andPXOR).

• PXOR places. We know that equation (6.28) must hold. Then, we must have that:

Mℓ(pXOR
i ) ≥ 0 ∀i (6.61)

Mℓ takes the following form for allpXOR
i ∈ PXOR:

Mℓ(pXOR
i ) = M0(p

XOR
i ) +

ℓ∑

m=1

(
E(J∗(m), pXOR

i ) − E(pXOR
i , J∗(m))

)

that taking into account definition 6.1 becomes:

Mℓ(pXOR
i ) = 1 −

ℓ∑

m=1

E(pXOR
i , J∗(m)) = 1 −

∑

j

|J∗−1(tij)| =

= 1 −
∑

j

|J∗−1
B (tij)|

The intuition behind this are provided by figure 6.4. No transitions are incoming
into placepXOR

i , and the only outgoing transitions aretij andtij′ . It is easy to
see that sinceΣ is a solution to the MMUCA WDP, condition (2) of definition
5.9 holds, and then we have that:

Mℓ(pXOR
i ) = 1 −

∑

j

|J∗−1
B (tij)| ≥ 0 (6.62)

Then, equation (6.28) is fulfilled.
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• P
SCO

places. We know that equation (6.27) must hold. Then, we have that for all
cijk ∈ P

SCO
:

Mℓ(cijk) = M0(cijk) +

ℓ∑

m=1

(E(J∗(m), cijk) − E(cijk , J∗(m)))

that considering the mapping of section 6.1.3 becomes:

Mℓ(cijk) = 0 +
ℓ∑

m=1

(E(J∗(m), cijk) − E(cijk, J∗(m))) =

=

ℓB∑

m=1

E(B∗(m), cijk) −
ℓΣ∑

s=1

E(cijk, Σ∗(s)) (6.63)

= |B∗−1(tij)| · D(tijk) − |Σ∗−1(tijk)| (6.64)

Equation (6.63) results from considering that only bid transitions have output
places incijk, and that only SCO transitions have input places incijk (see figure
6.4). Equation (6.64) follows from the fact thattij is the only input transition to
cijk and thattijk is the only output transition ofcijk. Hence, from condition (1)
of definition 5.9, we have the following final marking:

Mℓ(cijk) =

{

0 tijk 6∈ Σ∗

D(tijk) −D(tijk) tijk ∈ Σ∗

ThenMℓ(cijk) = 0 for all cijk ∈ P
SCO

.

• PG places. Equation (6.26) must hold. Analogously to the previous cases, we
write for all pg ∈ PG:

Mℓ(pg) = M0(pg) +

ℓ∑

m=1

(E(J∗(m), pg) − E(pg, J
∗(m))) =

= Uin(pg) +

ℓΣ∑

m=1

(E(Σ∗(m), pg) − E(pg, Σ
∗(m))) = (6.65)

= Uin(pg) +

ℓΣ∑

m=1

(
OΣ(m)(pg) − IΣ(m)(pg)

)
(6.66)

Equation (6.65) follows from the fact that the only transitions that can add/remove
tokens to/from places inPG are the SCO transitions (see figure 6.4). Equa-
tion (6.66) substitutes the SCO transitions input/output arc weights for the in-
put/output multisets of the corresponding SCOs. Following condition (4) of def-
inition 5.9, we have that:

Mℓ(pg) = Uin(pg) +

ℓΣ∑

m=1

(
OΣ(m)(pg) − IΣ(m)(pg)

)
≥ Uout(pg) (6.67)
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Next, we show that all the transitions inJ∗ are enabled.

• The transitions inJ∗
B are trivially enabled, because:

(1) at most one of the transitions outgoing from anXOR placecan fire (accord-
ing to equation (6.62)); and

(2) the only token required to fire such a transition is present in the initial mark-
ing (M0(p

XOR
i ) = 1 according to equation (6.23)).

• In order to have the transitions inΣ∗ enabled as well, it must happen that:

Mm−1(p) ≥ E(p, J∗(m)) ∀m ∈ [1, ℓ], ∀p ∈ PG ∪ P
SCO

(6.68)

Recall that the XOR places are neither input nor output of the SCO transitions.
Then, the only places modified by transitions inTSCO arePG andP

SCO
:

(1) P
SCO

places. Observe that only bid transitions can add tokens into the SCO
places, and bid transitions are fired before the SCO transitions10. We also
know that if a SCO transitiontijk is in Σ∗, then the corresponding bid tran-
sitions tij is in B∗ (equation (6.56)). Then,tij has addedDij(tijk) into
the cijk places before any of the transitions inΣ∗ has fired. As a conse-
quence, transitiontijk has available in placecijk the tokens to be fired at
mostDij(tijk) times.

(2) PG places. We write the enabling condition at the generic step m:

Mm−1(pg) ≥ E(pg, Σ
∗(m)) ∀m ∈ [1, ℓΣ], ∀pg ∈ PG (6.69)

Analogously to what we have done in equation (6.66), we substitute the input
multiset of the SCO for the input arc weights of the corresponding SCO transi-
tion:

Mm−1(pg) ≥ IΣ(m)(pg) ∀m ∈ [1, ℓΣ], ∀pg ∈ PG (6.70)

That is fulfilled at each step because of condition (3) of definition 5.9.

Finally, we have to prove that there is no other solution with a higher associated
cost. Notice that, as shown in equation (6.54), the cost maximised in the CMWOSP
is the auctioneer revenue. Then, say per absurd there exists another solutionJ ′ to
the CMWOSP with a costc′ higher than the revenue associated to the corresponding
MMUCA WDP. For the⇒) side of the demonstration, this would be a solution to the
corresponding MMUCA WDP as well, since it has a higher revenue. This is impossible
for the optimality of the solution to the MMUCA WDP.

Summarising, each firing sequenceJ∗ solution to the CMWOSP can be transformed
into an optimal solution sequence of the MMUCA WDP. This can be done simply by
removing fromJ∗ thebid transitions(TB). The obtained subsequence is a solution to
the MMUCA WDP.

10Recall thatJ∗ is a concatenation ofJ∗
B andΣ∗.
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6.1.5 Solving the MMUCA WDP with IP

Thanks to theorem 6.1 we can exploit all the results proved for WPTN and the CM-
WOSP in section 4.7.1. In that section we showed that if a WPTN is acyclic, any
CMWOSP on it can be efficiently solved by means of IP (see corollary 4.1).

In this section we explicitly present the IP formulation of the MMUCA WDP when
the corresponding mixed auction net is acyclic.

The mathematical model is built according to the following rules:

(1) there aren good places, indexed withg ∈ {1, 2, . . . , n} (for each goodg ∈ G)

(2) there arel XOR places, indexed withi ∈ {1, 2, . . . , l} (for each bidderi)

(3) thebid transitionstij are indexed withi ∈ {1, 2, . . . , l}, j ∈ {1, 2, . . . , mi} (for
each bidj of each bidderi)

(4) theSCO transitionstijk are indexed with:

i ∈ {1, 2, . . . , l} (6.71)

j ∈ {1, 2, . . . , mi} (6.72)

k ∈ {1, 2, . . . , fij} (6.73)

(for each SCOk of each bidj of each bidderi).

(5) xijk ∈ N is an integer decision variable (for each SCO transitiontijk) taking on
valuew if SCO labelled byijk is presentw times in the optimal firing sequence.
Namely, the SCO is usedw times.

(6) xij ∈ {0, 1} is a binary decision variable (for eachbid transitiontij ), taking on
value1 if transitiontij is in the optimal firing sequence.

With this in mind, the CMWOSP can be expressed by the following integer program-
ming:







max
∑

ij

xij · C(tij)

M0(pg) +
∑

ijk

xijk · (E(tijk, pg) − E(pg, tijk)) ≥ Uout(pg) ∀pg ∈ PG

0 + xijE(tij , cijk) − xijkE(cijk, tijk) = 0 ∀cijk ∈ P
SCO

1 −
∑

j

xijE(pXOR
i , tij) ≥ 0 ∀pXOR

i ∈ PXOR

The first equation maximises the cost associated to the optimal firing sequence, the
second, third and fourth inequalities correspond to equations (6.26), (6.27), and (6.28)
respectively.
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Then, considering the mapping proposed in definition 6.1, this IP turns into:






max
∑

ij

xij · pij

Uin(g) +
∑

ijk

xijk · (Oijk(g) − Iijk(g)) ≥ Uout(pg) ∀g ∈ G

xijk = xijD(tijk) ∀ijk

1 −
∑

j

xij ≥ 0 ∀i

(6.74)

Finally, settingaijkg = Oijk(g) − Iijk(g), uin
g = Uin(g) anduout

g = Uout(g), we
have: 





max
∑

ij

xij · pij

uin
g +

∑

ijk

xijkaijkg ≥ uout
g ∀g

xijk = xijD(tijk) ∀ijk

1 −
∑

j

xij ≥ 0 ∀i

(6.75)

The interpretation of the model above is rather intuitive. The first equation maximises
the auctioneer revenue. The second one ensures that at least as many goods as required
by the auctioneer are produced at the end of the production process. The third equa-
tion enforces that the semantics of atomic bids is selected, i.e. all the SCOs with the
corresponding multiplicity are selected or none of then. The fourth one ensures that
the semantics of complex bids is fulfilled, i.e. that at most one atomic bid per bidder is
selected.

In appendix A.1 we present this model encoded in the OPL language (see section
2.1.2 and (Van Hentenryck, 1999)).

Notice that the solution to the IP above is represented by the value assigned to
decision variablesxijk andxij . Recall that in such a solution the information about the
order in which the SCOs must be performed is not included. However, according to
corollary 4.1, this information can be easily extracted by the solution to the IP since the
Mixed Auction Net is acyclic.

Problem Size

Next, we assess the number of decision variables and constraints required by the above
IP model:
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• for each bid transitiontij , corresponding to bidBidij , we create a binary decision
variablexij , to total|B| binary decision variables; and

• for each transitiontijk ∈ T (corresponding to a SCO), we create aninteger
decision variable, for a total of|T | integer decision variables.

Then, the total number of decision variables is|B|+ |T |. Finally, we assess the number
of required constraints:

• for each goodg ∈ G we create a constraint, for a total of|G| constraints;

• for each transitiontijk ∈ T , we create a constraint, for a total of|T | constraints;
and

• for each bidderi ∈ L we create a constraint.

The total number of constraints is then|G| + |T | + |L|.

6.1.6 Advantages of the mapping to CMWOSP

Before going on, we aim at highlighting the advantages brought about by the mapping
of the MMUCA WDP to WPTNs. In particular such a mapping allows to import all
the PTNs tools and properties presented in the literature to analyse structural and be-
havioural properties of the emerging supply chain. Some examples of application are
listed in what follows.

(1) One can very efficiently solve the underlying IP when the supply chain is acyclic;
this is obtained exploiting an important PTN analysis tool, the state equation.

(2) One may be interested in maintaining under a certain threshold the level of re-
sources present in each place (for instance, for inventory capacity constraints).
This can be mapped to a well known behavioural property of PTN, called bound-
edness (Murata, 1989).

(3) Thanks to the very appealing and intuitive WPTN graphical representation, we
can compactly encode and visualise the search space associated to the MMUCA
WDP. This is obtained thanks to the the fact that the semantics of transitions on
PTN naturally accommodates for the representation of SCOs.

(4) Once obtained a solution sequence to the MMUCA WDP, one can visualise it by
means of a token game showing the evolution of the supply chain at any step of
the SCO sequence (as we did in table 4.6).

(5) One can graphically visualise the MMUCA WDP problem. This provides a very
helpful guidance in obtaining insights about such problem. For instance, by visu-
alising the MMUCA WDP by means of WPTN, one can incorporate new bidding
language constructs with a minimum effort. For instance, consider the following
example.
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Example 6.3. We explained that switching to theOR language instead of the
XORbidding language is as simple as removing theXORplace from figure 6.4
(as done in figure 6.3). However, there is another widely employed bidding lan-
guage that is very compact and human readable. Is is called theXOR-of-OR
bidding language (refer to section 3.2.2). Such a language is such that any XOR
combination of OR combinations of atomic bids can be selected. For instance,
the bid:

((a, 1) OR(a, 1) OR(a, 1) OR(a, 1) OR(a, 1)) XOR(b, 2) (6.76)

means that an auctioneer can select from 0 to 5 copies of the atomic bid(a, 1) or
(exclusive) one copy of the atomic bid(b, 2).

In figure 6.5, we graphically show how to incorporate theXOR-of-ORbidding
language. In figure we depict the following bid:

(BID(1′tij1 + 3′tij2 + 2′tij3,−20) OR (6.77)

BID(1′tij′1 + 1′tij′2,−10)) XOR (6.78)

BID(1′tij′′1,−2) (6.79)

tij1 tij2 tij3

tij′1

tij′2

= 0

cij1

= 0

cij2

= 0

cij3

= 0

cij′1

= 0

cij′2

tije−20 tij′e−10

1 1 11

1
3 2

1

1

1

11

•
pXOR

i

≥ 0

≥ 0 ≥ 0

tOR
ij′

tij′′1

= 0

cij′′1 tij′′

e−2

1

1
1

1

1
1

11

Figure 6.5: XOR-of-OR of atomic bids
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The reader can check that this topology allows either firingtij′′ or (exclusive)
any of thetij andtij′ if the final contraints represented by inequalities in places
in figure 6.5 are fulfilled.

Notice that in this dissertation we only exploit directly advantages (1) and (3), and we
envisage a promising path for future developments the study of all the implications
connected with advantage (2),(4), and (5). We did not deepen into considerations con-
nected with the study of behavioural and structural properties of the resulting supply
chain. Nevertheless, by means of the mapping to WPTNs, we provide all the theoreti-
cal and practical tools to deal with such a study.

6.2 Solving the WDP on Cyclic Mixed Auction Nets

So far, we have not been concerned about whether a Mixed Auction Net is cyclic or
not. Is it a reasonable hypothesis considering that a mixed auction net does not contain
any cycle? The answer is that it depends. One could see a market as a big production
cycle. However, when we consider local production processes, one could think that it is
possible to avoid considering cycles in the topology. Unfortunately, this is not always
the case. Even locally, production cycles are often characterised by cycles. Moreover,
we will see that, in our semantics, cycles are required to represent shared resources or
resources that can be employed more than once. This is the case, for instance, of a piece
of software or of a tool that is notconsumedbut used. That is, at the end of the supply
chain operation the resource is still present, but the operation cannot take place without
it. With the purpose of clarifying this concept we slightly modify the example of figure
6.2.

Example 6.4. We recall that in example 6.2 five bidders participate in a MMUCA. We
modify bid bid3 introducing the fact that a bidder needs a machineMC to perform the
hydrolysis operation. Bidbid3, which stood for a bid on the hydrolysis process fore 8,
namely:

bid3 = BID(1′(2′H2O, 1′O2 + 2′H2),−8) (6.80)

turns now into:

bid∗3 = BID(1′(2′H2O + 1′MC, 1′O2 + 2′H2 + 1′MC),−3) (6.81)

Notice that the bidder only requires the MC machine to run the hydrolysis process, and
it will release it afterwards. Obviously, we have to include a bid that offers machine
MC as well. This is bidbid6:

bid6 = BID(1′(∅, 1′MC),−5) (6.82)

The new configuration of the Mixed Auction Net substitutingbid∗3 with bid3 is shown
in figure 6.611.

11In the figure we have omitted all theXOR places, bid transitions, andSCO placesfor the sake of com-
prehension.
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bid1 e−10 bid2 e−14

bid4e 23 bid5e 25

O2 H2

MC

H2O

bid∗3 e−3

2
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2

2
2

1 2
1

2

1

1

bid6
1

e−3

Figure 6.6: Example of a MMUCA in form of WPTN.

We can think about other types of resources that have this type of behaviour, as
for instance an oven, a piece of software, a consultant, and so on. Those type of re-
sources are not consumed, and eventually can be shared. In fact, we can see in figure
6.6 that transitionbid∗3 requires theMC machine, and that after using it, the machine
is still available (and could eventually be employed by another supply chain operation).
Generalising, we can modelresource usage, namely the machinery that production pro-
cesses require.

Before explaining how to solve this new problem, we would like to show why the
IP introduced in section 6.1.5 does not work in this case. We know from theorem 2.2
that it is not guaranteed to work since the Mixed Auction Net contains a cycle. Then,
we write the IP in equations (6.75) as if the mixed auction net was acyclic to detect
and show the problem. We can get rid of side constraints 2 and 3 in equation (6.75)
since we consider that each bidder submits a bid over a single SCO. Then, we assign
the binary decision variablexi to bid bidi. We also hypothesise that the auctioneer has
no preferences on the number of goods available at the end of the production process
(Uout = Uin = ∅). Then, we have:







max −10x1 − 14x2 − 3x3 − 3x6 + 23x4 + 25x5

2x1 + 2x2 − 2x3 ≥ 0 placeH2O

x6 − x3 + x3 ≥ 0 placeMC

x3 − x4 − x5 ≥ 0 placeO2

2x3 − 2x4 − 2x5 ≥ 0 placeH2

(6.83)
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If we simplify the equations above we obtain:







max −10x1 − 14x2 − 3x3 − 3x6 + 23x4 + 25x5

2x1 + 2x2 − 2x3 ≥ 0 placeH2O

x6 ≥ 0 placeMC

x3 − x4 − x5 ≥ 0 placeO2

(6.84)

the optimal solution isx5 = x3 = x1 = 1 and the remainingxi are0. However, this
solution is not valid! Let us apply the solution. At a first step, SCObid1 is used, provid-
ing two units ofH2O to the auctioneer. The following supply chain operation should
bebid∗3. However, it cannot be used without oneMC, which is currently unavailable
because we can only obtain it throughbid6. Thus, it is unfeasible to usebid∗3 because
bid6 is not part of the winning bid set.

Then, the solution to the IPis not a valid solution to the MMUCA WDP. This
happens because the circularity of the net causes the elimination of thex3 variable
from the equation of placeMC. This is not the only problem. Say that one is lucky
and the IP solution matches the solution to the MMUCA WDP, he still should find the
ordered sequenceof operations. In this case the net is not acyclic and therefore a unique
order among transitions cannot be ensured (as stated in corollary 4.1).

We end up this section with a remark that, though neither developed nor formally
proved, can be useful in practice. Say that we compute the IP shown in section 6.1.5
for a cyclic mixed auction net (likewise in example 6.4). Say that we find a solution
represented byx∗ (the decision variablesxijk with assigned a value). Say also that
Sx∗ is the subnet obtained by the mixed auction net by removing all the transitions not
included in the solutionx∗ (i.e. removing thetijk such thatxijk = 0). It is intuitive to
think that ifSx∗ is acyclic, then the solution is a valid solution sequence. The sketch of
the demonstration follows. Recall that a necessary condition for a state to be reachable
in a PTN is thatx∗ is a solution to the state equation (see section 2.3.2). However, since
the hypothesis is that the mixed auction net is cyclic, we cannot guarantee that the state
is reachable. Nevertheless, observe thatx∗ is a solution to the state equation associated
to the subnetSx∗ as well. Then, ifSx∗ is acyclic, the state is reachable in virtue of
corollary 4.1. Then,x∗ is a valid solution.

Although this observation may seem very powerful, in practise the situation de-
scribed above is rather unusual. However, it should be taken into account.

6.2.1 Modifying the representation

By means of example 6.4 we showed that on cyclic nets the IP defined in section 6.2
cannot be applied. In the example we have also shown that the circularity of the net may
cause an elimination of some decision variables. This elimination acts so that a check
on the feasibility of a given solution is required. In order to overcome such problem,
we modify the IP presented in section 6.2 in such a way that it is possible to check at
each step of the SCO sequence whether enough resources are available to perform the
selected SCO. In particular, we modify the way the SCOs are represented.
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The new SCO encoding incorporates some information about the order in which
the SCOs must be performed. In order to obtain this new representation, we build
directly upon the definition of WDP (definition 5.10). However, notice that building
upon the mixed auction net or on the CMWOSP one can obtain similar conclusions.
The improved IP model resulting from the new representation is calledDirect Integer
Programming(DIP) solver.

According to definition 5.10, a solution to the WDP is a mappingΣ from the posi-
tions in the solution sequence to the atomic SCOs. Based on this, we define an IP model
with the following decision variables:xm

ijk ∈ {0, 1} is a binary decision variable that
takes on value 1 if SCOtijk holds positionm in the solution sequence, and 0 otherwise.
These variables are the mathematical representation of something similar toΣ. In fact,
we can associate to an elementtijk a positionm in a sequence ifxm

ijk = 1. However,
we can have someempty positions. The problem is that prevents from having a solution
such thatxm

ijk = 0 ∀ijk. This would leave positionm empty. Then, we call a sequence
with empty positionspartial sequence. Obtaining the corresponding sequence from a
partial sequence is as easy as removing the empty elements from the partial sequence.
Thus, in what follows we will consider thatΣ is a partial sequence, and if we want to
retrieve the corresponding sequence we simply remove fromΣ the empty positions.

Σ is obtained from the variablesxm
ijk in the following way:

Σ(m) =

{

tijk xm
ijk = 1

⊥ otherwise
(6.85)

Obviously we do not know a priori how long the solution sequence will be. Then, we
rely on the fact that ifδ SCOs are submitted overall by all bidders, the length of the
solution sequence will be at mostδ (there can not be more SCOs in the sequence than
the ones overall offered).

Observe that employing the binary decision variables above, we can state the fol-
lowing relationships12:

OΣ(m)(g) =
∑

ijk

xm
ijkOijk(g) ∀g (6.86)

IΣ(m)(g) =
∑

ijk

xm
ijkIijk(g) ∀g (6.87)

Mm(g) = Mm−1(g) + OΣ(m)(g) − IΣ(m)(g) ∀m, g (6.88)

Mm(g) = Mm−1(g) +
∑

ijk

xm
ijk(Oijk(g) − Iijk(g)) ∀m, g (6.89)

Equation (6.89) can be expanded into the following equation by making explicit its

12We anticipate that the following constraints must be added to ensure thatΣ is afunction:

X

ijk

xm
ijk ≤ 1
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recursive structure:

Mm(g) =

m∑

l=1

∑

ijk

xl
ijk(Oijk(g) − Iijk(g)) ∀m, g (6.90)

6.2.2 The general IP formulation

We now show how to map the WDP in definition 5.10 into integer programming (IP).
Therefore, the issue is to decide for each SCO whether it is selected for the solution
sequence, and if so, to choose its position in the solution sequence. Thus, we define a
set of binary decision variablesxm

ijk ∈ {0, 1}, wherexm
ijk takes on value 1 if the SCO

tijk is selected at them-th position of the solution sequence (tijk = Σ(m)), and 0
otherwise. Here and in what follows:

• m always ranges from 1 toδ, the maximum length of the solution sequence;

• i ranges over all bidders;

• for each bidderi, j ranges from 1 to the number of atomic bids submitted byi;

• for each atomic bidj of bidderi, k ranges from 1 to the number of SCO in that
atomic bid;

• g ranges over all goods.

We also introduce several sets of auxiliary binary decision variables:

• xijk ∈ N is an integer decision variables that takes on valuew iff transition tijk

is present anywhere in the sequencew times (|Σ−1(tijk)| = w);

• xij ∈ {0, 1} takes on value 1 iff any of the SCOs in thejth atomic bid of bidderi
are selected. Equivalently,xij takes on value 1 iff bidBidij is selected.

In what follows, we define the set of constraints that the solution sequence must fulfil:

(1) We enforce the constraints expressed by condition (1) of definition 5.9. Thus,
if bid Bidij is selected, all the SCOstijk in that bid must be selected exactly
Dij(tijk) times. In other words, if bidBidij is selected, all the SCOs in it must
be selected with the required multiplicity. Formally,

xij · Dij(tijk) =
∑

m

xm
ijk (∀ijk) (6.91)

(2) We enforce that the atomic bids submitted by each bidder are exclusive (XOR).
This amounts to satisfying the following constraints (cf. condition (2) of Defini-
tion 5.9):

∑

j

xij ≤ 1 (∀i) (6.92)

Observe that in the case of theORbidding language we simply have to remove
this constraint.
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(3) We also impose that at most one SCO is selected at each position of the sequence:
∑

ijk

xm
ijk ≤ 1 (∀m) (6.93)

This equation encodes the hypothesis of no simultaneous firings and enforces that
theΣ built with thexm

ijk is a function, i.e. it does not have two images associated
the same element (cfr. equation (6.85))

(4) Next, we capture condition (3) of Definition 5.9: enough goods must be available
at stepm to perform the next SCO (cf. equation (5.15)). We recall that this maps
to the following condition:

Mm−1(g) ≥ Im(g) ∀g

which is translated, according to equations (6.87) and (6.90), into:

U0(g) +

m−1∑

l=0

∑

ijk

xl
ijk · [Oijk(g) − Iijk(g)] ≥

∑

ijk

xm
ijk · Iijk(g) (6.94)

∀g, ∀m

(5) And finally, after having performed all the selected SCOs, the set of goods held
by the auctioneer must be a superset of the final goodsUout (cf. condition (4) of
Definition 5.9):

Mδ(g) ≥ Uout(g) ∀g

that turns into

U0(g) +

δ∑

m=0

∑

ijk

xm
ijk · [Oijk(g) − Iijk(g)] ≥ Uout(g) ∀g (6.95)

Now solving the WDP for MMUCAs with XOR-bids amounts to solving the fol-
lowing integer program:

max
∑

ij

xij · pij subject to constraints (6.91)– (6.95) (6.96)

In table 6.1, we summarise the DIP formulation employing the same notation as the IP
in equation (6.75), with the exception of the symbolIijkg , that stands forIijk(g).

Finally, a valid solution according to definition 5.10 is obtained from the solution of
the IP by making transitiontijk them-th element of the partial sequenceΣ iff xm

ijk = 1,
and then removing the empty positions. In appendix A.2 we present this model encoded
in the OPL language (see section 2.1.2 and (Van Hentenryck, 1999)).

Observe that our proposed implementation can easily be amended so as to directly
encode the constraints imposed by language constructs other than the XOR-operator.
This would remove the need for translating into the XOR-language first and thereby
greatly improve efficiency.
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(a) ∀ijk xijk =
∑

m

xm
ijk

(b) ∀ijk xijk = xij · Dij(tijk) ∀ijk

(c) ∀i
∑

j

xij ≤ 1

(d) ∀m
∑

ijk

xm
ijk ≤ 1

(e) ∀g uin
g +

∑

m

∑

ijk

xm
ijk · aijkg ≥ uout

g

(f) ∀g, ∀m uin
g +

m−1∑

l=0

∑

ijk

xl
ijk · aijkg ≥

∑

ijk

xm
ijk · Iijkg

(g) max
∑

ij

xij · pij

Table 6.1: Resume of the IP formulation of solver DIP.

Problem Size

The number of decision variables in the above integer program is of the order ofO(|T | ·
δ) (corresponding toxm

ijk). More in details, we create a binary decision variablexij

for each bidBidij ∈ B, for a total of|B| binary decision variables. Then, we create a
decision variablexm

ijk for each SCOtijk ∈ T and for each positionm in the solution
sequence, for a total of|T | · ℓ binary decision variables. Assuming, in the general case,
that the maximum length of the solution sequence isℓ = δ, then we have|T | · δ =
|T | ·

∑

ij |Dij | decision variables. Then, we create a total of

|B| + |T |(1 + δ) ∈ O(|T | · δ)

decision variables. With a similar process, we compute the total number of constraints,
that is:

|T | + |L| + δ + |G|δ + |G| ∈ O(|G|δ) (6.97)
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Example 6.5. For the problem presented in figure 6.4, we have the following data:

|L| = 1 |B| = 2

|G| = 9 |T | = 5

δ = 8

Then, in the case of the IP in section 6.1.5 the number of decision variables created is
7, and the number of constraints is 9+5+1=15. In the case of the IP presented in this
section, we have 45 decision variables and 5+1+8+56+9=79 constraints.

6.3 Computational Complexity

In his master thesis (Ottens, 2007), Ottens provides a detailed proof of the NP-
completeness of the decision problem underlying the MMUCA WDP. We briefly recall
the employed argumentation in what follows.

The (decision problem underlying the) WDP for standard combinatorial auctions is
known to be NP-complete, with respect to the number of goods(Rothkopf et al., 1998).
NP-hardness can, for instance, be shown by reduction from the well-known SET PACK-
ING problem. As our mixed auction model generalises standard combinatorial auctions,
winner determination remains NP-hard also here. NP-membership (and thereby NP-
completeness) of the problem of checking whether there exists a solution exceeding a
given revenue (for finite bids) follows from the fact that a candidate solution provided
by an oracle can always be verified in polynomial time. That is, despite of the gen-
eralisations we have introduced, the computational complexity of the WDP does not
increase, at least not with respect to the polynomial hierarchy.

6.4 Conclusions

In this chapter we dealt with the problem of solving the MMUCA WDP, as defined in
chapter 5. With this aim, we provided a mapping of the MMUCA WDP to a CMWOSP
on the Mixed Auction Net. Some benefits stemed from this mapping. Firstly, since
the mixed auction net is a WPTN, it provides a very powerful theoretical framework
for analysing the MMUCA WDP computational, structural and behavioural proper-
ties. Secondly, consequence of the first benefit, we provide an efficient mapping of the
MMUCA WDP to ILP for acyclic mixed auction nets. Thirdly, since WPTNs have asso-
ciated a very appealing graphical representation, they provide a graphical framework to
compactly represent both the search space and the solutions associated to the MMUCA
WDP. This is due to the perfect matching between the semantics of transitions and the
semantics of SCOs. We recall that we focus on the computational advantages provided
by the mapping to CMWOSP, and leave out for future developments the analysis of the
structural and behavioural properties of the solutions to the MMUCA WDP. However,
we remark that the mapping to CMWOSP provides the needed theoretical and practical
tools to perform such analysis.

Next, we show that the hypothesis that the mixed auction net is acyclic sometimes
may not hold. In such a case, the ILP based on the CMWOSP cannot be employed.
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Hence, we provide a general IP solver, theDirect Integer Programming(DIP) solver,
that directly builds upon the definition of the MMUCA WDP. This solver allows to
solve the MMUCA WDP on any supply chain network topology. However, it has the
disadvantage to be computationally more costly. In fact, it requires more decision vari-
ables to be encoded.

Notice that the mixed auction net provides a framework toa priori assess the solver
to employ, either the CMWOSP-based, if no cycles are present in the mixed auction
net, or the DIP otherwise. With this tool at hand, one can build computationally effi-
cient MMUCAs. For instance, one approach could be constraining the participants to
an MMUCA to bid on sets of SCOs that do not form cycles. This would ensure the
absence of cycles in the correspondingMixed Auction Net, thus allowing the use of the
CMWOSP-based solver. However, as motivated by some examples provided in this
chapter, sometimes it is not possible to avoid cycles in theMixed Auction Net.

Recent contributions on computationally efficient WDP solvers for different auc-
tion types (namely, (Lehmann et al., 2006) for CAs and (Engel et al., 2006) for multi-
attribute double auctions) agree on and defend that a careful, formal analysis of the
structure of WDPs can provide guidance for developing efficient winner determina-
tion solvers. Along the lines of these works, in the next chapter, we propose an IP for
MMUCAs that dramatically improves the computational efficiency of the DIP solver.





Chapter 7

Connected Component-based
Solver

In the previous chapter we presented DIP, an ILP that can solve MMUCA WDPs on any
network topology. Then, in section 6.2.2 we showed that DIP requires O(|T |δ) decision
variables to be represented. This means that the associated search space is very large.
In this section we reduce the search space associated the MMUCA WDP.

Recent contributions on computationally efficient WDP solvers for different auction
types (namely, (Lehmann et al., 2006) for CAs, (Engel et al., 2006) for multi-attribute
double auctions, as well as our contribution in section 4 for MUCRAtR) agree on and
defend that a careful, formal analysis of the structure of WDPs can provide guidance
for developing efficient winner determination solvers. Along the lines of these works,
in this chapter we present a technique to reduce the search space associated to the
MMUCA WDP. This will result in an ILP formulation for MMUCA WDPs that dra-
matically improves the computational efficiency of the DIP solver presented in section
6.2.2.

At this aim, we found our analysis on observing the structure of the WDP that re-
sults after establishingdependence relationshipsamong transformations. For instance,
in the example ofGrandma & co(depicted in figure 1.1) theBakingSCO potentially
depends on theMake DoughSCO, since the output provided byMake Doughmay be re-
quired to performBaking. The analysis of the WDP based on dependency relationships
helps design an IP thata priori establisheswhento useeach transformation. There-
fore, the search space reduction is achieved by enforcing MMUCA solutions to fulfil a
template. The template reduces the possible orderings among transformations without
losing solutions.

This chapter is organised as follows. In section 7.1 we explain the intuitions under-
lying the improvement we propose by means of examples, and in the remaining sections
we develop a rigorous description of those intuitions. In section 7.2 we introduce the
solution template allowing a reduction in the search space along with some mathemat-
ical tools required in the chapter. In section 7.3 we present theConnected Component
Integer Programming(CCIP) solver, an ILP formulation improving the DIP solver by
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exploiting the solution template. Then, in section 7.4, we prove that the search space
reduction imposed by the solution templates does not cause a loss of solutions. Finally,
in section 7.5 we draw some conclusions.

7.1 Motivation and Example

In this chapter we introduce a technique to reduce the search space associated to the
solution of MMUCA WDPs. Then, we apply this new representation to encode a new
ILP solver for MMUCA, the CCIP. CCIP substantially reduces the number of variables
and constraints used by DIP.

The search space reduction is obtained by observing that DIP produces several
equivalentsolutions. We regard two solutions asequivalentif they select the same
bids. As a consequence, equivalent solutions contain the same supply chain operations
(SCOs) (even if arranged in different order), and they have associated the same cost. In
what follows we provide the rationale to achieve such reduction and to found CCIP.

Example 7.1. Recall from section 5.4.2 that in a MMUCA WDP the input is composed
of: (1) the initially available goods (Uin ∈ NG); (2) the finally required goods (Uout ∈
NG); and (3) a set of bids in the XOR bidding language (Bidij = (Dij , pij)). Hence,
let us consider an MMUCA WDP scenario characterised as follows:

• Uin = ∅ andUout = ∅: no goods are initially available and no goods are required
at the end of the auction.

• Eight bidders submit the eight bids showed in equations 7.1 to 7.8.

Bid11 = (3′t0 + 1′t1,−3 USD) (7.1)

Bid21 = (2′t2, 9 USD) (7.2)

Bid31 = (1′t3,−2 USD) (7.3)

Bid41 = (1′t4,−1 USD) (7.4)

Bid51 = (1′t5,−8 USD) (7.5)

Bid61 = (2′t6 + 2′t7,−3 USD) (7.6)

Bid71 = (1′t8,−12 USD) (7.7)

Bid81 = (1′t9 + 2′t10,−4 USD) (7.8)

We recall thatBidij = (α′
hth, pij) means that bidderi offersαh copies of SCO

th (Dij(th) = k) at pricepij in his j-th bid. For instance, bidBid11 offers in
a bundle (combinatorial bid) three units oft0 and one unit oft1 at a price of3
USD1. More formally,D11 = {3′t0 + 1′t1}.

Recall from section 5.4.2 thatD = ⊎ijDij is the union of multisets submitted in
each bid. For the bids in equations 7.1 to 7.8, we have:

D = {3′t0 +1′t1 +2′t2 +1′t3 +1′t4 +1′t5 +2′t6 +2′t7 +1′t8 +1′t9 +2′t10} (7.9)

1Recall that the negative sign means that a bidder is willing to be paid.
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Recall also that the maximum lengthℓ of the solution sequence will be at most equal to
the overall number of atomic SCOs submitted, namely

ℓ = δ =
∑

ij

|Dij | = 17

Finally, recall thatT is the set of all the received SCOs (disregarding their multi-
plicity).

T = {t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10} (7.10)
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Figure 7.1: Graphical representation for the SCOs in bids in equations 7.1 to 7.8

In figure 7.1 we graphically represent SCOst1, . . . , t10 contained in the bids of
equations 7.1 to 7.8. The formalism employed in the figure is similar to the one em-
ployed in chapter 6. Figure 7.1 represents a Petri Net Structure (PTNS) in which each
transitions represents a SCO and each place a good. The input/output arcs from/to SCOs
depict the input/output multisets of each SCO. We recall that the arc weights represent
the input and output multiplicity of each SCO (for instance, according to figure 7.1, the
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input and output multisets of SCOt7 are respectivelyIt7 = {g5} andOt7 = {g7, g6}).
Notice that in our example every arc has weight1.

Unlike the formalism employed in chapter 6, in the PTNS of figure 7.1 the infor-
mation about complementarities among SCOs and the XOR relationships is omitted.
Furthermore, we label each SCO with its multiplicity in each bid. For instance,3′t0
means that three units oft0 have been submitted in a bid.

At this point consider that solver DIP solves the WDP with the input expressed by
equations 7.1 to 7.8, and finds the solution sequence in table 7.1. The first row in table
7.1 represents a position within the solution sequence (them index in variablesxm

ijk

of section 6.2), whereas the second row shows the SCO assigned to the each position
within the solution sequence. For instance, the fact that in the second row and second
column we find SCOt2 means that position2 of the solution sequence is assigned tot2
(in DIP this means that in the solutionx2

t2
= 1).

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Revenue
Sequence 1 t0 t2 t1 t0 t4 t0 t2 t3 +3 USD

Table 7.1: Example of solution found by solver DIP.

Thus, according to definition 5.9 of section 5.4.2, the solution of table 7.1 corre-
sponds to the following solution sequence:

Σ = 〈t0, t2, t1, t0, t4, t0, t2, t3〉 (7.11)

Notice that the solution sequenceΣ, according to what explained in section 6.2.1, is
obtained by removing theempty positionsin Sequence 1of table 7.1.

Accordingly, the winning bids areBid11, Bid21, Bid31, andBid41, and the rev-
enue associated to this solution is−3 + 9 − 2 − 1 = 3. As the reader can check, this
solution is valid, since the semantics of the bidding language is fulfilled, and at each
step of the solution sequence there are enough input goods available to perform the
corresponding SCO. Now consider all the solutions in table 7.2. These solutions are
all valid and optimal (they have associated the same revenue) as much as the one in
table 7.1. They are simply a rearrangement of the very same solution along different
positions of the solution sequence, without modifying the relative order among them
(i.e. they all represent the sameΣ of equation 7.11).

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Revenue
Sequence 2 t0 t2 t1 t0 t4 t0 t2 t3 +3 USD
Sequence 3 t0 t2 t1 t0 t4 t0 t2 t3 +3 USD
Sequence 4 t0 t2 t1 t0 t4 t0 t2 t3 +3 USD
Sequence 5 t0 t2 t1 t0 t4 t0 t2 t3 +3 USD
Sequence 6 t0 t2 t1 t0 t4 t0 t2 t3 +3 USD

Table 7.2: Solutions equivalent to the solution in table 7.1 with same relative order.

Now consider the solutions in table 7.3. They are still valid solutions equivalent to
Sequence 1in table 7.1, though not only the positions assigned to SCOs are different,
but also the relative order among them has been altered. Although those solutions



7.1. Motivation and Example 149

correspond to valid solution sequences different from the one in equation 7.11, it is
easy to check that those solutions are still valid. Indeed, at each step of the solution
sequence there are enough inputs to perform the corresponding SCOs. Hence, all the
considered solutions are Pareto optimal, and equivalent among them.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Revenue
Sequence 7 t0 t1 t0 t2 t0 t2 t4 t3 +3 USD
Sequence 8 t0 t0 t0 t1 t2 t2 t4 t3 +3 USD

Table 7.3: Solutions equivalent to the solutions in table 7.1with different order.

At this point, the reader is ready to understand what we mean byequivalent solu-
tions. Solutions of solver DIP that select the same bids (and thus the same SCOs) have
associated the same cost. Thus, we hypothesise that they are indistinguishable for an
auctioneer.

Notice that, as shown in example 7.1, the search space of solver DIP contains a
huge amount of equivalent solutions. Hence, in order to reduce the complexity of our
problem, we aim at understanding why all those redundant solutions are found. As
explained in section 6.2, the IP formulation of solver DIP is founded on the hypothesis
that a SCO can hold any position within the solution sequence (recall that we create
decision variablesxm

ijk for each positionm and for each SCOtijk ∈ T ), and we set the
length of the solution sequence equal to the overall number of received SCOs, namely
δ. Thus, in principle, each SCO can take one amongδ available positions. This explains
why all those equivalent solutions are contained in the DIP search space: a large number
of equivalent rearrangements of SCOs within the solution sequence are allowed.

The fact that many equivalent solutions can be found implies a larger search space
than needed, and thus an increased computational cost. Such computational cost is
reflected in the number of decision variables employed for solver DIP. In the case of
example 7.1, for instance,t0 has the possibility to take on any of the17 positions of the
solution sequence. Hence, DIP requires17 decision variables fort0. Then, for all the
SCOs it requiresδ|T | = 11 ∗ 17 = 187 decision variables. If we manage to reduce the
number of equivalent solutions contained in the search space, we cut down the number
of decisions, and consequently the search space.

Then, the strategy we follow to reduce the search space consists in limiting the
possible positions each SCO may take on in a solution sequence. In this way the number
of feasible solutions is reduced. Obviously, if we limit the positions each SCO can take
on we lose solutions as well. The main point here islosing solutions that are equivalent
to solutions that in turn are found. For instance, an auctioneer is willing to lose all but
one of the solutions in tables 7.1, 7.2, and 7.3 . If at least one is found, we assume that
an auctioneer is not bothered by losing all the other equivalent solutions.

We assume that if two solutions are equivalent, from an auctioneer’s point of view
eliminating one of them from the space of feasible solutions does not constitute a prob-
lem. However, given a set of equivalent solutions, the auctioneer needs that at least one
of them is included in the space of feasible solutions.
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We employ a terminology related to equivalence classes in order to explain this
concept. It is easy to verify that the relationis equivalent toon the set of DIP solutions
is an equivalence relation (refer to section 2.4.1 for the theory underlying equivalence
relations). In these terms, our goal consists in finding a solution template that:

• reduces the number of equivalent solutions contained in the search space, and

• ensures that at least one feasible solution for each equivalence class is found.

That is, we must ensure that no solution class is completely removed from the search
space. Hereafter, with an abuse of terminology, we say that welose a solution class
when we lose a whole equivalence class of solutions.

In what follows we explain how to reduce the search space. We employ a function
that reduces the possible positions any SCOs can take on in the solution sequence.

Example 7.2. Say that we constraint1 to hold only the first position in a solution
sequence. All the solutions in tables 7.1, 7.2, and 7.3 are still valid if we pusht1 ahead
in front of the sequence. For instance, the solution sequences in table 7.3 produces the
equivalent solutions represented in table 7.4.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Revenue
Sequence 9 t1 t0 t0 t2 t0 t2 t4 t3 +3 USD
Sequence 10 t1 t0 t0 t0 t2 t2 t4 t3 +3 USD

Table 7.4: Solutions equivalent to the solutions in table 7.3pushingt1 ahead.

In general, every solution found by DIP to the considered problem can be reordered
into a solution witht1 in the first position. Then, we pusht2 in the first position of the
solution sequences in table 7.3, and we obtain the sequences in table 7.5.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Revenue
Sequence 11 t2 t0 t0 t2 t0 t1 t4 t3 +3 USD
Sequence 12 t2 t0 t0 t0 t1 t2 t4 t3 +3 USD

Table 7.5: Solutions equivalent to the solutions in table 7.3pushingt2 ahead.

None of the sequences in table 7.5 is a valid solution to solver DIP sincet2 cannot
operate without input goods (g2). In this case, placingt2 at the first position is notsafe,
since the SCOs that can provide it with input goods are not performed before it.

Then, all the solutions found by solver DIP can be reordered into solutions having
t1 at the first position without losing solution classes. Oppositely, not all the solutions
found by DIP can be reordered into a solution havingt2 at the first position. Therefore,
if we constraint2 to take on the first position, we lose solution classes.

Why it is possible to push aheadt1 and nott2? The reason is thatt2 maydependon
other SCOs to be performed. In factt2 may need some inputs that in turn are produced
by other SCOs (t0 andt1 in the case oft2). Then, if we want provide a solution template
that limits the positions that each SCO can hold without causing a loss of solutions, then
we have to consider those dependencies among SCOs.
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A SCOt′ dependson t if any of the output goods oft is an input good oft′. In such
a case,t′ may need the output oft to operate. Hypothesising thatt′ dependson t andt
does not depend ont′ we have that:

• if in a solutiont′ comes beforet, then the solution remains valid by movingt
beforet′.

• if in a solutiont comes beforet′, then the solution may not be feasible anymore
by movingt′ beforet.

Along this line, given two SCOs, we can differentiate three cases:

• t dependson t′ andt′ does not depend ont: t′ t

• t depends ont′ andt′ depends ont: t′ t

That is, they aremutually dependent.

• otherwise (the case of no dependence at all):t′ t

By analysing the dependencies above we can limit the positions each SCO can assume
without losing solutions.

Example 7.3. Consider once more example 7.1, graphically depicted in figure 7.1.
Notice thatt1 does not have any input good. Then, it does not depend on any SCO.
Then, we can constrain SCOt1 to hold the first position within the solution sequence
(as in example 7.2): any solution witht1 at a different position than the first one can
be reordered into a solution in whicht1 is at the first position. We can assign only one
position in a solution sequence since only one unit oft1 is offered. Position1 is safeto
t1. Then, we assign position 1 to2 t1.

Next, things are different witht0. Recall that three units oft0 are offered by bid
Bid11, and thust0 might appear up to three times within a solution sequence. Then, we
cannot simply assignt0 to position2. Sincet0 can be performed three times, it needs
at least three positions in a solution sequence. Then, we assign positions2, 3 and4 of a
solution sequence tot0, as represented in table 7.6.

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Solution
Template t1 t0 t0 t0 . . . . . . . . . . . . . . .

Table 7.6: Assigning positions tot0 within a solution sequence.

At this point we wonder whether we can carry on witht2, t3, andt4 and so on.
Unfortunately, we cannot. This is becauset2, t3, and t4 form a loop, i.e. they are
mutually dependent. Observing carefully figure 7.1 we can say that:

• t2, t3, andt4 depend ont0 andt1;

2In terms of decision variables for DIP this means that we are not generatingxm
t1

for all the positions

m ∈ {1, . . . , 17}, but we generate only one decision variablex1
t1

, sincet1 is allowed to hold only position
1.
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• t2, t3, andt4 do not dependent3 on t5, . . . , t10;

• t2, t3, andt4 are mutually dependent4; and

• t5, . . . , t10 dependends ont2, t3, andt4.

Then, t2, t3, andt4 must come beforet5, . . . , t10 and aftert0 and t1. However, we
cannot establish an order among them since they are mutually dependent. Thus, we
must consider all their possible orderings. For instance, we can assign tot2, t3, andt4
positions5, 6, 7, and8 (since two units oft2 are available, we must assign two positions
to t2). Table 7.7 outlines atemplateof a solution built in this way.

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Solution
Template

t1 t0 t0 t0

t2
t3
t4

t2
t3
t4

t2
t3
t4

t2
t3
t4

t5 t9 t10 t10
t6
t7

t6
t7

t6
t7

t6
t7

t8

#Variables 1 1 1 1 3 3 3 3 1 1 1 1 2 2 2 2 1

Table 7.7: Positions within the solution sequence assigned a-priori to SCOs.

Notice that we now need a decision variable for each of the elements in table 7.7 (as
expressed in the last row of the table). As tot2, t3, andt4, the possible choices can be
encoded by the following variables:

{x5
t2

, x6
t2

, x7
t2

, x8
t2

, x5
t3

, x6
t3

, x7
t3

, x8
t3

, x5
t4

, x6
t4

, x7
t4

, x8
t4
} (7.12)

wherex5
t2

= 1 means thatt2 is performed at the5-th position.
Then, the total number of decision variables required to represent the problem

amounts to:

1 + 1 + 1 + 1 + 3 · 4 + 1 + 1 + 1 + 1 + 2 · 4 + 1 = 29 (7.13)

In contrast, table 7.8 illustrates the assignment of positions as required by DIP. DIP em-
ploys 11 ∗ 17 = 187 variables overall. Therefore, the difference when constraining
SCOs to limited number of positions is very significant (29 versus187 in the example).

To conclude, we have to detect the dependencies present in the structure induced by
the SCOs and apply the process described above: we assign an a-priori limited number
of positions within the solution sequence to each SCO (or group of SCOs).

In what follows, we formally analyse how we can extend the intuitions above to the
general case in order to yield a new IP, the so called CCIP, by relying on the notion of
dependence among transformations, and using it to constrain the positions at which a
transformation can be used.

3No matter the ordering amongt2, t3, andt4, we can always assign to them positions beforet5 or t9
without losing solutions.

4Notice thatt2, t3, andt4 lie on a cycle in the net. For this reason, each of them could contribute to
provide goods to the inputs of the other.
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Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Solution
Template

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

#Variables 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Table 7.8: Positions assigned a-priori without constraints.

7.2 SCO Dependencies and Solution Template

In this section we formally introduce a solution template that limits the possible posi-
tions each SCOs can take (like in table 7.7) without losing any solution class. With this
purpose, firstly we formally introduce the concept ofdependencyamong SCOs. Next,
we introduce a function that constrain the SCOs to hold a limited number of positions
within a solution sequence, that is asolution template.

But before that we would like to clarify the concept ofdependency. The fact that an
SCOt depends on another SCOt′ does not enforce thatt′ must be forcedly executed
beforet. In fact this could happen. The fact thatt depends ont′ only means that it
is always possible to change the relative order oft andt′ bringing t′ in front without
losing solutions classes.

7.2.1 The SCO Dependency Graph (SDG)

In this section we formally capture the concept ofdependencyamong SCOs. All the
background knowledge required to understand this section is summarised in section
2.4.2.

An SCO dependency graph (SDG) is a graph that encodes the dependencies, in
terms of precedence relationships, between the SCOs5 in T . The SDG is a directed
graph whose nodes stand for SCOs, and an edge from SCOt to SCOt′ reflects that
there exists a good that is both output oft and input tot′.

Example 7.4. The SDG associated to example 7.1 (see figure 7.1) is depicted in figure
7.2(b). For the sake of comprehension, we include a copy of figure 7.1 in figure 7.2(a).

Definition 7.1 (SCO Dependency Graph). Given a set of bids in the XOR bidding
language, such thatT is the overall set of SCOs, the associated SCO Dependency Graph
(SDG) is a graphSDG = (V, E) such that:

5Recall that, given the input to a MMUCA WDP,T is the set of overall SCOs present in all bids. TheT

corresponding to the bid of example 7.1 is represented in equation 7.10.
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• Each SCO is a vertex:V = T ,

• A directed arc connects two SCOst and t′ iff there exists a good that is both
output oft and input tot′. More formally,

(t, t′) ∈ E iff Ot ∩ It′ 6= ∅

An SDG may or may not contain cycles. However, we have to assume that the graph
is cyclic in the general case. As explained in section 2.4.3, a (cyclic) graph defines a
preorder. over T . We denote this preorder as a pair(T, .). The semantics of the
preorder is thatt . t′ iff a path exists betweent andt′. As illustrated in section 2.4.3,
a preorder allows the existence of pairs(t, t′) such thatt . t′ andt′ . t.

Example 7.5. In the order defined by the graph in figure 7.2(b) we have thatt1 . t5
and t2 . t8. However, considering thatt2 . t3 and t3 . t2, t2 and t3 cannot be
ordered among them.

Figures 7.2 (a) and (b) depict the PTN structure representing the SCOs of example
7.1 along with the corresponding SDG. We recall from chapter 2 that, given a setT
equipped with a preorder., we can define an equivalence relation∼ onT as follows:

t ∼ t′ iff t . t′ andt′ . t (7.14)

Example 7.6. Regarding the example of figure 7.2(b), the equivalence classes are:

[t0] = {t0} (7.15)

[t1] = {t1} (7.16)

[t2] = {t2, t3, t4} (7.17)

[t5] = {t5} (7.18)

[t6] = {t6, t7} (7.19)

[t8] = {t8} (7.20)

[t9] = {t9} (7.21)

[t10] = {t10} (7.22)

(7.23)

Recall also that it is possible to define a strict partial order over the quotient set
(T/∼,≺) such that:

[t] ≺ [t′] iff t . t′ andt 6. t′ (7.24)

Equivalently, we define a strict order on the setT (T,≺) such that:

t ≺ t′ iff [t] ≺ [t′]

Example 7.7. As to the example in figure 7.2(b),[t2] ≺ [t5] (t2 ≺ t5) since there exists
a simple path fromt2 to t5 (〈t2, t5〉)6. However[t2] ≺ [t4] does not hold since, although
a simple path exists fromt2 to t4 (〈t2, t4〉), we have thatt2 ∼ t4. In fact there are cycles
(〈t2, t4, t3, t2〉).

6Recall that according to the notation employed in section 2.4.2 a path in a graph is noted as〈v1, . . . , vn〉,
where thevi are the nodes belonging to the path.
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(a) A PTNS representing SCOs (b) SDG

scc234

scc67

scc0 scc1

scc9scc5

scc8

scc10
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t4 t9t5

t3

t6
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scc234

scc9 scc5

scc1

scc10 scc67

scc8

(c) SCCs of the SDG (d) The strict order

Figure 7.2: A PTN structure, the corresponding SDG, SCC, and Order Relation.

Then, we are now ready to formally define the concept ofdependence. We recall
that two SCOst, t′ can be such that: (1)t depends ont′ andt′ does not depend ont;
or (3) t andt′ are mutually dependent; or (4)t andt′ are not dependent on one another.
More formally, we can distinguish the following three cases:

(1) t ≺ t′: t dependson t′. A one-way directed path betweent and t′ exists in
the SDG. Then, all the SCOs along the path connectingt to t′ can contribute to
increase the input goods oft′. Then,t′ dependson their execution. For instance,
in example 7.7, we have thatt5 depends ont2. Therefore, pushingt ahead oft′
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in a solution sequence does not cause a loss of solution classes.

(2) t′ ∼ t: t andt′ aremutually dependent. There exist both a simple path fromt to
t′ and another one fromt′ to t. Therefore, they lie on a simple cycle of the SDG.
For instance, in figure 7.2(b), we have thatt2 ∼ t4. Obviously, we cannot order
them since the circularity of the relationship implies that they depend on each
other. Then, we may risk to lose some solution class if we change their relative
order in a solution sequence.

(3) t 6. t′ andt′ 6. t: no path exists betweent andt′. The relative positions oft
andt′ within the solution sequence does not affect the feasibility of the solution
in any case. Then, it does not matter the relative order oft andt′ in the solution
sequence, and it can be changed arbitrarily.

In what follows we present three examples referring to the three items in the list above.

Example 7.8(Dependence). In example 7.2 we were able to movet1 in the first po-
sition of the solution sequence without losing solutions, whereas we could not do the
same fort2. This happens sincet1 does not depend on any SCO (∄t such thatt ≺ t′),
whereast2 depends ont1 (t1 ≺ t2) andt0 (t0 ≺ t2). Then,t1 andt0 must hold posi-
tions previous tot2. This is why in the solution template in table 7.7,t2 comes aftert1
andt0.

Example 7.9(Mutual Dependence). In example 7.3, we saw that in the case oft2, t3,
andt4 we could not assign to each of these SCOs only one place in the solution se-
quence. In fact, we have thatt2 ∼ t3 ∼ t4. Then, in order to consider all the possible
orderings among them, we assigned to them positions5, 6, 7, and8 in the solution tem-
plate of table 7.7.

Example 7.10(Independence). In example 7.2 we were able to movet1 in the first
position of the solution sequence without losing solutions. The reader can check that
equivalentlyt0 can be brought to the first position without affecting the validity of the
solution. Thus, the solution template of table 7.7 can be modified by switching the
positions oft0 andt1 as shown in table 7.9.

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Solution
Template

t0 t0 t0 t1

t2
t3
t4

t2
t3
t4

t2
t3
t4

t2
t3
t4

t5 t9 t10 t10
t6
t7

t6
t7

t6
t7

t6
t7

t8

Table 7.9: Interchanging the positions oft1 and t0.

Hence, while we can a-priori establish an order among SCOs belonging to different
equivalence classes, for SCOs within the same equivalence class we cannot since they
are mutually dependent. As to the case of SCOs, we can chose any ordering.
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7.2.2 Computing the equivalence classes

As shown in section 2.4, the definition of Strongly Connected Component (SCC) in
graph theory coincides with the notion of equivalence class we defined above. The very
good news is that there exists an algorithm that can find the SCCs of a graph(V, E) in
polynomial time (Θ(V + E)), as explained in (Cormen, 2001). The fact that we have
available this algorithm significantly simplifies the first of our subproblems, that is the
problem of finding an execution order among SCOs. In fact, once obtained the strongly
connected components, enforcing a suitable ordering among them amounts to building
a solution template.

Henceforth, we will refer indifferently to equivalence classes or SCCs.

Example 7.11.The strongly connected components of the graph in figure 7.2(b) are:

scc0 = {t0} = [t0] scc67 = {t6, t7} = [t6]

scc1 = {t1} = [t1] scc8 = {t8} = [t8]

scc234 = {t2, t3, t4} = [t2] scc9 = {t9} = [t9]

scc5 = {t5} = [t5] scc10 = {t10} = [t10]

They are graphically depicted in figure 7.2(c). As mentioned in section 2.4, it is also
possible to define a strict order among equivalence classes (SCCs), graphically depicted
in figure 7.2(d).

7.2.3 Order Enforcing Function

We mentioned at the beginning of this section that our aim is to build atemplatethat
allows us to a-priori limit the set of positions that each SCO can hold within a solution
sequence in such a way that no solution class is lost. As illustrated by the template in
table 7.7, there is a link between the dependencies among SCOs and their relative order.
Most precisely, a solution template must comply with the strict order stemming from
dependencies. Next, we provide a formal definition of solution template, the so-called
D-bounded Order Enforcing Function.

Definition 7.2 (D-bounded Order Enforcing Function). Given a strict order(T/∼,≺)
and a multi-setD ∈ NT , aD-bounded Order Enforcing FunctionS : {1, . . . , |D|} →
T/∼ is a sequence of equivalence classes satisfying the following constraints:

S(i) ≺ S(j) ⇒ i < j (7.25)

|S−1([t])| =
∑

t′∈[t]

D(t′) ∀[t] ∈ T/∼ (7.26)

Where|S−1([t])| is the number of times the equivalence class[t] appears in the se-
quenceS. Henceforth,S will denote aD-bounded order enforcing function for
(T/∼,≺).

Equation 7.25 guarantees that all the position assigned to the equivalence classes
are in increasing order with respect to(T/∼,≺). This means that if[t] comes before
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[t′] according to(T/∼,≺), then[t] comes before[t′] in S. Equation 7.26 ensures that
enough positions inS are available to contain all the SCOs inD with their multiplicity.
For instance, if three units oft0 are offered, it means that up to three copies oft0
may be present in the solution sequence. Then, three positions must be assigned to
t0 in S. Notice that there is no overlapping among the positions assigned to different
equivalence classes in virtue of equation 7.25.

Example 7.12. If D is the multi-set of the overall SCOs received in the MMUCA of
example 7.1. We define aD-bounded enforcing functionS as follows:

S(1) = [t1]; S(2) = [t0];

S(3) = [t0]; S(4) = [t0];

S(5) = [t2]; S(6) = [t2];

S(7) = [t2]; S(8) = [t2];

S(9) = [t5]; S(10) = [t9];

S(11) = [t10]; S(12) = [t10];

S(13) = [t6]; S(14) = [t6];

S(15) = [t6]; S(16) = [t6];

S(17) = [t8];

Departing from solution template in table 7.7 we can represent functionS as shown
in table 7.10. The solution template readily leads to the mapping in table 7.10 by
substituting each set of elements for the equivalence class it belongs to. For instance
{t2, t3, t4} for [t2] and{t6, t7} for [t6].

Positions 1 2 3 4 5 6 7 8 . . .

Equiv. classes [t1 ] [t0 ] [t0 ] [t0 ] [t2 ] [t2 ] [t2 ] [t2 ] . . .

. . . 9 10 11 12 13 14 15 16 17

. . . [t5 ] [t9 ] [t10 ] [t10 ] [t6 ] [t6 ] [t6 ] [t6 ] [t8 ]

Table 7.10:D-bounded enforcing function for example 7.1.

We employS−1 to indicate the inverse of an enforcing functionS. S−1([t]) indi-
cates the set of integers (positions) that map to the equivalence class[t] via S. More
formally:

S−1([t]) = {m ∈ {1, . . . , |D|} | S(m) = [t]}

Example 7.13.Regarding example 7.12,

S−1([t6]) = S−1([t7]) = {13, 14, 15, 16}

In what follows, we show that it is always possible to build at least one solution
template. We prove this by construction. This result is fundamental to our purposes
since theS function is employed to encode our problem.
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Lemma 7.1. Given a strict order(T/∼,≺) and a multi-setD ∈ NT such that∀t ∈
T D(t) ≥ 1, at least aD-bounded order enforcing functionS exists.

Proof of lemma 7.1 Let (q1, q2, ..., qk), wherek = |T/∼|, be an ordering of the
elements ofT/∼ satisfying≺. Then, we buildS as follows:

S(1) = q1 S(2) = q1 . . . S(λ1) = q1

S(λ1 + 1) = q2 S(λ1 + 2) = q2 . . . S(λ1 + λ2) = q2

. . . . . . . . . . . .

S(
∑k−1

l=1 λl + 1) = qk S(
∑k−1

l=1 λl + 2) = qk . . . S(
∑k−1

l=1 λl + λk) = qk

whereλi =
∑

t∈qi
D(t) Notice thatS satisfies the constraints specified by equations

7.25 and 7.26.

Notice that this proof also explains how to practically builda solution template
given the SCCs.

S is thus a function that assigns positions within a sequence to set of SCOs. The
main property ofS is that every solution that DIP finds can be reordered into anequiva-
lentandfeasiblesolution that fulfils the solution templateS. In order to formally define
the concept offulfilment, we have to introduce some notation. In fact, we need to link a
solution to DIP to the solution templateS. We begin by introducing partial sequences,
a generalisation of the concept of sequence that captures the formal representation of a
solution to solver DIP (see table 7.1).

7.2.4 Partial Sequences

We begin by recalling the definition of sequence.

Definition 7.3 (Sequence). A Sequenceover a non-empty finite setT is a function
K : [1, n] → T , with n ∈ N.

Notice that in table 7.1 we represented a solution as a mapping from positions within
a sequence to SCOs. In what follows we illustrate the concept ofpartial sequence,
which intuitively is a sequence with “holes”, meaning that there could be some posi-
tions of the sequence that areempty. This notion will be employed to formally capture
solution sequences like the ones in tables 7.1, 7.2, and 7.3.

Definition 7.4 (Partial Sequence). A Partial Sequenceover a non-empty finite setT is
a partial functionK : [1, n] → T , with n ∈ N.

The fact the function ispartial implies that some integers may have no image,
representing the holes in the sequence.

From now on, we will employ the following notation:

(1) |K| the length of the sequence. Henceforth, we will assume|K| = n;

(2) K−1 : T → 2[1,n] is a partial injective function such thatm ∈ K−1(t) iff
K(m) = t (inverse function);

(3) |K−1(t)| is the number of timest appears in sequenceK;
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(4) Given a multi-setD : T → N, we will note asD(t) the multiplicity of t in D;

(5) Dom(K) is the subset of[1, n] that admits an image viaK (domain);

(6) Im(K) = {t ∈ T | K(m) = t for somem ∈ [1, n]} (image)

Example 7.14.The partial sequence representing the solution sequence in table 7.1 is:

K(1) = t0

K(2) = t2

K(5) = t1

K(6) = t0

K(7) = t4

K(8) = t0

K(9) = t2

K(14) = t3

Obviously, a solution sequence can not contain more SCOs than the ones submitted
in bids overall. Then, we further refine the representation of solutions by limiting the
number of times each SCO can appear within a partial sequence.

Definition 7.5 (D-bounded Partial Sequence). Given apartial sequenceK over a set
T and a multi-setD ∈ NT , we say thatK is D-bounded if:

|K−1(t)| ≤ D(t) ∀t ∈ Im(K) (7.27)

Example 7.15.The partial function defined in example 7.14 is bounded by the multi-set
D in equation 7.9:

D = {t0, t0, t0, t1, t2, t2, t3, t4, t5, t6, t6, t7, t7, t8, t9, t10, t10}

this happens since:

(
|K−1(t0)| = 3 andD(t0) = 3

)
implies|K−1(t0)| ≤ D(t0) (7.28)

. . . . . . (7.29)

and a similar equation applies to all the other elements inIm(K).

Notice that the multi-setD = ⊎ijDij associated to an MMUCA bounds all of its
solutions, as state in the following observation.

Remark7.1. Every solution to an MMUCA is aD-bounded partial sequence.

Now that we have all the formal tools to describe a solution, we can define when a
solutionfulfils a solution templateS (order enforcing function). This is a central point
and leads us to the definition ofS-fulfilment:
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Definition 7.6 (S-fulfilment). Given aD-bounded partial sequenceK and aD-bounded
order enforcing functionS, we say thatK fulfils S iff:

∀i ∈ dom(K) K(i) ∈ S(i) (7.30)

This means that a solutionK complies with a solution template if each SCO inK
takes on a positionallowedby S.

Example 7.16.COnsider table 7.11

• the partial sequenceK in does not fulfil the order enforcing function (solution
template)S, sinceK(1) = t2 andS(1) = [t1], but t2 6∈ [t1];

• the partial sequenceK ′ fulfils S.

In table the highlighted SCOs do not hold the positions enforced by the solution tem-
plate.

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(S) Solution
Template

t1 t0 t0 t0

t2
t3
t4

t2
t3
t4

t2
t3
t4

t2
t3
t4

t5 t9 t10 t10
t6
t7

t6
t7

t6
t7

t6
t7

t8

K t0 t2 t1 t0 t4 t0 t2 t3

K′
t1 t0 t0 t0 t2 t4 t2 t3

Table 7.11: Partial sequence fulfilling (K ′) and not fulfilling (K ′) S in table 7.10.

Then, now we can explain why the solution template represented byS is of central
importance. We will formally prove in section 7.4 that each partial sequence, solution
to the MMUCA WDP, can be reordered into anequivalentand feasiblesolution that
fulfils S. Consequently, if we limit the search space so thatonly the solutions fulfilling
S are included, we guarantee that no solution class is lost. Therefore, we achieve what
we intended, obtaining a space search reduction without sacrificing solution classes.

In the next section we show how to apply an ordering enforcing function to ILP.
We will present a new solver for the MMUCA WDP, that employs considerably less
decision variables than DIP by exploitingS.

7.3 The improved IP formulation

The aim of this section is to introduce a new IP that improves solver DIP. We call
the improved solver, described in the remaining of this section, solver CCIP. The idea
underlying the improvement of solver DIP is to consider as possible solutions only
partial sequences fulfilling aD-bounded order enforcing functionS and excluding all
other solutions. With this purpose, we employ the order enforcing function introduced
in definition 7.2.
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In section 7.3.1, we introduce a preliminary version of the IP formulation of solver
CCIP. In section 7.3.2 we introduce a further simplification that allows to eliminate
part of the constraints. In section 7.3.3 we show that CCIP turns into a CMWOSP
solver when the Mixed Auction Net is acyclic. Finally, in section 7.3.4 we show that
CCIP turns into the DIP solver when the SDG is connected.

7.3.1 The Model

As usual, the input to the MMUCA WDP is a set of bidsBidij , each one over a multi-
setDij along with some pricepij . D =

⋃

ij Dij is the multi-set of all the submitted
SCOs. Then, the maximum length of the solution sequence isδ = |D|.

According to remark 7.1, a partial sequence representing a solution to the WDP is
always bounded byD, since the partial sequence will at most contain all the submitted
SCOs. Then, we consider aD-bounded order enforcing functionS. The associated
order relation(T/∼,≺) is the one defined by the SDG graph onT .

In solver DIP we employed binary decision variablexm
ijk taking on value 1 iff SCO

tijk is selected at them-th position within the solution sequence. In the case of DIP,
m ranges in all the positions of the solution sequence (m ∈ [1, δ]). However, now we
can assign a limited number of positions to each SCO viaS. If we want to allow as
feasible solutions only partial sequences fulfillingS, we only create decision variables
for the positions each SCO can hold. More precisely we create decision variablesxm

ijk

for all m ∈ S−1([tijk]). By means of this operation we manage to drastically reduce
the search space.

Next, analogously to section 6.2, we employ the following auxiliary decision vari-
ables. Firstly,xijk is an integer variable that represents the number of positions that
SCOtijk holds in the solution sequence. Secondly,xij is a binary decision variables
taking on value one if bidBidij is selected and 0 otherwise. Then, we impose the
following constraints.

(1) We obtain the number of positions that SCOtijk holds in the solution sequence
(xijk) by summing upxm

ijk over all the positionsm assigned to[tijk ]:

xijk =
∑

m∈S−1([tijk])

xm
ijk ∀ijk (7.31)

Example 7.17. Regarding example 7.1 we have:

xt2 = x5
t2

+ x6
t2

+ x7
t2

+ x8
t2

(7.32)

and
xt0 = x2

t0
+ x3

t0
+ x4

t0
(7.33)

and so on.

(2) We are interested in that at most one SCO can hold each position. Consequently,
we impose that:

∑

tijk∈S(m)

xm
ijk ≤ 1 ∀m (7.34)
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Notice that the sum is only over the SCOs of a single equivalence class. These
constraints enforce that the solution is a partial sequence. Without such a con-
straint we could have more than one SCO assigned to the same position of the
sequence.

Example 7.18. Following example 7.1, at step 5 (m = 5) the following con-
straints hold:

x5
t2

+ x5
t3

+ x5
t4

≤ 1 (7.35)

(3) We need decision variables controlling if a given bid has been selected. As we
know, the semantics of a bid implies that selecting at least one SCO within a
bid implies selecting all the SCOs within the same bid with the corresponding
multiplicity. That is:

xijk = xij · Dij(tijk) ∀ijk (7.36)

Example 7.19. For SCOt0 in bid Bid11 of the MMUCA of example 7.1 we
have:

xt0 = x11 · 3 (7.37)

and so on.

(4) We impose that the XOR semantics of a bid is fulfilled, i.e. at most one bid per
bidder can be selected: ∑

j

xij ≤ 1 ∀i (7.38)

(5) We need to encode the constraint enforcing that each SCO selected is enabled at
any step of the solution sequence.

U0(g) +

m−1∑

l=0

∑

tijk∈S(l)

xl
ijk · [Oijk(g) − Iijk(g)] ≥

∑

tijk∈S(m)

xm
ijk · Iijk(g)

(7.39)

∀g ∈ G, ∀m ∈ [1, δ]

(6) We express the constraint enforcing that the goods available to the auctioneer at
the end of the solution sequence is at leastUout:

U0(g) +

ℓ∑

m=0

∑

tijk∈S(m)

xm
ijk · [Oijk(g)−Iijk(g)] ≥ Uout(g) ∀g ∈ G (7.40)

In table 7.12 we summarise the CCIP ILP formulation.
Finally, solving the MMUCA WDP is equivalent to optimise the objective function:

max
∑

ij

xij · pij (7.41)

subject to constraints (a-f) in table 7.12.
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(a) ∀ijk xijk =
∑

m∈S−1([tijk ])

xm
ijk

(b) ∀ijk xijk = xij · Dij(tijk) ∀ijk

(c) ∀i
∑

j

xij ≤ 1

(d) ∀m
∑

tijk∈S(m)

xm
ijk ≤ 1

(e) ∀g ∈ G U0(g) +
ℓ∑

m=0

∑

tijk∈S(m)

xm
ijk · [Oijk(g) − Iijk(g)] ≥ Uout(g)

∀g ∈ G U0(g) +

m−1∑

l=0

∑

tijk∈S(l)

xl
ijk · [Oijk(g) − Iijk(g)] ≥

(f) ∀m ∈ [1, δ]
∑

tijk∈S(m)

xm
ijk · Iijk(g)

(g) max
∑

ij

xij · pij

Table 7.12: Resume of the IP formulation of solver CCIP.

7.3.2 Eliminating some Equations

There is a further simplification that we can add. Not only we can reduce the number
of variables, but we are also able to eliminate some redundant constraints. It follows
from some considerations on the IP structure that we can remove some constraints
from solver CCIP because redundant. In what follows we provide the corresponding
intuitions.

Equation (7.39) ensures that enough goods are present to perform the selected SCOs
at each step of the solution sequence. It must be applied at each step of the solution
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sequence.

U0(g) +
m−1∑

l=0

∑

tijk∈S(l)

xl
ijk · [Oijk(g) − Iijk(g)] ≥

∑

tijk∈S(m)

xm
ijk · Iijk(g) (7.42)

∀g ∈ G, ∀m ∈ [1, δ]

Equation (7.40) states that at the end of the sequence at leastUout goods are available
to the auctioneer.

U0(g) +

ℓ∑

m=0

∑

tijk∈S(m)

xm
ijk · [Oijk(g) − Iijk(g)] ≥ Uout(g) ∀g ∈ G (7.43)

The application of the two constraints above plus the fact thatS limits the possible
position assignments makes some of those constraints redundant. In particular, we can
get rid of constraint 7.42 at each stepm if the group of SCO assigned to stepm via
S does not belong to any cycle of the graph. The following example will clarify the
statement.

Example 7.20. Consider the MMUCA WDP presented in example 7.1. In particular,
we will focus on the equations regarding goodg4 just before the firing oft5. Then,
considering that the only SCOs that can add or remove tokens tog4 are{t2, t4, t5, t9},
equation 7.43 becomes7:

xt2 − xt4 − xt5 − xt9 ≥ 0 (7.46)

Notice that thexti
in in equation 7.46 are integer, not binary variables. Now we

consider equation 7.42 at step9 and for goodg4. According to table 7.7, SCOt5 is
assigned to position9. Then, equation 7.42 becomes8:

xt2 − xt4 ≥ xt5 (7.49)

7Equation 7.43 can be rewritten as

0 +

ℓ
X

l=0

X

t∈{t2,t4,t5,t9}

xl
t · [Ot(g4) − It(g4)] ≥ 0 (7.44)

that can be rewritten as
0 +

X

t∈{t2,t4,t5,t9}

xt · [Ot(g4) − It(g4)] ≥ 0 (7.45)

sincext =
Pℓ

l=0 xl
t (equation 6.91). Expanding equation 7.45, we obtain 7.46.

8Equation 7.42 can be rewritten as:

0 +
8

X

l=0

X

t∈T

xl
t · [Ot(g4) − It(g4)] ≥ x9

t5
· It5 (g4) (7.47)

Once again, since the only SCOs that can add or remove tokens tog4 are{t2, t4, t5, t9} and their assigned
positions in table 7.7 are{5, 6, 7, 8, 9, 10}, equation 7.47 becomes:

0 +
X

l∈{5,6,7,8}

X

t∈{t2,t4}

xl
t · [Ot(g4) − It(g4)] ≥ x9

t5
· It5(g4) (7.48)

The reader can check that expanding this expression we obtain equation 7.49.
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Notice that equation (7.49) is automatically satisfied if equation (7.46) is fulfilled. Then,
equation 7.49 is redundant, and we can get rid of it.

Example 7.20 above shows an important properties of our model. This property
is not very intuitive because it depends on the equations and on their relationships.
Anyway, as we mentioned above, this property does not hold if the SCO lies on a
simple cycle or on a self-loop of the SDG. A counter example will clarify this sentence.

Example 7.21. We consider again example 7.1, but in this case we focus on the equa-
tions for goodg1. Notice that a a self-loop is present ont10. This self-loop prevents to
apply the same reasoning of example 7.20. First, we write the equivalent of equation
7.46 and we obtain:

xt9 + xt10 − xt10 ≥ 0 =⇒ xt9 ≥ 0 (7.50)

Next, we consider equation 7.42 at step11. We obtain:

xt9 − xt10 ≥ 0 (7.51)

It is easy too see that equation 7.50 does not imply equation 7.51. Then, we cannot get
rid of equation 7.51.

Intuitively, equation 7.43 is aglobal condition enforcing that at the end of the se-
quence the global input-output balance at each good of the net in figure 7.1 is positive.
On the other hand, equation 7.42 islocal to each step, and enforces that enough input
goods are available at each step.

As showed by example 7.21, we have to check constraint 7.42 only when the SCOs
assigned to positionm belong to a cycle. Notice that by definition each time an equiv-
alence class containsn > 1 SCOs, each SCO in the equivalence class belongs to a
simple cycle of lengthn.

Example 7.22. (1) t10 in figure 7.2(a) has goodg1 both as input and output. Then it
belongs to a self-loop (〈t10, t10〉). (2) t2 belongs to the simple cycle〈t2, t4, t3, t2〉. (3)
t1 does not belong to any cycle.

To conclude, with respect to the encoding of solver CCIP presented in section 7.3.1,
we can get rid of a set of inequations. Thus, besides reducing the number of variables,
we decrements the number of constraints of solver DIP.

Employing the terminology introduced in section 7.3.2, we can say that equation
7.39 must be added only if the SCOs assigned to stepm by S belong to a simple cycle.
Then, definingLF as:

LF = {m ∈ {1, . . . ℓ} | S(m) contains a simple cycle}

We can rewrite equation (7.39) as:

U0(g) +

m−1∑

l=0

∑

tijk∈S(l)

xl
ijk · [Oijk(g) − Iijk(g)] ≥

∑

tijk∈S(m)

xm
ijk · Iijk(g) (7.52)

∀g ∈ G, ∀m ∈ LF

In appendix A.3 we present the CCIP model with reduced constraints encoded in
the OPL language (see section 2.1.2 and (Van Hentenryck, 1999)).
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Problem Size

The number of decision variables in the above integer program is of the order of
O(

∑

ijk |S
−1(tijk)|) (corresponding toxm

ijk). More in details, we create a binary deci-
sion variable for each bidBidij ∈ B, for a total of|B| binary decision variables. Then,
we create a decision variablexijk for each SCOtijk ∈ T , for a total of|T | decision
variables. Then, we create a decision variable for each SCOtijk ∈ T and for each posi-
tion it is allowed to take on within the solution sequence, for a total of

∑

ijk |S
−1(tijk)|

binary decision variables. Then, we create a total of

|B| +
∑

ijk

|S−1(tijk)| ∈ O(
∑

ijk

|S−1(tijk)|)

decision variables.
With a similar process, we compute the total number of constraints, that is:

2|T |+ |L| + δ + |G|(1 + |LF |) (7.53)

7.3.3 The CMWOSP-based solver is a special case of CCIP

In this section, we show that the CMWOSP-based solver introduced in section 6.1.5 is
a special case of CCIP. Say that we know that no cycles are present in the TDG. That
means that we will have exactly as many SCCs as the number of SCOs. Then, we have
that equation (a) in table 7.15 turns into:

xijk = xm
ijk (7.54)

Considering this,

• equation (d) becomes redundant and we can eliminate it;

• equation (e) turns into

U0(g) +
ℓ∑

m=0

∑

tijk∈S(m)

xijk · [Oijk(g) − Iijk(g)] ≥ Uout(g) ∀g ∈ G (7.55)

that can be rewritten as:

U0(g) +
∑

ijk

xijk · [Oijk(g) − Iijk(g)] ≥ Uout(g) ∀g ∈ G (7.56)

Since the net has no cycles, it happens that|LF | = 0. Then, equation (f) can be
eliminated. Sincexm

ijk is not employed in any equation, we can eliminate equation
(7.54) as well.

Then, joining equations (b), (c), and (g) in table 7.15 with equation (7.56), we obtain
exactly the same ILP model as the one in equations (7.55).
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7.3.4 CCIP amounts to DIP when the SDG is connected

Analogously, we show that when the SDG is connected CCIP turns into DIP. If the SDG
is connected, then there is a big SCC encompassing all the SCOs. It happens that:

S(m) = T ∀m ∈ [1, δ] (7.57)

LF = {1, . . . , δ} (7.58)

Then, we create decision variablesxm
ijk ∀tijk ∈ S(m). Then, basically, we create

the same decision variables as in DIP. Next, the constraint in equation (7.52) must be
applied at each step of the solution sequence. Then, we obtain the same formulation as
DIP.

7.4 Equivalence between solvers DIP and CCIP

In this section we formally prove that no solution class is lost limiting the possible
positions of SCOs viaS. This result is indirectly proved by showing that:

• each solution found by solver DIP can be reordered into a solution to CCIP; and

• each solution to solver CCIP is also a solution to DIP.

If this holds, then we are guaranteed that: (1) for each solution in DIP solution space
there is always an equivalent solution in CCIP solution space; and (2) the CCIP solution
space is a subset of the DIP solution space. Then, CCIP does not lose solutions nor
create new solutions not fulfilling DIP.

Such proof is rather complex. Then, before going on, we introduce some definitions
and constructs that will be employed in the demonstration. To this end, in sections 7.4.1
and 7.4.2 we provide formal tools to capture the notion of reordering of a solution.
Then, in section 7.4.4 we introduce some properties of partial sequences of SCOs to be
employed for the proof. Finally, in section 7.4.5, we provide the formal proof.

7.4.1 Subsequences

In what follows we introduce the concept of subsequence of a partial sequence. A
subsequence of some partial sequence is a newsequenceobtained from the former one
by removing some of the elements and all the empty positions without disturbing the
relative positions of the remaining elements. An example will clarify the sentence:

Example 7.23.Consider the partial sequence in table 7.13.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Revenue
Sequence 1 t0 t2 t1 t0 t4 t0 t2 t3 +3 USD

Table 7.13: Example of solution found by solver DIP.

Example of subsequences of the partial sequence of table 7.13 are showed in the
following. At the left hand side we have shown the subsequence, while on the right
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hand side the original partial sequence with highlighted the elements selected to form
the subsequence. The elementǫ indicates ahole in the partial sequence.

〈t1, t4, t2〉 〈t0 , t2 , ǫ, ǫ, t1, t0 , t4, t0 , t2, ǫ, ǫ, ǫ, ǫ, t3 , ǫ, ǫ, ǫ〉 (7.59)

〈t1, t0, t0, t2〉 〈t0 , t2 , ǫ, ǫ, t1, t0, t4 , t0, t2, ǫ, ǫ, ǫ, ǫ, t3 , ǫ, ǫ, ǫ〉 (7.60)

〈t1〉 〈t0 , t2 , ǫ, ǫ, t1, t0 , t4 , t0 , t2 , ǫ, ǫ, ǫ, ǫ, t3 , ǫ, ǫ, ǫ〉 (7.61)

〈t4, t2〉 〈t0 , t2 , ǫ, ǫ, t1 , t0 , t4, t0 , t2, ǫ, ǫ, ǫ, ǫ, t3 , ǫ, ǫ, ǫ〉 (7.62)

〈t2, t1, t4〉 〈t0 , t2, ǫ, ǫ, t1, t0 , t4, t0 , t2 , ǫ, ǫ, ǫ, ǫ, t3 , ǫ, ǫ, ǫ〉 (7.63)

〈t0, t4, t2, t3〉 〈t0, t2 , ǫ, ǫ, t1 , t0 , t4, t0 , t2, ǫ, ǫ, ǫ, ǫ, t3, ǫ, ǫ, ǫ〉 (7.64)

Notice that the order among the elements is maintained. That is, for instancet3 comes
aftert2 in the partial sequence of table 7.1, then the same must happen in equation 7.64.

Definition 7.7 (Subsequence of a partial sequence). SayK : [1, n] → T is a partial
sequence. We say thatK ′ is a subsequence ofK iff:

• K ′ is asequenceof elements ofT . More formally,K ′ : {1, . . . , m} → T where
m ∈ N and9 m ≤ n.

• There is a strictly increasing function (called characteristic function of the se-
quence)f : {1, . . . , m} → [1, n] such that:

K ′(i) = K(f(i)) ∀i ∈ {1, . . . , m}

Example 7.24.The characteristic function of subsequence 7.59 is:

f(1) = 5 → the first element ofK ′corresponds to the fifth element ofK

f(2) = 7 → the second element ofK ′corresponds to the seventh element ofK

f(3) = 9 → the third element ofK ′corresponds to the nine-th element ofK

We call theinverse characteristic functionof a subsequenceK ′ the function re-
trieving the position of an element of the subsequence within the original sequence.
We denote it asf−1

K′ : [1, n] → {1, . . . , m}. For instancef−1
K′ (j) = k means that the

position within the original sequence of thej − th element of the subsequence wask.

Example 7.25.The inverse of the characteristic function of example 7.24 is:

f−1(5) = 1

f−1(7) = 2

f−1(9) = 3

Given a partial sequenceK : N → T and a setT ′ ⊆ T , we define the subsequence
of K restricted toT ′, denote asK|T ′ , as the subsequence ofK obtained removing from
K all the elements not belonging toT ′. More formally:

9Notice thatK ′ is asequence, not apartial sequence.
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Definition 7.8 (Sequence restricted to a subset). Given a partial sequenceK : N → T
and a setT ′ ⊆ T , K|T ′ (to be read asK restricted toT ′) is a subsequence ofK such
that:

|K−1
|T ′(t)| = |K−1(t)| ∀t ∈ T ′ (7.65)

|K−1
|T ′(t)| = 0 ∀t 6∈ T ′ (7.66)

Example 7.26.Given the partial sequence of table 7.13,K|{t2,t3,t4} = 〈t2, t4, t2, t3〉.

In the following section we introduce a formalism to describe how to order a partial
sequence in order to make it comply with a solution template.

7.4.2 Reordering Sequences

The main goal of this section is to introduce the theoretical tools to check whether the
reordering of a partial sequence complies with a solution template. We recall that this
is useful since we have to prove that, for each solution to DIP, there always exists a
reordering of it that complies with the solution template. Then, in this section, as a first
step we provide a definition of reordering of a partial sequence that fulfils the solution
templateS.

Intuitively, an S-fulfilling reordering is a reordering ofK into a new partial se-
quenceK ′ that fulfils S and that preserves the order defined byK among the SCOs
within the same equivalence class. Before giving the formal details, we present an
example.

Example 7.27. Consider order enforcing functionS and the partial sequenceK in
table 7.14. In table 7.14 we present alsoK ′, anS−fulfilling reordering ofK, andK ′′

a partial sequence that is not anS−fulfilling reordering ofK. Notice that inK ′ the
elementst0 andt1 have been reordered, whereas the elements of the equivalence class
[t2] maintain the same order as inK. Observe thatK ′′ fulfils S, but the elements of the
equivalence class[t2] are in a different relative order than inK (t2 comes aftert4).

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(S) Solution
Template

t1 t0 t0 t0

t2
t3
t4

t2
t3
t4

t2
t3
t4

t2
t3
t4

t5 t9 t10 t10
t6
t7

t6
t7

t6
t7

t6
t7

t8

K t0 t2 t1 t0 t4 t0 t2 t3

K′
t1 t0 t0 t0 t2 t4 t2 t3

K′′
t1 t0 t0 t0 t4 t2 t2 t3

Table 7.14: Examples of S-fulfilling (K ′) and not S-fulfilling (K ′′) reordering ofK.

Thus, we proceed to the formal definition ofS−fulfilling reordering.

Definition 7.9 (S-fulfilling reordering). Given aD-bounded partial sequenceK and a
D-bounded order enforcing functionS, K ′ is an S-fulfilling reordering ofK iff:

(1) K ′ fulfils S
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(2) K ′
|q = K|q ∀q ∈ T/∼

Point (1) implies thatK ′ complies with the solution template. Point (2) of definition
7.9 implies that the order among SCOs belonging to the same equivalence class inK ′

is the same as inK.
In section 7.4 we will be interested in retrieving the original position in of the ele-

ments of a reordered sequence. That is, givenK ′ S-fulfilling reordering ofK, we are
interested in retrieving the original positioni in K of thej-th element ofK ′, as shown
in the following example.

Example 7.28. Consider the partial sequencesK andK ′ employed in example 7.27.
Say that we are interested in retrieving the original positions withinK of the 7th el-
ement ofK ′. From table 7.14 we know thatK ′(7) = t2. The natural way of doing
it would be to look for the position of SCOt2 in K. But this does not work sincet2
appears more than once inK. Indeed, we have thatK−1(t2) = {5, 7}. Then, we have
to recur to the characteristic functions that are employed to build the subsequencesK ′

|q

andK|q (point (2) of definition 7.9).

Remark7.2. SayK ′ is anS fulfilling reordering ofK. Then, the original positioñs in
K of them̃-th element ofK ′ is:

s̃ = fK|q

(

f−1
K ′

|q
(m̃)

)

(7.67)

Whereq = [K ′(m̃)] is the equivalence class that contains them̃-th element ofK ′,
f−1

K′
|q

is the characteristic function associated to the subsequenceK ′
|q, andfK|q

is the
inverse characteristic function associated to the subsequenceK|q (see definitions 7.7
and 7.8).

Now we are going to provide an existence result: no matter which is the partial
sequence, there always exists anS-fulfilling reordering of it. Hence, in what follows
we provide both a theorem of existence and a way to build anS-fulfilling reordering.

Proposition 7.1. Given aD-bounded partial sequenceK and aD-bounded order en-
forcing functionS, an S-fulfilling reorderingK ′ always exists.

Proof of proposition 7.1 The demonstration is carried out by construction. For each
equivalence class[t] ∈ T/∼ we define two sequences. One contains all the integers
mapping to[t] via S (i.e. S−1([t])) ordered in increasing value. The other one is the
sequenceK restricted to the set[t] (the subsequenceK|[t]). Then,∀[t] ∈ T/∼:

be(s1, s2, . . . , si, . . . , sa) s.t. si < si+1 and{si}
a
i=1 = S−1([t]) (7.68)

be(t1, t2, . . . , tj, . . . , tb) = K|[t] (7.69)

Then, we defineK ′ asK ′(si) = ti ∀i ∈ [1, . . . , b] and∀[t] ∈ T/∼.
Point (2) of definition 7.9 is trivially satisfied by construction. Point (1) of definition

7.9 is satisfied ifK(si) ∈ S(si). But per construction we have thatK(si) = ti, ti ∈ [t]
andS(si) = [t].

In the following section we add some complementary definitions about sequences
and order relationships.
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7.4.3 Order Fulfilling Sequences

Our aim is to assess the positions to a-priori assign to SCOs in such a way that the order
established by the SDG is not violated. We explained in section 7.2.1 that we have to
make sure that all the SCOs such thatt ≺ t′ must be assigned positions such thatt
comes beforet′ in the sequence. Thus, the first step is knowing which ones, among
the possible solutions, do not violate the strict order imposed by (T/∼,≺). With this
purpose, we give a definition to decide whether a partial sequence fulfils a strict order
relationship.

Definition 7.10 (Order Fulfilling Sequence). We say that a partial sequenceK overT
fulfils an order relation(T/∼,≺) iff:

∀i, j ∈ dom(K) [K(i)] ≺ [K(j)] ⇒ i < j (7.70)

This definition formally states that a partial sequenceK fulfils the order relationship
≺ only if the relative order among SCOs withinK does not violate≺.

Example 7.29.The partial functionK in table 7.14 does not fulfil the order relationship
defined by the SDG in figures 7.2(b) and (c).K violates the order relationship in various
points. For instance, we have thatt2 appears beforet1 althought1 ≺ t2 holds. Observe
that this does not mean that this solution is not valid, but only that it does not fulfil
the order relation. On the opposite, partial sequenceK ′ andK ′′ in table 7.14 fulfil the
order relationship≺.

As mentioned above,S is a template that a partial sequence must adhere in order to
fulfil ≺. Hence, we must define the conditions for a partial sequence to satisfy a given
solution template.

In what follows we formally show that a sequence fulfillingS also fulfils the order
relationship≺.

Lemma 7.2. If K fulfils S, thenK fulfils (T/∼,≺).

Proof of lemma 7.2
From equations 7.30 and 7.25 it follows that[K(i)] ≺ [K(j)] ⇒ i < j.

The order enforcing function is exactly the solution template we were looking for.
Any partial sequence (and thus any solution) fulfilling it also fulfils the order relation-
ship (T/∼,≺). This is a very important property, since it means that the precedence
relationship among SCOs are fulfilled within such a partial sequence.

In what follows, we detail some definition and properties employed in the proof of
section 7.4.5.

7.4.4 Properties of partial sequences of SCOs

In this section we demonstrate some properties of partial sequences of SCOs that fulfil
an order relationship (T/∼,≺). Those properties will be useful in section 7.4.5. In
particular we will deal with a special case: the case in which two SCOst andt′ are
such thatt . t′ but t comes aftert′ in a partial sequence fulfilling (T/∼,≺). We will
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call it the case offorward swapping. Notice that this can happen only ift andt′ are in
the same equivalence class. Then, in what follows:

• T is a set of SCOs equipped with the preorder defined by its SDG(T, .) (as in
section 7.2.1). Recall that a SCOt ∈ T is composed by a pair of multisets of
goods:t = (It,Ot), whereIt,Ot ∈ NG.

• J : N → T is a partial sequence of SCOs that fulfils the order relationship
(T/∼,≺).

g

g1 g2

J(z̃) J(m̃)

m̃ ≤ z̃

(a)g is output ofJ(z̃) and input ofJ(m̃).

0 m̃ z̃

(b) Positionm̃ comes before positioñz in theJ partial sequence.

Figure 7.3:J(z̃) is forwardly swappedwith J(m̃) in g.

J has some important properties that we detail in the following. But before that, we
give an important definition, the definition of SCOsforwardly swapped.

We provide an example with some intuitions of the definition offorwardly swapped.
For instance, figure 7.3 graphically depicts the case in whichJ(z̃) is forwardly swapped
with J(m̃). Intuitively, say thatm̃ is a position of the partial sequenceJ such that the
associated SCOJ(m̃) hasg as an input good10 (IJ(m̃)(g) > 0). Say also that further
ahead in the sequence, at positionz̃ ≥ m̃, there is a SCO that hasg as output good
(OJ(z̃)(g) > 0). In such a case we say that SCOJ(z̃) is forwardly swapped withJ(m̃).
In figure 7.3(a) we show thatg is both input ofJ(m̃) and output ofJ(z̃), whereas in
figure 7.3(b) we graphically represent thatz̃ comes after̃m in theJ solution sequence.

10The notation here is such thatOJ(l) meansOijk where the corresponding SCO istijk = J(l)
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g2

g3 g4

g5

g6g7

g1

t0, 3
1

t1, 1

1

t2, 2

1

1

t3, 1

1

1

t4, 1
11

t5, 1
1

1

t6, 2

1

1

t7, 2

1

1
1

t8, 1
1 1

t9, 1

1 1

t10, 2

11

Figure 7.4: Part of the SDG of example 7.1

Definition 7.11 (Forwardly Swapped). Given a partial sequenceJ that fulfils an order
relationship(T/∼,≺), a goodg ∈ G and two positions̃m, z̃ ∈ dom(J) such that:

(1) IJ(m̃)(g) > 0

(2) m̃ ≤ z̃

(3) OJ(z̃)(g) > 0

then we say thatJ(z̃) is forwardly swappedwith J(m̃) in g. If m̃ = z̃ we say that
J(m̃) has aself-loop.

In what follows we present a lemma that describes three important properties of
partial sequences with swapped SCOs. The lemma is very intuitive. The intuition
behind this is explained by the following example.

Example 7.30. Consider the partial sequenceK ′ in table 7.14 . By definition it fulfils
S. Saym̃ = 6, then we have thatK ′(m̃) = t4. We also have thatIt4(g4) > 0 (see
figure 7.4). In figure 7.4 we extend figure 7.1 by highlighting in thick black the SCOs
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that are concerned in this example. Observe thatt2, whose output good isg4, is at
positionz̃ = 7 of K ′, aftert4. The reader can check that:

(1) t2 andt4 belong to a simple cycle;

(2) t4 ≺ t5, t4 ≺ t9; and

(3) t2 ∼ t4.

This means that ifJ(z̃) is forwardly swapped withJ(m̃) in g, then it holds that:

(1) J(m̃) andJ(z̃) belong to the same equivalence class;

(2) any SCOt that hasg as input good must be such that eitherJ(m̃) ≺ t or J(m̃) ∼
t;

(3) any SCOt that hasg as output good must be such that eithert ≺ J(m̃) or
t ∼ J(m̃).

These properties are generalised in the following lemma.

Lemma 7.3. If J(z̃) is forwardly swapped withJ(m̃) in g, then:

(1) J(m̃) ∼ J(z̃);

(2) for all t such thatIt(g) > 0, eitherJ(m̃) ∼ t or J(m̃) ≺ t;

(3) for all t such thatOt(g) > 0, eitherJ(m̃) ∼ t or t ≺ J(m̃).

Proof of lemma 7.3

(1) If z̃ = m̃ this is trivially true. Otherwise, we have thatJ(z̃) . J(m̃) since
g is output ofJ(z̃) and input ofJ(m̃). If we had thatJ(m̃) 6∼ J(z̃), then
[J(z̃)] ≺ [J(m̃)] would hold. Hence, from definition 7.9:

[J(z̃)] ≺ [J(m̃)] ⇒ z̃ ≺ m̃ (7.71)

that is against the initial hypothesis. Then, we can conclude thatJ(m̃) ∼ J(z̃).

(2) J(z̃) . t sinceg is output ofJ(z̃) and input oft. But we know from the previous
point thatJ(m̃) ∼ J(z̃). Then, it cannot beJ(m̃) 6. t by transitivity. At this
point only two possibilities remain, eitherJ(m̃) ∼ t or J(m̃) ≺ t. If m̃ = z̃ the
same discussion holds settingJ(m̃) = J(z̃).

(3) It is clear thatt . J(m̃) sinceg is output oft and input ofJ(m̃). But we know
from the previous point thatJ(m̃) ∼ J(z̃). At this point only two possibilities
remain, eithert ∼ J(m̃) or t ≺ J(m̃). If m̃ = z̃ the same discussion holds
settingJ(m̃) = J(z̃).

Notice that from lemma 7.3 follows that, under the hypothesisconsidered above,
there cannot be any SCO withg as input or output good that is not in relation with
J(m̃) via ..

Corollary 7.1. If J(z̃) is forwardly swapped withJ(m̃) in g, then for allt such that
Ot(g) > 0 or It(g) > 0: it cannot bet 6. J(m̃).
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7.4.5 Equivalence between solvers

In this section we prove that no solution class is lost by limiting the positions via an
ordering enforcing function. We prove this result indirectly. Instead of relying on the
definition of MMUCA WDP, we build our proof departing from the corresponding ILP
formulation, that is DIP (see section 6.2).

In fact, if we prove that (1) each solution to DIP can be reordered into a solution
to CCIP, and that (2) each solution to CCIP is also a solution to solver DIP, then we
demonstrate that no solution class is lost. In fact, there is a reason for employing this
indirect proof. By doing this, we also prove that the operation performed in section
7.3.2 — the elimination of part of the constraints of solver CCIP— is legal.

With this in mind we demonstrate the following two theorems:

Theorem 7.1. Given a partial sequenceH , solution to solver DIP, any S-fulfilling
reorderingJ of H fulfils all the constraints of solver CCIP.

Theorem 7.2. Given a partial sequenceJ , solution to solver CCIP, it fulfils all the
constraints of DIP.

Theorems 7.1 and 7.2 will be proved in the remaining of the chapter. Relying on
those theorems, we can prove that:

Corollary 7.2. Any solution found by solver DIP can be reordered into a solution to
solver CCIP.

Proof of corollary 7.2 SayH is a solution to solver DIP with objective valuecH .
Assume that there exists an S-fulfilling reorderingJ of H that is not a solution to solver
CCIP. The cost associated to solution sequenceJ is equal to the costcH associated to
solutionH sinceJ is a reordering ofH . For theorem 7.1J fulfils all the constraints of
CCIP. SinceJ is not an optimal solution to solver CCIP, there must exist another solution
J ′ to solver CCIP with objective valuecJ′ > cJ = cH . However, from theorem 7.2,
we have that each solution to solver CCIP fulfils all the constraints imposed by DIP
. Then,J ′ should be an optimal solution to DIP since it fulfils all its constraints and its
objective value is larger thancH . This is against the hypothesis that the solution isH .
It follows thatJ is an optimal solution to CCIP.

Corollary 7.3. Any solution found by solver CCIP is a solution to solver DIP.

Proof of corollary 7.3 Say J is an optimal solution to solver CCIP with costcJ .
Assume that it is not an optimal solution to solver DIP. From theorem 7.2 we have that
J fulfils all the constraints of solver DIP. Then, there should be another solutionH of
DIP with costcH > cJ . In this case, in virtue of theorem 7.1, it could be reordered
into a solution sequence fulfilling the constraints of solver CCIP. SinceH fulfils the
constraints of CCIP and has costcH > cJ , it should be an optimal solution to solver
CCIP. This is against the hypothesis that the solution isJ with objective valuecJ . It
follows thatJ is an optimal solution to DIP.
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7.4.6 Proof of theorem 7.1

As mentioned above, a solution to the IP model of the MMUCA WDP defined in section
6.2 can be expressed by means of a partial sequenceH : {1, . . . , |D|} → T such that11

H(m) = t iff xm
t = 1. A solution to solver CCIP, too, can be expressed by means of a

partial sequenceJ : {1, . . . , |D|} → T such thatJ(m) = t iff xm
t = 1.

The first step is thus proving that for each solution to DIP there exists a reordering
of it that fulfils the constraints of CCIP. The intuition behind this theorem is illustrated
by the following example:

Example 7.31. Consider again example 7.27. The partial sequenceK ′ in table 7.14
is an S-fulfilling reordering of sequenceK in table 7.14 . Recall thatK is a solution
to the MMUCA of example 7.1 found by solver DIP.K ′ is a still valid solution to the
MMUCA of example 7.1.

With theorem 7.1 we aim at demonstrating the universality of the result of example
7.31: anyS-fulfilling reordering of a solution is still a valid solution to the MMUCA
WDP. For the sake of simplicity we resume the IP CCIP in table 7.15.

Since the proof of theorem 7.1 is complex and rather long, we begin by demonstrat-
ing several lemmas.

First, we show thatJ fulfils equations (a),(b), and (c) in table 7.15. Equation (a)
sums intoxijk the number of times SCOtijk appears in a solution sequence. Equation
(b) enforces that either all or none of the SCOs within a bid are selected. Equation
(c)enforces that at most one bid is selected for each bidder.

Lemma 7.4. Given a partial sequenceH , solution to solver DIP, any S-fulfilling re-
orderingJ of H fulfils constraints (a),(b), and (c) in table 7.15.

Proof of lemma 7.4 xijk of equation 6.91 counts the number of timestijk appears
in the solutionH . Thus, we have thatxijk = |H−1(tijk)|. On the other hand,xijk

in equation 7.15(a) counts the number of times SCOtijk appears inJ . Then, we have
xijk = |J−1(tijk)|. SinceJ is anS-fulfilling reordering ofH , from point (2) of defini-
tion 7.9 we can derive that|H−1(tijk)| = |J−1(tijk)| ∀tijk . Then, the variablesxijk

assume the same values in equation 6.91 forH as in equation (a) in table 7.15 forJ .
From this follows trivially that equations (b) and (c) in table 7.15 are fulfilled byJ

if equations 6.91 and 6.92 are fulfilled byH . Furthermore, the objective values of the
two IPs DIP and CCIP assume the same optimal value, i.e. equations 6.96 and (g) in
table 7.15 assume the same values forH andJ respectively.

Next we consider equation (d) in table 7.15. Equation (d) enforces that at most one
SCO can hold each position of the solution sequence.

Lemma 7.5. Given a partial sequenceH , solution to solver DIP, any S-fulfilling re-
orderingJ of H fulfils constraint (d) in table 7.15.

Proof of lemma 7.5 Constraint (d) in table 7.15 is fulfilled iff at most one SCO is
selected at each position of the solution sequence. SinceJ is a partial sequence, it

11In order to ease the notation we will henceforth employt for indicating the generic SCOtijk . Equiva-
lently, we will employtp to indicatetipjpkp

andt′ to indicateti′j′k′ .
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(a) ∀ijk xijk =
∑

m∈S−1([tijk ])

xm
ijk

(b) ∀ijk xijk = xij · Dij(tijk) ∀ijk

(c) ∀i
∑

j

xij ≤ 1

(d) ∀m
∑

tijk∈S(m)

xm
ijk ≤ 1

(e) ∀g ∈ G U0(g) +
ℓ∑

m=0

∑

tijk∈S(m)

xm
ijk · [Oijk(g) − Iijk(g)] ≥ Uout(g)

∀g ∈ G U0(g) +

m−1∑

l=0

∑

tijk∈S(l)

xl
ijk · [Oijk(g) − Iijk(g)] ≥

(f) ∀m ∈ LF

∑

tijk∈S(m)

xm
ijk · Iijk(g)

(g) max
∑

ij

xij · pij

Table 7.15: Resume of the IP formulation of solver CCIP.

cannot be the case that more than one SCOs is associated to a single position. Then it
is always fulfilled.

Next, we consider equation (e) of table 7.15. Equation (e) enforces that the goods
available to the auctioneer at the end of the solution sequence is at leastUout.

Lemma 7.6. Given a partial sequenceH , solution to solver DIP, any S-fulfilling re-
orderingJ of H fulfils constraints (e) of table 7.15.

Proof of lemma 7.6 We can rewrite equation (e) of table 7.15 considering that the
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solution isJ . Then we have:

U0(g) +
∑

m∈dom(J)

[OJ(m)(g) − IJ(m)(g)] ≥ Uout(g) (7.72)

Now we rewrite equation 6.95 of solver DIP considering that the solution isH :

U0(g) +
∑

m∈dom(H)

[OH(m)(g) − IH(m)(g)] ≥ Uout(g) (7.73)

Notice that∀t ∈ T |H−1(t)| = |J−1(t)| sinceJ is anS − fulfilling reordering of
H . Then, the Left Hand Side (LHS) of equations 7.72 and 7.73 assume the same value.
Then, trivially, equation (e) of table 7.15 is fulfilled byJ if equation 6.95 is fulfilled by
H .

The most complex demonstration is ensuring that all the selected SCOs are enabled
at each step. This means checking that equation (f) of table 7.15 is always fulfilled by
J given that 6.94 is fulfilled byH . Then, we further divide the demonstration of this
lemma in some sub lemmas. But before that, we rewrite equations 6.94 and (f) of table
7.15 considering that the solutions areH andJ respectively12:

U0(g) +
m−1∑

l=0

[OH(l)(g) − IH(l)(g)] ≥ IH(m)(g) (7.74)

∀g ∈ G, ∀m ∈ [1, ..., ℓ]

for equation 6.94 and

U0(g) +

m−1∑

l=0

[OJ(l)(g) − IJ(l)(g)] ≥ IJ(m)(g) (7.75)

∀g ∈ G, ∀m ∈ [1, ..., ℓ]

for equation (f) of table 7.1513.
In the demonstration, we will prove that equation 7.75 is fulfilled byJ for a general

goodg and at a step̃m that complies with different hypothesis. The different hypothesis
will be treated in the different lemmas that follow.

The first non trivial case is obviously when the SCO associated to stepm̃ requires
input goods fromg. In this case, too, we have to distinguish two sub-cases that are
described in lemmas 7.7 and 7.9. Lemma 7.7 deals with the case in which there is no
SCO that adds tokens intog holding a position after̃m− 1 in partial solution sequence
J , whereas lemma 7.9 considers the complementary case.

12In order not to overcharge the notation, we write
m−1
P

l=0
instead of

P

l≺m:l∈dom(J)

.

13We should add constraint 7.75 only for stepsm associated to SCOs belonging to cycles (m ∈ LF ).
Instead, we add it for everym. However, this case is more restrictive and then, if it is satisfied in this case, it
will be also fulfilled if we remove the equations corresponding tom 6∈ LF .
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Lemma 7.7. Given a partial sequenceH , solution to solver DIP, any S-fulfilling re-
orderingJ of H fulfils constraints (f) of table 7.15 at a step̃m and at a goodg such
that:

• IJ(m̃)(g) > 0

• ∀z̃ ≥ m̃ OJ(z̃)(g) = 0

Proof of lemma 7.7 In this case we can write equation 7.75 as14:

U0(g) +

ℓ∑

l=0

OJ(l)(g) ≥
m̃∑

l=0

IJ(l)(g) (7.77)

since after step̃m no SCO can add further contributions to goodg. We can also write
the following inequation:

m̃∑

l=0

IJ(l)(g) ≤
ℓ∑

l=0

IJ(l)(g) (7.78)

since there could be SCOs with positions afterm̃ that remove tokens fromg. Then,
equation 7.77 is fulfilled if the following equation is fulfilled:

U0(g) +
ℓ∑

l=0

OJ(l)(g) ≥
ℓ∑

l=0

IJ(l)(g) (7.79)

Considering that equation 7.72 holds, equation 7.79 is satisfied.

Now we deal with the most problematic sub-case, i.e. when there exists a SCO that
can add tokens intog and holds a position after̃m. Notice that this case is someway
connected to the case of forwardly swapped SCOs (see definition 7.11). In order to
cover this case, we have to demonstrate two lemmas. The first follows:

Lemma 7.8. Given a partial sequenceH , solution to solver DIP, and an S-fulfilling
reordering of itJ , assume that at a step̃m ∈ dom(J) and for a goodg ∈ G it holds
that:

(1) IJ(m̃)(g) > 0, i.e. g is an input good to transitionJ(m̃);

(2) ∃z̃ ≥ m̃ such thatOJ(z̃)(g) > 0, i.e. J(z̃) is forwardly swapped withJ(m̃) in g;

(3) q = [J(m̃)], i.eq is the equivalence class ofJ(m̃);

14Equation 7.75 can be rewritten in an equivalent form if we bring to the right hand side of the equation all
the terms containingI:

U0(g) +

m̃−1
X

l=0

OJ(l)(g) ≥
m̃

X

l=0

IJ(l)(g) (7.76)
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(4) s̃ = fH|q

(

f−1
J|q

(m̃)
)

, i.e. s̃ is the position inH corresponding to the positioñm

in J15.

Then, we have that:

s̃−1∑

l=0

OH(l)(g) ≤
m̃−1∑

l=0

OJ(l)(g) (7.80)

and

s̃−1∑

l=0

IH(l)(g) ≥
m̃−1∑

l=0

IJ(l)(g) (7.81)

Proof of lemma 7.8 We begin by checking that equation 7.80 holds. Recall that since
hypothesis (2) of lemma 7.8 holds, from lemma 7.3 we have that all the SCOst with g
as output good (Ot(g) > 0) that exist are such thatt ≺ J(m̃) or t ∼ J(m̃). Then, only
those SCOs can contribute to increase the Right Hand Side (RHS) and LHS of equation
7.80.

With this in mind we show that equation 7.80 is fulfilled. Then, denotingt̃ =
J(m̃) = H(s̃), we have that:

(1) All the SCOst=J(p) such thatt ≺ t̃ andOt(g) > 0 have added their contribution
to the RHS of equation 7.80, but not necessarily to the LHS. This is because for
point (1) of definition 7.9 we have that:

[J(p)] ≺ [J(m̃)] ⇒ p ≺ m̃ (7.82)

Oppositely, not necessarily all the SCOst ≺ t̃ have added their contribute to the
LHS of equation 7.80.

(2) Any SCOt ∼ t̃ that has added its contribute to the RHS of equation 7.80 has
also given its contribute to the LHS either. This is because per hypothesis ofS-
fulfilling reorderingH|[J(m̃)] = J|[J(m̃)], i.e. the order in which the SCO within
the same equivalence class are executed is the same forH andJ .

Similarly, we check that equation 7.81 is fulfilled. Recall that since hypothesis
(2) of lemma 7.8, from lemma 7.3 we have that all the SCOst with g as input good
(It(g) > 0) that exist are such thatJ(m̃) ≺ t or t ∼ J(m̃). Then, only those SCOs can
contribute to increase the RHS and LHS of equation 7.80.

With this in mind we show that equation 7.81 is fulfilled since, denotingt̃ =
J(m̃) = H(s̃), we have that:

15SinceH is a reordering ofJ , there must exists a step̃s to which-is associated the SCO corresponding to
them̃-th position ofJ . Steps̃, corresponding to the original position inH of them̃-th element ofJ , can be
computed as explained in proposition 7.2. Recall thatfH|[J(m̃)]

is the characteristic function of the sequence

H restricted to the set[J(m̃)], whereasf−1
J|[J(m̃)]

is the inverse characteristic function of the sequenceJ

restricted to the set[J(m̃)].



182 Chapter 7. Connected Component-based Solver

(1) No SCOt such thatt > t̃, andIt(g) > 0 has given its contribute to the RHS of
equation 7.81. This is because, sayt = J(p), then for point (1) of definition 7.9
we have that:

[J(m̃)] ≺ [J(p)] ⇒ m̃ ≺ p (7.83)

Oppositely, some of the SCOs̃t ≺ t may have contributed to increase the LHS
of equation 7.81

(2) Any SCOt such thatt ∼ t̃ that has not executed in the RHS of equation 7.80 has
not been executed in the LHS either. This is because per hypothesisH|[J(m̃)]

=
J|[J(m̃)]

, i.e. the order in which the SCO within the same equivalence class are
executed is the same forH andJ .

With the result of lemma 7.8 at hand we can proceed to deal with the most problem-
atic sub-case:

Lemma 7.9. Given a partial sequenceH , solution to solver DIP, any S-fulfilling re-
orderingJ of H fulfils constraints (f) of table 7.15 at a step̃m and at a goodg such
that:

• IJ(m̃)(g) > 0

• ∃z̃ ≥ m̃ such thatOJ(z̃)(g) > 0

Proof of lemma 7.9 Notice that we are under the hypothesis (1) and (2) of lemma
7.8. .As we mentioned in footnote 15, sinceJ is a reordering ofH , there must exists a

positions̃ of H corresponding to positioñm in J . That iss̃ = fH|q

(

f−1
J|q

(m̃)
)

, as in

hypothesis (4) of lemma 7.8.
Now consider that equation 7.74 is fulfilled for allm, sinceH is a solution to solver

DIP. In particular it will hold at positioñs. Then, if we rewrite expressions 7.74 and
7.75 at those steps̃s andm̃

U0(g) +
s̃−1∑

l=0

OH(l)(g) − IH(l)(g) ≥ IH(s̃)(g) (7.84)

U0(g) +

m̃−1∑

l=0

OJ(l)(g) − IJ(l)(g) ≥ IJ(m̃)(g) (7.85)

an we check that the LHS of equation 7.84 is smaller than the LHS of equation 7.85,
we are sure that equation 7.85 is fulfilled at stepm̃, since it is fulfilled in equation 7.84
per hypothesis. Then, we check if the following equation is fulfilled:

s̃−1∑

l=0

OH(l)(g) − IH(l)(g) ≤
m̃−1∑

l=0

OJ(l)(g) − IJ(l)(g) (7.86)



7.4. Equivalence between solvers DIP and CCIP 183

With easy algebraic SCOs is is easy to check that equation 7.86 is satisfied if both
equation

s̃−1∑

l=0

OH(l)(g) ≤
m̃−1∑

l=0

OJ(l)(g) (7.87)

and equation

s̃−1∑

l=0

IH(l)(g) ≥
m̃−1∑

l=0

IJ(l)(g) (7.88)

are satisfied. In virtue of lemma 7.8 the equations above are satisfied.

The last lemma deals with a trivial case. That is, when we consider a goodg and a
stepm̃ of the partial sequenceJ for which g in not an input good to the selected SCO
J(m̃). Sinceg is not an input good, equation 7.75 assume a trivial form.

Lemma 7.10. Given a partial sequenceH , solution to solver DIP, any S-fulfilling re-
orderingJ of H fulfils constraints (f) of table 7.15 at a step̃m and at a goodg such
thatIJ(m̃)(g) = 0

Proof of lemma 7.10 The SCO enabled at step̃m does not require input goods from
goodg. It is a trivial case since if the equation was enabled at stepm̃ − 1 it is enabled
at stepm̃. At step1 it is enabled sinceU0(g) ≥ 0.

In conclusion, we showed that equation 7.76 is fulfilled for everym and for everyg
whenJ is the solution sequence. Then we can now give a further lemma:

Lemma 7.11. Given a partial sequenceH , solution to solver DIP, any S-fulfilling re-
orderingJ of H fulfils constraints (f) of table 7.15.

Proof of lemma 7.11 all the possible cases are covered by lemmas 7.10, 7.7, and 7.9.

Finally, after proving all the parts of the theorem, we restate it and prove it.

Theorem 7.3. Given a partial sequenceH , solution to solver DIP, any S-fulfilling
reorderingJ of H fulfils all the constraints of solver CCIP.

Proof of theorem 7.1 All the equations are covered by lemmas 7.4, 7.5, 7.6, 7.11

7.4.7 Proof of theorem 7.2

At this point we have to check that the other way around is true, too. That is, given a
solution to solver CCIP, this fulfils all the constraints of solver DIP.

Proof of theorem 7.2 First, notice that imposing thatxm
ijk = 0 ∀m 6∈ S([tijk]) for

DIP we obtain the same equations as for solver CCIP, excepting expression (f) of table
7.15. The fact the we do apply the expression only when the positionm is associated
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to a SCO belonging to a cycle (m ∈ LF ) creates an asymmetry between the two prob-
lems. However, in what follows we show that equation (f) of table 7.15 is automatically
fulfilled for J in solver CCIP whenm 6∈ LF . We rewrite equation (f) of table 7.15
considering that the solution isJ (as in equation 7.75) for a generic stepm̃ 6∈ LF to
which a SCÕt = J(m̃) is associated:

U0(g) +
m̃−1∑

l=0

[OJ(l)(g) − IJ(l)(g)] ≥ IJ(m̃)(g) (7.89)

Per absurd, say that for a solutionJ of solver CCIP this does not hold:

U0(g) +

m̃−1∑

l=0

[OJ(l)(g) − IJ(l)(g)] < IJ(m̃)(g) (7.90)

Notice that constraint 7.72 enforces that at the end of the sequence the units of goodg
available must be at least 0:

U0(g) +

ℓ∑

m=0

[OJ(m)(g) − IJ(m)(g)] ≥ Uout(g) ≥ 0 (7.91)

Then, if equation 7.90 holds at step̃m, there must exist some SCOt = J(z̃), holding a
positionz̃ ≥ m̃ in the solution sequence that adds tokens intog (Ot(g) > 0). we have
two cases:

(1) z̃ = m̃: in this caseJ(m̃) has a self-loop, and thusJ(m̃) belongs to the cycle
〈J(m̃), J(m̃)〉.

(2) z̃ > m̃: In this caseJ(z̃) is forwardly swapped withJ(m̃) in g. From this follows
that, in virtue of point (1) of lemma 7.3,J(z̃) ∼ J(m̃). Then,J(m̃) belongs to a
cycle.

Both of the possibilities contradicts the initial hypothesism̃ 6∈ LF . Then, we can
conclude that any solution to solver CCIP fulfils equation 7.89 whenm̃ does not belong
to a cycle.

7.5 Conclusions

In this chapter we have proposed a representation of the MMUCA WDP that consid-
erably reduces the search space. This is obtained by reducing the space of feasible
solutions. We have showed that the pruned solutions can be always reordered into
equivalent solutions belonging to the reduced solution space. Such a reduction in the
solution space entails a reduction in the size of the search space.

Notice also that computing the order enforcing function is computationally easy.
In fact, there is a very efficient algorithm to compute the SCCs of the SDG graph
(Cormen, 2001). This is an important point to consider. Thus, we managed to divide
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the MMUCA WDP problem into two subproblems, and one of those subproblems is
solvable in polynomial time.

Obviously, the number of decision variables and the size of the search space depend
on the size of cycles in a mixed auction net. In fact, we showed that the number of
required decision variables for CCIP isO(

∑

ijk |S
−1(tijk)|). Thus, the bigger the

strongly connected components, the more the number of decision variables. In the next
section we provide a preliminary empirical test that confirms that the reduction in the
search space corresponds to a reduction in the solving time of CCIP with respects to
DIP.

Finally, notice that when all the SCOs form a unique Strongly Connected Compo-
nent (i.e. the SDG is connected), DIP and CCIP provide exactly the same ILP model.
Whereas when the SCOs do not form any cycle, CCIP is equivalent to the CMWOSP-
based solver. Then. we can infer that CCIP perfectly exploits the topology associated
to SCOs and generalises both solvers CCIP and DIP.





Chapter 8

Empirical Evaluation

The purpose of this chapter is to perform a preliminary empirical evaluation of the
CMWOSP-based (presented in section 6.1.5), DIP, and CCIP solvers. In fact, our goal
is to provide some useful hints on the applicability of MMUCAs.

The chapter is structured as follows. In section 8.1, we motivate the experiments
provided in this chapter. In section 8.2 we summarise the artificial data set generator
for MMUCAs presented in (Vinyals, 2007b), and detail the corresponding algorithm.
In section 8.3, we analyse some early, empirical results after:

• running and comparing DIP and CCIP solvers on arbitrary network topologies;

• running the CMWOSP-based solver on acyclic network topologies1.

Finally, we draw some conclusions in section 8.4.

8.1 Motivation

Despite its potential for application, and like CAs, little is known about the practical
application of MMUCAs since no real-world data is available to test WD algorithms.
Such results are unlikely to come up unless researchers are provided with algorithms
or test suites to generate artificial data representative of the auction scenarios a WD
algorithm is likely to encounter.

In the very recent past, there have been some attempts to empirically evalu-
ate the performances of MMUCA WDP algorithms. In particular, Vinyals et. al.
(Vinyals et al., 2007a; Vinyals et al., 2007b; Vinyals, 2007b) carefully analyse the per-
formances of the DIP solver, after providing an algorithm to generate artificial data sets
that are representative of the sort of scenarios a WD algorithm is likely to encounter.
In those works Vinyals et al. show that DIP scales up to small and medium scenarios
depending on the testing parameters.

1We recall that the CMWOSP-based solver, introduced in section 6.1.5, can only deal with acyclic network
topologies.
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In this chapter, we employ Vinyals’ bid generator algorithm to generate ar-
tificial data and subsequently compare the performances of Integer Programming
(IP) implementations of the DIP, CCIP, and CMWOSP-based solvers. In appendix
A we present those models encoded in the OPL language (see section 2.1.2 and
(Van Hentenryck, 1999)).

Firstly, we compare DIP and CCIP on arbitrary network topologies. Recall that, as
proved in chapter 7, CCIP provides a more concise IP formulation than DIP in terms
of both number of decision variables and constraints. In this chapter we empirically
quantify the computational cost reduction deriving from the reduction of the number of
decision variables. Secondly, we run the CMWOSP-based solver to assess the perfor-
mances of CCIP on acyclic networks.

Notice that our empirical evaluation focuses on a proof-of-concept scenario. There-
fore, an accurate quantitative comparison would require a much wider range of sce-
narios. However, this is left out for future work because it is beyond the scope of this
thesis.

8.2 The Artificial Data Set Generator

In order to perform our evaluation, we employ a test set generator designed and imple-
mented by Vinyals in her master’s thesis (Vinyals, 2007b), and thoroughly explained in
other publications (Vinyals et al., 2007a; Vinyals et al., 2007b). Vinyals et. al present
an algorithm to generate artificial data that is representative of the sort of scenarios a
winner determination algorithm is likely to encounter and provide a very detailed anal-
ysis of the computational performance of DIP. The empirical evaluation contained in
this chapter has been developed in close collaboration with Vinyals.

In what follows, we summarise the details of the generator proposed by Vinyals et.
al. Firstly, we specify the requirements the generator is expected to fulfil, and then we
present some implementation details.

Since the bid generator is not a contribution of this dissertation, we only briefly
summarise some of the bid generator features. The reader that is interested in the bid
generator details should refer to the above mentioned publications.

8.2.1 Bid Generator Requirements

In order to test and compare MMUCA WD algorithms, researchers must be provided
with algorithms or test suites to generate artificial data that is representative of the
auction scenarios a WD algorithm is likely to encounter. Hence, WD algorithms can be
accurately tested, compared, and improved. Unfortunately, we cannot benefit from any
previous results in the literature since they do not take into account the notion of SCO
introduced in chapters 4 and 5. In this section, we make explicit the requirements for
a bid generation technique considering that in MMUCA agents trade SCOs instead of
goods.

A naive approach to artificial bid generation would be to create bids uniformly at
random. However, this approach would generate unrealistic bids and therefore unre-
alistic scenarios. Let us consider a random bidb = (1′(I,O), p). If goods appearing
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in setsI andO are selected uniformly at random, there is little chance that they will
represent a realistic SCO. Also, ifp is chosen uniformly at random, it will not be re-
lated with the actual values of the goods in the setsI andO and consequently the SCO
would be either too profitable or too expensive for the auctioneer, unrealistically easing
the problem.

If individual bids uniformly at random generated may be unrealistic, bundles of
random bids also present similar drawbacks.

Then, testing WD algorithms on these scenarios is almost useless, because any ex-
tracted conclusion cannot be used in real settings. The bid generator has to satisfy a
number of requirements to make the artificial bids close to the bids that are likely to
appear in a real-world auction.

In what follows, we introduce an example to illustrate the requirements the genera-
tor must fulfil.

Example 8.1. Consider the assembly of a car’s engine, whose structure is depicted
in Figure 8.1. In the figure, we employ a graphical representation analogous to Place
Transition Nets. Notice that each part in the diagram, in turn, is produced form further
components or raw materials. For instance, a cylinder ring (part 8) is produced by
transforming some amount of stainless steel with the aid of an appropriate machine.
Therefore, there are several production levels involved in the making of a car’s engine.
A MMUCA allows to run an auction where bidders can bid over bundles of parts,
bundles of SCOs, or any combination of parts and SCOs. Notice that the result of
an MMUCA WD algorithm would be an ordered sequence of bids making explicit
how bidders coordinate to progressively transform goods till producing engines as final
products. Therefore, an MMUCA would allow to assemble a supply chain from bids.

Since MMUCAs generalise CAs, as discussed in chapter 5, the approach is to depart
from artificial data sets generators for CAs, keeping the requirements summarised in
(Leyton-Brown and Shoham, 2006), namely:

(1) there is a finite set of goods;

(2) certain goods are more likely to appear together than others;

(3) the number of goods in a bundle is often related to which goods compose the
bundle;

(4) valuations are related to which goods appear in the bundle;

(5) valuations can be configured to be sub-additive, additive or super-additive in the
number of goods requested; and

(6) sets of XOR’ed bids are constructed on a per-bidder basis.

Notice though that the requirements above must be reformulated, and eventually
extended, in terms of SCOs since a bidder in a MMUCA bids over a bundle of SCOs,
whereas a bidder in a CA bids over a bundle of goods. Hence, in what follows we
discuss the CA requirements listed above reformulated for MMUCA.
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Figure 8.1: Components of a car engine.

1. There is a finite set of SCOs.A CA generator bundles goods from a given set of
goods to construct bids. What is the set of SCOs from which a MMUCA generator
constructs bids? In order to provide a proper answer we must take inspiration on real-
istic scenarios faced by buyers and providers. If so, within a given market we expect
several producers to offer the very same or similar services (SCOs) at different prices,
as well as several consumers to require the very same or similar services (SCOs) valued
at different prices. In other words, within a given market we can identify a collection
of common services that companies request and offer. For instance, in the example in
Figure 8.1, several providers may offer to assemble a cylinder through the very same
SCO:

t = (6′screws+ 1′cylinder line + 1′cylinder rig + 1′cylinder head, 1′cylinder)

Eventually, a provider may either offer to perform such SCO several times (e.g. as
many times as cylinders are required), or to bundle it with other SCOs, or the two.
Hereafter, we shall consider the common goods and services in a given market to be
represented as a collection of SCOs that we shall refer to asmarket SCOs. Therefore,
market SCOsare equivalent to thegoodsin a combinatorial auction, that is the object
providers and buyers can request and offer. Hence, bids for MMUCAs shall be
composed as combinations of market SCOs. In this generator, the set of market SCOs
is always finite and includes at least two market SCOs for every good inG, ensuring
that every good is individually available to buy and/or sell. As an example, Figure 8.2
depicts a sample of market SCOs if intending to build the car engine in Figure 8.1.
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Figure 8.2: Market SCOs for a car’s engine.

2. Certain SCOs are more likely to appear together than others.In any market,
services and goods are related to each other. For example, the production process for
a good can also generate some by-products that can be sold with it or used in another
industrial process. Also, some services or products are usually bought together by the
final customer.

3. There could be multiple copies of similar SCOs in a bundle.Since bids are
composed as combinations of market SCOs, we must introduce the notion ofSCO mul-
tiplicity as the counterpart of good multiplicity (the number of units of a given good
within an offer or a request). Say that in a CA a bidder submits a bid for the goods in
multi-set{2′engine + 1′piston}. It is clear that the multiplicity of goodenginein this
bundle is two, whereas the multiplicity of goodpistonis one.

When SCOs are considered things change slightly. In fact, there are two ways to
assign a multiplicity to SCOs, one is repeating the SCO several times , and the other
one is to simultaneously increase the required input goods and produced output goods
while maintaining the same input/output ratio. For instance, consider the following
supply chain operation

t = (3′a, 2′b) = (It,Ot) (8.1)

Then, we could repeat three times it either offering three times operationt, namely:

D = 3′t = 3′(3′a, 3′b) (8.2)

or triplicating both the input and output goods:

D = (3 · It, 3 · Ot) = (9′a, 6′b) (8.3)
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Notice that the semantics of the two types of multiplicity are different. On the one
hand, equation (8.2) means that three copies of the same SCOs are offered and can be
separatelyused at three different steps of the solution sequence. On the other hand,
equation (8.3) implies that the three copies must be employed at the very same step.
That is, while in the former case there can be three different steps in the solution se-
quence in which 3 copies of “a” are available, in the latter case the bidder needsnine
copies if “a” available at a given step to perform the operation. Then, we will refer to
the multiplicity intended as in equation (8.3) asrepetition multiplicity, whereas to the
one in equation (8.2) ascomponent-wise multiplicity.

4. Valuations are related to which SCOs appear in the bundle; furthermore SCO
valuations keep consistency with respect to bidder valuations for goods involved
in each SCO.A further issue has to do with the way bidders value SCOs and bundles
of SCOs. Notice that performing a SCO to assemble the engine in Figure 8.1 results
in a new product that has more market value than its parts. Therefore, a car maker
values the SCO according to his expected benefits, namely the difference between the
expected market value of the engine and the cost of its parts. Therefore, if the parts cost
$850 and the expected market value of the engine is$1000, the car maker should be
willing to offer to pay less than$150 for the SCO. On the other hand, any provider is
expected to request less than$150 in order to perform the SCO. In general, buyers and
providers in a MMUCA should value a SCO on the basis of the difference between the
expected market value of its output goods and the cost of its input goods. Notice though
that we are not assuming here that such difference must always be positive. Likewise
bidders should value bundles of SCOs considering the values of SCOs included in it.

5. Appropriate valuations can be configured to be sub-additive, additive or
super-additive in the number of SCOs requested.This requirement tries to capture
the multiplicity-based (volume- based) discounts policies that are applied in real world.
Significant discounts are applied in real markets when goods and services are traded
at certain number of units. For example in figure 8.1, we observe that screws are
usually traded in higher quantities than full engines. Thus, not surprisingly the same
(percentage) discount may apply to an offer for 100 screws than to an offer for 5
engines. Hence, an offer to produce more than 5 engines, being more unlikely, should
reflect higher discounts.

6. Sets of XOR’ed bids are constructed on per-bidder basis.We recall from chapter
5 that when a bidder submits different bids in XOR he declares that they are mutually
exclusive offers. For example, the following offer

BID1(1
′(1′engine, ∅), 100) XOR (8.4)

BID2(1
′(2′engine, ∅), 190) (8.5)

stands for a bidder that offers to buy two engines or one engine but in any case three
engines. On the other hand when a bidder expresses complementarity he translates the
OR bids as XOR bids. For example if a bidder wants to buy one engine or one cylinder
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he submits the following XOR-bid:

BID1(1
′(1′engine, ∅), 100) XOR (8.6)

BID2(1
′(1′cylinder, ∅), 30) XOR (8.7)

BID3(1
′(1′cylinder + 1′engine, ∅), 120) (8.8)

As you can observe in both cases bids submitted in the same XOR bid are likely to have
similarities and, consequently, combining bids into XOR bids uniformly at random
does not capture this property.

7. Unrequested goods by the auctioneer may become involved in the auction.
Finally, we add a last requirement that stems from the fact that, unlike auctioneers in
CAs, not all goods involved in a MMUCA must be requested by the auctioneer. Back
to our example of a car maker in need of engines depicted in Figure 8.1, it can run a
MMUCA only requesting engines. Thereafter, bidders may offer already-assembled
engines, or other goods (e.g. parts like crankcases, crankshafts, or screws) that jointly
with SCOs over such goods help produce the requested goods.

Figure 8.3: Modules of the bid generator and their interaction.

8.2.2 An Algorithm for Artificial Data Set Generation

In what follows we describe a bid generation algorithm that automates the generation
of artificial data sets for MMUCA while capturing the requirements above. The
algorithm’s purpose is to generate MMUCA WDP (each one composed of a collection
of XOR bids and the set of goods available to and requested by the auctioneer) that
can be subsequently fed into an MMUCA WD algorithm. The algorithm starts by
generating the set of goods involved in MMUCA. Next, it generates the goods the
auctioneer requests. After that, it creates a subset of atomic SCOs, which are the
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market SCOs to employ for bid generation. Thereafter, it generates bids as linear
combinations of market SCOs, which are subsequently priced according to a pricing
policy. The resulting bids are further composed into XOR (mutually exclusive) bids
because the XOR language is fully expressive (as proved in section 5.3.6). Hence,
the bid generation algorithm2 assumes that each bidder formulates a single XOR bid,
being the number of bidders equal to the number of XOR bids. In figure 8.3 we depict
the different modules of the generator and their interaction (Vinyals, 2007a).

Good Generation. This process requires the number of different goods (ngoods) in-
volved in an auction along with the maximum price any good can take on (maxPrice).
Based on these values, it assesses for each goodg: (1) its average market price (µg)
drawn from a uniform distributionU [1, maxPrice] wheremaxPrice stands for the
maximum market price any good can take on; and (2) the distribution to assess its
multiplicity, or more precisely, the success probability (ggeometric) of a geometric
probability distribution from which the good multiplicity can be drawn.

Requested Goods Generation.This process assesses the number of units of each
good the auctioneer requests, namely the multisetUout. Since the auctioneer must not
request all goods, this process selects a subset of the goods inG to be part ofUout.
Firstly, it determines whether a goodg is requested by the auctioneer by comparing the
value drawn from a uniform distributionU [0, 1] with pgood requested, the probability of
adding a new good toUout. Once a given goodg is included inUout, the number of
units requested forg is drawn from a geometric distribution with the success probability
ggeometric obtained by the good generation process. Notice that by selecting a subset
of the goods we fulfil the requirement 7 listed in section 8.2.1unrequested goods by
the auctioneer may be involved in the auction.

Market SCOs Generation. This process generatesa finite set of SCOsto be em-
ployed as the building blocks to subsequently compose bids and consequently fulfilling
requirement 1 listed in section 8.2.1. For each good, this procedure constructs two mar-
ket SCOs, one with only input goods (I-SCO) and one with only output goods (O-SCO).
Each SCO involves a single good with multiplicity one. For instance,({engine}, {})
and({}, {engine}) stand respectively for the I- SCO and O-SCO for goodengine. Af-
ter that, the algorithm generates a limited number of market SCO (IO-SCOs) with both
input and output goods (nIO market SCOs). In order to generate each market IO-SCO,
this procedure chooses the goods to include in its input and output set employing the
probabilities of adding some good to the input and output set respectively (pgood in input

and pgood in output). Whenever a good is included to either the input or output set, its
multiplicity is calculated from a geometric distribution parametrised byggeometric.

Finally, we attach to each market SCO a probability distribution to draw its
component-wise multiplicity. It is assumed that the bid generation process, detailed
by algorithm 1, uses a geometric distribution to calculate thecomponent-wise multi-
plicity of each market SCO. Hence, the generation of market SCOs assesses the success

2Here we only provide the bid generation algorithm. The interested reader must refer to (Vinyals, 2007b)
for a complete description of all algorithms required by the artificial data set generator.
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probability to be employed by such geometric distributions, namely the probability of
adding an extra unit of a SCO already included in a bundle bid. Thus, each SCOt
is assigned a success probabilitytgeometric. However, success probabilities cannot be
uniformly at random generated because SCOs are defined over multisets of goods, and
therefore consistency must be kept with respect to the success probabilities assigned to
each good by the good generation process. Therefore, the success probability for each
SCO is set as follows. Given a SCOt = (I,O), for each goodg involved in the SCO,
The success probability oft is set to:

tgeometric = min
g∈G

g
|mI(g)−mO(g)|
geometric (8.9)

wheremI(g) (respectivelymO(g)) stands for the number of occurrences ofg in I
(respectivelyO).
Bid Generation. The bid generation algorithm (algorithm 1) generates bids that are
subsequently combined into XOR bids, each one encoding the offer or request of a
bidder. This process makes explicit:

(1) which SCOs and how many of them to offer/request in a bundle;

(2) how to price the bundle; and

(3) which bids to combine in an XOR bid.

In what follows we detail each of this functions:

(1) Selecting the SCOs requested in a bundle and their multiplicities.Firstly, for
each XOR bid (XORBid ) the algorithm composes each bid (Bid ) by combining
the market SCOs (MTS ) returned by the market SCO generation process. The
number of market SCOs (nTransfBid ) to compose each bid is obtained from a
normal distributionN (µadd new SCO, σadd new SCO) (line 12).

Market SCOs are chosen from the set of market SCOs (MTS ) and their
component-wise multiplicityin the bundle bid is obtained from a geometric

distribution with success probabilitytgeometric (line 15-16). By assessing the
number of units to include in a bundle using a probabilistic distribution that de-
pends on each SCO we partially fulfil requirement 3:there could be multiple
copies of similar SCOs in a bundle. In fact, in this way SCOs repeated as in
equation (8.3) are likely to appear. In this way the authors provide arepetition
multiplicity associated to SCOs as well.

We also consider that, given an existing bundle, not all SCOs are equally likely
to be requested becausecertain SCOs (for which complementarities hold) will be
more likely to appear together than others, as stated by requirement 2 in section
8.2.1. To ease these complementarities we assume that the probability of adding
a new market SCO to an existing bundle only depends on the last SCO added and
not on the whole bundle (Markov property).

It is clear that different copies of the same SCOs may be included in the solution.
That is, we may haverepetitionsof SCOs (as the one in equation (8.2)). Then,
requirement 3 is completely fulfilled.
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(2) Pricing the bundle. Next, the algorithm prices the SCO according to its
component-wise multiplicity(lines 17-21). To fulfil valuations requirements
listed in section 8.2.1, a pricing policy must provide the means to price a good,

Algorithm 1 Bid Generation(MTS, nXOR bids, µ, σprices, µadd new XOR clause,
σadd new SCO, µadd new SCO, σadd new SCO, α)

1: for g = 1 to ngoods do
2: for b = 1 to nXOR bids do
3: pprices bid[b, g]← µ[g] ·N(1, σprices)
4: end for
5: end for
6: Bids← ∅
7: for b = 1 to nXOR bids do
8: XORBid← EmptyXORBid()
9: nXORClauses← N (µadd new XOR clause, σadd new XOR clause)

10: for x = 1 to nXORClauses do
11: Bid← EmptyCombinatorialBid()
12: nTransfBid← N (µadd new SCO, σadd new SCO)
13: if x == 1 then
14: for t = 1 to nTransfBid do
15: MT ← Select a SCO using Markov model fromMTS with stateMT
16: multiplicity ← Geometric(MT.tgeometric) bid B.
17: T.inputs←MT.inputs ·multiplicity
18: T.outputs←MT.outputs ·multiplicity
19: T.price←

P

g∈T.outputs

pprices bid[b, g]−
P

g∈T.inputs

pprices bid[b, g]

20: poffer ← (T.tgeometric)
multiplicity

21: discount← α 1−e
1−poffer

1−e

22: Bid.t← Bid.t ∪ T
23: Bid.price← Bid.price + T.price · (1− discount)
24: end for
25: else
26: model←Uniformly At Random generate a number between 1 and x-1
27: Bid← XORBid(model)
28: if nTransfBid ≥ length(XORBid(model).t) then
29: Bid← removeRandomTransition(Bid)
30: Bid← recalculatePrices(Bid)
31: end if
32: if nTransfBid ≤ length(XORBid(model).t) then
33: Bid← addRandomTransition(Bid)
34: Bid← recalculatePrices(Bid)
35: end if
36: end if
37: XORBid← XORBid ∪ {Bid}
38: end for
39: Bids← Bids ∪ {XORBid}
40: end for
41: return Bids



8.2. The Artificial Data Set Generator 197

a SCO, multiple units of the very same SCO, and a bundle of SCOs in a realistic
manner. As to pricing goods, in order to vary prices among bidders, the algorithm
generates a price for bidderb for goodg, represented aspprices bid[b, g], from
a normal distributionN (µ[g], σprices), whereµ[g] stands for goodg’s average
price in the market andσprices for the variance among bidders’ prices (lines 2-4).
Thereafter, a SCO’s price for bidderb is assessed in terms of the difference from
his valuation of its output goods with respect to his valuation of its input goods
(line 19). Accordingly,SCO valuations keep consistency with respect to bidder
valuations for goods involved in each SCOas stated by requirement 5 in section
8.2.1. Each bid valuation is obtained by adding the prices of its SCOs (line 23).
Hencevaluations are related to which SCOs compose the bundleas stated by re-
quirement 6 although varying among different bidders. Furthermore we propose
to introduce super-additivity by applying multiplicity-based discounts to SCOs
addressing the requirement thatvaluations can be configured to be sub-additive,
additive o super-additive in the number of SCOs requested. In other words, as
a general rule, the more unlikely for a SCO to be traded at certain units (multi-
plicity), the higher the discount to apply to its overall price. In this way we try
to capture in a realistic manner the way multiplicity-based (volume-based) dis-
counts are applied in the real world. Therefore, given SCOt, we firstly assess
the probabilitypoffer of the SCO to be traded withcomponent-wise multiplicity
m from a geometric distribution with success probabilitytgeometric as follows:
poffer = tgeometric

multiplicity (line 20). Secondly, we compute the discount

to apply (discount) as follows:discount = α 1−e
1−poffer

1−e
. Indeed, in this way

we manage to apply higher discounts to more unlikely offers within the range
[0, α]. Notice too that settingα to zero leads to no discounts, and thus to no
super-additivity.

(3) Which bids to combine in an XOR bid.Finally, after creating each bid, the
algorithm adds it to the XOR bid under construction (line 37). The num-
ber of bids that compose an XOR bid is obtained from a normal distribution
N (µadd new XOR clause, σadd new XOR clause) (line 9). We consider here require-
ment 7 listed in section 8.2.1 and since different bids in XOR-relationships stand
for different alternatives or options for the bidder we propose to generate similar
bids for the same XORBid. The first bid of each XORBid is generated uniformly
at random (lines 13-24) whereas the rest of bids are created applying some mod-
ifications over one existing bid in the bundle (lines 25-36). The number of modi-
fications depends on the difference between the number of SCOs assigned to the
new bid and the existent one:

• if it is less we remove randomly one SCO;

• if it is greater we add uniformly at random new SCOs; and

• if it is equal we apply once both operations.

In all cases we finally recalculate the prices following the proposed price policy.
Hence the requirement thatsets of XOR’ed bids are constructed on a per-bidder
basisis fulfilled.
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ngoods 20
nIO market SCOs n SCOs/3

max price 100
σprices 0.05
pgood requested 0.3
µadd new SCO 1.0
σadd new SCO 0
µadd new XOR clause 1.0
σadd new XOR clause 0
pgood in input 0.2
pgood in output 0.1
α 0.1
p ISCOs 0.6
p OSCOs 0.1
allow cycles 1

Table 8.1: Artificial generator parameter values.

8.3 Empirical Evaluation

In this section, we firstly provide a preliminary comparison of DIP and CCIP on ar-
bitrary supply chain network topologies. Next, we run the CMWOSP-based solver on
acyclic network topologies.

8.3.1 DIP versus CCIP

In what follows, we provide a preliminary experiment to quantitatively assess the size
of the supply chain formation scenarios that CCIP allows to solve compared to DIP.

According to (Hillier and Lieberman, 1986), the number of decision variables is a
good index of the difficulty of an optimisation problem (although not the only one).
Since the number of decision variables of both DIP and CCIP depend on the number of
SCOs within the submitted bids, in order to compare their computational performances
and to analyse their scalability, we have chosen to observe their solving times as the
number of SCOs increases. In order to compare the DIP and CCIP MMUCA WD
algorithms, we have employed randomly generated MMUCA WDPs using the artificial
data set generator presented in section 8.2. We have set the generator parameters for
this experiment as listed in Table 8.1.

We ran our experiments as follows. We generated MMUCA WDP instances with
SCOs within the range[0, 300]. We sampled the interval to generate 50 WDP instances
every 20 SCOs. Both solvers DIP and CCIP were fed with the very same WDP in-
stances. We solved each WDP instance using implementations of both solvers on
CPLEX 10.1 (ILOG, 2007), recording both the solutions and solving times. More-
over, we set a maximum time limit to 4800 seconds for each solver to find a solution for
each WDP instance. Whenever any of the solvers exceeded the time limit, we marked
the WDP astime exceededand assigned. After that, we set its solving time to the time
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Figure 8.4: Comparison between DIP and CCIP.

limit to subsequently record it. Notice that we only considered feasible WDP instances
to calculate solving times since the time required by CPLEX to prove unfeasibility is
(usually) significantly lower than the time required to find an optimal solution. Finally,
we ran all tests on a Dell Precision 490 with double processor Dual-Core Xeon 5060
running at 3.2 GHz with 2Gb RAM on a Linux 2.6.

Figures 8.4 and 8.5 summarise the results of this experiment. Figure 8.4 depicts the
median of the solving times obtained when varying the number of SCOs. Figure 8.5
shows for both DIP and CCIP the number of instances that have been solved within
the time limit. Then, given a time limit, CCIP was able to solve problems with more
than twice the number of SCOs than DIP did solve. Indeed, whereas 120 represents
the empirical limit (∼50% of solved instances) on the number of SCOs for DIP, CCIP
starts reaching the time limit when solving WDP instances containing more than 250
SCOs. Furthermore, for WDPs with close to 100 SCOs, DIP is in median about 70
times slower than CCIP. This ratio rapidly increases as the number of SCOs gets close
to 120 in the presented scenario.

The observations stemming from this experiment are very promising. They in-
dicatethat we can obtain substantial reductions in the solving time when employing
CCIP instead of DIPdepending on the features of the scenario. The search space reduc-
tion obtained with solver CCIP translates into a significant decrease in computational
solving time complexity.
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Figure 8.5: Number of instances solved within the time limit (4800 sec.).

8.3.2 Performances of the CMWOSP-based solver

In this section we aim at testing the performances of the CMWOSP algorithm (that can
be used only when theMixed Auction Netis acyclic). Recall that (section 7.3.3) at the
theoretical level the CMWOSP-based and CCIP solvers are equivalent when theMixed
Auction Netis acyclic. However, if we employ CCIP we should compute the strongly
connected components beforehand. In this case, since we a-priori know that theMixed
Auction Netis acyclic, we directly employ the CMWOSP-based solver.

We have run this experiment as described in section 8.3.1, but enforcing the bid
generator to build instances with no cycles. Figure 8.6 shows the CPU time required to
solve problem instances on acyclic nets for the CMWOSP-based solver.

Notice that the axis time scale in figure 8.6 is nearly four orders of magnitude
smaller than in figure 8.4. Hence, cycles in the mixed auction net may lead to a signifi-
cant increase in computational cost.

8.4 Conclusions

In this chapter we presented a preliminary empirical comparison of the CMWOSP-
based, DIP and CCIP solvers. Firstly, we compared DIP and CCIP on any type of
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Figure 8.6: Experiments with acyclic network topologies (reduced time scale).

network topology. Next, we empirically assessed the performances of the CMWOSP-
based solver on acyclicMixed Auction Nets.

In chapter 7, we proposed CCIP, a solver that dramatically improves the computa-
tional efficiency of DIP by taking advantage of the topological characteristics of WDPs.
At the theoretical level, we proved that CCIP brings a drastic reduction in the number
of decision variables required to solve the WDP. In this chapter, we have empirically
observed that in the presented scenario CCIP:

(1) can deal with WDPs with more than twice SCOs than DIP;

(2) can significantly reduce the computation time (by a factor larger than 70).

Finally, we observed that in the considered parameter setting the CMWOSP-based
solver is four orders of magnitude faster in solving acyclic instances than DIP and
CCIP in solving instances produced by Vinyals’ generator.





Chapter 9

Conclusions and Future Work

In this chapter, we draw some conclusions about the work developed in this dissertation
and we show some open paths to future development.

9.1 Conclusions

Most of the currently studied and employed combinatorial auctions deal with the nego-
tiation of goods, disregarding eventual production relationships holding among them.
The information about such relationships helps improve the outcome of a negotiation.
In order to fill this gap, we introduced two novel combinatorial auction extensions that
help in determining the revenue-maximising strategy for partner selection in supply
chain network design and planning. The former, calledMulti Unit Combinatorial Re-
verse Auctions with Transformability Relationships among Goods (MUCRAtR), copes
with make-or-buydecisions. The latter, calledMixed Multi-unit Combinatorial Auc-
tions (MMUCA), deals withmake-or-buy-or-collaboratedecisions. Below, we sepa-
rately summarise our two contributions.

9.1.1 Make-or-Buy Decisions

In chapter 1, we thoroughly described the requirements that must be fulfilled in order to
solvemake-or-buydecision problems. Since we built upon combinatorial auctions, we
also explained the of CAs limitations that hinder their application to our problem. In
table 9.1 we recall both the requirements and the corresponding CAs limitations associ-
ated with themake-or-buydecision problem. We observed that all the CAs limitations
stem from the fact that they can neither express nor represent an auctioneer’s internal
manufacturing operations.

The first requirement hindering the application of CAs to our problem is that they
can neither represent internal manufacturing operations nor the producer/consumer re-
lationships among them. In order to apply CAs to solve themake-or-buydecision prob-
lem, we provided a formal framework to represent internal manufacturing operations.
At this aim we decided to employ Place/Transition Nets (PTNs) (Reisig, 1985) because:

203
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Requirements CAs MUCRAtR
1 express a request on bundles of goods X X

2 express an auctioneer’s initial stock X

3 express producer/consumer relationships among internal operations X

4 specify an auctioneer’s final requirements X

5 express relationships among manufacturing operations,
auctioned goods, and received bids X

6 formally and graphical represent the search space
associated to the auctioneer’s decision problem X

7 specify the auctioneer’s internal cost structure X

8 information about which in-house operations to perform
and in which order X

Table 9.1: Requirements of to themake-or-buyproblem.

(1) they naturally help us capture the notion of manufacturing operation;

(2) they have a well-defined semantics that can naturally accommodate the notion of
sequence of operations and consumer/producer relationships;

(3) they have an integrated description of both states and actions to characterise the
search space where operations occur;

(4) they have a large number of formal analysis methods that allow the investigation
of structural and behavioural (dynamic) properties of the net; and

(5) they have a graphical representation that is intuitively very appealing to study
problems related to the topology of the supply chain.

Thus, we modelled the internal production structure of an auctioneer by means of a
PTN, that we referred to asPTNI . Not only does this formal representation allow us
to describe the quantity of resources either produced or consumed by a manufacturing
operation, the producer/consumer relationships among operations, and the quantity of
goods available to an auctioneer after each operation, but it also allow us to express
preconditions over a manufacturing operation by means of afiring rule. By the appli-
cation of the firing rule, we impose that a manufacturing operation canonly be run if
its input goods are available. This property is critical for the correct representation of a
production process: the implementation order of a production process is constrained by
the availability of resources at each step.

Then, aPTNI completely specifies an auctioneer’s internal manufacturing oper-
ations and the producer/consumer relationships among them (requirement (5) in table
9.1). Moreover, aPTNI allows an auctioneer to specify his requirements and com-
municate them to bidders (requirement (4) in table 9.1). This is obtained by specifying
a configuration (marking) to end up with. If an auctioneer communicates to a set of
bidders hisPTNI along with a description of the final state of such PTN describing
his requirements, then the bidders can infer all the possible configurations of offers
fulfilling such requirements.
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Next, in order to express the relationships among internal manufacturing operations,
auctioned goods, and received bids ( requirement (3) in table 9.1), we incorporated the
received bids intoPTNI . At this aim, we exploited the fact that a bid that offers goods
can be regarded as a transition (bid transition) that injects tokens intoPTNI . Unlike
transitions corresponding to manufacturing operations, bid transitions do not consume
input resources and can be fired only once. ThePTNI augmented with bid transitions
was calledPTNE (whereE stands forExtended).

By means of aPTNE, an auctioneer can compactly express all the possible out-
comes of any of his possible decisions. By decision we mean the selection of bids
together with a sequence of internal operations to perform. Thus, aPTNE both for-
mally and graphically represents the search space associated to the auctioneer’s deci-
sion problem (requirement 6 in table 9.1). We successfully linked bids, manufacturing
operations, and goods at auction, and we fully represent all the possible decisions an
auctioneer may take in a unified representation.

However, the goal of the auctioneer is not only to find a feasible outcome, but also
to find an outcome that minimises his costs. Thus, an auctioneer needs to quantify the
cost associated to each decision. With this aim, he has to associate a cost to the selection
of a bid, and a cost to the performance of a manufacturing operation. Unfortunately,
in their original definition, place transition nets do not incorporate the notion of cost
associated to the firing of a transition. Then, we defined a new type of Place Transition
Net, the so-calledWeighted Place Transition Nets(WPTN), to express the notion of
cost associated to transition firings or to the firing of sequences of transitions.

Then, we transformed bothPTNI andPTNE into WPTNs by associating to each
operation transitionthe cost of the corresponding manufacturing operation and to each
bid transitionthe bid cost. The resulting WPTNs were calledTransformability Network
Structure(TNS) andAuction Netrespectively: a TNS completely describes an auction-
eer’s internal manufacturing operations, whereas an Auction Net compactly represents
the set of possible auctioneer’s decisions along with the corresponding cost. Then,
Transformability Network StructureandAuction Netallow the auctioneer to express his
internal cost structure and to incorporate it into his decision problem (requirement (7)
in table 9.1).

The auctioneer needs to select the set of offers along with the sequence of internal
manufacturing operations to perform that minimise his costs and allow him to obtain
his final requirements (point (8) in table 9.1). With this purpose, we defined the auc-
tioneer’s decision problem as an optimisation problem on theAuction Net. Thus, we
introduced a new type of reachability problem over WPTNs, and called this new op-
timisation problem theConstrained Maximum Weight Occurrence Sequence Problem
(CMWOSP). Intuitively, this optimisation problem involves finding an optimal cost
sequence of transitions on a WPTN that leads to a final state which fulfils some con-
straints.

Additionally, we provided an important result on the CMWOSP. We showed that
the CMWOSP can be solved by means of Integer Programming on acyclic WPTNs,
namely on WPTNs that do not contain any directed cycle.

The CMWOSP perfectly captures the semantics of the auctioneer’s decision prob-
lem in a MUCRAtR: to find the set ofbid and operation transitionsthat minimises
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an auctioneer’s revenue. Thus, we formalised the auctioneer’s decision problem in a
MUCRAtR as a CMWOSP on the Auction Net. Two major benefits, and therefore
contributions, stemmed from the formalisation of the MUCRAtR WDP by means of a
CMWOSP:

(1) the CMWOSP provides as a result both the set of bids to accept and the sequence
of operations to perform in order to obtain the auctioneer’s final requirements
(requirement (8) in table 9.1);

(2) themake-or-buydecision problem can be solved by means of Integer Program-
ming for a large class of supply chain network topologies (acyclic).

Summarising, we provide to the auctioneer with a formalism to express his require-
ments and communicating them to bidders; and a rule for determining the optimal allo-
cation, i.e. the set of winning bids and the sequence of internal operations to perform.
In this way we provide a solution to all the requirements needed for extending combi-
natorial auctions for dealing with themake-or-buydecision problem.

The solution to the WDP that we provide can be employed as a decision support
system in different settings:

• Combinatorial auctions. As a winner determination solver in a MUCRAtR.

• Negotiation. A buyer, after receiving a set of offers from his providers, can com-
pute the best offers and eventually counter-offer.

• What-if supply chain analysis. A buyer, aware of the prices and capacities of his
providers, can test different configurations of his supply chain.

Summary of MUCRAtR contributions

To summarise, the main contributions related to themake-or-buydecision problem are:

• MUCRAtR , an extension of combinatorial auctions that allows dealing with
make-or-buydecision problems in scenarios characterised by combinatorial pref-
erences. This new auction type provides an auctioneer with a framework to opti-
mise his outsourcing strategy.

• Weighted Place Transition Nets (WPTN), an extension of Place Transition
Nets. In WPTNs it is possible to associate a weight (cost) to the firing of each
transition. WPTN is a formal framework introduced to represent the MUCRAtR
space of auctioneer’s decisions and associated revenues.

• Constrained Maximum Weighted Occurrence Sequence Problem (CM-
WOSP), a new reachability problem defined on WPTNs. It formalises the prob-
lem of selecting a cost-maximising sequence of actions leading from an initial
state to a set of possible final states.

• ILP solution to the CMWOSP. We prove that the CMWOSP can be solved by
means of ILP when the underlying WPTN is acyclic. We obtain this contribution
by exploiting results imported from the literature on Place Transition Nets.
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• Formalisation of the MUCRAtR WDP as a CMWOSP on an Auction Net.
We show that CMWOSP perfectly captures the features of the auctioneer’s de-
cision problem in a MUCRAtR. This results provides three important benefits:
(1) an ILP formulation for a wide class of MUCRAtR WDPs (acyclic); (2) a for-
malism (PTN) to analyse the decision problem; and (3) the result of the WDP
provides both the set of selected bids and thesequenceof operations to perform.

9.1.2 Make-Or-Buy-Or-Collaborate

In the second part of this dissertation we dealt with themake-or-buy-or-collaborate
decision problem. As thoroughly explained in section 1.4.2, most of the requirements
arising in themake-or-buy-or-collaboratedecision problem are currently not supported
by state-of-the-art methodologies and tools. In table 9.2 we summarise the requirements
and the limitations of two state-of-the-art solutions, namely combinatorial auctions and
task dependency networks.

MMUCA

In order to overcome such limitations, we introduced an extension to combinatorial
auctions, calledMixed Multi-unit Combinatorial Auctions(MMUCA), that fulfils all
the requirements of this decision problem.

Requirements CAs TDN
1 express an offer/request on bundles of goods X X

2 express an offer of a SCO with a single output product X

3 express an offer of a SCO with multiple output products
4 express a request of a SCO
5 express the offer/request of a bundle of SCOs
6 express combinations of bids X

7 express the min/max number of times SCOs are performed
8 express resource sharing
9 express an auctioneer’s initial stock
10 express the auctioneer’s final requirements
11 supportacyclic supply chain networks X

12 supportcyclic supply chain networks
13 compute thescheduled sequenceof SCOs to perform
14 ensure computational tractability while preserving optimality
15 solve SCF decision problem X

16 solve themake-or-buy-or-collaboratedecision problem
17 formally represent the search space
18 graphically represent the search space
19 assess the computational tractability based on the problem structure

Table 9.2: Requirements of themake-or-buy-or-collaborateproblem.

MMUCAs support the trading of operations across the supply chain: from the sup-
ply and demand of components to the supply and demand of manufacturing operations
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or services. With the aim of making MMUCA operative:

(1) we provided a formal language allowing bidders to express offers and requests
over supply chain operations; and

(2) we formalised the optimisation problem faced by an auctioneer aiming at select-
ing the subset of the offered supply chain operations maximising his revenue.

As to the formal language, we introduced a general-purpose concept that can rep-
resent any operation or service negotiated across the supply chain by any supply chain
stakeholder, the so-calledsupply chain operation(SCO). The characterising features
of SCOs are the required and consumed input resources and the output resources pro-
duced by the service. According to requirements (1-8) in table 9.2, the different actors
involved in a MMUCA require a language to express the offer/request of supply chain
operations. Then, we extended traditional bidding languages in the literature to deal
with SCOs.

Bidding Language

We set SCOs as the atomic entities that can be negotiated across a supply chain. Build-
ing upon such building blocks, we defined a new bidding language that allows bidders:

(1) associating a value to bundles of SCOs within anatomic bid; and

(2) combiningatomic bidsinto complex expressions encoding a wide variety of pref-
erences over SCOs.

The provided bidding language generalises state-of-the art bidding languages and
provides supports to express bids in the following auction types:

• Multi-unit combinatorial auctions, where there may be several indistinguishable
copies of the same good available in the system.

• Double auctionswhere there are multiple buyers and multiple sellers. We inte-
grate direct and reverse auctions,i.e. the auctioneer will be able to both sell and
buy goods within a single auction. Or considering the bidders’ point of view, a
bidder can submit both offers and demands on sets of goods.

• Combinatorial exchanges. Combinatorial case of double auctions. In this auction
type both buyers and seller submit combinatorial bids.

• Multi-unit Combinatorial Reverse Auctions with Transformability Relationships
among Goods(MUCRAtR). We integrate the notion of internal manufacturing
operation into MMUCAs.

• Combinatorial auctions for supply chain formationintroduced in
(Walsh et al., 2000).
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The novelty of our bidding language with respect to the above-mentioned auction types
is that we further extend the idea of manufacturing operations by allowing agents to also
bid for supply chain operations. Since in our language a bidder is allowed to bid over
bundlesof supply chain operations, such language captures potential complementarities
among such operations. This extension offers a higher degree of expressiveness and
allows to generalise bidding languages for the above-listed auction types.

Summarising, the proposed bidding language can express several types of complex
bids and allows for bids on bundles of SCOs. By means of the introduced bidding
language we overcome requirements (1-8) in table 9.2.

The Winner Determination Problem

As to the Winner Determination Problem, we cannot rely on previous definitions in the
literature. According to requirement (13) in table 9.2, and similarly to MUCRAtR, a
new dimension comes into play: theorder among SCOs. For this reason, we provided
a new and general definition of winner determination problem that builds upon our
SCO-based bidding language. The WDP describes the rules to:

• select the winning bids that maximise an auctioneer’s revenue; and

• assess theexecution orderof the SCOs contained in the winning bids.

Notice that the winning bids are those that:

• they fulfil the constraints specified by bidders via the bidding language;

• they maximise the auctioneer revenue.

and the sequence of SCOs representing the execution order is such that:

• it contains all and only the SCOs included in the winning bids;

• it is implementable, i.e. each SCO in the sequence must have its required inputs
available at the position where it is scheduled; and

• it produces at its end at least the set of goods required by the auctioneer.

Observe that theorder in which agents consume and produce goods is of central impor-
tance in our model and affects the definition of the winner determination problem.

The rule to assess the set of winners provides a solution to requirements 10, 13,
15, and 16 in table 9.2. By including the constraint that the goods available after run-
ning all the selected supply chain operations are the ones specified by the auctioneer,
we provided a solution to requirement (9) in table 9.2. Since the definition does not
depend on the particular topology of the supply chain network, we provided a solution
to requirement (11-12) in table 1.2.

The new WDP definition extends and generalises the definition of winner determi-
nation for:

• Multi-unit combinatorial auctions
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• Double auctions

• Combinatorial exchanges

• MUCRAtR

• Combinatorial auctions for supply chain formation

Thus, we provided both a bidding language and a definition of winner determination
problem that extends and generalises all the above-mentioned auction types. The bid-
ding language along with the winning rule fully characterisesMixed Multi-unit Combi-
natorial Auctions(MMUCAs).

A mathematical framework for the MMUCA WDP

Analogously to the MUCRAtR WDP, we provided a mapping of the MMUCA winner
determination problem to aConstrained Maximum Weight Occurrence Sequence Prob-
lemon theMixed Auction Net. Via this mapping, we obtained the same advantages as
in the case of MUCRAtR: (1) the solution is expressed as asequenceof SCOs; (2) we
provide a formal framework to analyse the properties of the decision problem; and (3)
we obtain an ILP-based formulation of the MMUCA WDP for acyclic Mixed Auction
Nets.

The Mixed Auction Netprovides a formalism to reason about MMUCAs,
and therefore also about all the WDPs associated to auctions subsumed by
MMUCA (requirements (17-18) in table 9.2). In particular, we showed that the
Mixed Auction Netsubsumes the TNS and the Transformability Network Structure
(Walsh and Wellman, 2003).

Solving the MMUCA WDP

In this dissertation we provided three different IP solvers for computing the solutions
to the MMUCA WDP. The first one is based on the mapping to CMWOSP. This solver
deals with acyclic supply chain network topologies. The second one (DIP) was directly
built upon the definition of MMUCA WDP and applies to arbitrary network topologies.
The third one (CCIP) improves the performances of the second solver by exploiting
some domain knowledge.

The CMWOSP-based Solver. By mapping to CMWOSP we obtain an ILP-based
formulation of the MMUCA WDP with integer programming for a wide class of WPTN
topologies.

The DIP Solver. We showed that restricting the Mixed Auction Net to be acyclic is
a significant limitation in some scenarios: it does not allow representing cyclic oper-
ations, resource sharing, and so on. We provided a new IP formulation, calledDirect
Integer Programming(DIP) solver, that is directly built upon the definition of MMUCA
WDP. DIP solves the WDP associated to any supply chain network topology, thus
broadening the classes of solvable problems.
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The CCIP solver. The main drawback of DIP is that it generates a number of decision
variables and constraints that limit its applicability to small-size and medium-size sce-
narios. DIP guarantees optimality, but decrements the computational tractability. We
proposed an ILP-based formulation for MMUCA WDP, namely theConnected Compo-
nent Based Integer ProgrammingSolver (CCIP), that dramatically improves the com-
putational efficiency of DIP. A search space reduction is achieved by analysing and
exploiting the precedence relationships among SCOs.

We conclude by observing that our approach solves some of the problems related
to centralised approaches to supply chain formation and scheduling (see section 3.3.1).
Firstly, we can reduce the complexity associated to optimise the scheduling problem.
In fact, we have that

• the complexity of the scheduling problem is reduced due to the absence of time
dimension, without losing the possibility to express precedence relationships
among operations; and

• we provide a very efficient optimisation problem solver (CCIP).

Secondly, agents are not forced to reveal all their information truthfully. The part of
information revealed by agents (the bidders) is regulated by the bidding language and
the market-based mechanism. In market-based mechanisms agents can act strategically,
hide or lie on critical information, decide what to communicate and what not.

Empirical Evaluation

In the last part of this dissertation we provided a preliminary proof of concept about
the performances of the CMWOSP-based, DIP and CCIP solvers in a single scenario.
On the one hand, we compared DIP and CCIP on arbitrary network topologies. On the
other hand, we empirically assessed the performances of the CMWOSP-based solver
on acyclicMixed Auction Nets. We observed that in the considered parameter setting:

• CCIP outperforms DIP

• acyclic instances are much easier to solve

Summary of MMUCA Contributions

To summarise, the contributions in this dissertation related to themake-or-buy-or-
collaboratedecision problem are listed in what follows.

• MMUCA is a new type of auction that allows to deal withmake-or-buy-or-
collaboratedecisions. This new auction type provides an auctioneer with a
framework to optimally select supply chain partners. MMUCA generalises and
extends several types of auctions (including MUCRAtR). Our contribution devel-
ops along two dimensions:

– MMUCA Bidding Language. We provide a novel bidding language that
allows agents to trade any type of operation across the supply chain. Such
a language extends and generalises several previous bidding languages.
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– MMUCA Winner Determination Problem . We provide a definition of
winner determination problem that selects, among the received bids, the
revenue-maximisingordered sequenceof supply chain operations to per-
form. The definition of MMUCA WDP extends and generalises the defini-
tion of winner determination problem of several existing auction types.

• Mixed Auction Net is a WPTN that compactly represents the space of possible
decisions an auctioneer may take, along with the revenue associated to each de-
cision. Thus, it formally and graphically represents the search space associated
to the MMUCA WDP, and therefore of themake-or-buy-or-collaboratedecision
problem.

• Mapping the MMUCA WDP to the CMWOSP . We succeeded in mapping the
MMUCA WDP to a CMWOSP on theMixed Auction Net. As in the case of
MUCRAtR, three benefits stemmed from this mapping: (1) the provided solution
is a sequence of SCOs; (2) a whole corpus of theoretical results from the PTN
literature can be imported to analyse the decision problem; and (3) we obtain an
ILP formulation of the WDP for acyclicMixed Auction Nets.

• MMUCA WDP Solvers.

– CMWOSP-Based Solver. This ILP-based solver is based on the mapping
of MMUCA and MUCRAtR to a CMWOSP and applies only to acyclic
mixed auction nets.

– DIP solver. This ILP-based solver works on arbitrary supply chain network
topologies. It overcomes a set of limitations connected with the use of the
CMWOSP-based solver.

– CCIP solver. This ILP-based solver dramatically improves the perfor-
mances of DIP solver because it allows a more concise representation of
the optimisation problem. This is obtained by exploiting the precedence
relations among supply chain operations.

Finally, consider that MUCRAtR and Combinatorial Auctions for supply chain
formation are a special case of MMUCA. Thus, the three solvers presented above
can be used to solve problems on any network topologies for them as well. Thus,
besides broadening the applicability of MMUCAs, we have also broadened the
applicability of MUCRAtR and CAs for SCF. MUCRAtR and CAs for SCF can
be extended to any network topology!

9.2 Future Work

We believe that this dissertation opens several paths to future developments. The most
interesting extension we envisage to MMUCAs is the incorporation of time and uncer-
tainty in the MMUCA model.

On the one hand, we envisage the possibility to express the release time and duration
of a supply chain operation. This information should be also included within the winner
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determination problem. In this way, an auctioneer would be able to fix deadlines to have
his production process completed. Moreover, the participants to the supply chain would
synchronise their operations by fulfilling not only the producer/consumer relationships,
but also eventual time constraints.

On the other hand, an auctioneer may be interested in assigning a success proba-
bility to each supply chain operation. In this way, he could minimise the incidence of
failures and shortcoming across the supply chain.

Next, in order to outperform CCIP we plan to explore the design of a local algo-
rithm. Although solutions may be sub-optimal with a local approach, the number of
transformations that can be dealt with is expected to be larger, and hence the size of the
supply chain scenarios we could tackle.

Furthermore, a more realistic setting requires to incorporate logistic providers, be-
sides component suppliers, contract manufacturers, and final customers. We do be-
lieve that, by relying on the intuitions provided by the graphical representation of
WPTNs, we can easily incorporate constructs dealing with this kind of problems.
Along the same line, we aim at assessing the value of our approach in actual sce-
narios with real-world data (for instance in the automotive industry). If this was
not possible, we plan to improve the artificial bid generator summarised in section
8.2 by incorporating actual-world supply chain topologies, following the strategy of
(Leyton-Brown and Shoham, 2006). Furthermore, we need to perform extensive exper-
iments with different parameter settings in order to empirically assess the improvement
of CCIP over DIP under different market conditions.

As to bidding languages, we have seen that the XOR-language is fully expressive
(over finitely-peaked valuations) in section 5.3. Future work should address the ex-
pressive power of different fragments of the bidding language and compare the suc-
cinctness of different fragments for certain classes of valuations: which languages can
express what valuations, and which languages can do so using less space than others?
As to the case of direct single-unit combinatorial auctions, several results are given by
Nisan (Nisan, 2006), and some of these results may be relatively easy to transfer to our
model.

Theoretically, as to mechanism design, we do believe that we provided to game
theorists a new interesting and difficult problem. An interesting question to consider in
future work would be what exactly the auctioneer shouldannouncewhen opening an
MMUCA. In the case of direct auctions this is the set of goods to be sold. If bidding for
transformations is possible, however, it may be difficult to foresee what types of goods
will be relevant to a solution, as this depends on the transformation capabilities of the
bidders in the market. Notice also that we have not provided any suggestion on how to
run a MUCRAtR. This is not within the scope of this dissertation since it is a subject of
mechanism design. However, in order to illustrate how our contribution can be used by
a given mechanism, we offer an example about how a MUCRATR could be run:

(1) the auctioneer sends to bidders a WPTN representing his internal cost structure
along with some constraints on the final state of the WPTN (its requirements)

(2) the bidders compose and send back to the auctioneer meaningful combinatorial
offers based on the received information
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(3) the auctioneer builds anauction netand solves a CMWOSP on it

(4) from the CMWOSP solution the auctioneer can extract the set of winning bids
and the sequence of internal operations to subsequently perform

As to the mapping of the MMUCA WDP to CMWOSP, we have only exploited
a small portion of its potentiality. We recall that we employed it to provide an ILP
formulation for solving the WDP when the underlying topology is acyclic. However,
we do believe that we can exploit further theoretical tools derived by our mapping
along several dimensions. Some examples of this idea follows. First, it is known from
the literature that it is possible to increase the classes of Petri nets for which the state
equation represents the whole reachability set. As an example one may add linear side
constraints to the state equation (Esparza and Melzer, 2004). Therefore, we would like
to assess the applicability of these types of techniques to our problem. Secondly, the
validity of the mapping from MMUCA WDP to WPTNS is not restricted to bids in the
XOR language, but in fact it can easily cope with other languages. For instance, as
explained in section 5.5, the extension to the OR-of-XOR bidding language is trivial.
Third, and most importantly, our mapping allows to analyse structural and behavioural
properties of the solutions to the MMUCA WDP. Thus, we aim at exploring the Petri
net techniques that is possible to import in the context of MMUCAs.

Finally, we do strongly believe that CMWOSP can be employed to study other
optimisation problems. In fact, the extension of CMWOSP to a broader class of opti-
misation problems that share similar features is a path that deserves much attention. In
particular, we talk about domains characterised by preconditions and postconditions on
variables interacting at multiple levels. The most promising of those domains is surely
deterministic planning.



Appendix A

OPL models of the MMUCA
WDP solvers

In this appendix, we present the ILP models of the solvers presented in this dissera-
tion expressed in the OPL modeling language (Van Hentenryck, 1999). We present the
CMWOSP-based (section 6.1.5), the DIP (section 6.2.2), and the CCIP (section 7.3.1)
solvers.

A.1 The CMWOSP-based Solver

{string} Goods=...;
int nBids=...;
int nTransformations=...;
int nGoods=...;
int nBidders=...;

range Bids = 1..nBids;
range Transfs = 1..nTransformations;
range Bidders= 1..nBidders;

//DECLARATIONS

//Input goods of each transformation
int T_in[Transfs][Goods]=...;
//Output goods of each transformation
int T_out[Transfs][Goods]=...;
// Associates to each SCO the multiplicity it appears
// within the bid
int multiplicity[Transfs]=...;
//A set contains the transitions indexes corresponding
//to the same atomic bid
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{int} transf_same_bids[Bids]=...;

//Associates to each SCO its bid
int transf_to_bids[Transfs]=...;

//Which bids compose which XORbid
{int} xor_bids[Bidders]=...;

//Initial marking provided by the auctioneer for free
int U_in[Goods]=...;

//RFQ goods required by the auctioneer
int U_out[Goods]=...;

//The cost associated to each bid
float costs[Bids]=...;

//Variables associated to eac SCO is fired at each step
dvar boolean x_t[Transfs];

//Variables associated to atomic bids
dvar boolean x_b[Bids];

//THE MODEL

minimize

sum(b in Bids) x_b[b]*costs[b];

subject to {

//(1) Each SCO can be fired as many times as its
// multiplicity if only if its bid is activated.
// This condidition also controls that selecting
// at least one SCO within a bid implies selecting
// all the SCOs within the same bid
forall(t in Transfs)
ctOnePositionSelected:
(x_t[t]) ==(x_b[transf_to_bids[t]]*multiplicity[t]);

//(2) We enforce that the atomic bids submitted
// by each bidder are exclusive (XOR)
forall(b in Bidders)
ctXORbid:



A.2. The DIP solver 217

(sum ( j in xor_bids[b]) x_b[j]) <=1;

//(3) After having performed all the selected SCOs,
// the set of goods held by the auctioneer must be
// a superset of the final goods Uout
forall(g in Goods)
ctFinalConfiguration:
(U_in[g] + sum(j in Transfs) x_t[j]* ...

...*(T_out[j][g]-T_in[j][g]))>=U_out[g];
}

A.2 The DIP solver

{string} Goods=...;
int nBids=...;
int nTransformations=...;
int nGoods=...;
int nBidders=...;
int nSteps=...;

range Bids = 1..nBids;
range Transfs = 1..nTransformations;
range Bidders= 1..nBidders;
range Steps= 1..nSteps;

//Input goods of each transformation
int T_in[Transfs][Goods]=...;

//Output goods of each transformation
int T_out[Transfs][Goods]=...;

// Associates to each transformation the multiplicity it
//appears within the bid
int multiplicity[Transfs]=...;

//A set contains the transitions indexes corresponding
// to the same atomic bid
{int} transf_same_bids[Bids]=...;

//Associates to each transformation its bid
int transf_to_bids[Transfs]=...;

//Which bids compose which XORbid
{int} xor_bids[Bidders]=...;
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//Initial marking provided by the auctioneer for free
int U_in[Goods]=...;

//RFQ goods required by the auctioneer
int U_out[Goods]=...;

//The cost associated to each bid
float costs[Bids]=...;

//Variables associated to which transformation is fired
// at each step
dvar boolean x_t[Steps][Transfs];

//Variables associated to atomic bids
dvar boolean x_b[Bids];

minimize
sum(b in Bids) x_b[b]*costs[b];

subject to {

//(1) Each transformation can be fired as many times
//as its multiplicity if only if its bid is activated.
//This condidition also controls that selecting at
//least one transformation within a bid implies selecting
// all the transformations within the same bid
forall(t in Transfs)
ctOnePositionSelected:
(sum(p in Steps) x_t[p][t])==...

...==(x_b[transf_to_bids[t]]*multiplicity[t]);

//(2) We impose that at most one transformation is
// selected at each position of the sequence
forall(p in Steps)
ctOneTransformationSelected:
sum(t in Transfs) x_t[p][t] <=1;

//(3) We enforce that the atomic bids submitted
// by each bidder are exclusive (XOR)
forall(b in Bidders)
ctXORbid:
(sum(j in xor_bids[b]) x_b[j]) <=1;
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//(4) Check that each transition selected is enabled
// at steps in the solution sequence where more than
// one transition can be fired
forall(s in Steps,g in Goods)
ctEnoughInputs:
(U_in[g]+sum(k in 1..s-1,j in Transfs) x_t[k][j]*...

...*( T_out[j][g] - T_in[j][g]) )>= ...

...>= sum(l in Transfs) x_t[s][l]*T_in[l][g];

//(5) After having performed all the selected
//transformations, the set of goods held by the
// auctioneer must be a superset of the final goods
// Uout
forall(g in Goods)
ctFinalConfiguration:
(U_in[g]+sum(s in Steps,j in Transfs) x_t[s][j]*...

...*(T_out[j][g]-T_in[j][g]))>=U_out[g];

}

A.3 The CCIP Solver

{string} Goods=...; //Good names
int nBids=...; //Number of bids
int nTransformations=...; //Number of transformations
int nGoods=...; //Number of goods
int nBidders = ...; //Number of bidders or XORbids
//Number of solutions positions
// = number of transformations * multiplicities
int nSteps=...;

range Bids = 1..nBids;
range Transfs = 1..nTransformations;
range Bidders=1..nBidders;
range Steps=1..nSteps;

//Input goods of each transformation
int T_in[Transfs][Goods]=...;

//Output goods of each transformation
int T_out[Transfs][Goods]=...;

// Associates to each transformation the multiplicity
// it appears within the bid
int multiplicity[Transfs]=...;
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//A set contains the transitions indexes corresponding
// to the same atomic bid
{int} transf_same_bids[Bids]=...;

//Associates to each transformation its bid
int transf_to_bids[Transfs]=...;

//A set contains the transitions indexes corresponding
// to bids of the same bidder
{int} xor_bids[Bidders]=...;

//Initial marking provided by the auctioneer for free
int U_in[Goods]=...;

//RFQ goods required by the auctioneer
int U_out[Goods]=...;

//The cost associated to each bid
float costs[Bids]=...;

//This array associates to each position in the solution
// the set of transformations that can fire
int S[Steps][Transfs] = ...;

//This array associates 1 when the set of transformations
// that might be fired at this position is >1 or is one
// transformation that contains a self-loop
int steps_to_check[Steps]=...;

//Variables associated to which transformation is fired
// at each step
dvar boolean x_t[Steps][Transfs];

//Variables associated to atomic bids
dvar boolean x_b[Bids];

minimize
sum(b in Bids) x_b[b]*costs[b];

subject to {

//(1) Each transformation can be should be fired as many
// times as its multiplicity if only if its bid is activated.
//This condidition also controls that selecting at least
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// one transformation within a bid implies selecting all
// the transformations within the same bid
forall(t in Transfs)
ctOnePositionSelected:
(sum(p in Steps) x_t[p][t])==(x_b[transf_to_bids[t]]*...

...*multiplicity[t]);

//(2) At most one transformation can fire at each position
forall(p in Steps)
ctOneTransformationSelected:

sum(t in Transfs) x_t[p][t] <=1;

//(3) XOR semantics of a bid is fulfilled, at most one bid
// per bidder can be selected

forall(b in Bidders)
ctXORbid:

(sum(j in xor_bids[b]) x_b[j])<=1;

//(4) Check that each transition selected is enabled at
// steps in the solution sequence where more than one
// transition can be fired
forall(s in Steps:steps_to_check[s]==1,g in Goods)
ctEnoughInputs:
(U_in[g]+sum(k in Steps:k<s,j in Transfs) x_t[k][j]*...

...*(T_out[j][g]-T_in[j][g]) )>= ...

...>= sum(l in Transfs) x_t[s][l]*T_in[l][g];

//(5) After having performed all the selected,
// transformations the set of goods held by the
// auctioneer must be a supersetof the final goods Uout
forall(g in Goods)
ctFinalConfiguration:
(U_in[g]+sum(s in Steps, j in Transfs) x_t[s][j]*...

...*(T_out[j][g]-T_in[j][g]))>=U_out[g];

//(6) Transformations that can fired in each position
// of the solution sequence are restricted by function S
forall(p in Steps, j in Transfs)
ctTransformationsPosition:
x_t[p][j]<=S[p][j];

}





Bibliography

Aissaoui, N., Haouari, M., and Hassini, E. (2007). Supplier selection and order lot
sizing modeling: A review.Computers and Operations Research, 34(12):3516–
3540.

Alonso-Ayuso, A., Escudero, L., Garı́n, A., Ortuño, M., and Pérez, G. (2003). An Ap-
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Num. 23 M. Gómez,Open, Reusable and Configurable Multi-Agent Systems:

A Knowledge Modelling Approach, (2005).
Num. 24 S. Ramchurn,Multi-Agent Negotiation Using Trust and Persuasion,

(2005).
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