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Foreword

Nowadays we are witnessing an important transformation of the way organizations op-
erate to fulfill their objectives. We are moving from monolithic structures to collab-
orative structures whose components tend to reduce their sizes. This means that we
are moving toward the paradigm of virtual organizations. In this setting, the ability to
quickly and efficiently collaborate to design, develop, produce and sell a new product
has become a key competitive advantage.

In this environment, enterprises face critical strategic decisions on whether to col-
laborate with other firms to complete some tasks across its supply chain. In this setting
there is a need for an increased automation across the supply chain. Indeed, static and
vertical integrated supply chains are quickly giving way to more flexible value chains
composed of partners that can be assembled in real time to meet unique requirements.

This thesis is the result of a pioneer work on automating the process of collaborative
supply chain network formation. At this aim, it proposes a novel combinatorial auction
model, the so-called Mixed Multi-Unit Combinatorial Auction, that supports not only
to trade and exchange goods but also to trade and exchange manufacturing operations.
This model has achieved international recognition, has opened a new line of research in
our institute and shows a high potential for industrial application.

We have been lucky to work with Andrea Giovannucci along these years. Our
collaboration has been very fruitful and enjoyable both scientifically and personally.
Thanks to his enthusiasm, generosity, friendliness, ambition for knowledge and team
making capabilities, Andrea has been the PhD student every advisor would like to work
with.

We wish the reader an experience as pleasant as the one we had while advising the
author.

The supervisors

Juan Antonio Rodriguez Aguilar and JesUs Cerquides
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Abstract

The need for automating the process of supply chain formation is motivated by the ad-
vent of Internet technologies supporting B2B and B2C negotiations: the speed at which
market requirements change has dramatically increased. In this scenario enterprises
must become flexible in the process of product customisation and order fulfilment. This
can be only achieved if the supply chain formation process is agile, and thus the need
for automation.

The main goal of this dissertation is to provide computationally efficient market-
based auction mechanisms for automating the process of optimal supply chain partner
selection. This is achieved by means of two progressive, non-trivial extensions of com-
binatorial auctions (CA).

On the one hand, we extend CAs to determine optimal outsourcing strategies. Thus,
we provide computational means, via the so-called Multi-unit Combinatorial Auctions
with Transformation Relationships (MUCRALR), for an enterprise to optimisadtise-
or-buydecisions across the supply chain, namely to decide whether to outsource some
production processes or not. At this aim, we add a new dimension to the goods at
auction. A buyer can express its internal production and cost structure. Firstly, we
introduce such information in the winner determination problem (WDP) so that an auc-
tioneer/buyer can assess what goods to buy, from whom, and what internal operations
to performin order to obtain the required resources. In this way, an auctioneer can build
his supply chain minimising its costs. Secondly, since the decision problem faced by
the auctioneer is extremely hard, we also provide a formal framework to analyse the
computational properties of the WDP and to facilitate the classification of WDPs, and
hence to provide guidance for developing efficient solution algorithms.

On the other hand, we propose a novel CA, the so-called Mixed Multi-unit Combi-
natorial Auction (MMUCA), that automates the process of collaborative supply chain
network formation. The outcome of such a new auction is the coordinated plan of a to-
tally integrated supply chain (the selection of a set of supply chain partners along with
the ordered set of operations that each partner must perform). We manage to provide
computational means to optimisgake-or-buy-or-collaboratdecisions, and therefore
to tightly link sourcing, outsourcing, and collaboration strategies. In this context, make,
buy, and collaborate mean that a stakeholder of the supply chain decides whether to per-
form a set of services or operations by himself (make), to outsource them (buy), or to
perform them in collaboration with other stakeholders (collaborate). A MMUCA allows
agents to bid for bundles of goods to buy, to sell, and for bundles of (manufacturing)

XXi



operations across the supply chain. One such operation ceegheled as a step in a
production process, and thus winner determination in a MMUCA amounts to choosing
the sequence in which the winning bids must be implemented while minimising total
cost. Furthermore, we introduce a bidding language for MMUCAs and analyse the
corresponding WDP. Finally, we succeed in providing very efficient optimisations to
the MMUCA WDP, based on a formal analysis of its topological structure, which can
found their practical application to actual-world scenarios.
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Chapter 1

| ntroduction

The main goal of this dissertation is to provide computationally efficient market-based
auction mechanisms for automating the process of optimal supply chain partner selec-
tion. This is achieved by means of two progressive, non-trivial extensions of combina-
torial auctions (CA). On the one hand, we extend CAs to determine optimal outsourcing
strategies. Thus, we aim at providing a useful tool to optimise make-or-buy decisions
across the supply chain. On the other hand, we propose a novel CA that automates the
process of collaborative supply chain network design, plaﬂnialgd formation. The
outcome of such a new auction is the coordinated plan of a totally integrated supply
chain (the selection of a set of supply chain partners along with the ordered set of op-
erations that each partner must perform). Analogously, in the latter case we aim at
providing a useful tool to optimise make-or-buy-or-collaborate decisions, and therefore
to tightly link sourcing, outsourcing, and collaboration strategies. In this combeke,

buy, and collaboratemean that a stakeholder of the supply chain decides whether to
perform a set of services or operations by himself (make), to outsource them (buy), or
to perform them in collaboration with other stakeholders (collaborate).

This chapter is organised as follows. In secfiod 1.1 we explain why some think
that our economy is undergoing profound changes in the next years. In §€clion 1.2, we
go back to reality and explain what is currently changing in our economy and what is
required to adapt to such changes. In sedfich 1.3 we recall some concepts and termi-
nology related to supply chain management. In se€fidn 1.4, we specify and thoroughly
exemplify the problems we cope with in this PhD thesis. In se€fidn 1.5 we highlight the
contributions of this dissertation with respect to the state-of-the-art. Finally, in section
8, we elaborate on the structure of this dissertation.

1.1 A hypothesis for the future: Wikinomics

In his recent article, Burkemah (Burkeman, 2005) summarises and discusses the eye-
opening new book of Don Tapscott call®dIKINOMICS: How Mass Collaboration
Changes Everythinfrapscott and Willlams, 2006). According to Don Tapscott, a guru

1We remark thasupply chain planningonsists in assessing who will do what and when in a supply chain.

1



2 Chapter 1. Introduction

of the Web, “we have barely begun to imagine how the Internet will change the way we
live and work”. We are living a revolution that is undermining the very basis of tradi-
tional economy. In his article, Burkeman recalls three examples of this transformation
from theWikinomicsbook:

e Self-OrganisersChina’s flourishing motorbike industry is not composed of big
organised firms hiring thousand of employees and outsourcing tasks to small sub-
contractors. Instead, a myriad of smaller companies collaborate and self-organise
in order to share risks and profits. Their representatives meet in tea-shops or in
on-line places and jointly plan a product, to which they contribute with the ser-
vice they are best at. Even the final assembly is a service. A “self-organised
system of design and production” has emerged.

e Prosumerswhen amateurs began to hack the computerised parts at the heart of
the Lego Mindstorm rangé¢ (Shaefter, 2D07), the company initially threatened to
sue them. Then, perceiving the wind of change, Lego started to encourage them
to beprosumersconsumers that have an active role in the design of a product.
This lead to an increased satisfaction of customers without harming the enterprise
profit.

e The new gold rushthe Gold mine at the Red Lake in Ontario, owned by Gold-
corp, was in a terrible crisis in 1999. When the chief executive Rob McEwen
heard a talk about Linus Torvald, the inventor of Linux, he came up with a revo-
lutionary idea. If developers collaboratively code on the Web, why not share the
mining activity on the web? Then, he put Goldcorp secret geological data on the
web and set a 575,000 $ prize to reward the discovery of new gold veins in Red
Lakes’'s mine. Around 80 valid targets were identified and the company value
turned from $100m to $9bn.

Those three cases above aim at showing that the collaborative structure, recently
emerged in social and collaborative networks as Wikipédia (Lih,]2003) and Sourceforge
(SourceForge, S.F., 2007), could be far more radical and change the way we think about
manufacturing. In his book, Tapscott introduces his revolutionary idea of “wikinomics”,
an idea that originates in a work that dates back to 1937 (Coase, 1937). At that time,
Ronald Coase, a Nobel prize economist, noticed something odd in capitalism. Capital-
ism predicates the free market and exchange. If capitalist theory was correct American
or British people should do business among them as individuals in an open market,
and not organise themselves in firms, as it happens. The motivation (Coase, 1937) is
that making things requires collaboration, and that finding and linking up all the people
who need to collaborate costs money. Companies emerge when it is cheaper gathering
people, materials, and tools under the same roof, rather than going out looking for the
best deal every time a few hours’ work is required. However, the Internet is radically
lowering the cost of collaborating. Consequently, big companies are doomed to reduce
their size in order to leave space to more agile and flexible collaborative structures. A
symptom of this new collaborative reorganisation is that, for instance, large companies,
from media outlets to clothes shops, are trying to make profit by incorporating final
customers in the creation of their products. HoweWdikinomicsforecasts a further
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radical revolution: it is not given that the company will stay in the driving seat at all.
Quoting Tapscott: “We are talking about a new means of production. Collaboration can
occur at an astronomical scale, so if you can create an encyclopedia with a bunch of
people, could you create a mutual fund, a motorcycle?”.

Tapscott is not the only one prohetising a wiki future. For instance, Laubaucher and
Malone [Laubacher and Malone, Z2003) claim that “The most radical new organisational
form, the virtual corporation, involves small firms and free-lancers, or even e-lancers
— electronically connected free-lancers, who post their qualifications and find assign-
ments on the Internet — joining forces on a temporary basis, working together on a
project, then disbanding when the work is completed. Virtual corporations of this sort
have long characterised film production and construction and are increasingly preva-
lent in the most dynamic and fastest-growing sectors of the economy — computers and
telecommunications, entertainment, biotechnology.”

Other terms employed to indicate analogous conceptsidtel corporation vir-
tual organisation(Mowshowitz, 200R), andxtended enterprig®yer, 2000).

1.2 With the feet in the air & the head on the ground

The provocative title quotes The Pixies’ sovhere is my mindIt aims at highlight-

ing the fact that wikinomics is a far goal. However, any revolution takes its time to
entirely develop, and probably several intermediate steps are required to approach the
new economy envisaged by Tapscott and Couse. Then, in this section we stélyewith
head on the groundnd we analyse what is going on in the business world now. We
will summarise what is changing and why. At the same time we will comment on the
requirements that originate from such changes.

We are witnessing an important transformation of the firm organisational structure.
Today’s business world is experiencing a progressive disintegration of the traditional
vertical integritﬂ of the enterprises’ organisational structure. This is witnessed by a
heavy increment in the use of outsourcing. Quoting Greaver (Greavei, 1999), “Out-
sourcing is the act of transferring some of an organisation’s recurring internal activities
and decision rights to the outside providers, as set forth in a contract”. Outsourcing is
one of the success keys of western economies and is widely employed. Indeed, a re-
cent on-line news (DMReview.com online news, 2005) about outsourcing claims that,
“According to a newly released IDC study, the worldwide BPO (Business Process Out-
sourcing) market is vibrant and brimming with opportunity. The comprehensive BPO
report finds that worldwide BPO spending will experience a five-year compound annual
growth rate (CAGR) of 10.9 percent, growing from $382.5 billion in 2004 to $641.2 bil-
lion in 2009. This forecast covers eight BPO markets: human resources, procurement,
finance & accounting, customer service, logistics, sales & marketing, product engi-
neering, and training”. Another on-line neWs (DMReview.com online news,|2006) says
that “According to a newly released IDC study, the business outsourcing market pro-
gressed positively in 2005, experiencing a 33 percent increase in the volume of deals
signed. [...]. Small and mid-size deals are fuelling growth. Underlying this trend is

2In microeconomics and management the teariical integrationdescribes the degree to which a firm
owns its upstream suppliers and its downstream buyers.
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an increase in the share of new deals versus extensions and renewals, which indicates
that a growing number of new organisations are buying into the business outsourcing
model. [...]. Manufacturing, financial services, and government verticals registered the
strongest adoption of business outsourcing overall”.

The trend is quite clear. We are moving from vertically integrated struc-
tures to collaborative structures whose components tend to reduce their sizes
(Cucking-Reiley and Spulber, Z00[L; Hammer, 2001). This means that we are slowly
moving towards the paradigm of virtual enterprises. This is a symptom endorsing the
Wikinomicstheory. Such transformation is due to many factors.

Firstly, today’s business environment is getting tougher and tougher. Indeed, nowa-
days customers are increasingly demanding better and innovative goods, as well as pro-
gressively more customised products. This new situation entails some implicit produc-
tion requirements and constraints like timeliness, convenience, responsiveness, quality,
and reliability. Moreover, ever lower prices are imposed by a fierce market competition.

Secondly, the rapid pace of innovation has entailed a shorter product and technology
life cycle (for instance, the PC or phone industries where new models are introduced
each 3 to 9 months), and an increased uncertainty in supply and demand. Notice that
the presence of technology, in particular the Internet, has also made the work of modern
organisations placeless. This has forced an increased specialisation of the operational
activities across an organisation.

Thirdly, we are experiencing a worldwide increment in competition (hyper-
competition). We are fastly moving from a best-in-class to a best-in-world paradigm,
barriers are dropping quickly, competition is just one click away from any customer.
Companies that recently were in separate fields now compete in the same narrow mar-
ket (for instance, Apple with the iPod efficiently entered into the MP3 player market).

Finally, we are witnessing a rapid commaoditisation of gﬂodse to the rapid price
decline and to the increased pressure for improved performances.

Thus, the ability to quickly and efficiently design, develop, produce and sell a new
product has become a key competitive advantage. That is why the structural integrity
of organisations is breaking down; the traditional vertically integrated organisations,
controlling as many of the production factors as possible, is being quickly replaced by
better focused and more specialised organisations. An increased number of capable
service providers, the pressure deriving from the hypercompetitivity, and the pervasive
presence of technology impose a new strategic vision. As a result, new supply chain
managemenf (Simchi-Levi et al., 2000) strategies are emerging, like strategic outsourc-
ing (Quinn and Hillmer, 1994; Greaver, 1999; Corbett, 2004) and collaborative supply
chain network design (Viswanadham, 2002).

Notice that the intersection between portions of supply chains of different firms is
often non empty. For instanceriginal equipment manufacture(©EM) are typical in
rapidly chaining markets. The teromniginal equipment manufactur¢©OEM) refers to a
company that sells a manufacturing component to another company, that in turn resells
it as its own, usually as a part of a larger product.

3In essence, commoditisation occurs as a good or service becomes undifferentiated across its supply base
by the diffusion of the intellectual capital necessary to acquire or produce it efficiently. As such, many
products which formerly carried premium margins for market participants have become commodities, such
as generic pharmaceuticals and silicon cHips (Schrage| 2007).
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In this environment, the selection of the right business partners is critical, which
are quickly moving from the role of suppliers, manufacturers, customers, to the role of
collaborators Hence, many enterprises now face criticelke-or-buy-or-collaborate
strategic decisions across their supply chain: different types of actors, as component
suppliers, contract manufacturers, service purchasers, logistic providers, and final cus-
tomers have to be efficiently integrated into the supply chain. In particular, one of
the main objectives of current supply chain managenient (Simchi-Levi et all, 2000) is
to integrate as much as possible theck-endof the supply chain (its production and
manufacturing portion) to thigont-end(the final customer).

Another fundamental requirement stemming from the business environmental
changes explained above is a need for an increased automation across the supply chain.
Indeed, static and vertically integrated supply chains are quickly giving way to more
flexible value chains composed of partners that can be assembled in real time to meet
unique requirements. This phenomenon is being accelerated by the Internet, that low-
ered the communication barriers transforming a game that was firm against firm into a
game that is supply chain network against supply chain netyork (Viswanadham, 2002).

A spectrum of possible solutions is possibly needed by enterprises. On the one ex-
treme, companies must make decisions about whether to outsource part of their produc-
tion processes (buy/make decisions) in business environments characterised by myriads
of possible partners (lower barriers caused an increment in competition). On the other
extreme of the spectrum, virtual enterprises may need dgitésion support systems
(DSSs) that allow them to automatically form self-organising supply chains.

Indeed, we do believe that nowadays firms, or group of firms, require DSSs that
allow them to nimbly and automatically select strategic business partners. With this
goal, those DSSs should allow firms to:

e automate the process of partner selection, optimising critizede-or-buydeci-
sions across the supply chain (i.e. trading off decisions of internal vs external
production) with myriads of potential partners. Clearly this entails a tight inte-
gration of the procurement and outsourcing strategies.

e decide whether to collaborate with other firms to complete some tasks across
its supply chain. In this case companies need to autommatiee-or-buy-or-
collaboratecritical decisions across the supply chain with myriads of potential
partners.

e automate the process of collaborative supply chain network design and planning
with a large number of potential partners. In particular, the decision support
should allow them to self-organise by allowing to:

— integrate and coordinate all the supply chain stakeholders;

— include component suppliers, contract manufacturers, logistic providers and
final customers into the supply chain design process;

— optimise the overall performance of the supply chain (i.e. not a local opti-
misation);
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— easily support mass customisafipand

— integrate potential suppliers and final customers into new product develop-
ments.

Obviously, decisions like the ones considered above can emerge as long as the sup-
ply chain stakeholders collaborate and share information like capacity, schedule, and
cost structures. However, full transparency and collaboration is rather unlikely. Then,
all the previous requirements should come with the possibility to share only part of a
stakeholder’s internal information, without being forced to reveal every piece of critical
production information.

With the above-mentioned requirements fulfilled, competitive companies could eas-
ily cope with a wide range of difficult business decisions: from the selection of optimal,
tightly connected procurement, outsourcing, and collaboration strategies, to the forma-
tion of virtual enterprises.

In the next section, we briefly introduce the definition of supply chain and we pro-
vide some terminology that will be useful in the remaining of the chapter.

1.3 Supply Chain and Supply Chain Management

According to [Simchi-Levi et al., 2000), “In a typical supply chain, raw materials are
procured and items are produced at one or more factories, shipped to warehouses, for
intermediate storage, and then shipped to retailers and customers. [...] The supply
chain, consists of suppliers, manufacturing centers, warehouses, distribution centers,
and retail outlets.”.

Supply chain management (SCM) “is a set of approaches utilised to efficiently in-
tegrate suppliers, manufacturers, warehouses, and stores, so that merchandise is pro-
duced and distributed at the right quantities, to the right locations, and at the right time,
in order to minimise system-wide costs while satisfying service level requirements”
(Simchi-Levi et al., 2000). One of the core objectives of the supply chain is to perform
a global optimisation across the supply chain. But many features of the way businesses
are run today prevent this from happening: the uncertainty underlying the supply, the
demand, the transportation time, the vehicles and the tools breakdowns. Furthermore
the various stakeholders across the supply chain locally maximise their utility disre-
garding the performances of the other elements within the supply chain. In fact, the
different components often have even conflicting objectives. Traditional SCM deals
with all these problems acting on different aspects of control: distribution network con-
figuration, supply contracts, distribution strategies, supply chain integration and strate-
gic partnering, inventory control, outsourcing and procurement strategies, information
technology and DSSs, etc.

In particular, aspects relevant to our work are:

(1) outsourcing and procurement strategies considered in the first part of this disser-
tation; and

4According to [[Simchi-Levi et al., 2000) “mass customisation involves the delivery of a wide variety of
customised goods or services quickly and efficiently at low cost”.
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(2) supply chain integration and strategic partnering, considered in the second part
of the PhD thesis.

Since our work mainly focuses on outsourcing issues, in what follows we provide some
basic related terminology. Different operational aspects of the supply chain can be
outsourced. More specifically, we classify the types of possible supply chain partners
into four categories:

e component supplieralso called providers, that supply raw or intermediate goods
across the supply chain;

e contract manufacturerghat provide services or manufacturing operations across
the supply chain;

e service purchaserghat require services or manufacturing operations across the
supply chain;

o logistic providersin charge of the transportation, distribution, and storage of raw,
intermediate or manufactured goods; and

o final customersat the end of the supply chain, be them either retailers, or, in the
new Internet era, final clients.

In this dissertation we narrow the focus of the investigation to the collaboration of
component suppliers, contract manufacturers, service purchasers, and final customers.
We deem necessary the incorporation of the logistic portion into the problem. However,
in this dissertation the collaboration with logistic providers is left out, and will be thor-
oughly discussed as a path of future work in chajpker 9. Therefore, in this dissertation
we assume that logistics are negotiated independently.

1.4 The Problem

Once outlined in sectidn.2 the requirements originating from the vertiginous changes
in today’s business world, we focus on the requirements that we tackle in this disserta-
tion. In particular, we present two motivating examples concerning the main issues we
intend to face in this thesis: the problem of efficiently solvingke-or-buyandmake-
or-buy-or-collaboratedecisions across the supply chain. Both examples consider an
imaginary company devoted to produce and sell apple pies dali@ddma & co The
examples, along with the emerging implicit requirements, are thoroughly presented in
section§ 1211 arld 1T.3.2.

1.4.1 Optimising make-or-buy decisions

The first example aims at making explicit the requirements regarding the automation of
make-or-buydecisions.
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Example 1.1. Consider a company, nam&dandma & cq devoted to produce and sell
apple pies. The internal production structure of the company, i.e. the way apple pies
are prepared, is presented in figlitd 1.1. Each circle represents a raw, intermediate or
manufactured good. Squares connecting goods represent manufacturing operations. An
arc connecting a good to an operation indicates that the goodripatio the operation,
whereas an arc connecting an operation to a good indicates that the gooouigpan
of the operation. Therjutter, sugar, andflour are input goodsto the Make Dough
operation, whereagoughis anoutput goodof the Make Douglhoperation. The labels
on the arcs connectirigput goodgo operations, and the labels on the arcs connecting
output goodgo operations indicate the units required of eambut goodto perform
an operation and the units generated @etput goodrespectively. In our example, the
preparation of two units adoughrequires one unit abutter, three units osugar, and
two units offlour.

Each operation has an associated cost every time it is carried out. We label each
operation with a cost. In our example, thiake Doughoperation costs & .

1
€5

3 Make| 2
2 Dough

Baking 4 AngIe
1 €6 4 es
Make| 2 €14
8 Filling

Figure 1.1: Apple pie production flow.

Consider that the marketing departmenGatindma & coforecasts that two hun-
dred apple pies will be sold within a month. Therefore, the company starts an automated
sourcing|(Minahan et al., 2002) process to acquire the basic ingredients needed for pro-
ducing pies, nameliutter, sugar, flour, apples andmargarine

However, the production management staff decides to test a new sourcing process.
Instead of limiting the procurement to basic ingredients, they decide to incorporate in
the sourcing process intermediate and final goods as well, nadoelyh filling, and
apple piesn figure[I.1. More precisely, the production management wonders whether



1.4. The Problem 9

to outsourcepart of its production process. In fact, the executive staff noticed that more
and more specialised enterprises are entering the organic food marketGsamcbna

& co is a well-known brand for pies, it decides that in order to reduce costs, it could be
suitable to negotiate and collaborate with those new brands.

As an additional constraint, the production management knows that strong com-
plementarities among the negotiated goods exist on the supplier side. For instance,
suppliers often sell margarine and butter as indivisible bundles. Thus, it is required that
those complementarities are taken into account. O

Grandma & corealises that it faces a decision problem: shall it buy the required in-
gredients and internally produce apple pies, or buy already-made apple pies (outsource
all its production), or opt for anixed purchasand buy some ingredients for internal
production and some already-made apple pies? This concern is reasonable since the
cost of ingredients plus preparation costs may eventually be higher than the cost of
already-made apple pie&srandma & comust take a decision among many possible
mutually exclusive options:

e buy all the basic ingredients to internally produce all the pies;

buy from suppliers all the pies and resell them under its name;

buy already-made dough and filling from suppliers , and bake itself the cake;

prepare part of the dough and part of the filling, and buy the rest from suppliers;

buy part of the pies from suppliers and produce the rest itself;
e and so on.

Grandma & cois interested in quantitatively assessing what to buy and from whom, as
well as what to produce in house. Such assessment depends on many factors:

(1) the market cost of the basic ingredients (butter, sugar, flour, apples, and mar-
garine);

(2) the market cost of dough, filling, and pies;
(3) the stock goods &randma & cq
(4) the finally required goods (the sales forecast);

(5) the cost for performing aBrandma & cothe operationdMake Dough Make
Filling, andBaking(the internal cost structure);

(6) the number of units of each good either produced or required for each operation
(the internal production structure); and

(7) the complementarity relationships among goods holding on the suppliers’ side.
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Hence,Grandma & corequires a complex decision support system along with a nego-
tiation mechanism that helps it in detecting which is the revenue maximising buying
configuration and the internal operations to perform in order to obtain the finally re-
quired goods. Itis easy to understand from the example that the procurement and out-
sourcing decisions are tightly linked. Notice that there is a mutual dependency among
the outsourcing opportunity, the ingredients’ market prices (as Dough, Apples,etc.) and
other factors. This kind of dependencies must be absolutely captured by any proposed
solution.

The literature on procurement has introduced combinatorial reverse auctions to deal
with the problem of complementarities among goods on the bidders’ side. In the fol-
lowing section we briefly recall some knowledge about electronic sourcing and combi-
natorial auctions.

The procurement phase

In the everyday business world, the sourcing process of goods and services usually
involves complex negotiations. With the advent of the Internet, a plethora of commer-
cial products to electronically support this process (e-sourcing tools) have started to be
commercialised by a significant number of vendors (e.g. Ariba, Emptoris, Perfect, and
iSOCO to name a fdffy. Thus, e-sourcing tools have become an established part of the
business landscape (Team, 2001). Re tions are at the heart of most of these
tools as the mechanism for buying companies to automate their negotiations with the
qualified providers in their supply chains.

Although reverse auctions are certainly valuable to swiftly negotiate with providers,
combinatorial (reverse) auctions may lead to more efficient allocations whenever com-
plementarities among the goods at auction hold, as argued in (Sandholin, 2002). A
combinatorial (reverse) auction (Cramton et al., 2006) is an auction where bidders can
sell (buy) entire bundles of goods in a single transaction. Although computationally
very complex, selling (buying) items in bundles has the great advantage of eliminating
the risk for a bidder of not being able to obtain (sell) complementary items at a rea-
sonable cost (price) in a follow-up auction (think of a combinatorial auction for a pair
of shoes, as opposed to two consecutive single-item auctions for each of the individual
shoes).

In particular, connected with the introduction of combinatorial auctions are
bidding languages| (Nisan, 2006) and the winner determination problem (WPD)
(Cehmann et al., 2006). Winner determination is the problem, faced by the auctioneer,
of choosing what goods to award to which bidder so as to maximise its revenue. The
winner determination for combinatorial auctions is a complex computational problem.
In particular, it has been shown that the WDP is NP-complete (Rothkopf et al], 1998).
Bidding is the process of transmitting one’s valuation function over the set of goods at
offer to the auctioneer (or ratheomevaluation function — the bidders are of course
not required to reveal their true valuation —).

SWe refer the reader tf (Bartels et al., 2005) for an analysis of e-sourcing tools.
6An auction is callecdirect when the auctioneer aims at selling goods, whereas we talk abeerise
auction when the auctioneer is interested in buying goods.
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SinceGrandma & coaims at dealing with the case in which complementarities
among goods hold at the bidder’s side, combinatorial auctions is for sure the more
suitable sourcing method. Then, in order to cope V@tandma & cds problem, we
employ combinatorial auctions. Anyway, combinatorial auctions cannot be directly
employed for the problem explained in exanipld 1.1 due to some intrinsic limitations.

To the best of our knowledge, no author directly dealt with rieke-or-buyde-
cision problem employing reverse combinatorial auctions. On the one hand, combi-
natorial reverse auctions solve the problem of procurement when complementarities
among goods exist on the supplier side. On the other hand, operations research has
studied the beshake-or-buydecisions based on past production information, sell fore-
cast, providers’ offers, et¢ (Aissaoui et al., Ztﬂ)?However, nobody embedded the
decision problem into the procurement problem when complementarities among goods
hold, nobody analysed the procurement decisions in conjunction with the outsourcing
decisions in a combinatorial scenario. Then, in what follows, we analyse the require-
ments associated with tieake-or-buydecision problem that are not fulfilled by com-
binatorial auctions, and we discuss the extensions required in order to deal with such
decision problem.

Combinatorial Auction limitations

Say that Grandma & co opts for running a combinatorial reverse auction
(Sandholm et al., 2002) with qualified providers for the procurement of all the required
goods. Unfortunately, traditional combinatorial reverse auctions cannot be applied to
solve such a problem for three reasons. Firstly, because of expressiveness limitations,
namely an auctionee6Gfandma & ¢ cannot express:

e its internal manufacturing operations along with the producer/consumer relation-
ships holding among them (for instance, in figurd 1.1, the outpiMtadfe Dough
is an input ofBaking;

o the relationships between the manufacturing operations and the auctioned goods
(for instance, in figurEZIl1, the input to thdake Doughoperation is three units
of sugar, two units offlour and one unit obutter, whereas its output is two units
of dough;

o the relationships between the received bids and the internal manufacturing oper-
ations;

e the requirements sent to bidders. This is clarified by observing that even though
the final requirements dbrandma & coare two hundred apple pies, multiple
request configurations fulfil such outcome, for instance:

— two hundred already-made apple pies

— the basic ingredients plus in-house production of two hundred apple pies

“For a general review on decision support to supply chain management r¢fer to (Erenguc et al., 1999).
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How canGrandma & coformally describe its requirements? What should be the
requirements sent to bidders? In fact, the optimal requirements depends on the
received offers, and therefore cannot be stated a priori.

e the cost associated to performing each internal operation or a set of internal op-
erations.

The second problem is that the outcome of a combinatorial auction only provides
information about what goods to buy and from whom. However, the information about
which internal manufacturing operations to perform and the order in which the auction-
eer has to perform them (in the example of figiird 1.1, the auctioneer cannot perform
the Bakingoperation befordlake Dougtor Make Filling) is not provided.

Table[Tl summarises the requirements stemming frommiee-or-buydecisions
that are not supported by any state-of-the art solution.

TYPE LIMITATION
(1) internal manufacturing operations and the
producer/consumer relationships among
them

192
]

(2) specification of an auctioneer’s final r

. quirements
Expressiveness

(3) relationships among the manufacturipg
operations, the auctioned goods, and the
received bids

(4) specification of an auctioneer’s internal
cost structure

WDP (5) information about which in-house operg-

tions to perform and in which order

Table 1.1: Summary of unfulfilled requirements.

Although combinatorial auctions help set the market price of each good, they do
not incorporate the notion of internal manufacturing operations. This is why all the
above-mentioned difficulties arise.

SummarisingGrandma & corequires an extended combinatorial reverse auction
that provides:

(1) aformallanguage to quantitatively express, analyse, and communicate its internal
production structure and requirements; and

(2) an efficient cost minimising winner determination solver that not only assesses
which goods to buy and from whom, but also the sequence of internal manufac-
turing operations needed to obtain the finally required goods.
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1.4.2 Optimising make-or-buy-or-collaborate decisions

In what follows, we further increase the complexity of the scenario illustrated in exam-
ple[I7. Besides component supplieBsandma & cobrings contract manufacturers,
service purchasers, and final customers into the auction. We clarify what we stated
above by means of the following example.

Example 1.2. Consider again the example @fandma & co The revolutionary pro-
duction management (PM) staff decides that, besides all the g@rdsadma & cowill
negotiate all the operations along its supply chain. Thus, it invites to the auction sup-
pliers of goods, suppliers of manufacturing operationd{ake Douglor Baking, and

final customers/buyers of the final product (apple pies). SBreamdma & cois often
asked to perform some service operationBakingfor instance) for other companies,

it decides to bring into the auction service purchasers as well. Summariagdma

& co, acting as auctioneer, receives offers from four types of bidders, namely:

(1) component suppliers:bidders that offer goods (for instance, two hundreds units
of flour and a hundred units of sugar for 8€0;

(2) contract manufacturers: bidders that offer manufacturing operations (for in-
stance, perform the operatitMake Douglat 4€);

(3) service purchasers:bidders that require manufacturing operations (for instance,
willing to pay<€ 42 for having the operatioMake Fillingdone seven times); and

(4) final customers: bidders that ask for goods (for instance, two hundred units of
apple pies for 240&).

O

Resorting to example_l.2, in what follows we clarify what weéeimd for make-
or-buy-or-collaboratedecisions. Say that there is a contract manufacturer that is very
able to efficiently and cheaply perform tiBaking operation, i.e. at a cost & 10.
However, it performs very poorly thdake Filling and theMake Dougloperations. In
such a case, the way to optimally produce apple pies for both firmsdslkaborate
i.e Grandma & cowill be in charge of buying the basic ingredients to subsequently
transform them int@®oughandFilling, whereas the other firm of tigakingoperation.
Together they can offer a more competitive price.

Observe that it might be the case tandma & coacts as a pure intermediary for
some or all the operations. Eventually, someone might perfornBékéngoperation
and someone else might require Bakingoperation. In this case the operation is per-
formedby a bidderfor another bidder, an@randma & coacts just as an intermediary
that makes profit by connecting the service provider and asker.

From examplé_T]2, we see that more stakeholders, besides component suppliers,
have to be brought into the negotiation. In particular, we need to incorporate contract
manufacturers, service purchasers, and final customers. Hence, it is compulsory to
introduce a unified formal language for describing all the possible types of operations
that supply chain stakeholder can negotiate upon. We classify such operations in four

types:
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Supply of manufacturing, assembly, disassembly operatibos instance, the

cost of assembling a personal computer given a mother board, a CPU, two mem-
ory units and a hard drive cos&12. This type of operation will typically de-
scribe services offered by contract manufacturers.

Demand of manufacturing, assembly, disassembly operatiBos instance, a
bidder is willing to pay & to have his PC assembled given that he provides the
components (e.g. a mother board, a CPU, two memory units and an hard drive).

Supply of goods For instance, a supplier offers 100 units of RAM memories
and 100 units of CPUs & 4000. This type of operation will typically describe
services offered by component suppliers.

Demand of goodg-or instance, a customer is willing to p&5000 for 20 PCs.
This will typically describe operations associated to final customers.

We will refer to any of the possible operations mentioned above with the gapply
chain operationSCO).

Grandma & cofaces a decision problem more complex than the one explained in
sectior”.Z11. Although the use of combinatorial reverse auctions may @itamdma
& co to improve its supply chain, there are further limitations that prevent its use:

)

)

Even though combinatorial auctions allow to express offers or requests on bun-

dles of goods, there exists no language to express offers or requests of manu-
facturing operations across the supply chain. Furthermore, along the lines of

expressive commerce (Sandholm, 2006@)s desirable to provide bidders with

a language rich enough to compactly express several possible offer alternatives.

Besides complementarities among goods, further relationships must be taken into
account. Those relationships link all the stakeholders of a supply chain by means
of producer/consumer relationships. For instance, there is a producer/consumer
relationship between any producer or suppliedofighand any supplier of the
Bakingoperation sinceloughis requested to perform thigakingoperation (see
figure[IT1). Those relationships have only been partially taken into account by
current combinatorial auction models despite being present in most real-world
scenarios. In fact, the inputs and outputs of a production process are strongly
connected since a manufacturer may risk:

e to produce unsold goods, thus losing money; and
e to fail to produce already sold goods when no able to obtain the required
inputs, thus losing credibility on the market.

Hence, a supply chain can be regarded as an intricate network of suppliers, man-
ufacturers (entities transforming input goods into output goods at a certain cost),
and consumers interacting in a complex way. The complementarities arising

8Expressive commerce is a new sourcing paradigm in which supply and demand are expressed in greater
detail than in traditional electronic commerce. A subsequent optimisation allows to discover the most prof-
itable alternatives.
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in the scenario of examp[e_1.2 are different from the ones we do find in CAs.
They arise because of the preconditions and postconditions of manufacturing pro-
cesses: precedences and dependencies along the supply chain must be taken into
account. Hence, whilst in CAs the complementarities can be simply represented
as relationships among goods, in supply chains the complementarities involve
not only goods, but also interrelated manufacturing relationships across several
levels of the supply chain.

(3) Similarly to the case discussed in secfion1.4.1, the outcome of a combinatorial
auction does not provide an ordered sequence of supply chain operation to per-
form. However, an auctioneer must know the sequence of operations to perform
in order to make its supply chain operate.

The most significant attempt to deal with the shortcomings exposed above has
been undertaken by Walsh et. fal (Walsh et al., 2000). Although they mainly focus on
analysing the problem of distributed supply chain formation (SCF), in which no auc-
tioneer is leading the formation process, the underlying problem is similar to a certain
degree. Quoting Walsh et al._(Walsh and Wellman, 2003), “Supply Chain Formation
is the process of determining the participants in a supply chain, who will exchange
what with whom, and the terms of the exchanges”. They define a new type of auction,
the combinatorial auction for supply chain formatipwhich deals with scenarios in
which multiple agents must form a supply chain. In order to cope with some of the
above-mentioned combinatorial auction limitations, Walsh et[al. (Walsh et al.], 2000)
introduce the notion of task dependency network (TDN). TDNs offer the means to ex-
press:

o offers on bundles of goods;
e demands of bundles of goods; and

¢ offers on a single manufacturing operation (with only one output product and
multiple input components).

Furthermore, TDNs well describe the production complementarities we highlighted in
point (2) of the combinatorial auctions shortcomings listed above, which is the possi-
bility of expressing producer/consumer relationships.

Nonetheless, although TDNs are indeed valuable to model SCF, further require-
ments must be addressed to fully support automated negotiations across the supply
chain. In fact, Walsh et all_(Walsh et al., 2000) mainly focus on game theoretical and
economical issues, and do not elaborate on computational and expressiveness issues.
Hence, due to some intrinsic limitations, TDNs cannot cope with all the requirements
we exposed above. In particular, the requirements associated ioatkes-or-buy-or-
collaboratedecision problem that TDNs do not support are the following:

(1) the ability to represent all possible supply chain network topologies (TDNs only
supports acyclic networks);

(2) the possibility to express complementarities among supply chain operations (for
instance, ifMake Doughand Make Filling share some machine, they can be
cheaper if offered together) ;
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(3) the possibility for bidders to require supply chain operations (TDNs only allow
to offer them);

(4) the possibility to express resource sharing (for instance, an oven is a resource that
can be shared);

(5) the possibility to express minimum/maximum capacity constraints on the number
of times each supply chain operation can be performed (for instance, in presence
of economies of scdlethere is a critical number of operations that drastically
reduce the price of a manufacturing process);

(6) the possibility to express any type of manufacturing operation (for instance,
TDNSs only allow operations with a single output);

(7) providing a coordinated scheduling plan among the supply chain stakeholders;

(8) solvingMake-or-Buy-or-Collaboratelecisions (i.e. not only supply chain for-
mation problems);

(9) the ability to specify the configuration an auctioneer aims to end up with (the
sales forecast fabrandma & cq.

Then, although TDNSs are indeed valuable to model SCF, further requirements (re-
garding expressivenesand computability must be addressed to fully support auto-
mated supply chain network design and planning.

As to expressiveness requirement® shall need:

(1) to support a wide range of supply chain topologies beyond acyclic nets;

(2) to provide bidders with means for expressing several types of preferences over
supply chain operations;

(3) the configuration to end up with (i.e. the sale forecast);
As to computational requirementa/e must ensure;

(1) that the outcome of the optimisation problem is not only the set of winning bids,
but also a coordinated and integrated plan of all the supply chain stakeholders;

(2) the computational tractability of supply chain network design and planning while
preserving optimality. This is an important requirement since, as explained in
sectior R, myriads of agents could potentially participate.

In table[T.P we list the requirements associated tonl&e-or-buy-or-collaborate
decision problem that are not currently supported by any state of the art methodology
or tool. SummarisingiGrandma & coneeds:

9Economies of scale characterise a production process in which an increase in the scale of the firm causes
a decrease in the long run average cost of each unit.
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TYPE REQUIREMENTS
(1) support any supply chain topology

_ (2) provide bidders with a language for ex-
EXxpressiveness pressing several types of preferences over
supply chain operations

(3) configuration to end up with

(4) compute the scheduled sequence of gup-
ply chain operations to perform

>

Computational (5) computational tractability of supply chai
network planning while preserving opt
mality

Table 1.2: Requirements associatedntke-or-buy-or-collaborateecisions.

(1) alanguage for expressing the offers/requests of the different actors involved in the
auction. This language should be able to represent demands and offers of supply
chain operation, and should be expressive enough to overcome the shortcomings
of TDNs.

(2) a scalable winner determination solver that not only assesses the supply chain
partners that maximise the auctioneer’s revenue, but also provides an integrated
coordination/scheduling plan for the emerging supply chain. That is, it should
provide information about the synchronised sequence of supply chain operations
that must be performed.

In the previous two sections, we introduced the requirements connected with the
solution ofmake-or-buyand ofmake-or-buy-or-collaboratdecisions. In the following
section we will outline the approach we employed to fulfil such requirements.

1.5 Contributions

In this dissertation we contribute with two generalisations of combinatorial auctions
providing support to thenake-or-buyand make-or-buy-or-collaboratédecision prob-
lems.

In the first part of this dissertation we present an extension to combinatorial auctions
that we shall refer to aslulti-Unit Combinatorial Reverse Auction with Transforma-
bility Relationships Among GoodMUCRA(R). MUCRALtR automatesnake-or-buy
decision problems in scenarios characterised by combinatorial preferences. This new
auction type provides an auctioneer with a framework to optimise its outsourcing and
procurement strategy. In particular, it allows an auctioneer:
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o to formally express its internal production structure; and

e to automatically and efficiently assess which goods to buy and from whom, along
with the sequencef internal operations to perform in order to obtain some re-
quired resources.

In order to provide a language to express the internal production structure of an auc-
tioneer, we extend Petri Nets (refer to secfiof 2.3 of to (Murata]1989)), a well-known
graphical and formal tool to analyse discrete dynamical systems. We call such extended
modelWeighted Place Transition Nef§/PTNs). The semantics of WPTNs naturally
captures:

e the producer/consumer relationships holding among manufacturing operations;
and

o the relationships among goods at auction, auctioneer’s internal operations, and
bids.

Next, in order to provide a formal definition to the auctioneer’s decision problem, we
define a new optimisation problem on WPTNs, tBenstrained Maximum Weighted
Occurrence Sequence Probld@MWOSP). The resulting optimisation problem per-
fectly captures the nature of the auctioneer’s decision problem. We anticipate that
the newly introduced optimisation framework allows to import a wide body of anal-
ysis methods from Petri Nets theory and apply them to our decision problem, thus
providing methods and tools for its analysis. Subsequently, in order to practically
solve the auctioneer’s decision problem, we exploit analysis methods imported from
Petri Nets theory and manage to provide an efficient Integer Linear Programming (ILP)
(Himier and Lieberman, 1986) formulation of the problem. However, this formulation
only works when an auctioneer’s internal production structure is acyclic. That s, there
are no cycles in a production process.

In the second part of the dissertation we present another extension of combinatorial
auctions, nameliMixed Multi-Unit Combinatorial AuctionfMMUCA), that allows to
deal with make-or-buy-or-collaborateecisions. This new auction type provides an
auctioneer with an automatic method to optimally select supply chain partners. Our
contribution develops along three dimensions:

(1) Bidding Language We provide a novel language that allows agents to express
a range of preferences over complementary operations across the supply chain.
We build this language by extending and generalising previous languages for
Combinatorial Auctions. In particular, we introduce the notiorsepply chain
operation(SCO). The notion of SCO encompasses several types of operations
across the supply chain. Then, we provide bidders an expressive language to
trade SCOs.

(2) Winner Determination Problem. We provide a definition of the auctioneer’s
decision problem that selects, among the received bids, the revenue-maximising
ordered sequencef SCOs to perform. More precisely, this definition, besides
fulfilling the semantics of the newly introduced bidding language, provides a
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sequencef SCOs that is feasible. A feasible sequence guarantees that every
SCO can be performed whenever the preceding SCOs in the sequence are run.
Moreover, the definition of WDP also allows to specify the quantity of goods
initially available (the stock), and the quantity of goods the auctioneer aims to
end up with.

(3) Winner Determination Problem Solvers We provide three different ILP-based
solvers to deal with the practical solution of the WDP for MMUCA.

(&) We succeed in mapping the auctioneer decision problem to a CMWOSP
(analogously to the case of MUCRALR). In this way, we can import a body
of analysis tools. In this case as well, by relying on these analysis tools, we
obtain a very efficient way of solving the decision problem. Nonetheless,
this method can only be applied when the supply chain operations do not
form a cycle within the production process (acyclic supply chain network).
We shall refer to this as theMWOSP-basesdolver.

(b) Afterwards, we show that limiting the supply chain network to be acyclic
prevents MMUCA's application to many significant scenarios. Thus, we
provide a new Integer Linear Programming solver, called DIP, that solves
the winner determination problem in the general case.

(c) Although very general, the introduced method is computationally hard to
solve, and therefore hinders the applicability of MMUCA to small-size and
middle-size scenarios. In order to overcome such a problem, we introduce
a new solver, called CCIP, that exploits some domain specific knowledge to
reduce the search space.

Finally, we provide two empirical evaluations. The first one empirically quanti-
fies the scalability gain provided by the CCIP solver with respect to the DIP solver

in terms of computational time and size of solvable instances. The second one
assesses the performances of the CMWOSP-based solver. We test such methods
on acyclic instances and then we compare the obtained results with the results for
DIP and CCIP of the former experiment.

Finally, we claim that MMUCA generalises and extends a wide range of auction types,
namely:

e single-unit direct, reverse and double auctions (Krishna,|2002);
e multi-unit direct, reverse, and double auctidns (Krishna, 2002);

e multi-unit combinatorial  direct, reverse and double auctions
(Sandholm et al., 2002);

¢ MUCRAIR (the first contribution of this dissertation); and

e Combinatorial Auctions for Supply Chain Formation
(Walsh and Wellman, 2003).

Therefore, all the results that we can derive for MMUCA can be directly applied to the
above-listed auction types.
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1.6 Dissertation Outline

The remaining of this dissertation is organised as follows.

Chapter @ We provide some background knowledge on Integer Programming (IP),
Place Transition Nets, order and graph theory. This chapter is needed for understanding
the concepts developed in chapfdiEl 814, 6 [&nd 7.

Chapter[@ We put in context our work with respect to the state of the art. Our work

is placed at the intersection of two sub-areas, combinatorial auctions and supply chain
management. Thus, firstly we introduce auctions and combinatorial auctions. In partic-

ular we elaborate on bidding languages, winner determination problem and test suites.
Next, we explore some aspects related to supply chain management. In particular, the
problem of centralised supply chain formation and centralised supply chain scheduling

and planning are thoroughly described.

Chapter@ We present Multi-unit combinatorial auctions with transformability rela-
tionships among goods (MUCRACtR). This is an extension to Combinatorial Auctions
that allows to solve thenake-or-buydecision problem. In this chapter, we also in-
troduce Weighted Place Transition Nets (WPTN) and we define a new optimisation
problem on them, the Constrained Maximum Weighted Occurrence Sequence Problem
(CMWOSP). Finally, we show that the CMWOSP on acyclic nets can be solved by
means of IP. The material contained in this chapter has been published in:

e Giovannucci, A., Rodriguez-Aguilar, J. A. and Cerquidesiuctioning substi-
tutable goodsVolume 131 ofLecture Notes in Artificial Intelligen¢c@ages 381-
388.

e Giovannucci, A., Rodriguez-Aguilar, J. and Cerquidegyldlti-unit combina-
torial reverse auctions with transformability relationships among godéoc.
Workshop on Internet and Networking Economié¢d NE 2009, pages 858—-867.
Volume 3828/2005 of Lecture Notes in Computer Science. Springer-Verlag.

e Giovannucci, A., Rodriguez-Aguilar, J. and Cerquidegyldlti-unit combina-
torial reverse auctions with substitutability relationships among go#utec. of
the first Networking and electronic commerce research confer&#deq 2005,
pages 324-337. Riva del Garda, Italy, 2005.

e Giovannucci, A., Rodriguez-Aguilar, J. A. and CerquidesBdnefits of combi-
natorial auctions with transformability relationshipsProc. of the 17th euro-
pean conference on artificial intelligendeGAl 2006, pages 717-718. Riva del
Garda, Italy, 7/2006.

e Giovannucci, A., Rodriguez-Aguilar, J. A. and CerquidesSdvings in com-
binatorial auctions through transformation relationshipln O. Sheory and M.
Fasli, editors, The TADA AMEC joint workshop at aamas 2006 trading agent
design and analysis & agent mediated electronic commercelMtture Notes



1.6. Dissertation Outline 21

in Computer Sciencédakodate, Japan, 5/2006, pages 17-30, volume 4452/2007
of Lecture Notes in Computer Science.

e Giovannucci, A., Rodriguez-Aguilar, J. A. and CerquidesAudctioning trans-
formable goodsProc. of the fifth international joint conference on autonomous
agents and multi-agent systemnSAMAS 2005 pages 893-895. Hakodate,
Japan, 5/2006.

ChapterB We provide a further extension of combinatorial auctionsMhed Multi-

unit Combinatorial AuctiofMMUCA). By means of MMUCA, an auctioneer can au-
tomatemake-or-buy-or-collaboratdecisions. In particular, we provide an expressive
bidding language and a definition of the winner determination problem for MMUCA.
The material contained in this chapter has been published in:

e Cerquides, J., Endriss, U., Giovannucci, A. and Rodriguez-Aguilar, Bid\.
ding languages and winner determination for mixed multi-unit combinatorial
auctions Proc. of the 20th intl. joint conferences on artif. intelligentECAl
2007), pages 1221-1226. Hyderabad, India, 1/2007.

ChapterB Analogously to chaptdid 4, we provide a mapping of the MMUCA WDP

to CMWOSP. With this purpose we introduce thixed Auction Neta WPTN that
compactly represents the whole search space associated to the MMUCA WDP. We
show the equivalence between the MMUCAs WDP and a CMWOSP omiked
Auction Net As a consequence of this mapping, we obtain an IP formulation of the
WDP for a wide class of supply chain network topologies (acyclic). After showing
that the hypothesis that the underlying supply chain is acyclic sometimes may not hold,
we introduce a general IP model of the MMUCA WDP that deals with any network
topologies, namely the DIP. DIP is built applying a direct mapping of the definition of
the WDP to IP. The result is a solver that can find a solution to any instance of WDP.
The material explained in this chapter has been published in:

e Giovannucci, A., Rodriguez-Aguilar, J., Cerquides, J. and Endrisa\Vidner
determination for mixed multi-unit combinatorial auctions via petri n@isen-
tieth International Conference on Autonomous Agents and Multi Agent Systems
(AAMAS 200Y. Hawaai, USA, 5/2007. To appear.

Chapter[d We present the CCIP, an IP formulation of the MMUCA WDP that boosts
DIP. The new model exploits the precedence relationships among the SCOs to enforce
an a-priori ordering of the solution. In this way, we can prune a great part of the search
space. In this chapter we formally prove that CCIP is correct.

ChapterB The aim of this chapter is to empirically evaluate and compare the solvers
presented in chaptef$ 6 alld 7. For this purpose, firstly we describe the state-of-the-
art methodology for generating an MMUCA benchmark (Vinyals, 2007b). Then, we
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perform some preliminary experiments to compare the performances in terms of CPU
time of the three solvers.

Chapter@ We draw some conclusions and thoroughly describe paths to future re-
search.



Chapter 2

M athematical Background

In this chapter we introduce some technical background knowledge in order to ease the
understanding of this dissertation. In secfiad 2.1 we summarise what Integer Program-
ming is, why it is useful for our purposes, and we argue on its pros and cons. Next, in
sectiofZP we briefly recall what multisets are, and we discuss some of their properties.
Next, in sectiof 213, we thoroughly describe Petri Nets (PNs), and in particular Place
Transition Nets (PTNs), a formalism for analysing and simulating discrete dynamical
systems. Finally, in sectidn 2.4, we summarise some properties of graphs and binary
relations from the perspective of order theory.

2.1 Linear and Integer Programming

In this section we introduce some basic concepts regarding linear and integer program-
ming. Both are widely employed for solving complex optimisation problems. The
former can solve bigger problems (in terms of decision variables) but is limited in its
expressiveness (only linear function can be employed), whereas the latter is more com-
plex but allows to solve a wider class of problems.

2.1.1 Linear Programming

Linear programming has been considered one of the technological breakthroughs of
the mid-20th century (Hillier and Lieberman, 1986). This standard tool has saved thou-
sands or even millions of dollars to companies that have employed it. At the heart
of linear programming lies the problem of “allocatitimited resourceamongcom-
peting activitiesn the best possible (i.eptimal) way.” (Hillier and Lieberman, 1986).
In particular, linear programming helps in determining the level of each resource that
is allocated to each activity. This pattern applies to several real-world problems such
as allocation of production facilities to products, portfolio selection, shipping partners
selection, etc.

Linear programming employs mathematical models to represent the above-
mentioned problems. In particular, the adjectivesar illustrates the fact that only

23
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linear functions can be employed to model problems. The woodrammingis in-
tended as semantically equivalentgianning Hence linear programmind‘involves
the planning of activities to obtain an optimal result, i.e., a result that reaches the spec-
ified best goal among all the feasible alternativegs.” (Hillier and Lieberman] 1986).

A very interesting characteristic of linear programming is that there exists a very ef-
ficient solution method called tH&implex MethogPapadimitriou and Steiglitz, 1982).
In particular, the simplex method can be applied to problems of enormous size. No-
tice that it has been shown that linear programming is in the class of the polynomial
algorithms|(Papadimitriou and Steiglitz, 1982).

In what follows we present an example of linear programming model.

Example 2.1. A farmer has a piece of farm land, saysquare kilometres large, to be
planted with either wheat or barley or some combination of the two. The farmer has
a limited permissible amourf of fertiliser andP of insecticide which can be used,
each of which is required in different amounts per unit area for whegt ;) and

barley (F», P,). Let S; be the selling price of wheat, arfth the price of barley. If

we denote the area planted with wheat and barleybgndx, respectively, then the
optimal number of square kilometres to plant with wheat vs barley can be expressed as
a linear programming problem:

maximiseSiz1 + Sazo revenue bound avbjective function (2.1)
subjecttor; + a2 < A limit on total area (2.2)
Fix1 + Foxe < F limit on fertiliser (2.3)
Pix1+ Pyxs < P limit on insecticide (2.4)
21 >0,29>0 cannot plant a negative area (2.5)
([l

The linear program in example2.1 can be directly solved byrergial or free
solvers, like ILOG CPLEX|(ILOG, 2007), LINDQ (Lindo SystemsInc., 2007) (com-
mercial), and GLPK[(Makhorin, 2001) (free). The reader can understand the reasons
of the tremendous impact of linear programming in recent decades: even knowing little
of the technical details it is possible to solve massive and highly complex optimisation
problems.

2.1.2 Integer Programming

One key limitation of linear programming is the fact that variables are allowed to take on
any fractional value. In some circumstances, this does not constitute a great problem.
For instance, if the result of the optimisation is that we have to build 400.5 bicycles,
rounding the result to 400 does not change the result a lot. Instead, if the result is to
employ 2.5 Boeing airplanes to perform a shipping, the rounding to 2 or 3 air planes
is not an easy decision. Moreover, in some problems the solution makes sense only
if some variables take on an integer value. Whenever the only deviation from a linear
programming approach is the fact the variables can only hold integer values, we have
the so callednteger Programming
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The modelling language underlying Integer Programming is exactly equivalent to
the one of linear programming, except that some variables are constrained to be integer.
In particular, if all the variables involved in a problem have to be integer, then we talk
aboutpure integer programmingwhereas if both integer and fractional variables are
allowed we talk aboumixed integer programming

Other problems for which the use of integer programming is fundamental are the
problems involving interrelated “yes-or-no decisions”. For instance, should we make
an investment? Should we buy a new truck? And so on.

In what follows we present an example of integer program. It explains how to model
the knapsack problerp (Kellerer et al., 2D04).

Example 2.2(Knapsack problem)Given a set of items, each with an associated cost
and value, th&napsack problemonsists in determining the subset of items to include

in a collection so that the total cost is less than a given limit and the total value is as
large as possible. Itis a very typical combinatorial problem, and can be easily expressed
by means of integer programming.

Say that there are items. Each item is indexed bye [1,n]. Then, say that each
item ¢ has associated the valugand the cost;. The problem is thus finding the set of
items that costs less than a constardand maximises the value. In order to model this
decision we assign a variahig to each item. z; takes on valué if item i is selected
and0 otherwise. Then, the function that we have to maximise is the value associated to
the selected items, namely:

i=1

this is called thebjective functiorof the integer program.
Additionally, we have to make sure that the cost of the selected items does not
exceed the permitted coSt Then, the following constraint must hold:

inci <C (2.7)
i=1

These are called the@de constraint®f the integer program.

O

In the previous example the decision variables can only takeatues 0 or 1 (it
would make no sense accepting 0.33 of an item). All the problems sharing this feature
are calledbinary integer programmingroblems and the corresponding variables are
calledbinary variables Analogously to linear programming, a lot of software packages
are available to solve integer linear programming problems as well. For instance, Excel
(Microsoft, 2007), ILOG CPLEX|(ILOG, 2007), LINDQO (Lindo Systems Inc., 2007)
are commercial solvers, whereas GLPK (Makhorin, 2001) is a free solver.

The case presented in examplel 2.2 is very simple. However, integer program-
ming models are often very difficult to formalise, since many different type of deci-
sion variables and constraints are required. Modelling languages are useful for easing
the implementation of such complex models. There exist a few modelling languages,
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the most famous being AMPI (Fourer et al., 17989), MathProg (Makhorin, ), and OPL
(Van Hentenryck, 1999). For a survey on modelling languages refer to (Kallrath, 2004).

Solving Integer Programming Problems

It may be tempting to think that Integer Programming problems are easier to solve
than Linear Programming problems. In fact, one could argue that since the deci-
sion variables can only hold few values instead of real values the search space is re-
duced, that only a finite number of solutions have to be enumerated. It is possible
to demonstrate that this argument is not valid: solving integer programming prob-
lems is much more difficult than solving linear programming problems in most cases
(Papadimitriou and Steiglitz, 1982)

For this reason, most algorithms for solving Integer Programming incorporate
the simplex method as a solution step. We will not get into those details, for
a detailed treatment of the subject refer [fo (Papadimitriou and Steiglitz, 1982) and
(Himier and Lieberman, 1986). The only aspect we aim at highlighting is that the two
factors determining the computational hardness of an integer programming problem
instance are (Hillier and Lieberman, 1986):

(1) the number of integer decision variables; and
(2) any special structure in the problems.

Current solution methods and commercial solvers can deal with problems ranging
from hundreds to thousands of decision variables. The structure of the problem can
sometimes make smaller problems much more difficult to solve than bigger ones. In
general, reducing the number of constraints can help as well, although with a minor
effect.

We briefly mention that huge instances of integer programming can not be solved
optimally. For this reason, meta-heuristics have been recently employed to solve those
huge problems non-optimally. Even if they can not guarantee any bound on their per-
formances, they usually perform quite well. For a review on meta-heuristics refer to
(Blum and Roli, 2003).

2.2 Multi-sets

A multi-set(Blizard and File, 198¢; Syropoulds, ) is an extension to the notion of set,
considering the possibility ahultiple appearancesf the same element. An example
of multiset i A = {a,a,a,b,b,c}.

In general, anulti-set A over a setX is a functionA4 : X — IN mappingX to the
cardinal numbers. In the example aboVe= {a, b, c}.

Foranyx € X, A(zx) € IN is called themultiplicity of x. For instance, in the
example above, the cardinality of the elemei 3 (A(a) = 3).

1There are some particular problems having a special structure that makes them as easy as a linear pro-
gram.
2Henceforth we employ calligraphic letters to indicate multi-sets.
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There are different ways of denoting multisets. We will show them by means of the
three representations below:

e A={a,a,a,b,b,c}
o A={(a,3),(b,2),(c, 1)}
o A={3a+2b+1c}

An elementr € X belongsto the multi-setd if A(z) # 0 and we writex € A.
We denote the set of multi-sets ovErby N¥.

The total number of elements in a multiset, including the repetitions isattknal-
ity associated to the multiset. The cardinality of multisets is denoted in the same way
as in the case of sets. For instanic4|, = 6 in the example above.

2.2.1 Operations on Multisets

In what follows we list the operations between multisets. Given two multidet$ €
N¥, we have the following operations or relations among them:

e sum A(z) W B(z) = A(z) + B(z) Yz e X

e intersection A(z) N B(z) = min(A(z), B(x)) Vre X
e uniort A(x) U B(x) = max(A(x), B(z)) Ve e X

e subsetd(z) C B(z) — A(x) < B(z) Yz e X

2.3 Petri Nets

In this section we introduce and describe carefully the Petri Nets formalism. Petri
Nets are a powerful mathematical and graphical tool for the description of discrete
distributed systems. Petri Nets (PNs) were firstly introduced in 1962 by Karl Adam
Petri in his seminal dissertation ((Petri, 1966) in English and (Petri,|1962) in German).
In particular PNs are suitable for describing systems in which parallelism, concurrency,
and synchronisation play an important role. For a very good review on Petri nets, refer
to (Murata, 1989).

Petri Nets can provide some distinctive advantages with respect to other approaches
(Reisig, 198p) like finite state machines:

e Causal dependencies or independence among the different components of the
system can be explicitly represented.

e They allow to describe a system that is not inherently sequential.

e They can represent different levels of abstraction without having to change the
description language. These abstraction levels range from the representation of
a single bit in a PC to the representation of the PC in its environment within the
same framework.
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P1
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Figure 2.1: Example of a Place Transition Net.

e They provide a set of formal tools useful to analyse and describe discrete dynam-
ical systems. For instance, it is possible to verify several system properties as
deadlock avoidangdoundednes®tc.

| will not get into the details of all those properties. We only remark that a vast
amount of analysis tool$ (Murata, 1989) are available for Petri nets. Thus, everything
that is modelled by means of Petri nets can directly employ all those tools.

An example of Petri net is shown in figutePR.1. A PN is a bipartite graph: it has
place nodes,transition nodes, and directed arcs connecting places to transitions and
transitions to places. The places connected to a transition by means of input arcs are
called theinput placesof the transition, and the ones connected by outgoing arcs from
the transition are theutput place®f the transition. Places contain tokens. The graph-
ical representation of a PTNS is composed of the following graphical elements: places
are represented as circles, transitions are represented as rectangles, arcs connect places
to transitions or transitions to places, andaan expression functio®’ labels arcs with
values.

Different classes of Petri Nets exist. A survey of the different existing types of Petri
nets is made irl (Bernardinello and de Cindio, 1992). In this work, three levels of Petri
nets are identified:

(1) Level 1nets whose places can contain at most one token;
(2) Level 2nets whose places can contain more than one token; and

(3) Level 3nets whose tokens are labelled by a type (tokens of different type within
the same place can be distinguished).

We will focus on a particulatevel 2 net called Place Transition Net (PTN).
Place/Transition Nets are Petri Nets characterised by multiple tokens in the same place
and arc WeighE; More formally, following (Murata, 1989),

Definition 2.1 (Place/Transition Net Structure)A Place/Transition Net Structure
(PTNS) is atupleV = (P, T, A, E) such that:

SActually, there should be a limit on the capacity of each place in term of contained tokens. However, it
is not crucial in our work and we can set it to infinite.
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(1) Pisasetofplaces
(2) T is afinite set ofransitionssuch thatP N T' = ;
(3) AC(PxT)U(T x P)is asetofarcs

(4) E : A — NT is anarc expressioriunction (it represents the weights associated
to the arcs, standing for the number of input/output tokens consumed/produced
by the transition).

O
Furthermore, we have th&t = {p € P | (t,p) € A} are theoutput placesf ¢,
andthatt = {p € P | (p,t) € A} are theinput placesof ¢.

D2 p3

Figure 2.2: Example of a Place Transition Net Structure.

Example 2.3. In figure[Z2 we illustrate a PTNS defined as:
(1) P = {p1,p2,ps}is the set oplaces
(2) T = {t1} is the set ofransitions
(3) A={(p1,t1), (t1,p2), (t1,p3)} is the set ofarcs
(4) E(p1,t1) = 2; E(t1, p2) = 1; E(t1, p3) = 2; is thearc expression function

Moreover, the input and output placestpfare:

t7 = {p2, p3} (2.8)
*t = {p1} (2.9)
[l

A distribution of tokens over the set of places is calledaking, and it stands for
the state of the Petri net.

Definition 2.2 (Marking). A markingM : P — N of a PTNS is a multiset oveP.
M(p) = k means that place € P containsk tokens for marking\1.
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O
Example 2.4. The markingM, of figure[Z1 is
Mo(pl) =2 (2.10)
Mo(pg) = (2.11)
Mo(ps) =1 (2.12)

or equivalently, employing the notation for multisets, we can represent marking in a
more compact form:
Mo =2'p1 +1'p3 (2.13)

O

A PTNS S with a given initial marking\ is called aPlace/Transition Ne(PTN)
and is noted S, My).

Given a marking\, we say that a transition enabledf all its input places contain
at least as many tokens as required by the the transition’s input arcs. If the transition
is enable it cariire consuming tokens of the input places and producing tokens in the
output places. Intuitively, a transition is enabled if enough tokens are present in its input
places. In what follows we state more formally the concep&naibled transitiorand
firing of a transition

A transitiont € T is said to beenabledf each input place of t is marked with at
leastE(p, t) tokens, wherd/(p, t) represents the weight of the arc connecting t.
More formally,

Definition 2.3 (Enabled Transition)Given a markingM, a transitiont € 7' is enabled
iff:
M(p) = E(p,t) Vpe®t (2.14)
O

Example 2.5. For instance in figurEZ2l1 transitign is enabled in marking\1, since
E(p1,t1) = 2andMy(p1) = 2, thusMy(p1) > E(p1,t1).

O
An enabled transition may or may not fire. If it fires, it chantiescurrent marking
to a new marking by removing tokens from the input places and putting tokens into the
output places. More formally

Definition 2.4 (Firing of an enabled transition)The firing of an enabled transitioh
removesE(p;, t) tokens from each input plage and addsE(t,p,) tokens to each
output placep,. The firing of a transitiort changes marking1;_; to a markingM,.
The new marking can be computed employing the following eqL&tion

Mi(p) = My-1(p) + Z(t,p) Vp€ tUt® (2.15)

whereZ(t,p) = E(t,p) — E(p,t). In this case we writeM;_; [t > M, for denoting
that the firing of transition changes the\;,_; marking into theM,, marking.

4Henceforth, for simplicity, we implicitly assume tha&(p,t) = 0if (p,t) € A and E(t,p) = 0 if
(t,p) & A.
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O

Example 2.6. Consider figurd_2]1, the firing of, in marking M, leads to marking
My = 1'py + 3'p3. We illustrate in figurgZ]3 the state of the PTN of figlird 2.1 after
thatt, fires.

O

D1

2
1
D2 Ps3 @

Figure 2.3: Place Transition Net of figureP.1 after firing

2.3.1 Reachability

An important property we are interested in is whether we can reach a particular state of
a PTN departing from a given initial state. This leads to the definitioreachability.
Reachability is a fundamental concept that will be widely employed in this dissertation.
In this section, we will introduce several concepts related to reachability. Intuitively,
given an initial marking\,, and a final marking\ 4, the reachability problem consists
in deciding if there exists a sequence of firings leading frbotg to M.

The firing of an enabled transition changes the token distribution (marking) in a net
according to the firing rule of definitidn2.4. Then, a sequence of firings will result in a
sequence of markings.

Definition 2.5 (Reachability) A marking M,, is reachablefrom a markingM, in a
PTN structures if there exists a sequence of firings that transfomtg into M,,. M,
is called thestart marking while M,, is called theend marking

O
All the markings reachable froov, in a PTN Structuré are noted asl(S, My),
and are called theeachable sebf a PTN.

Definition 2.6. (Firing Sequence) Given a PTN structdf@nd a marking\1,, afiring
oroccurrence sequenck: N — T'is a sequence of transitions:

J = {t1, ta,...,tn)

that changes the markinygt, into the markingM,,. In this case we writd1o[J > M,
as a shorthand to represent that the firing sequéneads fromM, to M,,.
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O
Notice that in diring sequencall the transitions must be enabled and fire with the
order established by the very same sequence.
It can be shown that the start and end markings are related by the following equation:

Vpe P Mu(p) = Molp) + > Z(t,p). (2.16)

teJ

Definition 2.7. Thefiring count multi-setissociated to firing or occurrence sequence
J is a multiset’C; € N7 such that the multiplicity of each transition stands for the
number of times it appeatrs in the firing sequence. That is:

Ks(t) = [J71)] vteT (2.17)

where|J ()| is the number of times transitiaris fired in the firing sequence.

2.3.2 The state equation

In this section we aim at providing an algebraic representation of Petri nets. Such

representation will allow us to compactly represent the reachability set in some cases.
For a Petri NetV with r transitions anch places, théncidence matrix4 = [a;;]

is anr x n matrix of integers. Each entry is given by; = o — a;;, wherea;; =

E(t;, p;) stands for the weight of the arc connecting theansition to its output place

pj, anda;; = E(p,,t;) stands for the weight of the incoming arc connecting place

to transitiont;.

Example 2.7. In the example of figuleA.2, the incidence matrix is:

a” =1[200] (2.18)
at =1012] (2.19)
A= [—2 1 2] (2.20)
O
It is straightforward thaazj;, a;;, anda;; represent the number of tokens added to,

removed from, and changed in plate/hen transition fires once.
Notice that in this new representation a transitipis enabled in a marking iff

a; <Mlp;) 7=12,....,n

Example 2.8. In the example of figurE=2.1, transitign is enabled in marking\{y
sinceaﬁ =2< M()(p1).

([l
In order to obtain an algebraic representation of a Petriwetcan represent a
markingM, as am x 1 column vector\/;, such that thg — th entry of M}, represents
the number of tokens present in plageafter thek — ¢k firing in some firing sequence
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(M[j] = My(p;)). For instance, the markings of the nets in figure$ 2.1[@dd 2.3 can
be represented as

My =10

and

M= |1

Finally, we define thdiring vectoruy as anr x 1 column vector ofr — 1 zeros and
one nonzero entry. By setting alan thei — th position ([¢] = 1), we indicate that
transitiont; fires at thek-th firing. We can now express equati@n{2.15) in matrix form:

My =My 1+ ATu, k=1,2,... (2.21)

Example 2.9. The state equation associated to the firing of transitjgtransforming
the PTN in figurdZl1 into the one in figureP.3, is:

2 -2 0
My =My+ATuy = (0| +| 1| -1=]1 (2.22)
1 2 3

u1[1] takes on valué because transition is fired once.

([l
Say thatM,, is reachable fronM, via the firing sequencé = (t1,to,...,t,). We
represent the transitions ih by means of their firing vector&i;, uo, . .., u,,). Then,
by applying recursively equatiof{Z121), we obtain:
n n
Mn:Mo—f—ZAT-uk:Mo—i—ATZuk:Mo—i—ATKJ (2.23)

k=1 k=1

whereK ; is anr x 1 vector representing the firing count multigéj, defined in equa-
tion (ZIT), namely:

Kli] = Ky (t:) = |J 7" (t:)] Vi€ [1,r7] (2.24)

K j is thefiring count vectorassociated to the firing sequente

2.3.3 State equation and reachability

All the results that we report from here to the end of the chapter are taken from
(Murata, 198P). Say thatM, is reachable fromM,, then there exists a firing se-
quence(us, ua, ..., uq) bringing from M, to M,. Therefore, anecessary condition

on reachabilitycan be expressed in terms of a matrix equation:
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Theorem 2.1. If M, is reachable fromM,, then the following equation has a non-
negative integer solutior:
My;= My + ATx (2.25)

wherex = Zizl uy, is ther x 1 column vector of non-negative integers we called
firing count vector

([l

Notice that the — th entry of vectorx encodes the number of times a transitipn
must be fired to transform\y into M.

Equation[[Z26) is called thetate Equationsince it describes the states that a Petri
net would reach if the transitions encodedxirwere fired. However, notice that not
all the states encoded by the state equation are actually reachable. That means that
there may exist solutions to equati®n{2.25) that are not reachable states of a Petri net.
However, it can be shown that sometimes all the states reachable by a Petri net are
described by the state equation. In particular, this happens when the net is acyclic.

Before defining the concept of acyclicity, we have to explain what is a cycle. Since
a Petri Net is a bipartite graph, a cycle in a Petri net is a sequence of

Definition 2.8. A directed cycldn a Petri Net StructureP, T', A, E) is a sequence of
places and transition®, t1, pa,ta2, . . ., Pn, tn, p1) SUCh thatvi € [1,n] (p;, ;) € A
and(ti,piﬂ) c A.

Definition 2.9 (Acyclicity). A PTNS is said to be acyclic if it does not contain any
directed circuit.

O
In (Murata, 198P), it is shown that in atyclic Petri Net, the condition expressed
by theoreniZI1 is not only necessary, but also sufficient.

Theorem 2.2.1n an acyclic PTNSM  is reachable fromM iff the following equation
has a non-negative integer solutionsin

Mg =My + ATx (2.26)

([l

That is, if there exists a solution to equatibn(2.26), a fisegquence reachingyt,
from M, is guaranteed to exist, ardrepresents its firing count vector.

Moreover, Murata further extends the class of Petri nets for which the condition is
still sufficient. These particular nets (trap-circuit and syphon-circuit nets) have special
topologies with particular types of circuits. For such nets, the state equation represents
all the reachable states if the initial marking, satisfies some constraints. Further
efforts have been made for extending the validity of the state equation to more classes
of Petri nets|(Tarek and Lopez-Benitez, Z004).

2.4 Preliminaries on binary relations and graphs

In this section we recall some definitions about binary relations, graphs, and order re-
lations. In sectiol 2.4l 1 we will recall binary relations and some of their properties. In
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sectioZ 4 we will recall the definition of directed graphs, directed acyclic graph, and
we will summarise some concepts and properties related to graphs. In §ecfibn 2.4.3 we
recall some concepts related to order relations, and we connect them to graphs.

All the definitions and theorems contained in this section are taken from
(Cormen, 2001), where the interested reader can find the the corresponding proofs.

2.4.1 Relations

In this section we will recall what a binary relation is along with the properties of such
relations that we are interested in.
A binary relation R on two setsd andB is a subset of the Cartesian produck B.
If (a,b) € A x B we writeaRb and we say that is in relation withb. We say that?
is a binary relation ot if it is a subset ofA x A.

Example 2.10. Theless tharis a binary relation defined dN as follows
{(a,b) e NxN:a< b} (2.27)

([l
There are special features that are particularly importaritihary relations. Thus,
a binary relationk C A x Ais:

o reflexive if Va € A aRa. For instance, £” and “<” are reflexive on4, while
“<"is not.

e symmetric if aRb = bRa. For instance, the=" relation is symmetric, while
“<"is not.

e transitive aRb andbRc impliesaRc. For instance,=" is transitive.

e antisymmetricif a Rb andbRa thena = b. For instance, £” is antisymmetric.

Equivalence classes

A binary relation that igeflexive, symmetriand transitive is called anequivalence
relation. For instance, =" is an equivalence relation, whereas™is not. If R is an
equivalence relation on a sét then for alla € A we denote witHa] the set of element
in relation witha, and we call it theequivalence classf a.

A well known result about equivalence classes is

Theorem 2.3 (An equivalence relation is the same as a partitiofle equivalence
classes of any equivalence relati®on a setA form a partition ofA, and any partition
of A determines an equivalence relation drfor which the sets in the partition are the
equivalence class.

O
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2.4.2 Graphs and Paths

In this section, we introduce the definition of graph, path in a graph, and strongly con-
nected components of a graph.

A directed graphG is a pair(V, E), whereV is a finite set, and® C V x Visa
binary relation orl/. The setl is called thenodesor vertexeset, whileF is the set of
arcsor edgeslf (u,v) € E we say thav is adjacentto . Each edge of the type, u)
is called aself-loop In figure[Z3 we show the graphical representation of a graph.

Figure 2.4: Example of a Graph

Definition 2.10(Path in a graph)A pathof lengthk from a vertex to a vertexy’ in a
graph(V, E), is a sequencéy, . . ., vi) of vertexes such that = v, andv’ = v, and
(vi,vi41) € E fori = {1,...,k}. There is always &-length path fromv to v. The
path is said to beimpleif all the vertexes in the path are distinct.

([l
For instance, in the graph of figure P4, y, v) is a path frome to v.

Definition 2.11 (Cycle in a Graph) In a directed graph a patf, ..., v) is a cycle
if v9 = v, and the path contains at least one edge. A cycséinipleif all the vertexes
(v1,...,v;) are distinct. Aself-loopis a cycle of length one.

O
For instance, in the graph of figure P (4, ) is a self-loop.

Strongly Connected Components

A directed graph istrongly connected for every pair of vertexes andwv there is a

path fromu to v and a path fromv to , i.e. if every two vertexes are connected by a
directed path. Thetrongly connected compone®CC) of a graph are trequivalence
classesof the vertexes under the “are mutually reachable” relation, or equivalently its
maximal strongly connected sub-graghs (Cormen, 2001), (Harary, 1999). Eigure 2.5(b)
shows the SCCs of the graph in figlitel2.5(a).
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(a) A graph (b) SCCs of the graph

Figure 2.5: A graph and the corresponding SCCs

More formally, given a grapfV, E), we define arelatio® C V' x V such that.Rv
iff there exists a directed path fromto v and a path from to . It is easy to check that
this relation is reflexiV& transitive, and symmetric. Thus, it is aguivalence relation
The equivalence class associated to an elemé&nsuch that:

[u] ={v € V. exists a path from u to v and a path fromv tp u (2.28)

2.4.3 Order relations

A relation that is antisymmetric, reflexive and transitive isaatial order, and we call

a set on which a partial order is definegartially ordered set In a partial order it is
possible to have some elements that are not in relation among them. Then, a partial
order R on a setl is atotal or linear orderif for all a,b € A we haveaRb or bRa.

Notice that, given a directed acyclic graph, we can define a partial order. The partial
order is such that a nodecomes befora nodev if there exists a directed path from

to v. The relation is a partial order since it is trivially transitive and reflexive. It is also
antisymmetric since the acyclicity hypothesis implies that if there is a path from a node
u 10 a nodev there cannot be a path fronto « without having a cycle.

Example 2.11. Consider the graph of figule—2.4 without the self-loop, it represents a
partial order such that:

u<z u<v (2.29)
<y y<z (2.30)
y<wv <z (2.31)
T <wv (2.32)

O

5Recall that there exists always a 0-length path from a node to itself.
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What happens when there is a cycle in the graph? Obviously, in this case the re-
lation exists a patldoes not define anymore a partial order. We lose one property, the
antisymmetric property. In fact, if a cycle is present, all the nodes along the cycle will
be mutually connected by a two-way directed path. Consider for instance the graph of
figure[Z®, which is the order among transitignsts and¢4? In such a case it is not
possible to define an order among them. This type of relationship is cafiezsbeder
(Davey and Priestley, 2002).

More formally, a relation that is reflexive and transitive {graorder. Normally, this
is due to the presence of a cycle in the precedence relation. In order theory, a preorder
is noted as<. Thus we will writeu < v when a path exists fromto w.

Figure 2.6: The strict ordex

Given a preorder < on a set V, several interesting properties
(Davey and Priestley, 2002) hold:

e the relation~ on V such thatv ~ « if and only if v < w andv < wis an
equivalence relation

¢ the relation< on the quotient se¥’/.. such thafv] < [u] iff v < w is a (strict)
partial order. Intuitively, this operation eliminates the cycles by collapsing each
SCC to a single element. We say then that the cyclic graph collapses into an
acyclic graph,

e the equivalence classes defined-byare the Strongly Connected Components
(SCC) of the graph associated to the relation. Thus, from now on we will employ
equivalently the terms SCC and equivalence class.

Figure[Z® graphically represents the strict preorder relatiotorresponding to the
graph of figuréZ15(b).
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Related Work

In this chapter, we recall some related work. The problem dealt within this dissertation
is indeed original, and, to the best of our knowledge, has been only marginally treated
by different disciplines like operations research, artificial intelligence, manufacturing
engineering, and economics. Although a massive amount of work has been devoted
to cope with different aspects of timeake-or-buyor make-or-buy-or-collaboratprob-

lems, to the best of our knowledge nobody has entirely treated them. In this chapter we
will summarise the literature close to our problem.

The chapter is organised as follows. In secfion 3.1, we will recall some basic con-
cepts about auctions. Next, in sectlonl 3.2, we will thoroughly explain combinatorial
auctions, a particular type of auctions. Then, in sectlonks 3.3, we will introduce the
problems of supply chain scheduling and supply chain formation respectively. Next, in
sectio =34, we will put in relation the work presented in this dissertation with respect
to the state of the art.

3.1 Auctions

The most employed definition of auction is due to McAfee et. al
(McAfee and McMillan, 198J7): An auction is a market institution with an ex-
plicit set of rules determining resource allocation and prices on the basis of bids from
the market participants

Auctions play an important role in economics. In their most basic form, they are
one of the ways in which various commaodities, financial assets and concession rights
are allocated to individuals and firms, particularly in a market-oriented setting. Some
very famous examples of auction houses are Sotheby’s (Sotheby’s, 2007), Christie’s
(Christie’s, 200[7), and Ebay (Ebay, 2007).

The introduction and use of auctions is motivated by the fact that the value of an
item (or of a set of items) is often not known a-priori. Then, an auction is a way to
“let the market decide” the value associated to the item. It is a very flexible mechanism
that is employed with several different variations. Furthermore, it is dynamic, since it
allows a meaningful interaction between buyers and sellers. From our point of view,

39
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the distinguishing feature of auctions is that they support full automation. In fact, they
are a mechanism with predetermined rules. Hence, they are ideal for computer imple-
mentation. Finally, they are in most cases economically efficient (Milgrom,| 2004).

3.1.1 Taxonomy of Auctions

Klemperer|(Klemperer, 2004) classifies auctions in four basic groups based both on the
modality the auction is run with and on the associated payment rule:

(1) theascending-biduction, also known as English or Open-outcry;
(2) thedescending-biduction, also known as Dutch;

(3) thefirst-price sealed-biduction; and

(4) thesecond-price sealed-baliction, also known as Vickrey auction.

In the ascending-bid auction, the price is raised successively until only one bidder re-
mains. Such bidder wins the object and pays the final price.There are two variants of
this auction. One (called Japanese) considers that the price is raised by the auctioneer,
and the bidders that are not willing to pay the corresponding price at a given round quit
the auction. The other one, known as English, let the bidckt®utthe prices.

The descending auction works in exactly the opposite way, the price starts at a very
high price and it is successively decremented until some bidder expresses his willing-
ness to accept that price.

In the first-price sealed-bid auction, all the bidders submit their offer without seeing
the other bidders’ offers. The bidder offering the highest bid wins paying his bid (that
is the highest price, whereby the nafirst-price).

In the second-price sealed-bid, the process is similar, with the exception that the
bidder pays the price offered in the second highest bid, whereby theserord price

Another classification can be done based on the number of buyers and sellers,
namely:

e directauction when there is one seller and multiple buyers;

e reverseauction when there is one buyer and multiple sellers. In this case the item
at auction is bought and not sold; and

e doubleauction when there are multiple buyers and multiple sellers.

Finally, a classification can be done based on the quantity of items sold/bought and
on the features of the items (i.e. price is not the only discriminant of the value associated
to anitem). In this case we shall refemtaltidimensional auctionsThere are different
types of multidimensional auctions:

e multi-unitauctions when multiple identical items are bought/sold;

e multi-attributeauctions when the value associated to an object is determined by
a set of features (shipping time, quality, and so on); and
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e multi-item or combinatorialauctions when multiple distinguishable items are
bought/sold.

There exists a lot of hybrid auctions joining the features of different auction classes.
In particular, very relevant to our work ale (Cramton et al., 2006):

e combinatorial reverse auctions;
e multi-unit combinatorial reverse auctions.; and
o multi-unit combinatorial auctions.

Since combinatorial auctions (CAs) are of central importance in our work, in what
follows we provide a detailed account on the state-of-the-artin CAs.

3.2 Combinatorial Auctions

A combinatorial (reverse) auction. (Cramton et al., 2006) is an auction where bidders
can sell (buy) entire bundles of goods in a single transaction. Although computation-
ally very complex|(Sandholm et al., 2002), the fact that bidders can express their prefer-
ences over bundles of goods may help an auctioneer obtain better deals. In fact, buying
items in bundles has the great advantage of eliminating the risk for a bidder of not be-
ing able to sell/buy complementary items at a reasonable price in a follow-up auction
(think of a combinatorial auction to acquire a pair of shoes, as opposed to two con-
secutive single-item auctions for each of the individual shoes). Indeed, combinatorial
auctions may lead to more efficient allocations whenever complementarities among the
goods at auction hold. For a detailed survey on CAs refef to (Cramton et all, 2006;
de Vries and Vohra, 200B; Kalagnanam and Parkes,|2003).

CAs have a high potential to be employed as an allocation mechanism in a wide
variety of real-world domains. They have been proposed to be employed for allo-
cating loads to trucks in the transportation market (Caplice and Shefti, 2006), routes
to buses[(Cantillon and Pesendorfer, 2006), goods/services to buyers/providers in in-
dustrial procurement scenarigs (Bichler et al., 2006), airport arrival and departure slots
(Ball et al., 200B), and radio-frequency spectrum for wireless communications services
(Pekec and Rothkopf, 2003). Walsh |n (Walsh et al., 2000) employed them for supply
chain formation.

The study of the mathematical, game-theoretical and algorithmic properties of com-
binatorial auctions has recently become a popular research topic in Al. This is not only
due to their relevance to important application areas such as electronic commerce or
supply chain management, but also to the range of deep research questions raised by
this auction model.

In the last decades, different topics related to CAs have been considered, namely
the design of auction mechanisms, bidding languages, and algorithms for the Winner
Determination Problem. In the following sections, we summarise the most relevant
contributions on those topics.
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3.2.1 Mechanism Design

Auction theory studies the formal properties of auctions as shown in the sur-
veys of [Krishna, 2002) and (Milgrom, 2004). Nonetheless CAs have recently
attracted the attention of economists and game theorists. Associated to auc-
tion theory is also the design of auctianechanismsdevoted to studyhow to

run an auction in order to guarantee some economic properties such as, for in-
stance, efficiency, incentive compatibility, individual rationality, etc. For instance,
(Ausubel and Milgrom, 2006b), [ (Parkes, 2D06), | (Ausubel and Milgrom, 2006a),
(Cramton, 2006), [(Ausubeletal., 2006), and (Landetal.,|2006) describe some
mechanisms for CAs.

3.2.2 Bidding Languages

Bidding is the process of transmitting one’s valuation function over the set of goods on
offer to the auctioneer (or ratheomevaluation function — the bidders are of course

not required to reveal their true valuation —). In principle, it does not matter how the
valuation function is being encoded, as long as sender (bidder) and receiver (auctioneer)
agree on the semantics of what is being transmiftedas long as the auctioneer can
understand the message(s) sent by the bidder. Indeed, it is possible to fully specify
an auction mechanism (allocation and pricing rules) without reference to a concrete
bidding language. In practice, however, the choice of a bidding language is of central
importance.

Early work on combinatorial auctions has typically ignored the issue of bidding lan-
guages. The standard assumption used to be that if a particular bidder submits several
atomic bids (a bundle together with a proposed price), then the auctioneer may accept
any set of bids from that bidder for which the bundles do not overlap, and charge the
sum of the specified prices. This is now sometimes calle@®fRdanguage But other
interpretations of a set of atomic bids are possible. For instance, we may take it to mean
that the auctioneer may accept at most one bid per bidder; this is now known as the
XOR language

The first systematic study of bidding languages is due to Nisan (Nisan, 2006) (an
early version|[(Nisan, 2000) appeared in 2000). Nisan’s papers provide an excellent
introduction to the topic and clarify a number of issues that had previously remained
somewhat fuzzy. Nisan classifies several types of bidding languages, providing expres-
siveness results for each of them. At the basis of his exposition lies the concept of
atomic bid Formally, an atomic bid is a paf5, p), whereS is a subset of the items at
auction, ang is the price a bidder is willing to pay to obtain the goods$inBy com-
bining in different ways atomic bids we obtain several bidding languages. The most
widely employed are:

e OR Each bidder submits an arbitrary number of atomic bids. The auctioneer is
allowed to accept any disjoint subset of them.

e XOR Each bidder submits an arbitrary number of atomic bids. The auctioneer is
allowed to accept at most one among them.
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o OR-of-XOREach bidder can submit any number of XOR bids. The auctioneer is
allowed to accept any subset of these bids.

¢ XOR-of-OREach bidder can submit an arbitrary number of OR bids. The auc-
tioneer is allowed to accept at most one of these bids.

Consider the following example explaining the semantia® &fand X OR bids.
Example 3.1. Say that the set of goods at auction$ s B, C'}. Then, we have:

e OR ({A},3) OR ({B, (%, 3) means that if the bidder is allocatéd!, B, C},
then he will pay 6.

e XOR ({A4},3) XOR ({B},3) XOR ({4, B},5) means that if he is allocated
{A, B} he will pay 5 (not 6).

Another interesting paper about bidding language$ is (Boutilier and Hoos|, 2001),
where Boutilier et al. present a logical bidding language that allows the expression
of complex utility functions in a natural and concise way. In this language bids are
given by propositional formulae whose sub-formulae can be annotated with prices, thus
allowing for a natural and concise formulation of bidders’ utility functions.

To the best of our knowledge, no bidding language has considered so far services or
manufacturing operations as entities that can be traded. As explained in €hapter 1, in or-
der to apply combinatorial auctions to theake-or-buyf make-or-buy-or-collaborate
decisions, itis required to predicate about manufacturing operations and services across
the supply chain.

3.2.3 Winner Determination Problem

Connected with the introduction of combinatorial auctions is the winner determina-
tion problem (WDP). Winner determination is the problem, faced by the auction-
eer, of choosing which goods to award to which bidder so as to maximise its rev-
enue. The winner determination for combinatorial auctions is a complex computa-
tional problem. Indeed, one of the fundamental issues limiting the applicability of CAs
to real-world scenarios is the computational complexity associated to the winner de-
termination problem. In particular, it has been proved that the WDP is NP-complete
(Rothkopf et al., 1998). General IP solvers (Andersson et al.,|2000) and special pur-
pose algorithms (Sandholm, 2002; Fujishima et al., 1999; Leyton-Brown et all, 2000)
have been employed to solve the WDP, but it is well known that a general solver that
performs well in all situations does not exist. For an extended review on the winner
determination problem and related issues refer to (Lehmann et all,[2006; Mulier, 2006;
Sandholm, 2006b).

Here we aim at presenting the traditional ILP (see sefion]2.1.2) formulation em-
ployed to model the combinatorial auction winner determination problem, given that its
comprehension is required to understand the remaining of the dissertation.
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ILP formulation for the Combinatorial Auction WDP

Say that an auctioneer wants to sefjoods. Each good is denotedgswherel < i <

n. In a combinatorial auction bidders can seatidor-nothingoffers over a set of goods.

Say that each of the: bidders participating in the auction only submits onedldig

1 < j < m. Each bid is represented by a pjr= (S;, p;) such thap, is the price that

the bidder is willing to pay for obtaining the set of gootls How can the auctioneer
select the bids that maximise his revenue? This problem can be easily modelled by
means of Integer Programming (refer to secfion2.1.2 for a detailed explanation). We
associate to each big a binary decision variable; € {0,1} that takes on value

if bid b; is selected, and otherwise. Then, the function that the auctioneer wants to
maximise is his revenue, namely:

m

Zl’jpj (31)
j=1

that is theobjective functiorof the integer program.

Additionally, we have to make sure that each good is sold to at most one bidder
since the auctioneer only owns one copy of each good. Thus, we employ coefficients
ci; to model that either goog; is required in bich; (c;; = 1), or not ;; = 0). Then,
the following constraints must hold:

m

Zcijxj S 1 1 S ) S n (32)
Jj=1

In what follows we list some attempts carried out in the past to deal with the gener-
ation of benchmarks for testing combinatorial auctions WDP algorithms.

3.2.4 Test Suites

No real-world benchmark of CAs has been reported in the literature. Many efforts
have been done so far to generate plausible data sets to be employed to test WDP al-
gorithms. Some experiments have been run with human bidders (Banks et &l., 1989).
Nonetheless, as pointed out [n (Leyton-Brown and Shoham] 2006), such data sets are
not useful for assessing the WDP computational complexity. In the absence of test
suites, it is common practice to artificially generate data sets. Some examples are
(Fupshima et al., 1999; Boutilier et al., 1999; de Vries and Vohra, R003) for single-unit
CAs, and [(Leyton-Brown et al., Z000) for multi-unit CAs. Multi-unit CAs have also
been tested employing multidimensional knapsack problem benchmarks, borrowed
from the operations research community. A more realistic approach to generate bids
is presented in[ (Leyton-Brown and Shoham, 2006), where complementarity relation-
ships among goods are made explicit at bid generation time. Another realistic approach
is taken in|(An et al., 2005), where the authors design bidding strategies that efficiently

1we do this simplified hypothesis for the sake of comprehension. The extension to the OR or XOR bidding
language is easj/ (Lenmann et al., 2006).
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identify desirable bundles in the framework of the transportation industry domain (fo-
cusing therefore on single-round, first-price, sealed-bid forward CAs).

Finally, a master student has elaborated on subjects related to this thesis. Vinyals
(Vinyals, 2007b; Vinyals et al., 200[7a; Vinyals et al., 2007b) has implemented a very
powerful simulator of the behaviour of agents bidding in an MMUCA, and has tested
the performances of some of the algorithms presented in this dissertation.

In what follows we change of subject and introduce the work in the state-of-the-art
related to supply chain scheduling and supply chain formation.

3.3 Supply Chain Scheduling and Supply Chain For-
mation

In this section, we will talk about supply chain scheduling and planning, and supply
chain formation. On the one hand, the problem of supply chain formation concerns the
selection of the participants to the supply chain and the terms of the exchange, with
the purpose of maximising the efficiency of the supply chain. Informally, supply chain
formation is the problem of decidinggho will supply what who will do what and

who will buy what On the other hand, the problem of supply chain scheduling and
planning is more focused on the coordination among the different operations across
the supply chain with the purpose of minimising the cost of performing operations and
transportation, and the time required to perform all the operations. Informally, supply
chain scheduling and planning is the problem of decidilmgneach agent within the
supply chain has to perform a given operation or job in order to finish all the operations
before a given deadline.

There is a fundamental difference between the problem of supply chain formation
and the problem of supply chain scheduling and planning. The former deals with finding
a set of supply chain partners, whereas the latter deals with the problem of coordinating
them. Nevertheless, the two problems are tightly connected. In fact, in order to ef-
fectively select the participants to the supply chain, agents should make sure that there
exists a feasible scheduling of their operations. This is needed since each stakeholder
along the supply chain:

e provides resources subsequently employed by other stakeholders; or
e employs or consumes resources previously produced by other stakeholders; or

e produces resources subsequently employed by other stakeholder, requiring as in-
puts resources previously supplied by other stakeholders.

Then, the selection of partners can be greatly improved if the feasibility of the schedul-
ing is taken into account.

In the literature there have been many attempts to solve the problem of supply chain
planning and scheduling and some attempts dealing with the supply chain formation
problem. However, to the best of our knowledge, no attempt to solve the problem of
supply chain formation taking into account the feasibility of the scheduling has been
done so far.
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3.3.1 Supply Chain Scheduling and Planning

There exist two approaches to supply chain planning and scheduling (Lau et al., 2006):
centralisedanddistributed

The Centralised Approach

The centralised approach to supply chain scheduling has been investigated for many
years. In this approach a central authority collects all the information from the peers
and then computes the optimal plannipg (Cohen and Lee] 1988; Ertogral et al., 1998;
Sabri and Beamon, 2000; Jayaraman and Pirkul,|2001; Lee et al|, 2002). A good sur-
vey on centralised planning can be foundin (Erenguc et al.,|1999).

The information required to optimise the scheduling may either be centralised or
distributed, according to the nature of the problem. For instance, inside an enterprise
there may be a central repository of information, whereas in a consortium of enterprises
each firm holds its private information. The information that must be provided in or-
der to compute the planning concerns the production features of the participants (the
required time to perform an operation, the associated cost, the precedence relationships
among operations, and so on). One of the firm acts as a coordinator, and, after receiving
the production data, computes an optimal plan, that is subsequently communicated to
the other supply chain stakeholders. In this approach, there must be information sharing
among the supply chain stakeholders in order to obtain an efficient plan.

Many methods have been proposed to solve the underlying plan-
ning problem, for instance metaheuristics| (Kallrath, 2002), stochastic
algorithms  [(Alonso-Ayuso et al., 2003), or  mixed-integer  programming
(Gaonkar and Viswanadham, 2001).

The centralised approach suffers from some drawbacks. Firstly, some firms may be
reluctant to share very sensitive internal information. Secondly, the computational time
required to solve even small instances is huge. Finally, the centralised approach makes
it difficult to react to fails and breakdowns across the supply chain. In case some of
these events occur, the scheduled plan must be recomputed from scratch.

The Distributed Approach

In the distributed approach, the decisions about the scheduling are taken locally. That
is, a supply chain stakeholder builds its schedule relying on the communications with its
neighbours along the supply chain. The decision is based on the local information and
objectives of each supply chain stakeholder. The interactions among the supply chain
participants continue until a global scheduling is found or some termination condition
is met.

The major advantages of the distributed approach versus the centralised one are:

e the information is shared only at a local level;

e the computational complexity of the problemis reduced, since the problem solved
locally by each supply chain stakeholder is by far less difficult than the global
optimisation problem; and
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e since enterprises act locally, the capacity of reacting to breakdowns or shortcom-
ings is increased with respect to the centralised approach.

Many methods have been proposed to solve the scheduling problem with a decen-
tralised approach. For a good review, refer[to (Lau et al.,2006). The most celebrated
distributed approach for centralised supply chain scheduling and planning has been
the Contract Net Protocol (CNP), along with all its variants. In his original formula-
tion, the CNP specifies a bidding approach that enables task allocation among mul-
tiple agents[(Smith, 1980). The multi agent systém (Wooldridge and Jenning§, 1995)
based approach has been widely employed in the past as |well_(Colling, 2002;
Zhang, 2002 Reis et al., 2001; Lee et al., 4003; Wagner et al.| 2003; Lau et al., 2006;
He et al., 2003; Norman et al., 2004).

The distributed approach suffers as well from some drawbacks. The main short-
comings regard the feasibility and optimality of solutions. It has been shown
(Jennings and Wooldridge, 1998) that, since agents act and reason locally, they disre-
gard the other agents’ constraints and the global performance of the supply chain.

To conclude, choosing between a centralised or a distributed approach strongly de-
pends on the problem to be solved and on the availability of computational resources.

3.3.2 Supply Chain Formation

Very little work has been devoted to the problem of automating supply chain forma-
tion. In this chapter, we will not consider the literature on non-automated supply chain
formation because its contributions stem from the areas of economics and negotiation
rather than from optimisation. Thus, it is out of the scope of the dissertation.

Supply chain formation studies the problem of automating the process of determin-
ing the supply chain partners, under the assumption that the information required by the
decision making process is decentralised.

In the area of supply chain formation two approaches have been considered as well,
namely the centralised and the distributed approach.

The Centralised Approach

As far as we are concerned, little effort has been devoted to the centralised approach to
the supply chain formation problem.

A significant attempt to provide a mechanism to select the right business partners in
a supply chain has been undertaken[by (Gaonkar and Viswanadharn, 2005). This work
is probably at the edge between supply chain planning and supply chain formation.
This very interesting paper focuses on the problem from a real-world point of view:
what happens when there is a roll-over of products in a market? Should a firm maintain
the same business partners? Should it change them? The authors provide a mixed
integer programming formulation of the underlying decision problem. This approach
suffers from some limitations:

(1) itis not completely automated, because the interaction between the supply chain
stakeholders is performed through an Internet-enabled platform;
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(2) there is no communication language among the supply chain stakeholders (like,
for instance, a bidding language); and

(3) it has a high computational cost and subsequent poor scalability.

However, it substantially differs from our approach, since it is not based on a market
mechanism. Itis more a static decision support system to help strategic decision making
under particular market conditions.

In (Walsh, 2001; Walsh et al., 2000), Walsh et. al introduce combinatorial auctions
for supply chain formation. These represent an extension of combinatorial auctions in
which a whole supply chain is negotiated via an auction. In such a context, askers,
sellers and manufacturers participate and submit bids within the same auction. In order
to cope with this new auction Walsh et. al introduce the Task Dependency Network
(TDN), a network representing all the producer/consumer relationships among the bid-
ders. We consider that this work has dealt with a problem very similar to ours. In fact
both our and their work:

e are built upon a market-based mechanism, namely combinatorial auctions;

o explicitly represent producer-consumer relationships holding across the supply
chain; and

e model resource contention (i.e. the fact that in the system there are less resources
available than the overall required ones).

However, as explained in sectibn114.2, Task Dependency Networks and combinatorial
auctions for Supply Chain Formation are limited along several dimensions: they do not
possess the expressiveness, computational, and formal analysis tools required to deal
with the make-or-buy-or-collaboratdecision problem.

Collins et. al in [Collins, 200Z; Babanov et al., 2003) deal with a problem similar
to the supply chain formation introducing time and precedence constraints. However
they do not explicitly model the multiple levels within a supply chain and the resource
contention across it. They also provide a bidding language including information about
the time required to perform operations.

Finally, Norman et. al[(Norman et al., 2004) describe a combinatorial auction to
form virtual organisations. They also provide an advanced bidding language for ex-
pressing offers in which the time dimension is considered as well. Although very in-
novative, we find that its applicability to the problem of supply chain formation is lim-
ited since neither resource contention nor the producer-consumer relationships present
across a supply chain can be modelled.

The Distributed Approach

Distributed approaches to supply chain formation are not so closely related to our work.
However, we will point out the two most relevant works in the field that employ a market
based mechanism.

Rosenschein and Zlotkin in (Rosenschein and Zlotkin, [1994;
Zlotkin and Rosenschein, 1996) introduce Task Oriented Domains (TODs). A
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TOD is a set of tasks that must be completed, and a cost function over bundles of tasks.
They fix a set of negotiation rules and provide some theoretical results on the properties
of the negotiation outcome.

Walsh and Wellman irf (Walsh and Wellman, 2003) provide a decentralised version
of the auction mechanism provided|in (Walsh et al., 2000), which is based on a variation
of the Contract Net Protocol.

We stress that both approaches suffer from limitations. On the one hand, TODs
do not incorporate nor implicitly neither explicitly the dependencies among operations
across a supply chain, whereas the model in (Walsh and Wellmar], 2003) suffers from
the same expressiveness, computation and formal analysis shortcomings as combinato-
rial auctions for supply chain formation do.

3.4 Conclusions

Little work has been done so far to solweake-or-buyor make-or-buy-or-collaborate
decisions with a centralised market-based approach. Many papers have focused on sim-
ilar problems though none of them captures all the requirements expressed in sections
L2473 andT.412.

Our work is placed somewhere in betwemmtralised supply chain plannirend
centralised supply chain formatio®@ur work is not entirely included in the field of sup-
ply chain formation because we do not only assess the participants to a supply chain,
but we also provide a feasible sequence of supply chain operations to perform. Anal-
ogously, our work is not completely included in the field of supply chain scheduling
since the participants to the supply chain are not fixed a-priori, but determined on the
fly based on a market mechanism. Furthermore, we do not need to include the time
dimension into the problem to provide a feasible schedule. In fact, the precedence rela-
tionships among operations are implicitly represented in the formalism that we employ
to model resource contention at each level of the supply chain.

Summarising, in the state of the art we find solutions to both supply chain schedul-
ing and planning and to supply chain formation problems. However, none of the solu-
tions we are aware of possesses all the features required to solvadkdhor-buyand
make-or-buy-or-collaboratdecision via a market-based approach.

(1) As thoroughly explained in sectionsT1}4.1 &nd1.ddmbinatorial auctiongack
of the possibility to express manufacturing operations, or equivalently production
relationships among the goods at auction. However, they provide a good model
to build upon because they allow to express complementarities among the goods
at auction [(Cramton et al., 2006); they can count on theoretically well-founded
bidding language$ (Nisan, 2006), and there have been significant contributions to
the study of their winner determination problem (Lehmann et al.,|2006).

(2) As detailed in sectioh1.4.2, combinatorial auctions for supply chain formation
and the associated Task Dependency Networks help negotiating manufacturing
operations. However, they suffer frdiormal, computationalandexpressiveness
limitations.
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(3) We deem that distributed approaches are not suitable to our problem. In fact,
to the best of our knowledge, they do not guarantee nor optimality nor feasi-
bility. The literature in combinatorial auctions has thoroughly demonstrated the
efforts in finding optimal solutions to the winner determination problem. In to-
day’s business world, to provide methodologies that sacrifice optimality when big
quantities of money are in play is a risky business.



Chapter 4

MUCRALR

In this chapter we deal with thmake-or-buylecision problem when complementarities
among goods hold at the bidders’ side. With this aim, we introduce a new type of com-
binatorial auction, thdulti-unit Combinatorial Reverse Auction with transformability
Relationships among goods (MUCRAtBjtending traditional combinatorial auctions.
We also provide a mapping of the MUCRALR winner determination problem to an opti-
misation problem on Place/Transition Nets (PTN). Such a mapping allows to efficiently
solve the WDP for some problem classes, and provides a set of powerful formal tools
for describing the underlying optimisation problem.

This chapter is organised as follows. In sectlon] 4.1 we introduce the problem we
aim at solving and informally outline the proposed solution. In sefidn 4.2, by means
of some examples and intuitions, we introduce the limitations associated to CAs with
respect to thenake-or-buydecision problem in a combinatorial scenario. In section
3, we introduce a formalism, based on PTN, that overcomes part of such problems.
In sectio 4K we extend PTN in order to amend the expressiveness shortcomings of the
PTN model. In particular, we introduce a new type of PTN calMsighted Place Tran-
sition Net(WPTN). Moreover, we define a new reachability problem over WPTN, the
Constrained Maximum Weight Occurrence Sequence ProflldnwWOSP). In section
E3, relying on WPTNs, we succeed in formally representing an auctioneer’s internal
production and cost structure along with the set of received offers from bidders under a
unified formalism. Building upon such framework, we formally define the WDP for the
new auction as a particular CMWOSP. In secfion 4.7, we prove that the CMWOSP, and
thus the WDP formalised in secti@n}.6, can be solved by means of IP under suitable
conditions. Finally, section 4.8 draws some comments and concluding remarks.

4.1 Beyond Combinatorial Auctions
In the introductory chapter we mentioned that we are dealing with two main issues
in this dissertation. The first one is the automatiomalke-or-buydecisions across the

supply chain, and the second is the automatianaie-or-buy-or-collaboratdecisions
across the supply chain. In this chapter we focus omrtake-or-buylecision problem,
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namely the problem of selecting what to produce in-house and what to outsource in
order to obtain some required goods. We argued in seEfiod 1.4.1 that this concern is
reasonable because the cost of the raw materials plus the cost of the manufacturing
operations could eventually be higher than the cost of already-made goods. As an ad-
ditional constraint, we require that the complementarities among goods on the bidders’
side are taken into account: bidders should be allowed to congtlesenothingoffers

over bundles of goods.

In sectiol .41, through the example of Beandma & cofirm, we showed that
themake-or-buydecision problem represents a challenging problem in a scenario with
complementarities among the goods. We highlighted @andma & corequires a
complex decision support system along with a combinatorial negotiation mechanism
that helps it in detecting the cost-minimising buying configuration and the internal op-
erations to perform in order to obtain the finally required goods.

For this reason, we decided to build upon combinatorial auctions to cope with the
make-or-buydecision problem. We recall that the distinguishing feature of combinato-
rial auctions is that bidders can submlitor-nothingoffers over bundle of goods. This
allows to mitigate the risks connected with markets with strong complementarities, like
for instance depressed biddihg

Unfortunately, as we thoroughly showed in secfion1.4.1, some limitations prevent
the application of combinatorial auctions to thmake-or-buydecision problem. That
is mainly due to two types of limitationsexpressivenesand winner determination
problem We recall in tablé—Z]1 the limitations of combinatorial auctions thoroughly
explained in section1.4.1.

Hence, in this chapter we exteMlltiunit Combinatorial Reverse AuctiorsU-

CRAﬂ in order to overcome the intrinsic limitations of CAs for dealing with thake-

or-buy decision problem. The resulting auction model is calédlti-unit Combina-

torial Reverse Auction with transformability Relationships among goods (MUCRALR)
This new auction type allows a buyer/auctioneer to express and communicate to bidders
its internal production structure and its final requirements. Bidders can then formulate
appropriate offers and send them back to the auctioneer. Upon receiving the offers,
an auctioneer can determine, by means of a public selection rule, the cost minimising
combination of bids along with the internal operations leading to its final requirements.

Then, firstly we try to model an auctioneer’s internal manufacturing operations by
means of Place Transition Nets (PTNs, thoroughly described in s&cfion 2.3). They per-
fectly represent the manufacturing operations by specifying the quantity of resources
both required an produced by each manufacturing operation. Furthermore, they natu-
rally model the producer/consumer relationships holding among them. Then, the PTN
representing the internal manufacturing operations fulfills requirement (1) iffable 4.1.

Next, we incorporate the offers received by the auctioneer into the PTN encoding
the auctioneer’s production structure. This ideais based on the intuition that the selected
offers inject goods into the auctioneer production process: without ingredients it is not
possible to produce pies. This solves issue (3) in fable 4.1.

1Depressed bidding is a phenomenon associated to the fact that bidders may risk to obtain only a part of
a set of complementary goods, and therefore bid less aggressively.

2We recall that a MUCRA is simply a combinatorial reverse auction in which multiple copies of each item
are auctionddl (Sandholm, 2002).
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TYPE REQUIREMENTS

(1) specification of the internal manufactyr-
ing operations and the producer/consumer
relationships among them

19
1

(2) specification of an auctioneer’s final r

. quirements
EXxpressiveness
(3) relationships among the manufacturing
operations, the auctioned goods, and the
received bids
(4) specification of an auctioneer’s internal
cost structure
WDP (5) information about which in-house opera-

tions to perform and in which order

Table 4.1: Summary of requirements for thake-or-buydecision problem.

More in details, we build two PTNs: one representing the internal manufacturing
operations of an auctioneer, that we nafiEN; (I from Internal), and another one
extendingPT N; to incorporate offers, calleBT Ny (E from Extendedl

The dynamic behaviour of PTNs serves to describe the set of possible outcomes of
a MUCRACR. In particular, PTNs can naturally model:

(1) the preconditions of each manufacturing operation (the required inputs must be
present);

(2) the resources consumed and produced by each manufacturing operation;
(3) the quantity of resources injected into the system when an offer is selected; and

(4) the quantity of resources available to an auctioneer after performing a given man-
ufacturing operation.

According to item (4) in the list above, an auctioneer can model its resource availability
at any step of its manufacturing process. ConsequeRilyVy can compactly encode

the outcomes (in terms of finally available resources) of all the possible decisions an
auctioneer may talle The encoded information concerns the level of resources avail-
able at the end of a production process fed by a set of offers and composed of a sequence
of internal operations. Furthermore, the rules governing the dynamics of PTNs enforce
that each of the possible decisions is implementable, i.e. all the manufacturing opera-
tions are run in the correct order and only if the required input resources are provided.

4Notice that by decision we mean the selection of a set of offers and of a set of internal manufacturing
operations.
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However, an auctioneer is not simply interested in choosing the bids and the internal
operations leading to a satisfactory level of available resources. Above all he is inter-
ested in minimising its costs while doing this. Unfortunately, PTNs allow to express
neither the cost associated to performing manufacturing operations nor the cost asso-
ciated to selecting a set of bids. Due to this expressiveness limitation, we decided to
extend the notion of PTN to incorporate the cost associated to a manufacturing opera-
tion and the cost associated to a bid. Such extension, dAkeghted Place Transition
Nets (WPTN)allows associating a cost to each transition of a PTN.

With this tool at hand, we firstly associate a cost to each transitidgfifa¥;. This
creates a WPTN allowing to reason about the manufacturing operations internal to an
auctioneer. | name such WPTNansformability Network Structur€INS). It incor-
porates the following information about an auctioneer’s internal manufacturing opera-
tions:

(1) the required input goods;

(2) the produced output goods;

(3) the cost associated to each operation; and

(4) the eventual producer/consumer relationships with other operations.

By means of a TNS, an auctioneer can also compactly communicate to bidders all the
possible RFQ configurations leading to its final requirements. Summarising, the infor-
mation contained in a TNS along with the auctioneer’s finally required goods provide
to bidders sufficient information to compose meaningful offers. This overcome require-
ment (2) of tabl&Z]1.

As mentioned above, our strategy shall be to map the internal manufacturing op-
erations and the received offers into a PTRI{Vg). If we associate a cost to each
of its transitions, we obtain a WPTN that provides a unified description framework for
themake-or-buydecision problem. | call such extensidaoction Netbecause it permits
to encode the information about an auctioneer’s internal production and cost structures
and about the offers it receives. The formal language offered Auation Nethelps
fulfill expressiveness requirements (1), (3) and (4) of thblk 4.1.

By means of arAuction Netan auctioneer can compactly express the outcome of
any of its possible decisions (acceptance of some bids and execution of some internal
operations), and also quantify the cost associated to each of such outcomes. Further-
more, theAuction Netllows to incorporate the information about an auctioneer’s initial
stock.

We recall that the goal of the auctioneer is selecting a cost minimising outcome
fulfilling its final requirements. This can be achieved only if he can express constraints
over possible outcomes. Then, the last requirement for expressing the decision problem
is allowing an auctioneer to express constraints over the set of possible outcomes.

Against this background, the MUCRAIR winner determination problem can be
stated as a problem over &uction Net(a WPTN), where the goal is minimising the
cost associated to a sequence of steps that brings to a final state fulfilling some con-
straints. Then, we define a new optimisation problem on WPTNs:Cthestrained
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Maximum Weighted Occurrence Sequence ProleMWOSP). The objective of a
CMWOSP is finding a cost minimising sequence of steps leading to a final state fulfill-
ing a set of constraints. This provides a solution to requirement (5) in[fable 4.1.

Notice that the result of a CMWOSP idieing sequencgd.e. an ordered sequence of
transitions. This reflects a critical feature of thake-or-buylecision problem. An auc-
tioneer cannot run its internal manufacturing operations in a random order. Because of
producer/consumer relationships among manufacturing operations, an auctioneer must
be aware of the implementation order. For instanc&rdndma & codecides to only
buy the basic ingredients and to perform all the manufacturing operations internally, it
cannot perform th&akingoperation before thélake Doughor Make Filling opera-
tions, since the latter ones provide the inputs to the former one (cf. figire 1.1).

Then, the definition of the winner determination problem does not only assess the
optimal set of goods to buy, but also the optimal ordered sequence of in-house opera-
tions to perform in order to obtain the goods finally required by the auctioneer.

Two direct benefits stem from the mapping of the MUCRAtR WDP to WPTNSs.
Firstly, it is possible to directly import all the PTNs analysis tools and theoretical re-
sults and apply them to our problem. This provides the techniques for dealing with
requirement (5) in table4.1. In fact, we manage to model, for a wide class of problems,
the WDP via integer programming (see secfion2.1.2), and efficiently solve it by means
of black-box solvers as ILOG CPLEX (ILOG, 2007) or GNU GLREK (Makhorin, 2001).

4.2 The problem

In what follows we further specify the extensions to CAs needed for dealing with the
make-or-buydecision problem. With this aim we extend exaniplé 1.1 in ché&pter 1. We
recall that the example was abdatandma & cq a company devoted to produce and
sell apple pies. According to the example, the marketing departmétaaidma &
co has forecast a sale of two hundreds apple pies within the next month, and therefore
Grandma & costarts an automated sourcing procéssandma & coopts for running
a combinatorial auction to source the required ingredients. However, as explained in
sectio .41, besides inviting providers of basic ingredidnt€r, sugar, flour, apples,
margaring, Grandma & coinvites providers of intermediate gooddough, filling,
and even of final goodspple pie}. The production management department aims at
evaluating the opportunity to outsource part of the production process.
UnfortunatelyGrandma & cofaces a decision problem that cannot be solely treated
by means of combinatorial auctions because of the intrinsic limitations listed in table
E. In exampld—Z]1 we provide an extended version of exaflple 1.1 that explicitly
illustrates such limitations.

Example 4.1. The data characterising ti&andma & cds decision problem are:
(1) The cost of its internal manufacturing operations:

(&) A Make Doughoperation cost€ 5 each time it is carried out. It requires
one unit ofbutter, three units obugar, and two units oflour as inputs; and
it produces two units afloughas output.
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(b) A Make Fillingoperation cost& 6 each time it is carried out It requires one
unit of flour, eight units ofapple and two units omargarineas inputs; and
it produces two units dilling as output.

(c) A Bakingoperation cost€ 14 each time it is carried out. It requires four
units ofdoughand four units ofilling as inputs; and it produces four units
of apple pieas output.

(2) A sale forecast of 200 apple pies. This represents the final requirements of
Grandma & co

(3) A stock of one hundred units @bor and two hundreds units sligar.

O
Then, if Grandma & cointends to run a combinatorial auction and to invite all its
providers, it must be able to

e send them a request for quotes (RFQ) containing the number of required units for
each good; and

e once received all bids, it must be able to determine which bids to accept and
which internal manufacturing operations to perform in order to obtain the 200
apple pies.

Unfortunately, life is not that easy f@randma & co Firstly, it is not possible to a
priori establish how many units of each good the auction8earfdma & cg requires.

In fact, this depends on the production plan, that can only be decided upon receiving
the offers. Secondly, once received all biGsandma & coneeds a winning rule for the
optimal, efficient and automatic selection of the best set of bids and in-house operations.
In the two following sections we illustrate the first and second problem.

4.2.1 Communicating the RFQ

In a traditional Multi-Unit Combinatorial Reverse Auction (MUCRA) scenaridiex

quest for QuotatioRFQ) [Reyes-Moro et al., 2003) expresses the number of required
units for each good. However, whenever an auction@earfdma & cg facesmake-or-
buydecision problems, it happens that the requirement sent to bidders (the RFQ) is not
equivalent to the quantity of goods that the auctioneer actually requires (the 200 apple
pies). When internal manufacturing operations are taken into account, an auctioneer
has to distinguish between the objective quantity of goods at the end of its production
process and what to ask providers for. This occurs because an auctiGnaediha &

co) can opt for several, possible buying options and several, possible levels of internal
production. All these options differ in the number of required units and in the level of
internal production. For instance,

e if Grandma & codecides to buy only already-made pies without producing any-
thing, then it must ask providers offers for two hundred units of apple pies. This
results in the RFQ expressed in tabld 4.2(a) and in the internal operations quanti-
fied in tabldZR(b).
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Resource | Required Units Resource | Required Units
butter 0 butter 100
sugar 0 sugar 500
flour 0 flour 300
apples 0 apples 800

margarine 0 margarine 200
dough 0 dough 0
filling 0 filling 0

apple pies 200 apple pies 0

(a) Request for quotes for apple pies only. (c) Request fotagufor basic ingredients only.

Operation | Quantity Operation | Quantity
Make Dough 0 Make Dough 100
Make Filling 0 Make Filling 100
Baking 0 Baking 50
(b) Internal operations to perform. (d) Internal operation® perform.

Table 4.2: Request for quotes for different scenarios.

e if Grandma & codecides to produce everything in house, then it must require
for each ingredient the quantity needed for producing 200 apple pies, and must
perform theMake Dough, Make Fillingand Bakingoperations as many times
as required. This corresponds to the RFQ expressed in[fable 4.2(c) and in the
internal operations quantified in talplel4.2(d).

Itis easy to understand wiyrandma & cocannot completely specify its exact require-
ments a-priori (limitation (2) in table4.1). The number of acquired units will depend
on the received offers.

In order to overcome such difficultgrandma & coshould be able to communicate
to bidders its internal production relationships along with the producer/consumer rela-
tionships among them (limitation (1) in talle}4.1). When bidders have this information
available,Grandma & cosimply has to communicate to bidders the quantity of each
good it aims at obtaining at the end of the production process (in our case two hundred
apple pie¥. The bidders can then infer the required quantity for each good (limitation
(2) in tableZ1L).

4.2.2 Selecting the optimal decision

Even under the hypothesis thatandma & cowas able to uniquely communicate its
requirements to bidders, once received the bids it would not be able to decide which
bids to accept and which internal operations to perform in order to minimise its costs
and to obtain the 200 apple pies. More importantly, it would not have any public rule
stating how to win in the auction. How can bidders participate and submit bids if they
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are not aware of the winning bids’ selection mechanism®&rdindma & cocannot
determine who the winners are, there can be no auction.

In order to express all the possible outcomes of any of its possible decisions, an
auctioneer must be able to link its internal production and cost structure, the received
offers, and its final requirements (the 200 apple pies).

If it also wants to select the best among those possible decisions, then it must be
able to quantify the cost associated to each of the above-mentioned decision outcomes.
Then, in the following section, we make a first attempt at solving the above-
mentioned problems relying on PTNs (section 2.3). In this way, we will succeed in

modelling all the possible decisions an auctioneer may take.

4.3 Afirst attempt: Place/Transition Nets

PTNs (see sectidn2.3) are a very powerful tool to describe discrete dynamical systems,
like for instance operating systems, workflows, finite state machines, parallel activities,
data-flow computation, producers-consumers systems with priority, and so on. The
firing of a transition in PTNs represents a state change in a discrete system. Such a
state change can only take place if some preconditions occur (i.e. the transition must be
enabled). For instance, if we model manufacturing operations by means of transitions in
a PTN, the execution of a manufacturing operation changes the state of the production
system: some goods are consumed, while other goods are produced, whenever enough
input goods are available.

In this section we try to model the problem@®fandma & coby means of PTNs. In
sectioTZ.311 we model via PTNs the internal production structure of an auctioneer, and
in sectioTZ3R, we complement such PTN model by incorporating the offers received
by the auctioneer.

4.3.1 Modelling the internal production structure

In this section we model an auctioneer internal production structure by means of PTN.
Consider the following example.

Example 4.2. In figure[ZZ1, we associate a Place/Transition Net Structure (Bins

the internal production structure @randma & cq characterised in examdleh.1. In
doing this we associatglaces(P) to goods.transitions(7") to manufacturing opera-
tions, and input/output arcsAj and their weights ) to the quantity of goods con-
sumed/produced by each manufacturing operation. Formally,

e The set of places i = {butter, sugar, flour, apples, margarine, dough,
filling, applepie}

e The set of transitions i = {makedough, makefilling, baking}

e The set of arcs isA = {(butter,makedough), (sugar, makedough),
(flour, makedough), (sugar, make filling), (flour, make filling),

SRefer to definitior ZIL.
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3 Make| 2
2 Dough

Baking 4
Make| 2 @
8 Filling

Figure 4.1: PTNS associated to exaniplg 4.1.

(apples, make filling), (margarine, make filling), (makedough, dough),
(makefilling, filling), (filling, baking), (dough, baking),
(baking, applepie)}.

e The arc weight functio’ is:

E(butter, makedough E(sugar, makedough

E(flour, makedough E(sugar, make filling

)=3
=2 )=2
=1 E(apples, makefilling) = 8

E(margarine, make filling) =2 E(makedough, dough) = 2
=2 )=4
—4 )=4

E(makefilling, filling

)=
)

E(flour,makefilling)
)
) E(filling, baking
)

E(dough, baking E(baking, applepie

Then, with this tool at hand, we can quantitatively represent the input resources
needed and consumed by each manufacturing operation, the output resources produced,
and the producer consumer relationships among the manufacturing operations.

We recall that a PTN is a PTNS with associated an initial marlimg (see section
E3). The initial marking in a PTN usually represents the initial state of a discrete
dynamic system. In the case@®fandma & cowe can provide a similar semantics. The
following example clarifies this point.

Example 4.3. The initial marking M, stands for the initial stock arandma & co
Indeed, the stock of a firm represents the “initial state” of its supply chain. The initial
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stock atGrandma & cois two hundreds units of sugar and a hundred units of flour (see
exampléZl). The multiset (refer to section 2.2) representation of the initial state would
be:

My = 200'sugar + 100’ flour
Thus, in figurdZR, we graphically depict the initial marking of the PTN by means

of numbers within places (circles). We call the resulting PPN N; (I stands for
Internal).

sugah 3 Make| 2 (doug
200 2 Dough 0

Make| 2
Filling

Baking

Figure 4.2: PT N; associated to examgdle$.1.

Recall from sectiofi 213 that a transition in a PTN is enabled only if its input places
contain enough tokens. For instance, in figuré 4.2, transMake Doughs enabled
only if at leastone unit ofbutter, three units osugar, and two units oflour are within
its input places. This is exactly what we require for a manufacturing operation to be
enabled it can not be performed unless the required goods are available. Moreover,
looking at theBakingoperation in figur€412, we observe that the producer/consumer
relationships betweekake DoughandBakingon one side, and betwedfake Filling
andBakingon the other side, is quantitatively described by the PTN. Notice that the
enabling condition guarantees that a producer/consumer relationship is not only quan-
titatively represented, but also it is constrained to be implemented in its dynamics.

If a transition is enabled in a marking it céire (see definitiof.214). If a transition
fires it consumes some input goods and produces some output goods. Once more, this
is the semantics we require for a manufacturing operation: a manufacturing operation
consumes a set of input resources and produces a set of output resources.
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Example 4.4. In table[Z3B we show what happens when Wake Doughtransition
fires. In the leftimagdake Douglhis enabled. The execution bfake Douglprovides
some inputs to thBakingoperation, as shown in the image on the right, thus perfectly
describing the producer/consumer relationship among them.

O

@1\ @1\
ee\3 [Makd 2 )3 Makd 2
D D
o0 2 2 oug 4 2 2 _ou_gj 4
.o BakimiLQ BakimiLQ
1 4 00 )1 4
o0
Make 2 Make 2
8 Filling 8 Filling
O/ @

Table 4.3: Execution of a manufacturing operationfSAN;.

What does it happen when there is a sequence of firings? As explained in section
31, the PTN will pass through a succession of markings (states). What does a marking
represent in the case Grandma & c® We recall that anarkingis a distribution of
tokens over the set of places. It associates an integer value to each place. What is the
meaning of associating valdé0 to flour? The answer is thatraarkingstands for the
state of a production process, i.e. it describes the resources available at each state of the
transformation process. In fact, it associates to each state the number of units of each
good available to the auctioneer in that state. Accordingly, a manufacturing operation
can be performed in a given state only if enough tokens are available in its input places
in that state. The firing of a transition adds tokens into its output places likewise a
manufacturing operation produces new available resources to the auctioneer.

If markingsdescribe the level of resources currently available to an auctioneer, they
naturally apply to describe the requirements of an auctioneer as well. An auctioneer
aims atreachinga marking that fulfils its requirements (at least two hundreds tokens
in the applepieplace). This helps linking an auctioneer’s requirements to its internal
production structure.

In section[Z311, we illustrated the problem of reachability, i.e. the problem of
reaching a given marking1, departing from an initial marking\t,. We explained
that it is a well studied problem in the PTN literature. The reader can imagine that the
auctioneer is dealing with a similar problem: reachimgarkingthat fulfils its needs.

Summarising, by means of the PTN representation we partially fulfill requirements
(1) and (2) in tabl€4]1. However, we still need to express:

o the relationships between the internal manufacturing operations and the received
offers (limitation (3) in tabl€Z11); and
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e the information about the cost associated to bids’ selection and to manufacturing
operations’ carrying out (limitation (4) in tadle#.1).

Then, in the next section we incorporate the description of the received offers into
PTNy.

4.3.2 Incorporating Bids

In this section we cope with limitation (3) in tadle}.1. That is, to establish a relation-
ship among an auctioneer’s internal production structure, the goods at auction, and the
received offers. This entails relating the PTN description of se€lidn/273\;) with

the bidders’ offers and the goods at auction.

Firstly, notice that the relation between the auctioned goods and the manufacturing
operations is already accountedBY'N;. It quantitatively specifies the goods required
and produced by each manufacturing operation. Hence, it only remains linking the
received combinatorial offers to tHeI' N;. In fact, the utility of PT' N; is very limited
if an auctioneer cannot link it to the received bids. For instance, the PTN (production
process) described in figute .2 cannot work: there are not enough tokens (goods) to
fire (run) any of the transitions (manufacturing operations). The problem is that the
auctioneerGrandma & cQ needs tdouygoods to feed its production process. Buying
goods is equivalent to injecting tokens into the corresponding places. For instance, if
Grandma & codecides to accept a bid offering 100 unitsoatter, this will inject 100
units into thebutterplace and will correspondingly increment the marking of the PTN.
The counterpart of this operation would be putting0®into thebutter place of figure

B2

1» B

\ sugar) 3 Make | 2
200 200 Dough
~ 2 4
Baking 44>Apploe Pi
@ X
!\_/l_ake 2 200 200
Filling
200

Ba Bs

1~

1 1

margarine °
0

Figure 4.3: PT Ng. Incorporating bids into th&T N; of figure[4.2.

O

As a consequence, incorporating bids into the PTN is quite natural. Indeed, they can
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be easily modelled by means of transitions as well. If a bid is selected, it must increase
the amount of some available resources. Correspondingly, a transition adds tokens into
its output places when fired. However, two features distinguish bids from manufactur-
ing operations. Firstly, bids do not consume any resource. Secondly, bids can be run
only once (it is not possible to accept a bid twice in our semantics). Therefore, each bid
will be represented by a special type of transition, whose single input place will not be
a good, but a sort of controller. Such a controller, namieldplace,will enforce that a
transition representing a bid is selected at most once. We will call this type of transitions
bid transitions In contrast, we will call the transitions corresponding to manufacturing
operationsperation transitionsand the places representing gog®d places We

make clear the process of bid incorporation by means of an example.

Example 4.5. Say thatGrandma & coreceives the combinatorial offers in equations
1) to [L5) below from bidders. We represent an offer sent by a provider as a ultiset
B € N, whereG is the set of goods (in our case represented by places in figiire 4.2),
along with a cost. The multiplicity associated to each element of the multiset stands for
the number of offered units for the element.

By — 100 butter + 200'margarine at€200 (4.1)
Ba — 200 flours + 300’ sugar at€100 (4.2)
Bs — 800 apples at€200 (4.3)
By — 200'dough + 200’ filling at€ 1300 (4.4)
Bs — 200 apple pies at€ 2400 (4.5)

For instanceB, — 200’dough + 200’ filling at<€ 1300 stands for a combinatorial bid
offering two hundred units aough andwo hundred units ofilling at<€ 1300.

In figure[Z3B we intuitively show how to incorporate bids in equatiénd (4.0 (4.5)
into the PT Ny on figurdZ.R.PT Ny is shadowed, whereas the incorporated bids are in
dark black. We will refer to the PTN in figure as tRd" Ng (E from Extended). Notice
that:

(1) The input places dfid transitions(transitions associated to bids and represented
by Bi, Bz, B3, By, Bs in figure[£3) only contain one token and their input arcs
weigh one. Therefore, a bid transition can fire once at most.

(2) A bid transitiondoes not have any other input place except frobvicaplace
Thus, it does not consume any resources.

(3) The output places diid transitionsare the goods offered in the corresponding
bids, whereas the output arcs’ weights are the number of offered units.Therefore,
they increase the number of tokens present on the net if fired.

In table[Z% we graphically depict the evolution of the PTN in fiduré 4.2 when ap-
plying the firing sequencé = (B1, makedough). The upper picture shows the initial

SRefer to sectiofL212.
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Table 4.4: Applying the firing sequende= (81, makedough).

marking M, = 100'butter + 200'margarine (the stock aGrandma & cg. The cen-
tral picture shows the marking obtained after firing transitieri.e. after accepting bid
B1). Finally, the lower picture shows the marking obtained after firingcedough (af-

http://libros.csic.es
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ter performing thévlake Dougtoperation). Notice that in both cases transitiGhsand
Make Doughare enabled. Notice also that transitiBn cannot fire anymore, whereas
Make Doughcan.

O
Summarising, with the PTN in figufe3@randma & cocan express:

(1) its internal manufacturing operations along with the producer/consumer relation-
ships among them (requirement (1) in talbld 4.1);

(2) the relations among the auctioned goods, the received offers, and the manufac-
turing operations (rquirement (2)); and

(3) its final requirements (requirement (3)).

Furthermore, it can obtain all the possible production states reachable by means
of any legal combination of bids and internal operations. That is, it characterises the
combinatorial problem by providing a formalism to enumerate all the possible solutions.
This can be achieved thanks to the dynamics of PTN (the firings). This is a crucial point:
the PT Ng in figure[Z:3 compactly represents all the possible decisionsatmtdma
& co can take.

UnfortunatelyGrandma & cois not interested isimplyreaching a state that fulfils
its final requirements, it wants tinimiseits costs as well. How can we quantify that
performing manufacturing operations costs money? How can we quantify that buying
goods costs money? It is under this point of view that PTNs lack of the necessary
expressiveness and need to be extended. In the next section, we explain how to deal
with such extension.

4.4 Weighted Place Transition Nets

There is a feature of some discrete systems (in particular the one we consider) that, to
the best of our knowledge, has never been considered so far in the PTN literature, and
that we deem fundamental. A change in the state of a system may have an associated
cost. For instance, in our case, a manufacturing operation has a cost associated to each
time it is carried out. Thus, in order to model manufacturing operations, we need to
extend Place Transition Nets to incorporate the notidresfsition cost Such extension
will allow us not only to represent the fact that a cost is associated to each transition
firing, but also to easily compute the cost associated fioilzg sequence

The extension of PTN to incorporate the costs of operations and bids is quite natural
and consistent with all the properties of PTN. If we aim at representing the fact that
performing a manufacturing operation costs money, we simply have to associate a cost
to the firing of anoperation transition Similarly, if we aim at representing that buying
goods costs money, we have to associate a cost to the firing obé&httansition In
general, since both bids and manufacturing operations can be represented by means of
PTNs, we have to associate a cost to each transition in a PTN.
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441 WPTNSs and WPTNs

We extend the notion of Place Transition Net (see se€fidn 2.3) by associatvgt a
to each transition. This leads us to the definitionVédighted Place Transition Net
Structure(WPTNS) andMeighted Place Transition NGIVPTN).

Definition 4.1 (WPTNS) AWPTNS is a atupléP, T, A, E, C) where:
e P, T, A, E are defined exactly like in a PTNS.

e O : T — Ris a cost function that associates a cost to each transition.

@ 1
€5

3 Make| 2
2 Dough 4

Baking—4> AngIe
1 -€6 4 es
Make| 2 €14
8 Filling

Figure 4.4: WPTNS associated to exanipld 4.1.

Example 4.6. Let us associate a WPTNS to the internal production structure of
Grandma & cospecified in examplg=4.1. At this aim we associptaces(P) to
goods,transitions(7") to manufacturing operations, transition cost§ (o manufac-

turing costs, and input/output arcd)(and their weights £) to the quantity of goods
consumed/produced by each manufacturing operation. A WPTNS employs the same
graphical representation as a PTN (see sefidn 2.3), the only difference being that a
cost labels each transition. We depict in figiird 4.4 the resulting WPTNS, formally de-
fined as:

e The set of places i = {butter, sugar, flour, apples, margarine, dough,
filling, applepie}

e The set of transitions ¥ = {makedough, make filling, baking}
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e The set of arcs isA = {(butter,makedough), (sugar, makedough),
(flour, makedough), (sugar, makefilling), (flour, make filling),
(apples, make filling), (margarine, make filling), (makedough, dough),
(makefilling, filling), (filling, baking), (dough, baking),
(baking, applepie)}.

e The arc weight functio’ is:

E(butter, makedough E(sugar, makedough

=1 )=3
E(flour,makedough) =2 E(sugar, makefilling) = 2
1 E(apples, makefilling) = 8
E(margarine, makefilling) =2 E(makedough, dough) = 2
=2 y=4

-4 )=14

E(filling, baking

)
)
E(flour,makefilling) =
)
E(makefilling, filling)

)

E(dough, baking E(baking, applepie

e The cost functiong’ is defined d&

C(makedough) = —€ 5
C(makefilling) = — € 6
C(baking) = — € 14

[l
In figure[Z3, the values &f and the values of¢ label respectively transitions and
arcs.
Analogously to a PTNS, we define a WPTN by associating to a WPTNS an initial
marking M.

Definition 4.2 (WPTN). AWPTN is a pair( IV, M), whereN is s WPTNS, and\Wis
a multiset of places that stands for its initial marking.

The initial marking in a PTN represents the initial state of a discrete dynamic sys-
tems. The very same semantics is inherited by WPTNSs.

Example 4.7. The initial markingM, for the WPTNS in figur&4l&randma & cois:
My = 200'sugar + 100’ flour

In figure[ZB, we graphically depict the initial marking of the WPTNS in fidure 4.4.

4.4.2 Dynamics of WPTNs

WPTNSs and WPTNs preserve all the properties of PTNSs and PTNs respectively, but
allow the quantitative representation of the cost of a transition. Therefore, we can natu-
rally extend to them all the concepts employed for PTNs. Those include the concepts of

“The sign convention employed is negative values each time an auctioneer incurs in a cost.
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Figure 4.5: WPTN associated to exampld 4.1.

enabling of a transition, firing of a transition, marking, firing sequence, and so on (refer
to sectioZRB).

In a PTN, if a transition is enabled in a marking it cie. If a transition fires it
consumes some input goods and produces some output goods. In a WPTN, something
more happens. If a transition fires it carries out a cost, the cost associated to the fired
transition.

Example 4.8. In table[Z® we show what happens when Make Doughtransition
fires. The transition generates a cost&$. In the upper right corner we show the
quantity of money spent by the auctioneer in the corresponding state.

([l
What does it happen when there is a sequence of firings? FilstiyWPTN will
evolve through a succession of markings (states); and secondly, a cost will be associated
to such a sequence of transitiofiisifig sequencén sectiolfZ.311). Considering this,
we can define the notion a@bst of a firing sequend€’'rs) as:

Definition 4.3 (Cost of a firing sequencelhe costCrg associated to a firing sequence
J = (t1,t9, ..., tq) is the sum of all the costs of the transitions contained in the sequence:

d

Crs(J) =Y _C(t:) (4.6)

i=1

If a transition fires more than once, sayimes, then its cost will be addddtimes.
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Table 4.5: Cost of executing a manufacturing operation on a WPTN.

Example 4.9. In figure[£®, analogously to figule_#.3, we incorporate into a WPTN

the bids expressed in equatiofis14.1)

[3(4.5).

Notice that the costs labeiting

transitionsis the cost associated to the bids. Furthermore, in fable 4.6, we repeat
the firing sequence of table 3.4/ (= {B:, makedough}) when a cost is associ-

ated to each transition.
Crs(J) = C(B1) + C(makedough)

In this case, the cost associated to the firing sequence is
=-€200— €5 =- €205. In upper right cor-

ner of each frame of table~4.6 we highlight the cost associated to the corresponding

firing.
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©

Figure 4.6: Incorporating bids into the WPTN of figlirtel4.5.
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4.5 Representing auction outcomes with WPTNs

In the previous section we introduced WPTNs and showed their powerful modelling
features. The examples tried to give the intuitions behind the application of WPTN to
our problem. In fact, we saw that the auctioneer facesafie-or-buydecision prob-
lem, and decides to solve it by means of combinatorial auctions. In this section, we
aim at representing each of the outcomes of such auction given a description of the
internal manufacturing operations, of the received bids, and of the auctioneer’s final
requirements . However, since an auctioneer is mostly interested in assessing the cost
associated to each of such outcomes, we also associate an auctioneer’s cost to each of
the outcomes.

Then, firstly we introduce th@ransformability Network Structu@NS), a WPTN
for modelling and communicating the internal manufacturing operations of an auction-
eer. Secondly, we extend the TNS in order to incorporate the information regarding the
received bids. This will result in the introduction of tiAeiction Net This structure
compactly expresses all the possible decisions an auctioneer may take, and quantifies
the cost associated to each of such decisions. With those formal tools at hand, we can
then define what a MUCRALR is by providing an operational definition of valid auction
outcome.

4.5.1 The Transformability Network Structure

In what follows we formally define th&ransformability Network StructureThis cor-
responds to the net presented in figure 4.4. TNSs are useful for expressing the internal
manufacturing operations of an auctioneer. This tool will have to quantitatively rep-
resent the input resources needed and consumed by each manufacturing operation, the
output resources produced, the producer consumer relationships among the manufactur-
ing operations, and the cost associated to each manufacturing operation. Summarising,
a TNS describes the different ways in which goods can be transformed and at which
cost. More formally,

Definition 4.4 (TNS). A transformability network structureis a Weighted
Place/Transition NeN = (P, T, A, E, M, C) such that we associate:

(1) theplacesin P to a set of good& to negotiate updgh
(2) thetransitionsin T to a set of internal manufacturing operations;

(3) thedirected arcsn A along with their weights to the specification of the num-
ber of units of each good that are either consumed or produced by a manufactur-
ing operation.

(4) theinitial marking M, to the quantity of each good initially available to the auc-
tioneer (the stock). We indicate this particular initial marking with the multiset
Uin € NP, Then Mgy = U;,,.

8Notice that a place represents a good. Thus, in what follows we will talk indifferengpad placesand
goods That is, P and G are employed indifferently.
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(5) acostC : T'— R to each manufacturing operation.

In the next section we show how to incorporate the received bids into the TNS. The
resulting WPTN is calleduction Net

Example 4.10. The WPTN introduced in example#.7 is the TNS associated to the
problem ofGrandma & cq previously described in examfle}.1.

Notice that if an auctioneer communicates to the bidders its TNS along with some
constraints on the final marking (for instance, at least 200 tokens in the apple pie place),
the bidders have all the information for composing meaningful offers. This completely
fulfills the CAs expressiveness limitation in communicating to bidders an auctioneer’s
requirements (issue (2) in tallle4.1).

45.2 The Auction Net

In this section, we will thoroughly explain how to transform a TNS (fiduré 4.4) into an
Auction net(figure[Z®). In the remaining of the chapter it is assumed kit the set

of received bids. Each bid is represented by a muliiset N” and has associated a
cost encoded by functiofip : B — Rt U {0}.

-€ 200
A

\ sugar\ 3 Make | 2 dou
gh
200 Dough 0
2 4
2
\ o
Baking —»App‘g Pi
€6 q
€14
Make 2 200 200
Filling A
200

i, [ -€1300 tBs | -€2400

- — —

Figure 4.7: Auction Net of the MUCRAI(R in examfleH}. 1.

Definition 4.5 (Auction Net) Given a set of bidsB, and a TNSN =
(P, T, A, E, U, C), an Auction Netis a WPTNS* = (P*,T*, A*, E*, M, C*)
where:

P* =PUPp

T =TUTp
A* =AUAp
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(1) Pgisthe set obid places That s, for each bi® € B add a placeg.
(2) T is the set obid transitions That is, for each bi® € B add a transition.

(3) Apisthe set obid arcs Itis built as follows:

Ap = AU A%
where
s = {(ps.,tB) € Pp x T | VB € B} (4.7)
A% = {(tg,p) € Tp x P | p € B} (4.8)

are theinput bid arcsandoutput bid arcgespectively.

(4) The arc expressiol™ function is built as follows:

E*(z,y) = E(z,y) (z,y) € A (4.9)
E*(ts,p) = B(p) (ts,p) € A% (4.10)
E*(ps,ts) =1 (ps.tB) € Ap (4.11)

(5) The cost functiot®* : T'U T — R is built as follows:

C*(t) = C(t) teT
C*(tg) = Cp(B) ts €1

(6) The initial marking is defined as

Uin (p) peP

4.12
1 p € Pp ( )

Mo (p) = {

O

Example 4.11. We extend thelTNSof exampldZ16 with the bids listed in equations
@) to [L5). This gives raise to thuction Netin figure[LY. (P, T, A, E, My, C)
have been defined in examplel4.6. Th&h= (P*,T*, A*, E*, M§, C*) is defined as
follows:

(1) P = Pu{p317p327p337p347p85}
(2) r*=TU {tl?uthatBsathutBs}
(3) A* = AU A% U A% where

Al ={(pB,t8,): (PBs+ B,), (DB 185), DBy, tB4)s (PBs+ 85) }
% = {(t81 ) bUtter), (t81 ) margarine)7 (th ’ sugar), (tha flour), .. }
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(4) E*(z,y) = E(z,y) if (z,y) € A. When(z,y) € Ap we have:

E*(tg, , butter) = 100 E*(ts,, margarine) = 200
E*(tg,, sugar) = 300 E*(tg,, flour) = 200
E*(ps,,tp,) =1 E*(ps,,t5,) =1

(5) C*(t) = C(t) whent € T. Whent € T we have:

C*(tg,) = €200 C*(tg,) = €100
C*(tp,) = -€200 C*(tp,) = -€1300
C*(tp,) = -€2400
O

Recall that by means of the PTN defined in exariplk 4.5, an anestiovas able to
compactly represent all the possible outcomes associated to any of its decisions. How-
ever, he had the problem to assess the cost associated to each of such outcomes. Notice
that by means of the auction net, the auctioneer can now express both the outcomes of
its decisions and the cost associated to each of them.

In order to define the winner determination problem for MUCRALtR one further
step is required. We have to define an optimisation problem whose solution retrieves
the optimal firing sequence to apply to the auction net in order to obtain a desired final
marking (in the case dBrandma & comore than 200 tokens in the apple pie place).
This is the purpose of the following section.

4.5.3 Constrained Maximum Weight Occurrence Sequence Prob-
lem

Since there is a cost associated to each transition, one may be interested in finding a
maximum (minimUIﬂ) cost firing sequence leading from an initial marking to some
final marking. More importantly, one may be interested in finding a maximum cost
firing sequence leading from an initial markinig to a final markingM,; thatfulfils

a set of inequality constraintsFor instance, we may want to impose that in a final
marking M, each place contains exactly one tokewt{(p) = 1,Vp € P), or at

least 200 tokens in a given place (for instance, Afpple Pieplace in exampl€Zl1

M (applepie) > 200). With this aim we define th€onstrained Maximum Weight
Occurrence Sequence Problé@MWOSP).

Definition 4.6 (CMWOSP) Given a WPTNN = (P, T, A, E, My, C), a set of in-
equality/equality constraints that a final marking,; must fulfil, expressed as:

Vp € P Ma(p)Ayhy (4.13)

%In any optimization problem maximising and minimising are two dual representations of the very same
problem. We will talk about maximisation in what follows, but all the results can be easily applied to a
minimisation.
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whereA, € {<,<,=,>,>}andh, € NU {0}, find an occurrence sequengg,; =
(u1,us, ..., uq) that brings the initial marking{, to a final markingM, such that: (1)
M fulfils all the constraints in equatiofi{4]13); and (2),, maximises the total cost
CFS-

We can express the inequatiofs{4.13) in matrix form:
MyAh (4.14)

wherelM,; is a vector whosé— th component represents the number of tokens in place
i, A is a vector whosé—th element containé<, >, <, >, =}, andh is a vector whose

i — th element containa,,. We will call the constraints in equation{4]13) br{4.14) the
final marking constraints

Proposition 4.1. CMWOSP is at least EXPSPACE-hard.

Proof. The reachability problem for PTN can be reduced to a CMWOSP. It has been
proved that the reachability problem is EXPSPACE-hard (Lipton, [1976). O

4.6 The Winner Determination Problem

In this section, we formally define thvéinner determination problerfior MUCRALR.
Informally, given a TNS expressing the internal manufacturing operations of an
auctioneer over a set of goods an auctioneer’s final requiremedfs,; € N“, and a
set of received bid#®, thewinner determination problemmounts to finding the set of
bids and internal operations that minimise the auctioneer’s cost and produce at least the
required goods.
The formal definition of the WDP relies on tieiction Net

Definition 4.7 (Winner Determination Problem)Given an auction expressed as
(N,Upyt, B), where N = (P,T,A,E,M,) is a TNS,U,,; € NY expresses
the auctioneer final requirements, afdis the set of received bids. Lef* =
(P*,T*, A*, E*, M{,C*) be the correspondinguction Net The Winner Determi-
nation Problemamounts to selecting the set of bi# and the sequence of internal
operationsJ* that both minimise the auctioneer’s cost and satisfy the the following
final marking constrainten theAuction Net

Md(p) Z uout(p) Vp epP (415)
Ma(p) >0 Vp € P (4.16)

Proposition 4.2. The WDP for a MUCRAIRN, U, B) can be reduced to a CM-
WOSP on the corresponding auction net. Such a CMWOSP is characterised by the
following final marking constraints

Ma(p)
Ma(p)

v

Uyt () VpeP (4.17)
0 Vp € Pp (4.18)

v

Proof. The proofis by construction:
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(1) Solve the CMWOSP on th&uction NetNg. We name the CMWOSP solution

Jmin.
(2) The set of winning bid8* corresponds to thieid transitionscontained inJ™:

B* = {B ¢ Bjtg € J™"} (4.19)

(3) The sequencg* of internal manufacturing operations that an auctioneer has to
perform internally is obtained by removing fraf*" all the transitions that are
notoperation transitionsWe denote this as follows:

J =g (4.20)

O

Notice carefully that in a CMWOSP the sum of the weights asdedito the overall
transitions is maximised. However, since negative costs are associated to both bid tran-
sitions and operation transitions, maximising the sum of the weights implies minimising
the auctioneer’s costs.

Example 4.12. If Grandma & coreceives the bids in equatios{4.1)[014.5), the deci-
sion minimising its costs and allowing it to obtain the 200 apple pies is:

(1) to select bids, to obtaindoughandfilling; and

(2) to subsequently bake them@tandma & coafter running fifty times th&aking
operation.

If we look at it on the WPTN, this corresponds to the firing sequence

J = (B4, Baking, Baking, Baking, ..., Baking) (4.21)

50 times
Then, the cost of this decision is assessed as follows:
cost(By4) + 50 - cost(Baking = —€ 1300 — € 700= —€ 2000. (4.22)

The reader can check that this is the best possible option for the auctioneer: it exploits
the initial stock, it brings to a marking that fulfiGrandma & corequirements, it min-
imises the costs.

([l
Finally, the optimisation problem of the auctioneer is dgatated, and there is a

rule for selecting the winners. Thus, we have solved issue (4) in[fable 4.1 as well. Since
we obtained this result by directly employing place transition nets, we can import all
the technigues employed for them. As a first example, we show how to solve the winner
determination problem by means of Integer Programming (see s€cflon 2.1). With this
aim, we just show that some particular CMWOSP can be solved by means of Integer
Programming.
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4.7 Solving the WDP by means of IP

In this section, firstly we show that the CMWQOSP can be solved by means of Integer
Programming under some special conditions. Then, we show that those conditions are
fulfilled when the underlying PTN is acyclic. Finally, we explicitly state the IP solving
the WDP.

4.7.1 Solving the CMWOSP by means of IP

In sectionfZ3R, we showed that under some hypothesis on a PTN, it is possible to
express its overall reachability set by means of an equation, the state equation (see
sectioZ.313). The state equation describes all the states that an acyclic PTN can reach,
and it is a linear equation. That is all we need to generate our integer program.

We recall also that, by means of tBtate equationit is possible to represent in
matrix form the firings and markings of a PTN (see sedfionP.3.2):

e Let us associate to each plage € P a positioni in a vectorM;, € NI7I,
The integer contained in the— th position of theM;, vector corresponds to
the number of tokens contained in a a plagafterk firings in some sequence.
Then, My is the initial marking,M; is the marking obtained after the firing of
some transition, and so on.

e Let us associate to each transitione 7" a position; in a vector of integers
x € NIT!, The integer contained in thie— th position ofx encodes the number
of times transitiort; has been fired.

With this representation, the state equation can be written as:
M =My + ATx (4.23)

The very same formalism holds for WPTN. In fact, the only difference is that there
is a cost associated to each transition. Then, can we represent in matrix form the cost
of a sequence bringing from/, to M via the transitions encoded tanas well? The
answer is quite easy. Notice thatin equation[[£23) stands for the number of times
each transition is fired for transforming markidd, into markingAZ. Then, if we
know the cost of each transition, according to definition in equaliaih (4.6), we have to
multiply the cost of each transition by the number of times it is fired. Then, we define a
vectorCr € RITI whosej — th position represents the cost associated to transifion
(Crs(t;))- Hence, the cost associated to the firing sequence representeddied as
Jx, is:

Crs(Jx) =x"Cr (4.24)

The idea behind the mapping to IP is finding a set of linear equations that:

(1) constrainsthe decision variables associated to transitions to hold a value encoding
a valid firing sequence;

(2) constrains the marking obtained by firing the selected transitions to fulfil a set of
equality/inequality constraints; and
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(3) maximises the sum of the costs associated to the selected transitions.

Notice that point (1) can be easily fulfilled when the net is acyclic by means of the
state equationSince thestate equatiomepresents all the reachable states, it is enough
to apply to it a set of inequality/equality constraints to fulfil point (2). Finally, since in
a WPTN a cost is associated to each transition, maximising the cost associated to the
selectediring sequenceve satisfy point (3) as well.

In what follows we go into the formal details of what we explained above. The
following theorem states that if we can represent all the reachable states of a PTN by
means of the state equation, then the CMWOSP can be solved by means of IP.

Theorem 4.1. Consider an WPTNP, T, A, E, My, C) with incidence matrBd A.
If the state equation describes all the reachable stdte®f the WPTN, then all the
non-negative integer solutions the following integer program:

max x’crp (4.25)
subjectto M, + ATx Ah (4.26)

represent the firing count vectors of all the optimal solutions to the CMWOSP defined

Proof. Notice that equation[{Z.P6) simply imposes that the end marking fulfils the
constraints defined by~ h) in equation[[4113). Equatiofi {4]25) maximises the cost
Crs(Jx), associated to the firing sequence represented (sge equatiod{Z.24)). As

a result, a solutiox* to the IP defined by equatiorls{4125) abhd (#.26) optimises the
sum of the costs associated to fired transitions, while ensuring that the final marking is
reachable and fulfils the constraints defined byh). O

According to the results stated in theorEm 2.2, it is possiblexpress the reacha-
bility set with the state equation when the PTN is acyclic. Then, we apply this result to
our problem via the following corollary:

Corollary 4.1. Provided that a WPTN is acyclic, every CMWOSP defined on it can be
mapped into integer linear programming.

Proof. . Since the WPTN is acyclic, in virtue of theoréml2.2, all the reachable states
M are the non-negative integer solutions of equafion]2.26). Then, for th€artkm 4.1 the
firing count vectors of all the solutions to the CMWOSP are the solutions to the IP in
equations[{4.35) and_{4126).

Hence, we solve the CMWOSP problem in two steps. First, we determine the opti-
mal firing count vectox°? by solving the Integer Linear Program (ILP) in equations
@23) and[(4:26). Then, we construkf,; from x°P*, for which each step is enabled.
SinceS is acyclic, we can establish a partial order among transitions sathatt,
iff ¢o uses as input some output@yf We can construct an occurrence sequehge
by ordering the transitions in the firing count vector, , non-decreasingly according
to our partial ordering. Every step in the so ordered occurrence sequence is guaran-
teed to be enabled. The occurrence sequéepgeis consequently the solution to our
CMWOSP. ([l

10Refer to sectioflZ-3]3.
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Thus, we can also cope with requirement (5) in tablé 4.1.

4.7.2 The IP Formulation in practise

We have shown that the CMWOSP can be solved by means of an ILP in the case that
the underlying WPTN is acyclic in sectidn ZJ7.1. We showed in se€fidn 4.6 that the
winner determination problem for MUCRALR is a CMWOSP. In this section we show
that the WDP for MUCRALR can be solved by means of IP when the auctioneer's TNS
is acyclic. Furthermore we will explicitly write down the IP model.

The first assumption is that no cycles are added when we extend a TNS into an
Auction Net. This is very easy to show.

Proposition 4.3. Given an acyclic TN$P, T, A, E, M, C), the corresponding Auc-
tion Net(P U P, T UTg, AU Ap, Eg, MF*, Cp;4) will also be acyclic.

Proof. Say that there is hid transitiont; that includes a cycle that was not present in
the TNS. The output places of bid transitions are alway® {see definitiof:415). Then,

in order to have a cycle, there should be a transition with input placBdlrat has the
input place oftz as an output place. However, this is impossible since, according to
definition[Z3, the input places bfd transitionshave only output arcs. O

Naturally, it follows that:
Corollary 4.2. When the TNS is acyclic, the WDP can be solved by means of IP.

Next, we explicitly express the IP model solving thake-or-buylecision problem,
or equivalently solving the WDP for MUCRA(R.
The mathematical model is built according to the following rules:

(1) there aren goods, indexed with € {1,2,...,n}
(2) there aren internal manufacturing operations, indexed wijta {1,2,...,m}
(3) there aré multi-unit combinatorial bids, indexed withe {1,2,...,1}

(4) ay; is the difference between the weight of the arc connecting operation transition
j to goodi and the weight of the arc connecting gooi operation transition
in the auction net. Formally, in the WPTN languagge = E(j,i) — E(4,j).
Informally, this represents the flow of tokens in plaaghen transitiory is fired.

(5) uim is the quantity of good initially available to the auctioneer (the stock).

(6) uo“tis the quantity of goodfinally required by the auctioneer (the sale forecast).
(7) by; is the weight of the arc connecting bid transitioto good:.

(8) bpy is the weight of the arc connecting the bid plad® the bid transitiork.

(9) bui" is the quantity of tokens initially available in bid place of .

1INotice that we know that this is always one. However, for the sake of generality we consider it as a
parameter.
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(10) ¢y is the cost associated to internal operagion
(11) py. is the price associated to bid

(12) y» € N U {0} is an integer decision variable (for each kide {1,2,...,1})
taking on valuew if bid £ has been selected time$H.

(13) x; € N U {0} is an integer decision variable (for each transitipne
J
{1,2,...,m}) taking on valuew if transformationyj is firedw times in the opti-
mal firing sequence.

With this in mind, the IP model is expressed with the following equations:

max Zyk - PE+ ij - Cj (4.27)
k J

u" Y gk b+ Y@y aig > uf vi (4.28)
k J

bui* — yi. - bpr > 0 Vi (4.29)

Equation [Z2l7) minimises (recall the the costs are negative) the sum of the costs asso-
ciated to bids plus the costs associated to internal manufacturing operations. Equations
#29) and[[Z28) correspond to equatibn(#.13) of the CMWOSP. We split it into two
equations since they implement different inequalities. This is made clear if compared
with equations[{42)[1417), arld(418). Indeed, equalion](4.28) implements equation
&I1), whereas equation{4129) implements equalioni(4.18).

If we observe equatiofi{ZP9), and recall thaf"” = 1 for all k (see equationZ.12),
and thabpy, = 1 for all k (see equatioi4.11), the equation becomes:

1—ye >0 Vk (4.30)

Considering that, is an integer decision variable, it turns out clear that it becomes
a binary decision variablg;, € {0,1}. Hence, the whole optimisation problem in
equations[{4.47) td{4.P9) can be rewritten under this hypothesis:

max Zyk - PE+ ij - Cj (4.31)
k J

u" Y yk i+ )y aig > uf vi (4.32)
k j

J

This ILP can be readily implemented with the aid of an optimisation library (see
section[ZIR). The number of decision variables needed to encode this problem is
|T'| + | B, whereT is the set of internal supply chain operations @ds the set of
received bids. The number of required constraint&is whereG is the set of goods.

12Notice carefully that we know that this variable can take only value 0 or 1. Then, it is a binary decision
variable. However, in order to be formal, we hypothesise that is an integer variable for the moment.
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4.7.3 Comparison with a traditional MUCRA IP solver

In what follows we compare the IP formulation of the MUCRAtR WDP with the IP for-
mulation of a traditional Multi-unit Combinatorial Reverse Auction (MUCRA) WDP.

In order to solve the WDP for a MUCRA, as formalised |in (Sandhoim et al.,|2002),
we exploit the equivalence to the multi-dimensional knapsack problem pointed out in
(Holte, 2001). Sandholm et al. i (Sandholm et al., 2002) show how MUCRA can be
solved by means of IP. In this case the problem is stated by means of the following
parameters and variables:

(1) there aren goods, indexed with = {1,2,...,n}

(2) there aré multi-unit combinatorial bids, indexed with= {1,2,...,1}
(3) ug“t is the quantity of good finally required by the auctioneer.

(4) by, is the quantity of good offered in bidk.

(5) px is the price associated to bid

(6) yx € {0,1} is a binary decision variable (for each bide {1,2,...,1}) taking
on valuel if bid £ has been selected afidtherwise.

Then, the problem of selecting the best offers can be expressed with the following IP
model:

max Z Yk - Pk (4.33)
k

> ykbrs > ugt Vi (4.34)
k

In this case the number of decision variableld35 and the number of constraints is
|G|. Then, our formulation of the WDP can be clearly regarded as an extension of the
ILP we must solve for a MUCRA (as formalised above). In fact, the second component
of expressiofiZ:31 changes the overall cost as transformations are applied, whereas the
second component of expression4.32 makes sure that the units of the selected bids
fulfil a buyer’s requirements taking into account the units consumed and produced by
transformations.

Observe the analogy between the IP in equatibnsl(4.31)[and (4.32), and the IP in
equations[{4.33) and{4134).

The first terms of both IP are equivalent. In the MUCRALtR IP we add the contribu-
tions due to the firing of transformations. It seems a trivial extension. However, notice
carefully that we showed that this cannot be done for every possible class of nets.

4.8 Conclusions

In this chapter we dealt with theanake-or-buydecision problem when combinatorial
offers are received by an auctioneer. We identified and overcome all the limitations
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that prevent the applicability of CAs tmake-or-buydecisions. These are grouped into
Expressiveness, Winner DeterminatiangdFormal Analysidimitations.

We showed that PTNs are very useful for overcoming some of the CAs expressive-
ness limitations. However, due to their inability to express costs, we had to extend PTNs
in order to fully represent the internal production and cost structure of an auctioneer.
This lead to the definition of Weighted Place/Transition Nets (WPTN), PTNs in which
it is possible to associate a cost to each transition firing.

By means of WPTN all the expressiveness issues are solved. Then, an auction-
eer can employ WPTNSs to define its production and cost structure. We called such a
representation @aransformability Network Structui@NS).

However, the TNS must be linked someway with the offers received from bidders
(the bids). Then, we extended the TNS in order to incorporate the information about the
received combinatorial bids. This lead to the definition of Auetion Net An Auction
Netis a WPTN that incorporates all the information about the running auction: internal
manufacturing operations and received offers.

Once the decision problem input is conveniently expressed, we formalise its output.
With this aim, we introduced a new reachability problem on WPTNs(bestrained
Maximum Weight Occurrence Sequence Prob{@aWOSP). We subsequently em-
ployed the CMWOSP to formally define the auctioneer decision problem, or equiva-
lently, the winner determination problem.

Next, via the exploitation of some well-known results of PTN theory, we succeeded
in mapping the optimisation problem to an IP model, that can be directly solved by
means of commercial or free optimisation libraries. However, such a solver can be
applied only in the case that the net is acyclic.

Notice as well that the representation via WPTN allows to import a wide body of
methods and tools associatedR®Ns As a first example of this powerful approach,
we provided the above mentioned mapping to integer programming of the MUCRAtR
WDP.

It seems quite natural at this point to consider an extension. If an auctioneer can
incorporate into the auction its internal operations, why not to incorporate information
about the bidders’ internal operations as well? That is, in a MUCRAR an auctioneer
decides whether to produce in-house or to buy as already made the goods he requires.
However, there is a third possibility, a bidder may offeparforman operation for the
auctioneer. In such a case, the auctioneer would be able to outsource not only goods,
but manufacturing operations or services as well. In the following chapters we discuss
in depth such extension.



Chapter 5

Mixed Multi unit Combinatorial
Auctions

Along the lines of what we have done in chagier 4, where we introduced MUCRAtR
to cope with themake-or-buydecision problem, in this chapter we provide a new
type of combinatorial auction (CA) to deal withake-or-buy-or-collaboratdecision
problems. This new auction type is calldtixed Multi-unit Combinatorial Auction
(MMUCA). It supports the trading of any operation across a supply chain: from supply
and request of goods to the request and offer of manufacturing operations and services.
In this chapter we introduce:

¢ a formal language that allows bidders to express offers and requests over such
supply chain operations;

o aformalisation of the optimisation problem faced by an auctioneer when select-
ing the set of bids that maximises its revenue;

This chapter and the two following deal with different aspects ofntlaéke-or-buy-
or-collaboratedecision problem. In particular, this chapter deals veitipressiveness
requirements and formalises tkecision problenfaced by the auctioneer, whereas
chapter§l6 and 7 deal with computational and formal analysis aspects associated to the
decision problem.

This chapter is organised as follows. In secfiod 5.1, we describe the requirements
of CAs when applied to thenake-or-buy-or-collaboratdecision problem. In section
B2, we introduce an example that helps clarifying tireke-or-buy-or-collaboratde-
cision problem. In sectid 3.3 we introduce a novel formal language that supports the
negotiation of supply chain operations. In secfion 5.4, we formally define an allocation
rule that automates thmake-or-buy-or-collaboratdecision, that is, we formalise the
decision problem that the auctioneer faces. In sefidn 5.5 we list the auction models
subsumed by MMUCA. Finally, in sectién’.6, we draw some conclusions and remarks
about the expressiveness of the defined formal language and about the types of auction
subsumed by our model.

83
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5.1 Beyond CAs for Supply Chain Formation

In chaptei ¥, we studied threake-or-buydecision problem under the hypothesis that
complementarities among goods exist on the bidder side. In order to solve such a prob-
lem, we introduced a new type of combinatorial auction, the Multi Unit Combinatorial
Reverse Auction with transformability Relationships among Goods (MUCRALtR). In
this chapter instead, we deal with theake-or-buy-or-collaboratéecision problem,
namely the problem of selecting the most convenient supply chain partners. In this
case, a new dimension is added to the decision problem. In order to find a profitable
agreement, the parts negotiating a collaboration across the supply chain, have to make
explicit and share some information about their internal production structure.

We approach this problem employing a market-based mechanism. Analogously to
chaptef}4, we build upon combinatorial auctions since they help capturing the produc-
tion complementarities arising within a supply chain. We introduce a new type of com-
binatorial auction that allows an auctioneer to trade, besides goods, operations across
the supply chain. As thoroughly explained in secfion1.4.2, the operations that can be
negotiated across a supply chain are:

(1) Supply of manufacturing, assembly, disassembly operations
(2) Request of manufacturing, assembly, disassembly operations
(3) Supply of goods

(4) Request of goods

Combinatorial auctions for supply chain formation (SCF), introduced by Walsh et al.
in (Walsh and Wellman, 2003), have been the first attempt to deal with the problem of
supply chain formation by means of combinatorial auctions. Supply chain formation is
the problem of selecting the set of participants in a supply chain, and of assessing who
will exchange what with whom, while maximising the utility of the participants. We
consider the supply chain formation problem similar to a certain degree todke-
or-buy-or-collaborateproblem. In fact, the objective of SCF is to provide to the supply
chain stakeholders a mechanism to select the best way of collaborating among them.
Combinatorial auctions for SCF relies on the Task Dependency Networks (TDN) to
represent the production relationships among the supply chain stakeholders. However,
as illustrated in chapté&l 1, some intrinsic limitations of TDNs hinder their application
to themake-or-buy-or-collaboratdecision problem.

In table[21 we illustrate the requirements that we aim at fulfilling when dealing
with the make-or-buy-or-collaboratdecision problem. In the table, we also mark the
requirements that are fulfilled by CAs and TDNs. Summarising, we can classify the
emerging requirements in three types:

(1) expressivenesgquirements (1-8 in table.1);
(2) WDPrequirements (9-13 in tadle’b.1); and

(3) computationatequirements (14-19 in tale’b.1); and
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Requirements CAs | TDN
1 | express an offer/request on bundles of goods v v
2 | express an offer of a SCO with a single output product v
3 | express an offer of a SCO with multiple output products
4 | express arequest of a SCO
5 | express the offer/request of a bundle of SCOs
6 | express combinations of bids v
7 | express the min/max number of times SCOs are performed
8 | express resource sharing
9 | express an auctioneer’s initial stock
10 | express the auctioneer’s final requirements
11 | supportacyclic supply chain networks v
12 | supportcyclic supply chain networks
13 | compute thescheduled sequenad SCOs to perform
14 | ensure computational tractability while preserving optitpa
15 | solve SCF decision problem v
16 | solve themake-or-buy-or-collaboratelecision problem
17 | formally represent the search space
18 | graphically represent the search space
19 | assess the computational tractability based on the proliteictisre

Table 5.1: Requirements associated tortiage-or-buy-or-collaboratgroblem.

As to expressiveness requirements, it is clear that an auctioneer intending to trade
any possible operation across the supply chain must provide bidders with a language
for expressing their preferences over such operations (requirements 1-8 infhble 5.1).
Since we build upon CAs, in this chapter we firstly introduce a novel bidding language
that extends and generalises bidding languages for combinatorial auctions (bidding lan-
guages for CAs are summarised in sedfion 8.2.2). The purpose of CA bidding languages
is to predicate about goods, in particular about bundles of goods. However, in our case
the language must also allow to predicate about operations across the supply chain. In
order to cope with this requirement, we defswpply chain operation€SCOs). A sup-
ply chain operation is a concept that unifies under the same name séthe supply
chain operations, namely:

e supplyof a manufacturing operation;
e supplyof a bundle of goods; and
e requestof a bundle of goods.

This abstraction considers that the only distinguishing features of a supply chain oper-
ation are:

o the set of required and consumed inputs

¢ the set of produced outputs

1we saysomeof the operations since threquestof a supply chain operation cannot be expressed as an
atomic operation. This point is clarified further on.
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Thus, while in combinatorial auctions a bidder bids on bundles of goods, in this case
the objects predicated in the bidding language are bundles of SCOs. More precisely, as
pointed out by requirement (5) in talflel.1, bidders must be able to express preferences
over bundles of supply chain operations, and in particular to utter offers for operations,
requests of operations, and offer/request alternatives. Hence, we solve those problems
by letting bidders:

(1) specify valuations over bundles of supply chain operationsatémic bidwill
allow bidders to associate a value to a bundle of supply chain operations. The
semantics of atomic bids will be rich enough to specify both requests and offers
for bundles of supply chain operations (requirement (5) in able 5.1);

(2) specify combinations of atomic bids (requirement (6) in tBBIE 5.1).

Thus, on the one hand formiregomic bidsjoining supply chain operationperfectly
captures potential complementarities among such operations. On the other hand, we
provide bidders a way to express combinations of bids representing alternative offers.
This is needed because the preferences of a bidder cannot be fully expressed only by
atomic bids. For this purpose, we introduce a bidding language with several constructs
allowing the representation of several types of preferences over set of atomic bids. For
instance XOR bidsallow a bidder to express a set of atomic bids such that only one of
them can be selected by an auction€2R bidsallow to express that any subset of its
atomic bids can be selected by an auctioneer. Other constructs enable the representation
of quantity ranges, volume-based discounts, and so on.

Next, we cope with the firstVDP requirements of CAs for SCF, represented by
requirements (9-13) in tadle’b. 1. With a suitable language for representing the bidders’
offers at hand, we can provide an operational definition of the problem of selecting the
winning bids while respecting the bidders’ constraints. In other words, we have to pro-
vide a definition of the winner determination problem. With respect to the traditional
combinatorial auction WDP a new dimension comes into play and must be considered:
the production preconditions of supply chain operations. In fact, when supply chain op-
erations are dealt, not only it is important what SCOs to select, but also their execution
order. In fact, it must happen that at each step of the production process each SCO has
available the resources it requires to be performed. Since a supply chathasnaf
SCOs, it may be the case that some SCOs provide the required inputs to other SCOs.
Hence, the former ones must be performed before the latter ones. Then, an auctioneer
must select aequencef SCOs such that it:

(1) fulfils the constraints imposed by the bidders through the bidding language (e.g.
if two atomic bids are in XOR, the auctioneer has to select at most one of them);

(2) is scheduled correctly, i.e. that each SCO has available the required input re-
sources; and

(3) produces as outpat leastas many resources as required by the auctioneer (i.e.
after performing the sequence of supply chain operations, the auctioneer ends up
with the quantity of goods he initially required).
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Only in the case that the solution fulfils the above conditions can be considalidd
and implementable. Then, we will consider thatadid solution that maximises the
auctioneer’s revenue is a solution to the winner determination problem.

The provided definition of winner determination problem is not limited to any par-
ticular supply chain topology or SCO type. Then, by means of the definitions of bid-
ding language and WDP we overcome requirements 1-13 in[fable 5.1. The remaining
requirements (14-19) in tadleb.1 are not considered in this chapter, and will be solved
in the next chapter. Summarising, in this chapter we focuexmmessivenesgquire-
ments, and formalise ttaecision problenfaced by the auctioneer.

With a bidding language and an allocation rule (winner determination problem), the
new auction type is completely defined. We shall call the resulting auction riviixied
Multi-unit Combinatorial Auction§MMUCAS).

5.2 The problem

In this section we continue the example®fandma & cointroduced in sectioh 1.4.2.
Relying on such example, we specify the auctioneer’s problem we aim at solving.

Example 5.1. Grandma & cas a company devoted to producing and selling apple pies.
Traditionally, it was used to buying the basic ingredients to internally produce apple
pies ready to sell. However, its revolutionary sourcing department is experimenting the
most bizarre innovations. In examfle]l.1, we explained Grandma & codecided

to bring into the sourcing process producers of intermedéigh Filling) and final
goods Apple Pie¥ across the supply chain. This led to the introduction of a new type
of auction, MUCRAC(R, as explained in chapigr 4.

In this example, we show how the restless sourcing department decides to imple-
ment a newer sourcing process. Besides inviting to the sourcing event suppliers of all
the goods across the supply chain, it also invites suppliers and requesteas ufac-
turing servicessuch as, for instancéake Doughor Baking Then,Grandma & co
runs a new type of combinatorial auction that involves:

e providers of goods (dough, filling, flour, and so on);
e requesters of goods (apple pies);

e providers of manufacturing operations (e.gMdke DoughMake Filling, or the
Bakingoperations); and

e requesters of manufacturing operations.

All these potential supply chain partners are bidders in the auction.
The data regardin@randma & cointernal production costs is equal to the one
defined in example4.1 and is expressed in fifiurte 5.1. We summarise it in the following:

(1) theMake Doughoperation cost€ 5 each time it is carried out, it requires as in-
puts one unit obutter, three units osugar, and two units oflour, and it produces
two units ofdoughas output;
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(2) the Make Filling operation costs€ 6 each time it is carried out, it requires as
inputs one unit oflour, eight units ofapple and two units ofmargarine and it
produces two units dflling as output; and

(3) theBakingoperation cost€ 14 each time it is carried out, it requires as inputs
four units ofdoughand four units ofilling, and it produces four units @fpple
pie as output.

Furthermore, the data about the initial stock and the final requirements are:
(1) a stock of a hundred units @6bur and two hundred units afugar,

(2) Grandma & cowants to end up with at least two hundred apple pies in its ware-
house.

Say thatGrandma & coreceives the following bids (expressed in natural language)
from all the invited bidders:

(1) Bidder 1offers 100 units of butteAND 200 units of margarine & 200. Bidders
1 to 4 express multi-unit bids that offer combinations of goods.

(2) Bidder 2offers 200 units of flouré&\ND 300 units of sugar &t 100.
(3) Bidder 3offers 800 units of apple pies &t200.
(4) Bidder 4offers 200 units of dougAND 200 units offilling at<€ 1300.

(5) Bidder 5requests 200 units of apple pies #2400. This bidder express a multi-
unit request of goods.

(6) Bidder 60offers 100 units of butter & 1500R (non-exclusive)ffers 200 units of
margarine a€ 100. This bidder proposes two alternative, not mutually exclusive,
multi-unit offers. Notice that if the auctioneer accepts both bids, it must pay
€ 250.

(7) Bidder 7 offers 200 units of margarine & 200 XOR (exclusive OR)ffers 200
units of butter a€ 200. This bidder proposes two alternative mutually, exclusive,
multi-unit offers. The auctioneer can accept at most one of them.

(8) Bidder 8offers 200 units of filling at€ 1400 XORrequests 100 units of apple
pies for€ 200.

(9) Bidder 9offers to perform theMake Doughoperation 50 times &t 200. This
bidder, a contract manufacturer, offers to perform a SCO for the auctioneer ex-
actly fifty times.

(10) Bidder 10requests to have the operatiBakingperformed 50 times, and he is
willing to pay €210 for it. This bidder requests that an operation is performed
for him exactly fifty times.
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(11) Bidder 11offers to transform 2 units of dough and 2 units of filling into 1 unit of
apple pie a€ 20 each time the operation is performed. He offers to perform the
operation at most 50 times and at least 10 times. This bidder offers an operation
that was not previously present in the auctioneer’s internal supply chain (figure
E). Moreover, he expresses the operation can be performed a minimum and a
maximum number of times.

(12) Bidder 12offers theBakingoperation:

e at€ 10 each time it runs if the operation is performed between 10 and 30
times; and

e at€8 each time it runs if the operation is performed between 31 and 50
times.

This bidder issues an offer for an operation that includes a value-based discount.

(13) Bidder 13offers between 100 and 200 units of apples in bundles of 4 ungat
per bundle. This bidder expresses quantity ranges.

(14) Bidder 14offers to transform 3 units of flour, 2 units of sugar, 1 unit of butter, 4
units of apples, and 2 units of margarine into 2 units of dough and 2 units of filling
at<€ 10 each time the operation is performed. The operation can be performed at
least 10 and at most 40 times. Similar to the offer of bidder 11, with the difference
that this operation has multiple output goods.

(15) Bidder 150ffers to perform both th&lake Dough ANOhe Make Filling opera-
tion at€ 20. This bidder issues an offer ovebandleof SCOs.

(16) Bidder 160ffers to perform thévlake Doughoperation at 20 only if provided
with an oven (it will give the oven back after performing the operation). This
bidder expresses an offer in which there is a resource shared (the oven). In fact,
it can be employed again afterwards.

O

The reader can understand that not only the requirementgfecaltito express, but
also the underlying decision problem is actually very complex. Which is the best option
for Grandma & c® How to select the bids that maximise its revenue? The problem
of Grandma & cois thus twofold: on the one hand to provide a bidding language for
expressing the bidders’ preferences, and on the other hand to find an allocation rule for
assessing the revenue maximising sequence of SCOs that allows it to obtain at least two
hundred apple pies at the end of the production process.

5.3 Bidding Language

In this section, we firstly define the notions siipply chain operatiomand valuation
oversupply chain operationgnd subsequently we define a bidding language that can
be used to transmit an agent’s valuation (which may or may not be its true valuation)
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to the auctioneer. We also formally define the semantics of the language and introduce
a number of additional language constructs that allow for the concise encoding of typ-
ical features of valuation functions. Finally, we discuss the expressive power of the
language.

5.3.1 Supply Chain Operation
In what follows we provide a formal definition of supply chain operation.

Definition 5.1. Let G be the finite set of all the types of goods under consideration. A
Supply Chain Operatio(SCO) is a pair of multisefoverG: (Z, 0) € N x N&,

O
An agent offering the SCQZ, O) declares that it can delive® after having re-
ceivedZ. As we mentioned in sectidn.1, in our setting bidders can offer any number
of such SCOs, including several copies of the same SCO. That is, agents will be nego-
tiating overmultisets of SCQg$ormally over elements ARV XN

1
€5

3 Make| 2
2 Dough

Baking_4>
Make| 2 @ €14
8 Filling

Figure 5.1: TNS associated to examipld 5.1.

Example 5.2. In figure[521 we graphically represent the internal manufacturing opera-
tions of Grandma & coemploying the TNS introduced in in sectibn4]5.1. TWake
Doughoperation is represented as the following SCO:

Make Dough= (1'butter + 3'sugar + 2’ flour, 2'dough) (5.1)

2Refer to sectiofi.2]2 for some background on multi-sets.
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TheMake Filling operation is represented as:
Make Filling = (2'sugar + 1’ flour + 8 apples + 2'margarine, 2’ filling) (5.2)
([l

Example 5.3. {(0, 1'a), (1'b,1’c) } means that the agent in question is able to deliver
(no input required) and that it is able to delivaf provided withb. Note that this is not
the same a$(1'b,1’a + 1’c)}. In the former case, if another agent is able to produce
b if provided with a, we can get from nothing; in the latter case this would not be
possible.

O
Notice that the formalism employed for describing SCOs adltive representation
of:

o offers for bundles of goodsxpressed as SCOs with no inputs. That means that
nothing is taken as inpuf(= (), andQ is provided as output. For instance, the
offer of 200 units of butteand 100 units of margarine can be expressed as:

{1'(0, 100"'margarine + 200'butter)}

e requests of bundles of gogd@sxpressed as SCOs with no output. That means that
T is taken as input, and nothin@(= 0) is provided as output. For instance, the
request of 200 units of apple pie can be expressed as:

{1"(200'applepie, 0)}

o offers for bundles of SCOsexpressed as:
{0/1(1-1’ 01) + 0/2(127 02) +...+ a,in(Z,n, Om)}

whereco, € N represents the multiplicity of the SC@;, O;). For instance, an
offer to perform 10 times thilake Dougloperatiorand5 times théviake Filling
operation can be expressed as:

{10’Make Dought 5'Make Filling} = (5.3)
{10'(Vbutter + 3'sugar + 2’ flour, 2'dough)+
5 (2'sugar + 1’ flour + 8'apples + 2'margarine, 2’ filling)}

e requests of bundles of SCQn order to understand how to represent this type of
request, we have to define what is meant by requiring a service. In fact, a bidder
requiring theBakingservice (see figuled.1) provides the inputs to perform the
Bakingoperation (dough and filling), and he is expected to receive the output of
the required operation (apple pie).
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Example 5.4. Consider the following multi-set of SCOs:
{1'(0, 4 dough + 4' filling), 1'(4'apple pie0)}

This means that a bidder provides the dough and the fidimghe is expected

to receive 4 apple pies. Notice that no precedence constraint between the two
operations is specified. The bidder is happy receiving the apple pies both before
and after giving away the dough and filling.

If a bidder expresses his willingness to pag0 for having this multiset of SCOs
allocated, this means that he is requiring Bekingoperation for€ 20.

Notice that this ismotthe same as
{1'(4 apple pie4’dough + 4’ filling)}

In this case, the meaning would be that the biddquiresthe apple pies as input
beforegiving away the dough and filling. It is not what the bidder means.

O

In direct multi-unit combinatorial auctions, thoroughlypdained in chaptdil3, it is
typical to assumdree-disposafor bidders. Say that a bidder is willing to p&y10
for three units of dough. The free-disposal assumption says that the bidder is willing
to payat least€ 10 for four units of dough. This is a reasonable assumption, since
the bidder receives more than he has required paying the same amount. Conversely, in
a multi-unit combinatoriateverseauction thefree-disposabssumption says that if a
bidder is willing to be paids 10 for three units of dough, then it is willing to be paid
at most€ 10 for two units of dough. This is reasonable as well since the bidder gives
away less than offered and receives the same payment.

In the general case, tHeee-disposabhssumption says that a bidder is willing to
pay/be paid at least/at most the same amount if he is allocated a superset/subset of the
required/offered goods.

In what follows, we generalise this idea to supply chain operations first, and then to
multisets of supply chain operations. The idea of superset/subset is substituted with the
idea of subsumption.

We define asubsumption relatioi- over supply chain operations as follows:

(Z,0)C (Z,0)Y«ICIT'AOD O (5.4)

Intuitively, this means that the second supply chain operation is at least as good as
the first (for the bidder), because he receives more and has to give away less.

Example 5.5. For instance, we have that:
(2'a+2'b,1'c) C (3'a+3'b,1'c) (5.5)

O
The following definition extends this subsumption relatiomtultisets of supply
chain operations. It applies to multisets of the same cardinality, where for each SCO in
the first set there exists a (distinct) SCO in the second set subsuming the former.
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Definition 5.2 (Subsumption) Let D, D’ € NN“*N9)  Wwe say thap is subsumed by
D' (D C D) iff:

(i) D andD’ have the same cardinalityD| = |D’|.

(#4) There exists a surjective mappirfig 2 — D’ such that, for all SCOs € D, we
havet C f(t).

O

Example 5.6. Employing a simplified notation for the innermost sets, we Bave
{(a,bb), (cc,dd)} C {(cc,d), (aaa, b)} (5.7)

Notice that the functiory is such that the elemeit, bb) maps to(aaa, b), and the
element(ce, dd) maps to(ce, d). In fact, we have thala, bb) C (aaa, b) and(ce, dd) C
(ce,d).

O
Property(:) of definition[5.2 is needed, because giving less supply chain operations
in some cases may diminish the valuation of a bidder. This is clarified by the following
example.

Example 5.7. Consider that a bidder is willing to pag 10 for receiving two units of

and two units of:, namely for the SCQ (bb, 0), (cc, #)}. Most probably, the biddes

not willing to pay at least the same quantity for having the mult{géb, )}, since he

is receiving less goods! Alternatively, consider the case in which a bidder is willing to
be paid€ 10 for providing two units ob and two units of:, namely{ (0, bb), (0, cc)}.

Most probably, the bidder in this cagewilling to pay at least the same quantity for
being allocated the multis¢t(, bb) }, since he is giving away less goods!

O
Then, as shown in examdleb.7, there is not a general rulegttdtat less supply
chain operations allocated is considered a better outcome for a bidder.

5.3.2 Valuations

Our goal is having agents negotiating over bundles of SCOs. Then, we have to introduce
a formalism that allows an agent to express preferences over bundles of SCOs. Hence,
in what follows we provide a definition of valuation.

Definition 5.3. A valuationv : NO“xN9) _, R js a (typically partial) mapping from
multisets of SCOs to the real numbers.

3 This is equivalent to

{(1Va,2'b), (2'c,2'd)} T {(2'c,1d), (3'a,1'b)} (5.6)
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O

Intuitively, v(D) = p means that the agent equipped with valuatids willing to
make a payment g in return for being allocated all the SCOsh (in casep is a
negative number, this means that the agent will accept the deatddtvesan amount

of [p]).
Example 5.8(Valuations)

o v(1'(1oven + 1'dough,1’oven + 1'cake)}) = —20 means that a bidder can
produce a cake fo€ 20 if given an oven and some dough, and that it will return
the oven again afterwards.

o v({1'(1'butter + 3'sugar + 2’ flour,2'dough)}) = —4 means that a bidder is
able to perform théake Dougloperation for€ 4.

O
We write v(D) = L to express that is undefinedover the multisetD. Again
intuitively, this means the agent would be unable to accept the corresponding deal.
Valuation functions can often be assumed to be Inotimalisedandmonotonic:

Definition 5.4 (Normalised valuation)A valuationv is normalised iffo(D) = 0 when-
everZ = Oforall (Z,0) € D.

O
Thatis, a valuation is normalised iff exchanging a multigeggands for an identical
multiset does not incur any costs (this includes the special caée-00 = (), i.e. the
case of not exchanging anything at all). The next definitions refer to our subsumption
relationC (see Definitiofi 512).

Definition 5.5 (Monotonic valuation) A valuationv is monotonic iffo(D) < v(D’)
wheneverD C D'.

O
That is, an agent with a monotonic valuation does not minchtakih more goods
and giving fewer away. This assumption is the generalisation ofréieedisposahs-
sumption we mentioned above when supply chain operations are traded.
Any given valuation function can karned intoa monotonic valuation by taking its
monotonic closuf

Definition 5.6 (Monotonic closure) The monotonic closurgof a valuatiorv is defined
ast(D) = max{v(D’) | D' C D}.

([l
As we are working with multisets of goods, observe that thexdd:be infinitely
many bundles an agent may want to assign a (defined) value to. As we shall see in
Sectiorf5.316, our bidding languages can only express valuations tliaitig-peaked
(or that are the monotonic closure of a finitely-peaked valuation):

4Here and throughout this chapter, we assume that any occurrendesiref being removed from a set
before computing its maximum element, and that the maximum of the empty ket is
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Definition 5.7 (Finitely-peaked val.) A valuationu is finitely-peaked iffv is only de-
fined over finite multisets of pairs of finite multisets affel € N(N“*N9) | (D) £ 1}
is finite.

O

5.3.3 Atomic Bids

Anatomic bidBID ({&} (Z1,01) + ... + o, (Zn, On)}, p), Wherea), € N represents the
multiplicity of the SCO(Z;, O;), specifies a finite multiset of finite SCOs and a price.

To make the semantics of such an atomic bid precise, we need to decide whether or
not we want to make fee disposahssumption. We can distinguish two types of free
disposal:

e Free disposadt the bidder’s sideneans that a bidder would always be prepared
to accept more goods and give fewer goods away, without requiring a change in
payment. This affects the definition of the valuation functions used by bidders.

o Free disposait the auctioneer’s sidmeans that the auctioneer can freely dispose
of additional goodsi.e. accept more and give away fewer of them. This affects
the definition of what constitutes a valid solution to the winner determination
problem (see Sectidn®.4).

Under the assumption of free disposal at the bidder's side, thé&hid= BID(D, p)
defines the following valuation:

oy J p fDCETD
vpia(D') = { 1 otherwise

To obtain the valuation function defined by the same bid without the free disposal as-
sumption, simply replace in the above definition by equality.

5.3.4 Combinations of Bids

A suitablebidding languageshould allow a bidder to encode choices between alter-
native bids and the like. To this end, several operators for combining bids have been
introduced in the literaturé (Nisan, 2006), which we are going to adapt to our purposes
here. Informally, an OR-combination of several bids signifies that the bidder would be
happy to accept that any combination of the sub-bids specified is selected by the auc-
tioneer, if he gets paid/pays the sum of the associated prices. An XOR-combination of
bids expresses that the bidder is prepared to accept that at most one of them idkelected
We also suggest the use of an IMPLIES operator to express that accepting one bid
forces the auctioneer to also take the second. We shall take an AND-combination to
mean that the bidder will only accept if the respective sub-bids are selected together.
As it turns out, while all these operators are very useful for specifying typical val-
uations in a concise manner, any complex bid can alternatively be represented by an

5 As Nisan [(Nisan, 2006) put it, “purists may object” to the name XOR, as this is not the same as the
exclusive-or operator familiar from propositional logic (ONE-OF may be a better name).
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XOR-combination of atomic bids. To simplify presentation, rather than specifying the
exact semantics of all of our operators directly, we are simply going to show how any
bid can be translated into suclmarmal form Firstly, any occurrences of IMPLIES and
OR can be eliminated by applying the following rewrite rules:

X IMPLIESY ~ (X ANDY)XORY
X ORY ~ X XORY XOR(X ANDY)

Note that for single-unit auctions, OR cannot be translated into XOR like thi$ &ihd

Y overlap, then they cannot be accepted together; in an MMUCA this depends on the
supply of the auctioneer). Next we show how to distribute AND over XOR, so as to
push AND-operators to the inside of a formula:

(X XORY)AND Z ~» (X AND Z) XOR (Y AND Z)

Finally, we need to define how to turn an AND-combination of atomic bids into a single
atomic bid:

BID(D,p) AND BID (D', p') ~ BID(DWD',p+p)

Recall from sectiol 2.2 1 that the symbol is asum of multisetmeaning that the
multiplicity of the sum multiset for an element is the sum of of the multiplicities of the
addend multisets.

Observe that these rewrite rules together allow us to translate any expression of the
bidding language into an equivalent XOR-combination of atomic bids. We also call
this theXOR-language To formally define the semantics of this language, it suffices
to define the semantics of the XOR-operator. Suppose we are gib@ls Bid;, with
i € {l.n}. Let Bid = Bid; XOR --- XOR Bid,,. This bid defines the following
valuation:

vpia(D) = max{vpa, (D) |i€ [1,n]}

That is, XOR simply selects the atomic bid corresponding to the valuation giving max-
imum profit for the auctioneer.

5.3.5 Representing Quantity Ranges

As we prove in the next section, the XOR-language is expressive enough to describe
any (finitely-peaked) valuation. Nevertheless, it may not be possible to express a given
valuation in a succinct manner. From a practical point of view, it is therefore useful to
introduce additional constructs that allow us to express typical features more succinctly.
Here we consider the case of quantity ranges. We want to be able to express that a
certain number of copies of the same SCO are acceptable to a bidder.

Letn € N. To express that up to copies of the sam®id are acceptable, we use
the following notation:

Bid=™ = (Bid OR --- OR Bid)

n times
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This allows us to expresvundling constraintsin a concise manner: the bid
({a,a,a,b},—10)=% expresses that we can sell up to 50 packages containing three
items of typex and one item of typé each, for 16 a package (for simplicity, we omit

O here). We also use the following shorthand:

Bid"® = (Bid AND --- AND Bid)

n times

Now we can express quantity ranges. hetno € Nwith 0 < ny; < ny. The following
expression says that we may accept betweeandn, copies of the samBid:

Bidl"m2l = Big=(2=m) \mpLIES Bid™

These constructs also allow us to express important concepts such as quantity discounts
in a concise manner. For instance, the bid

[(a,20)=1% IMPLIES (a,25)°°] XOR (a, 25)=%°

says that we are prepared to buy up to 50 items of tyfmr 25 € each, and then up to
100 more for20 € each.

5.3.6 Expressive Power

Next we are going to settle the precise expressive power of the XOR-language, and
thereby of the full bidding language. We have to distinguish two cases, as we have
defined the semantics of the language both with and without free disposal.

Proposition 5.1. The XOR-language without free disposal can represent all finitely-
peaked valuations, and only those.

Proof. Let v be any finitely-peaked valuation. To expres the XOR-language, we
first compose one atomic bid for eath= {o}(Z1,01) + ... + o, (Z,, On)} with
v(D)=p# L

BID({a)(Z1,01) + ... + ) (Zn, On)},0)

Joining all these bids together in one large XOR-combination yields a bid that expresses
v. Vice versa, it is clear that the XOR-language cannot express any valuation that is not
finitely-peaked. O

Proposition 5.2. The XOR-language with free disposal can represent all valuations
that are the monotonic closure of a finitely-peaked valuation, and only those.

Proof. The construction of a bid representing any given valuation works in analogy to

the proof of Propositioh Bl 1. Note that for the semantics with free disposal we precisely
obtain the monotonic closure of the valuation we would get if we were to drop the free

disposal assumption. O
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These results correspond to the expressive power results for the standard XOR-language
for direct single-unit combinatorial auctions. With free disposal (the standard assump-
tion), the XOR-language can express all monotonic valuations (Nisan, 2006); and with-
out that assumption it can represent the complete range of valuations (notayhat
valuation is finitely-peaked if we move from multisets to sets). Notice that this result
on the expressiveness shows that the provided bidding language overcomes successfully
requirements (1-8) of table’.1.

Given those expressiveness results, in the remaining of the dissertation we assume
that bidders express their preferences by means of the XOR language.

5.3.7 Examples of Bids

In this section we provide some examples of bids in order to highlight the better expres-
siveness offered by our bidding language. For this reason, we encode the bids presented
in exampldRll.

(1) Bidder loffers 100 units of butteAND 200 units of margarine & 200:

BID(1'(0, 100" butter + 200'margarine), —200)

(2) Bidder 2offers 200 units of flouré&\ND 300 units of sugar & 100:

BID(1'(0, 200 flour + 300'sugar), —100)
(3) Bidder 3offers 800 units of apple pies &200:
BID(1'((, 800"apple), —200)
(4) Bidder 4offers 200 units of dougAND 200 units offilling at€ 1300:

BID(1'(0, 200"dough + 200’ filling), —1300)

(5) Bidder 5requests 200 units of apple pies #£400:

BID(1'(800’apple pie ), 2400)

(6) Bidder 6offers 100 units of butter & 150 OR (non-exclusive)ffers 200 units
of margarine a€ 100:

BID(1'((, 100’butter), —150) ORBID(1’(®, 200'margaring, —100)

(7) Bidder 7 offers 200 units of margarine & 200 XOR (exclusive ORjffers 200
units of butter a€ 200:

BID(1'(0, 200'margaring, —200) XORBID (1'((, 200’butter), —200)
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(8) Bidder 8offers 200 units of filling at€ 1400 XORrequests 100 units of apple
pies for€ 200:

BID(1(@, 200filling), —1400) XORBID (1'(100apple pie ), 200)

(9) Bidder 9offers to perform thélake Dougloperation 50 times & 200:

BID (50" (1'butter + 3'sugar + 2’ flour, 2'dough), —200)

(10) Bidder 10requests the operati®@akingperformed 50 times, and he is willing to
pay< 210 for it:

BID(1'(0,4'dough + 4’ filling) + 1'(4'apple pie ), 4.2)*°
(since4.2 x 50 = 210)

(11) Bidder 11offers to transform 2 units of dough and 2 units of filling into 1 unit of
apple pie for€ 20 each time the operation is performed (whenever the operation
is performed at least 10 times and at most 50 times):

BID(1/(2'dough + 2’ filling, 1'apple pig, 20)10:>"]

(12) Bidder 120offers theBakingoperation at:

BID(1'(4'dough + 4’ filling, 4'apple pig, 10)[10:3"]
XOR
BID(1'(4'dough + 4’ filling, 4'apple pig, 8)11:5

! (]‘I(Z7 1/a-pple ple, — 2)[25»50]

(14) Bidder 14offers to transform 3 units of flour, 2 units of sugar, 1 unit of butter, 4
units of apples, 2 units of margarine into 2 units of dough and 2 units of filling
at€ 10 each time the operation is performed. The operation can be performed at
least 10 and at most 40 times:

BID(1' (1 butter + 2'sugar + 3' flour + 4'apple + 2'margarine,
2'dough + 2’ filling), —10)10:40]

(15) Bidder 150ffers to perform both th&lake Dough ANOhe Make Filling opera-
tion at€ 20:

BID (1’ (1 butter + 3'sugar + 3' flour, 2'dough)+
1 (8 apple + 2'margarine + 1 flour, 2' filling), —20)
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Notice carefully that the offer of bidder 15 cannot be rewritten as

BID (1’ (1 butter + 3'sugar + 3' flour + 8'apple + 2'margarine + 1’ flour,
2'dough + 2’ filling), —20)

The two bids do not represent the same thing. In the former case, the two opera-
tions could be performed at different steps in the production process. In the latter
case, it is a one shot operation that neatdhe same timall the input resources

1butter + 3'sugar + 3’ flour + 8'apple + 2'margarine + 1’ flour
available.

(16) Bidder 160ffers to perform thélake Dougloperation for€ 20 only if provided
with an oven (it will give the oven back after performing the operation):

BID(1'(4'dough + 4’ filling + 1'oven, 4'apple pie+ 1’oven), 10)

In what follows we provide an example showing that the introduced bidding lan-
guage can be employed not only to express bidders’ preferences, but also to encode
information about a particular market. As an example, we consider how to incorpo-
rate into the auction information about the expected sales in function of the sale price.
Consider the following example.

Example 5.9. Here we extend examdleb.1 taking into account that more information
about the apple pie market becomes availablétandma & co Such information is
the sale forecast in function of the sale price:

¢ two hundreds apple pies if the sale price€ig2 each, for a total o€ 2400;

¢ a hundred and thirty apple pies if the selling price is se€tb3, for a total of
€1690;

This information can be easily included in the auction by mearmsdsf from the mar-
kets

BID(1'(0, 200" apple pie, 2400) XORBID (1'((), 130’apple pies, 1690) (5.8)

O

5.4 Winner Determination

In this section, we define the winner determination problem (WDP) for MMUCAs. We
first give an informal outline of the problem, and then a formal definition. We also
briefly comment on mechanism design issues.
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5.4.1 Informal Definition

Theinputto the WDP consists of a complex bid expression for each bidder, a multi-
setl;,, of goods the auctioneer holds to begin with, and a multisgt of goods the
auctioneer expects to end up with.

In standard combinatorial auctions, a solution to the WDP is a set of atomic bids
to accept. In our setting, however, tbeder in which the auctioneer “uses” the ac-
cepted SCOs matters. For instance, if the auctioneer holtis begin with, then
checking whether accepting the two bif#sd; = ({1’(1'a,1’b)},10) and Bidy =
({(1'0,1'c)}, 20) is feasible involves realising that we have to use the SCO contained
in Bid, before the one contained iRids. Thus, asolutionto the WDP will be a
sequence of SCOA valid solution has to meet two conditions:

(1) Bidder constraintsThe multiset of SCOs in the sequence hasetpect the bids
submitted by the bidders. This is a standard requirement. For instance, if a bidder
submits an XOR-combination of SCOs, at most one of them may be accepted.

(2) Auctioneer constraintsThe sequence of SCOs has toitmplementable:

(a) checkthat/;, is a superset of the input set of the first SCO (there are enough
goods available to perform the first SCO);

(b) then update the set of goods held by the auctioneer after each SCO and
check that it is a superset of the input set of the next SCO (at each step there
are enough goods available to perform the remaining SCOSs);

(c) finally check that the set of items held by the auctioneer in the end is a
superset ot4,,; (i.e. the auctioneer ends up with the resources initially
required).

Requiremenk]2 is specific to MMUCAs. Aoptimalsolution is a valid solution that
maximises the sum of prices associated with the atomic bids selected.

5.4.2 Formal Definition

For the formal definition of the WDP, we restrict ourselves to bids in the XOR-language,
which we have showed to be fully expressive (over finitely-peaked valuations) in propo-
sition[2]. For each biddeéylet Bid;; be thejth atomic bid occurring within the XOR-
bid submitted by.

Recall that each atomic bid consists of a multiset of SCOs and a pltg; =
(Dyj, pij), WhereD;; € N XN is a multiset of SCOs angl; € R is the associated
cost/price. We will employ the following notation:

o For eachBid;;, lett;;;, be thekth SCO inD;;.
o LetD;;(t;;x) be the multiplicity oft;; in D;;.

o LetD = Lﬂij D;; be the multiset of the overall SCOs received with their multi-
plicity.
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e Let o be the overall number of SCOs mentioned anywhere in the bids, i.e.

§= Z |Dij| = ZDij(tijk)
ij

ijk

o LetT = {t;;x : Vijk} be the set of the overall SCOs in the bids disregarding
their multiplicity.

e Let G be the set of negotiated goods.
e U;, € N is a multiset of goods standing for the initial stock of the auctioneer.

o U, € N is amultiset of goods standing for the number of goods the auctioneer
desires to end up with.

e M™ c N¢ is a multiset of goods standing for the number of goods available to
the auctioneer after applying supply chain operations in a production process.

The auctioneer has to decide which SCOs to accept and in which order to implement
them. Thus, we define allocation sequencas

Definition 5.8 (Allocation Sequence)An allocation sequencé& is a sequence of
SCOs:
¥:{1,2,...,0} T

wherel € N is the length of the sequence.

O
We will say that a SCQ,;;, is contained in the allocation sequence to say that the
kth SCO in thejth atomic bid of biddet belongs to the allocation sequence. More
formally, with an abuse of notation, we will write

tijr € L <= 3dIm e {1,...,0} s.t. 3(m) =tk (5.9)

Furthermore, letZs,(,,,), Ox(m)) be the input and output multisets of the transition
holding them-th position ofX; and Iet|E—1(tijk)| be the number of times;, occurs
within the sequenck.

Given an allocation sequen&kwe can obtain the set of goods held by the auction-
eer after each SCO. We illustrate this fact by means of the following example.

Example 5.10. Say that an auctioneer begins with, = {2'a + 2'd}. If we apply the
first SCO in a sequend@s (1), Ox1)) = (2'a,1’c) (from two units ofa produce one
unit of ¢), the auctioneer ends up witht! = {1’c + 2’'d}. Formally, we can express
this operation as an equation over multisets:

M (g) = Uin(g) + Os1y(9) — Zs1)(9)

The application of the SCO above is only possible because two units of gaoel
available. This condition maps to:

Uin(g9) > Is1)(9)
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O
Let M™ < N¢ be the goods held by the auctioneer after applyingiie SCO in
an allocation sequence. We can generalise the two equations above as follows (let
MO = in):

M™(g) = M™ Hg) + Osm)(9) — s m) (9) (5.10)
Mlm_l(g) > IZ('m) (g) (511)

Notice that the length of the solution sequerice- |X| will be at most equal to the
overall number of atomic transformations submitted, 4.€. 4.

Equatior 5. I1 can be written in a more synthetic form by embedding into one for-
mula its recursive structure:

m—1

Uin(g) + (Os)(9) = Zs@y (9)) = Tsm) (9) (5.12)
=1

since

m

M™(g) =Uin(g) + > (O (9) — Ixy(9)) (5.13)
=1
Notice that an allocation sequence will not necessarily be a valid solution to the
MMUCA WDP. We are now ready to define under what circumstances a sequence of
SCOs constitutes a valid solution:

Definition 5.9 (Valid Solution Sequence)Given a multiset/;,, of available goods and
a multisetA,,; of required goods, an allocation sequebi®r a given set of XOR bids
over SCOg;;y, is said to be &alid solution sequend#:

(1) X either contains all or none of the SCOs belonging to the same atomic bid. That
is, the semantics of the BID operator is fulfilled:

Jk : tijk: €Y = Vk |Eil(tijk)| = D”(t”k)

Intuitively, this means that iE contains a SCO8;;;, of bid Bid;; = (D;j, pij),
then it must contain all thg ;- € D;; with the corresponding multiplicity.

(2) X does not contain two SCOs belonging to different atomic bids by the same
bidder. That is, the semantics of the XOR operator is fulfilled:

tijk, tijw €5 = j=7'

(3) Equation[[&111) holds at each step of the solution sequence

M™Hg) = Ty (m (9) vme[lVgeG  (5.14)
that is equivalent to equation{2]12):
m—1
Uin(g) + Z (Os)(9) = Zswy (9)) > Ism)(9) (5.15)

=1
VYm € [1,{],Vg € G



104 Chapter 5. Mixed Multi unit Combinatorial Auctions

This condition ensures that all SCOs have enough input goods available at each
step of the SCO sequence.

(4) The set of goods held by the auctioneer after implementing the SCO sequence is
a superset of the goods the auctioneer is expected to end up with:

M (g) > Upur(g) Vg € G (5.16)

that is equivalent to:

14
Z/{zn(g) + Z (OE(m)(g) - IE(m)(g)) > Z/{out(g) VQ eG

m=1

O
The revenuédor the auctioneer associated with a vadiolution sequencg is the
sum of the prices of the bids associated to the supply chain operations in the solution
sequence. Then, according to item (1) of definifion 5.9, aiid;; = (D;;,p;;) isin
the winning set if all the transitions iR;; are in the winning set. Then, it is easy to see
that the set of winning bids can be expresse®és= {Bid,; € B|3k S.t.t;j, € X}.
Then, the revenue of the auctioneer is computed as:

Y (5.17)

Bid; ;€ B*

Definition 5.10 (WDP). Given a set of XOR bids and multiset,, and{,; of ini-
tial and final goods, respectively, the winner determination problem is the problem of
finding a valid solution sequenégthat maximises the revenue for the auctioneer.

O

Before going on, a comment on the definition of allocation sege is in place. In
the definition given above, we make the hypothesis that only one SCO is performed at
each step of the solution sequence. However, it is clear that the nature of our problem
admits an eventual concurrency of SCOs. For instance, it may be the case that two
SCOs can be performed in parallel, i.e. at the very same step. For this reason we notice
that it is possible to extend the definition of allocation sequence to capture concurrency.
We leave out such generalisation as a matter of future work.

With this allocation rule at hand, plus the bidding language introduced in section
B3, theMixed Multi-unit Combinatorial Auctiomodel is completely defined.

5.4.3 Mechanism Design

An important issue in auction design concerns tigaime-theoreticaproperties. We

note here that the central resultrirechanism desigion the incentive-compatibility of

the Vickrey-Clarke-Groves (VCG) mechanism (Ausubel and Milgrom, 2006b), carries
over from standard combinatorial auctions to MMUCAs. Recall that the VCG mecha-
nism allocates goods in the most efficient manner and then determines the price to be
paid by each bidder by subtracting from their offer the difference of the overall value
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of the winning bids and the overall value that would have been attainable without that
bidder taking part. That is, this “discount” reflects the contribution to the overall pro-
duction of value of the bidder in question. The VCG mechanism is strategy-proof:
submitting their true valuation is a (weakly) dominant strategy for each bidder. As an
inspection of standard proofs of this result reveals (Mas-Colell et al.] 1995), this does
not depend on the internal structure of the agreements that agents make. Hence, it also
applies to MMUCAs.

However, notice that our focus is centred on an efficient allocation rule, and we do
not argue about mechanism design issues.

5.5 Subsumed Auction Models

Our model of mixed multi-unit combinatorial auctions subsumes a range of combinato-
rial auction models discussed in the combinatorial auctions literature (see §eciibn 3.2.1),
namely:

e Single-unitdirect and reverse auctions;

e Multi-unit direct and reverse auctions, where there may be several indistinguish-
able copies of the same good available in the system;

o Multi-unit direct and reverse combinatorial auctions;

e Double auctions or combinatorial exchangeswvhere the auctioneer will be
able to both sell and buy goods within a single auction. We should stress
that there are important differences between our mixed auctions and models
known asdouble auction(Wurman et al., 1998) ofCombinatorial exchanges
(Sandhoim et al., 2002). The most important difference is that these mod-
els do not incorporate the concept ofsaquenceof exchanges, which is re-
quired if the intention is to model some sort of production process. In
the formulation of the WDP for combinatorial exchanges given by Sandholm
et al (Sandholm et al., 2002), for instance, accepting “circular” bids such as
BID({(1'a,1'b)},10) andBID({(1'b,1’a+1'c)}, 10), to obtainc for 20€ , would
be considered a solution sequence. With our semantics in mind, however, this al-
location sequence igot valid: the first agent needs to receivebefore it can
produceb, but the second agent needs to recéilmfore it can produce and
c¢. Hence, no deal should be possible. In fact, the MMUCA can be used to
simulate combinatorial exchanges (and double auctions). For instance, the bid
BID(1'(1’a, 1'b), 10) can be rewritten asip(1’(1’a,®) + 1/(0, 1'b), 10) to ex-
press that a bidder will only delivérif it receivesa, but that the order does not
matter. Of course, if no true SCOs (imposing an order) are used, then the simpler
model of combinatorial exchanges is to be preferred.

e Multi-Unit Combinatorial Reverse Auctions with transformability Relationships
among Goods A MUCRALtR, as proposed in chaptgl 4, can be modelled by
allowing the auctioneer to submit bids representing its internal SCOs along with
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their costs. In fact it increments its expressiveness as well, allowing to represent
XOR combinations of multisets of internal SCOs.

e Combinatorial Auctions for supply chain formationintroduced in
(Walsh and Wellman, 2003). Walsh and Wellman (Walsh and Wellman] 2003)
tackle a similar problem to ours, focusing on supply chain formation. Although
their contribution is very significant, we find limitations along three dimensions.
Firstly, they do not allow a provider to submit bids on bundles of SCOs.
Secondly, they do not define a bidding language (in fact, their agents submit a
bid with a single SCO each). Finally, the SCO net that defines the supply chain
has to fulfil strict criteria: acyclicity, SCOs can only produce one output good,
etc.

Our bidding language as well can be viewed as a generalisation of the state-of-the-art
bidding languages for combinatorial auctiopns (Nisan, 2006). In fact, it can be easily
applied as well to all the above mentioned aucfions

e in single-unitdirect auctions, we only have atomic bids of the type

BID({(Z,0)},p)
whereZ is a set such thaf| = 1.

e in multi-unitdirect auctionsZ| = Z(g) < n, wheren is the number of units of
goodg at auction (there is a single good at auction).

¢ in multi-unitdirect combinatorial auctioris(g) < n, wheren, is the number of
units of goody at auction (there are multiple goods at auction).

e in combinatorial exchangese have bids of the type:

BID({(Z,0)},p)

and
BID({(0,0)},p)

e in MUCRAtRbidders can send bids of the type
BID({(0,0)},p)
and the auctioneer itself can send bids in the form:
BID({(Z,0)},p)>"

where~y is an upper bound on the maximum number of times an operation can
be performed by the auctioneer. We clarify this point by means of the following
example:

SWe provide here the direct cases. The reverse cases are easily obtained with small changes.



5.6. Conclusions 107

Example 5.11(MMUCA as MUCRALtR). This example aims at representing, by
means of the bidding language introduced in sedfich 5.3, the auction described
in exampldZb. The bids, sent by the very same auctioneer, and representing its
internal production structure, are (from figlirel1.1):

BID (1'(1'butter 4 3'sugar + 2 flour, 2'dough), —5)<7* OR
BID (1 (2'margar. + 2'sugar + 1’ flour + 8 apples, 2’ filling), —6)<72 OR
BID(1'(4’ filling + 4'dough, 4 apple pig, —14)=7

They represent thlake Dough Make Filling, and Baking operations respec-
tively. Notice thaty;,~2, and~s represent the maximum number of times each
internal operation can be performed by the auctioneer. This is an example of the
richer expressiveness of our bidding language, since in the case of MUCRAtR
we hady; = 2 = 73 = oo. Itis obvious that there always exists an upper bound

on the number of times each physical operation is performed. The bids sent by
the bidders, as expressed in equati@nd (4.11d (4.5), can be easily encoded in our
bidding language as follows:

By = BID(1'(0, 100" butter + 200'margarine), —200) (5.18)
By = BID(1'(0, 200’ flours + 300" sugar), —100) (5.19)
Bs = BID(1'(0, 800 apples), —200) (5.20)
By = BID(1'(, 200'dough + 200’ filling), —1300) (5.21)
Bs = BID(1'(0, 200" apple pie$, —2400) (5.22)

([l

e in Combinatorial Auctions for SCBidders can send bids in the form:

BID({(Z,0)},p)
such that:

— there are not cycles in the supply chain network topology
-0 =1

5.6 Conclusions

In this chapter we provided a solution to requirements 1-13 offfafile 5.2. In what follows
we list the solution provided by MMUCAs to the requirements associated to#hke-
or-buy-or-collaboratedecision problem:

(1) MMUCAs support the representation of both cyclic and acyclic supply chain
network topologies, since the bidding language and the definition of the WDP
are independent on the topology of the network;
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(2) MMUCAs allow to express complementarities among supply chain operations,
since they allow the submission of bids on multisets of SCOs;

(3) MMUCAs allow bidders to require supply chain operations, as explained by
means of exampl[e3.4;

(4) MMUCAs allow to express resource sharing, as showed in [f@m 16 of section
B3,

(5) MMUCAs allow to express minimum/maximum capacity constraints on the num-
ber of times each supply chain operation can be performed via the constructs
introduced in sectioi’©.3.5;

(6) MMUCAs allow to express manufacturing operations with multiple outputs, as
shown in itenfIK of sectidn 5.3.7;

(7) MMUCAs provide a coordinated scheduling plan among the supply chain stake-
holders: the output of the MMUCAs WDP is an ordered and implementable
sequence of SCOs;

(8) MMUCAs allow to solveMake-or-buy Make-or-buy-or-collaborateand SCF
decision problems;

(9) MMUCAs support the specification of the configuration the auctioneer expects
to end up with via theé/,,; multiset; and

(10) MMUCAs support the specification of the initial stock via thig multiset.

Summarising, the main extension introduced in this chapter with respect to CAs for
SCF is that bidders can send bids in the form:

BID({a}(Z1,01) + ... + &}, (Z,, On) }, p) XORBID(. . .)

i.e. to submit XOR combinations of atomic bidsmltisets of supply chain operatians
Hence, in particular, it improves the expressiveness and the range of solvable problems
when employing Combinatorial Auctions for SCF.

Another important contribution of this chapter is the incorporation of the concept of
a sequencef supply chain operations as a solution to the WDP. This is required if the
intention is to model some sort of production process. We provide as a solution to the
WDP the sequence of operations maximising an auctioneer’s revenue and fulfilling the
bidders’ constraints.

Notice that there are two different ways in which an MMUCA can be employed.
The hypothesis underlying both possibilities is that there is a mutual agreement between
bidders and providers on which goods are negoﬁat@iven this, we envisage two
possibilities:

e the first one is that bidders are constrained to bid on a fixed set of previously
defined supply chain operations. For instance, an auctioneer may constrain the
bidding on supply chain operations like the ones in figure 5.1.

“We call the set of goods at auction thegotiated goods
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Requirements MMUCA | TDN
1 | express an offer/request on bundles of goods v v
2 | express an offer of a SCO with a single output product v v
3 | express an offer of a SCO with multiple output products v
4 | express arequest of a SCO v
5 | express the offer/request of a bundle of SCOs v
6 | express combinations of bids v
7 | express the min/max number of times SCOs are performed v
8 | express resource sharing v
9 | express an auctioneer’s initial stock v
10 | express the auctioneer’s final requirements v
11 | supportacyclic supply chain networks v v
12 | supportcyclic supply chain networks v
13 | compute thescheduled sequenad SCOs to perform v
14 | ensure computational tractability while preserving optitya ?
15 | solve SCF decision problem v v
16 | solve themake-or-buy-or-collaboratelecision problem v
17 | formally represent the search space ?
18 | graphically represent the search space ?
19 | assess the computational tractability based on the proliteictisre ?

Table 5.2: Requirements associated tortiade-or-buy-or-collaboratproblem.

o the second one is that there is a complete freedom of bidding on any supply chain
operation, as long as it only involves thegotiated goodas inputs or outputs.
For example, unlike in the previous point, a bidder may send a bid offering the
supply chain operatioklake Pig that takes as inputs all the basic ingredients and
provides a finished apple pie. Notice that this operation is not present in figure
5.

With the introduction of MMUCAs and of the associated bidding language, we
consider solved requirements 1-13 in tdbld 5.2. However, we have not provided any
computational method for solving the WDP (requirements (14-19) in [20le 5.2). In the
following chapters we provide some solutions to this issue.
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Chapter 6

Solving the MMUCA Winner
Determination Problem

By means of the MMUCA bidding language we make possible to express any possi-
ble type of supply chain operation over any type of supply chain network topology.
Moreover, the MMUCA winning rule on the one hand accounts for the semantics of
the bidding language, and on the other hand automates the supply chain formation and
planning process. However, the auctioneer lacks of a computational method to solve
the WDP. In this chapter, we provide a solution to such issue.

Firstly, applying a technique similar to the one employed for MUCRALR in section
E4, we succeed in mapping the MMUCA WDP t@anstrained Maximum Weight Oc-
currence Sequence Probld@MWOSP). Likewise MUCRALR, two benefits stem from
this mapping. As a first benefit, we can inherit and import all the Place Transition Nets
theoretical and formal results. As a second benefit, we succeed in efficiently solving
the MMUCA WDP by means of Integer Programming (IP) for a wide class of supply
chain network topologies, namely the acyclic ones.

The fact that the WDP can be solved by means of IP only for acyclic supply chain
network topologies poses a serious requirement to the applicability of MMUCAS to
some real-world scenarios. Thus, as a second result of this chapter, we extend the
class of solvable MMUCA WD problems at the price of an efficiency decrement. We
provide an IP model, built directly upon the definition of MMUCA WDP, that allows
solving any class of problem on any network topology. However, the price to be paid is
that the computational complexity of the underlying optimisation problem significantly
increases.

This chapter is organised as follows. In secfion®.1.1 we present a mapping of the
MMUCA WDP to a CMWOSP. In sectiof 8.2 we provide an IP formulation of the
MMUCA WDP that applies to any network topology. Next, in secfiod 6.3 we discuss
briefly on computational complexity. Finally, in sectionl6.4 we draw some conclusions.

111
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6.1 Mapping MMUCA to WPTN

In this section we demonstrate that an instance of the MMUCA WDP can be trans-

formed into an instance of the Constrained Maximum Weight Occurrence Sequence
Problem (CMWOSP), introduced in sectlon4]5.3. We recall that a CMWOSP is an op-

timisation problem defined on Weighted Place Transition Nets (WPTNs). WPTNs are

an extension of Place Transition Nets (PTNs) in which a cost is associated to the firing
of each transition (see sectibnl4.4). We introduce this mapping because it allows:

e to incorporate analysis methods to analyse behavioural properties of WPTNSs;

e exploiting such analysis methods we provide an IP formulation for some classes
of WPTNSs, and therefore some classes of supply chain network topologies.

6.1.1 The intuitions behind the mapping

The idea behind the mapping of the WDP to a CMWOSP is that an atupjaly chain
operation(SCO) can be viewed as a transition in a WPTN. Consider the following offer,
expressed by a bidder in the bidding language introduced in sécfion 5.3:

Bid, = BlD(ll(QIHQO, 1/02 + QIHQ), —8) (61)

This represents an offer over an hydrolysis process: 2 moles of water are transformed
into 1 mole of oxygen and two moles of hydrogen at a pric&€®& Then, consider

the transition depicted in figuEe®.1, and say that each place represents a good. Let the
place labelled withH,O be water ,H; be hydrogen, an@, be oxygen. The transition

in figure perfectly captures the semantics of a supply chain operation: the input places

of the transitions are the input goods of the SCO, its output places are the output goods
of the SCO, and the transition cost is the cost associated to the SCO. Analogously, an
SCO offering goods can be represented as a transition with only output places, whereas
an SCO asking for goods as a transition with only input places.

\2‘@

Figure 6.1: Example of an SCO represented as a transition in a WPTN.

Example 6.1. Say that the following bids, expressed in the bidding language of sec-
tion[&3 and graphically represented in the WPTN of fiduré 6.2, are submitted to an
MMUCA:
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(1) Bidbid; offers two moles of water & 10 (the minus represents the fact that the
bidder gets paid):
bid, = BID(1'(0,2'H,0), —10) (6.2)
(2) Bid bid, offers two moles of water & 14:

bidy = BID(1'(0,2'H,0), —14) (6.3)
(3) Bid bids stands for an offer to perform the hydrolysis processS@
bids = BID(1'(2'H20,1'0O5 + 2'Hs), —8) (6.4)

(4) Bid bid4 represents an offer to buy the products resulting from the reaction for
€ 23 (the positive cost represents the fact that the bidder pays money):

bidy = BID(1'(2'Hy + 1’04, 0), 23) (6.5)

(5) Bid bids; represents an offer to buy the products of the reactiok@s:

bids = BlD(ll(QlHQ + 1/02, (Z)), 25) (66)

bidi 1€ —-10 bids | € —14

€23 | bidys €25 7| bids

Figure 6.2: Example of bids in a MMUCA represented as a WPTN.

In exampld &1l finding the revenue maximising solution is straightforward. Firstly,
buy two moles of water frorhid; , then process the water through the SC®iify, and
then sell the products of the reactionitals. The total revenue of the supply chain is
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25 — 8 — 10 =€ 7. Notice carefully that this solution is the solution to the cMmwélsp
defined on the WPTN in figufe®.2 with initial marking empty and destination marking
M satisfying the following constrais

My(H20) >0 (6.7)
Ma(O2) >0 (6.8)
Ma(Hz) >0 (6.9)

Given the example above, we argue that if we:
(1) build a WPTN joining all the atomic SCOs received within bids;
(2) set the initial marking to the goods initially available to the auctioneer; and
(3) set some constraints on the final marking,

then the solution to the CMWOSP corresponds to the solution to the MMUCA WDP.

Informally, this is the kind of mapping we intend to demonstrate. We obtain several
advantages from this mapping. We can readily import a series of results and tools valid
for PTNs, as for instance tools to analyse the reachability problem on the PTN. As a
major benefit, we manage to efficiently encode the MMUCA WDP by means of IP. In
particular, in response to the requirements 17-21 of [able 5.1 of clihpter 5, this mapping
also allows us: (1) to visually and formally explicit the search space associated to the
WDP; (2) to assess the computational tractability of the WDP based on the problem
structure; and (3) to study structural and behavioural properties of the resulting supply
chain. However, we have to take some more details into account:

¢ In the previous example, given the WPTN representation, each SCO can be used
an arbitrarily number of times. Instead, the semantics of the bidding language
imposes that SCOs must be used a limited number of times. Recall that we solved
such problem in the case of MUCRACIR introducioigl places(see figur€Z13).

e How can we express on the WPTN an offer/demand over a bundle of (comple-
mentary) SCOs? That is, how could we express a bid like

BID(1'(1'butter + 3'sugar + 3' flour, 2'dough)+ (6.10)
1" (8 apple + 2'margarine + 1’ flour, 2’ filling), —20)

offering to perform both th&lake DoughandMake Filling operations?

e How can we express on the WPTN a set of mutually exclusive (XOR) atomic
bids? That is, how could we express a bid like:

BID(1'(0, 200'margaring, —200) XORBID (1'(0, 200'butter), —200)

In the following section we provide an answer to all these questions.

150 far under the hypothesis that transitions can fire at most once. We will solve the issue of limiting the
number of times each transition can fire further on.
2In case of no free-disposal on the auctioneer side reptamith =.
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6.1.2 Representing Bids

Firstly, we must recall the notation employed in seclion®.4.2:
e Thej—th an atomic bid of bidderis represented by a pair
Bidi; = (Dsj,pij)

wherep;; is the price a bidder is willing to pay/be paid to have allocated the
multiset of SCOLD;;;.

o For eachBid;;, lett;;;, be thekth SCO inD;;.
o LetD;;(t;;x) be the multiplicity oft;; in D;;.

o LetD = U;;D;; be the multiset of the overall SCOs received with their multi-
plicity.

e Let§ be the overall number of SCOs mentioned anywhere in the bids) ie.
ID| = Zij |Dij|-

e LetT be the set of the overall SCOs in the bids without their multiplicity, that is
T = {tiji : Vijk};

e (G is the set of negotiated goods
e U;, € N is a multiset of goods standing for the initial stock of the auctioneer.

e U,.; € N is amultiset of goods standing for the number of goods the auctioneer
desires to end up with.

e M™ € N¢ is a multiset of goods standing for the number of goods available to
the auctioneer after applying supply chain operations in a production process.

In exampld€&lL, we restrict ourselves to the case in which agents can only submit one
atomic bid. Moreover, we only consider bids over a single atomic SCO|Rg| =
1. Next, we progressively relax all these constraints. First of all, we explain how to
represent on a WPTN a bid on a bundle (multiset) of SCOs.

Expressing bids on bundles of SCOs

For a bidBid;;, combinatorial on SCOs, we have to ensure that:
o if an atomic SCQ;;;; in bid Bid;; is included in the solution sequence,

— it must be included in the solutidR;; (¢;;x) times;

— all the other atomic SCQs;;» within the same atomic bid (all the SCOs in
D;;) must be include®;; (¢, ) times as well;

this maps to item (1) of the definition of valid solution sequence (defiriiidn 5.9);
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e the price that has to be paid to (received by) the bidder is the price of the whole
bid (p;;).
We achieve this by introducing some auxiliary places and transitions. The example in
figurel&.B represents the following bid:

Bidij = BlD(1/<21p1, l/pg + 2/p3) + 3,(1/p4, 1Ip6 + 1/p7) + 2/<1Ip5, l/pg + 1’p9), —20)
If we refer to the three atomic SCOs as:
tij1 = (2'p1,1'p2 + 2'ps)
tijo = ('pa, 1'ps + 1'p7)
tijz = (1'ps, 1'ps + 1'pg)
We can rewrite the bid in a more readable way:
B’Ld” = BlD(]./tijl + 3/tij2 + 2/tij37 720)

This is a bid on a bundle of SCQ$;;1, ti;2, tij3 } with associated pricg;; = —20€.

Cij

T
1 tii 1 €—-20
A [
-7 7T
—~ / \
/// / \
/ \
e , 2
-7 l / \
- / \
P / \
— -7 .. — ¥ Lo —
Cijl, — N\, Cij2, — < Cij3} = N
( ) ( ) ( )
N _ A N _ A N _ A
N N N
1 1 1
\\ 2 \\ 1 \\ 1
N N N
. a .
tij1 tijo ti;3

oftc

Figure 6.3: Bids on bundles of SCOs.

In general, in order to incorporate a bid over multiple SCOs we proceed as follows:

o for each bidBid;; we introduce an auxiliary transitiag; (bid transitior) and an
auxiliary placec;; (bid placg.

o for each atomic SCQ;;;, within bid Bid;;, we add an auxiliary place;;
(¢ij1, cijo, @ande;js in figure[&B), calledCO place
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o we attach the valuatiop;; of bid Bid;; to the correspondinbid transitiont;;.
In the example, we associate the bid cpgt-€ 20 to transitiont;;. Hence,
whenevet;; fires, the cost/gaip;; is added to the cost of the firing sequence.

It is easy to check that the WPTN if figule_b.3 allows for firing any subset
of {tij1,ti2,ti;3} (depending on the tokens) with the corresponding multiplicities
(1,3,2). Notice also that firing at least one of the three transitions requires to previ-
ously fire transitiort; ;, because this guarantees having the required tokens in the input
placesc;ji,. In this way, we guarantee that firing at least one of the transitions im-
plies firing alsot;;, and therefore that the corresponding money is added to the overall
cost/revenue (recall that we are dealing with a WPTN).

Any legal firing sequence on the WPTN in figlrel6.3 guarantees that selecting at
least one of the; ;;, implies also selecting ;. However, we need a further requirement:
either none of the; ;;, fires, or all of them fire. If they all fire, they have to fire as many
times as expressed by their multiplicities in the bids. In the figure, we have to enforce
that if tij fires, themijl fires once Dij (tijl) = ].), tij2 three timesDij (tijg) = 3),
andtijg twice (DZJ (tZJJ) = 2)

The topology in figur€8l3 cannot guarantee such property by itself. For instance, a
firing sequence in which only transitiofg;, andt;;» fire (nott;;3) is legal but does not
comply with our all-or-none assumption. In order to enforce it, we simply impose some
constraints on the final configuration of the net. Say that we impose that in the final
configurationc;;1, ¢;j2, andc;;3 contain no tokens. More formally, the final marking
should fulfil the constraints:

Md(cijl) =0
Md(cijg) =0 (611)
Md(Cijg) =0

This implies that all the legal firing sequences leading to the final configuratign
contain either none or the three transitions, ¢;;2, t;;3 with multiplicities 1, 2, and3
respectively. In fact the only possible firing sequences are either no fifirg$ }, or

J = (tij, tiji, tij2, tija, tije, tijs, tijs) (6.12)
J = (tij, tijs, tija, tijo, tiji, tije, tij2) (6.13)
J=... (6.14)

We remark that the semantics of multiplicity of the SCOs offered inBid;; is
completely captured by the provided WPTN. The weights of the arcs connecting bid
transitionst;; and SCO places;;i, along with the constraints on the final marking,
enforces that none of the SCOsIW; is used, or all of them are used as many times as
indicated by their multiplicities irD;;.

Expressing XOR of atomic bids

We are now able to represent an atomic bid on a WPTN. However, we still have to
express the XOR relationships among the atomic bids that come from the same bidder
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Figure 6.4: XOR of atomic bids

to fully represent our bidding language. Consider the following bid:

BID(1(2'p1, 1'pa + 2'p3) + 3'(1'pa, U'ps + 1'p7) + 2/ (1'ps, U'ps + 1'pg), —20)
XOR
BID(1'(0,2'ps + 2'ps) + 1" (3'ps, 2'ps + 2'pg), —10)

If we refer to the five atomic SCOs as:

tij1 = (2'p1, 1'p2 + 2'ps3)
tijo = (1'pa, 1'ps + 1'p7)
tijs = (1'ps, 1I'ps + 1'po)
tijn = (3'ps, 2'ps + 2'po)
tijro = (0,2'ps + 2'ps)
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We can rewrite the bid in a more readable way as follows:

BlD(]./tijl + 3/tij2 + 2/tij37 720) (615)
XOR (6.16)
BlD(]./tijll + ]./tij’Q, 710) (617)

We refer to the two bids submitted by a bidden XOR as toBid;; and Bid;;. This
means that an auctioneer can select at most one of them (see Egdtion 5.3).

Figure[&.3 depicts bid®id;; and Bid,;. Bid Bid,; is over SCOg,;1, t;52, and
tij3, whereas bidBid;; is over SCOg;;,1 andt;;o. The cost associated id;; is
c(ti;) = —€ 20, and the cost associated®od; ;- is c(t;j) = —€ 10.

In order to incorporate the semantics of the XOR operator into the WPTN, we in-
troduce a new place, labelled wittX ©%, calledXOR place Notice thatbid places;;
andc;;» have been substituted by tK©R place This WPTN topology enforces that at
most one of the two transitionts; and¢;; can fire. When either of them fires, it con-
sumes the unique token ji¥ ©# inhibiting the firing of the other one. Itis clear from
previous section that transitiar; represents bidid,;; and transitiort;;; represents
bid Bid;; . This corresponds to selecting at most one bid out of Bitlg; andBid; ;.
This reasoning applies to the casenobids in XOR among them as well.

6.1.3 The Mixed Auction Net

In the previous section, we showed the intuitions behind the mapping of the MMUCA
WDP to a CMWOSP. We recall that the CMWOSP is an optimisation problem defined
on WPTNSs, thoroughly explained in section415.3.

In section[ZB we succeeded in mapping the MUCRAtR Winner Determination
Problem to a CMWOSP. In order to perform such mapping we had to build a WPTN
departing from the internal production structure of an auctioneer and from the received
bids. This WPTN was called th&uction Net Along the lines of such strategy, in this
section we build a WPTN with a similar function for the MMUCA WDP. We shall call
such WPTN theMixed Auction Neta WPTN that shall allow us to define the MMUCA
WDP as a CMWOSP.

We will now provide the definition oMixed Auction Net Informally, such net is
composed of three types of places, namely:

e good placesrepresenting goods at auction;

e SCO placesuseful to control the number of times each SCO is performed

e XOR placesuseful to control that at most one bid per bidder is selected
Then, it is composed of two types of transitions, namely:

e SCO transitionsthat represent the SCOs submitted by the bidders

o bid transitions useful to control the number of times each SCOs is employed
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The arc weights are associated so that some properties are fulfilled. Finally, we asso-
ciate a cost to eadbid transition corresponding to the valuation associated to a bundle
of SCOs.

In what follows the notation employed for describing bids is the one defined at the
beginning of sectiol®.1l.2. Moreover, we indicate with, andO;;;. respectively the
input and output multisets of SC&);.

Definition 6.1. Given a finite set of bid®3 in the XORbidding language over a set of
goodsG, aMixed Auction Nets a WPTNS* = (P*,T*, A*, E, My, C') where

P* :PGUPSCOUPXOR
T =T UL

SCO

A* =A_.,UApUAxor
and
(1) Pc isthe set ofyood placesFor each goog € G add a place,.
(2) B, isthe set ofSCO placesFor each atomic SCH;;, € T add a place;;y,.
(3) Pxor is the set oKOR placesFor each biddei add a placeX ©%.
(4) T's is the set obid transitions For each bidBid;; € B add a transitiot,;.

(5) L, is the set oSCO transitionsFor each atomic SCEZtijk € T add a transi-
tion tijk:-
(6) A... isthe set oSCO arcsltis built as follows:
Ay =A" UA°

sSCoO SCO

where

Al ={(pg.tijx) € Po x T | g € Tiji}
Asoco = {(tijlmpg) €T X Pslge Oijk}

are thenput SCO arcandoutput SCO arcsespectively.
(7) Ap isthe set obid arcs It is built as follows
Ap = Al U A
where
B =A(ti,cijr) € Tp X Beo }
B = {(cijrstij) € Boo X Lo}

are theinput bid arcsandoutput bid arcgespectively.

SHenceforth, we indicate with the same label transitions on the WPTN and the corresponding supply chain
operations.



6.1. Mapping MMUCA to WPTN 121

(8) Axor is the set oXOR arcs It is built as follows:
Axor = {(pX°F ti;) € Pxor x T}

(9) The arc expression function is built as follows:

E(pg,tijk) = Zijr(g) (pgs tiji) € Astco (6.18)
E(tiji, pg) = Oijr(9) (tije:pg) € (6.19)
E(ciji, tijr) =1 (Cijk,tije) € Al (6.20)
E(tij, cije) = Dij(tijr) (tij, ciji) € A% (6.21)
E@{Of t;) =1 (pXOF 1) € Axonr (6.22)

(10) The bid cost functiod’ : B — R is built as follows:

C(tijk) =0 tijk € T

SCO

O(tij) = Dij tij S TB
(11) The initial marking is defined as

Z/{zn(g) Dg S PG
1 pE PXOR (623)
0 peRr

sco

Mo(p) =

O

Informally, P represents the set of negotiated godtis,the set of atomic bids,
Pxor the set of biddersL; ., the set of atomic supply chain operations, dhd, the
set of places thatontrolsthe execution of SCOs.

Then, A, ., connects the places representing the input goods and output goods of
each atomic SCO#;;, to the transition representing i#;{;). The input goods are con-
nected by incoming arcs whereas the output goods by outgoing arcs. For instance,
transitiont;;; in figure[63 corresponds to the atomic S€Q = (Z;j1,0i1) =
(2'p1, 'p2+2'p3). Therefore, place;, representing the input goodtg,, is connected
to transitiont;;; by means of an incoming arc; and plagesandps, representing its
output goods, are connectedtig, by means of outgoing arcs.

Then,Ap is a set of arcs such that: (1) bid transitignis connected to SCO places
cijk; and (2) SCO places;;, are connected to atomic transitiofg; :

Axor is the set of arcs that connects all #he“ " places to the bid transitiorts;
corresponding to bids coming from the same provider

The bid cost functior® : B — R is built in a way such that:

o the cost of a SCO is Qi(¢;;,) = 0; and
o the cost of a bid transitions; is the price of bidBid;; (c(t;;) = pij).

Example 6.2. The Mixed Auction Neaissociated to example in figurel6.4 is defined as
follows:
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o P ={p1,..., 0o}
o T = {tij, tij }
e Pxor = {p;*°%}.
o Lo = {tij1, tijo, tijz, tijrn, tijra b

L4 PSCO = {Cijlacij27cij37cij'1aCij’Q}'

o Ao ={(p1,tij1), (tij1, p2), (tij1,p3)s - -+, (s, tijrn), (ijrns ps), (igras po)}-

o Ap ={(tij, cij1), (ciji, tij1), (tij, cije), (Cijas tija), - (tijr, ijrn), (Cijras tigrn) -
o Axor = {(p¥" tij), (0% tiy)}.

e TheE function il:

E(pla zgl) 2
E( zg17p2) 1
E( L]17p3) =2
E(ttjactj2) =3
e The cost function is:
=20 t=t;
C(t) =4 —10 t=1t; (6.24)
0 otherwise
e The initial markingM is:
1 p= pXOR
M 6.25
o(p) = {0 otherwise ( )
O

6.1.4 Expressing the MMUCA WDP as a CMWOSP

In this section we introduce a CMWOSP on Mixed Auction Netwhose solution can

be easily transformed into a solution to the corresponding MMUCA WDP. In this way,
we can exploit several results valid for CMWOSPs, WPTNs and PTNs. In particular,
by means of this mapping, we can solve the MMUCA WDP by means of ILP whenever
the associatetMixed Auction Nets acyclic (see sectidn4.7). Our aim in this section

is showing that, from the firing sequence associated to a particular CMWOSP on the
Mixed Auction Netwe can derive an optimal solution sequence to the corresponding
MMUCA WDP.

4We only provide a sample of its definition. The whole definition is represented in [iglire 6.4.
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This mapping is based on the analogy between a valid solution sequence and a fir-
ing sequence solution to a CMWOSP. In fact, we can prove that a sequence of SCOs
solution to the MMUCA WDP and a sequence of transitions solution to a CMWOSP
are objects fulfilling similar constraints. In fact, we want to show that there is a strong
analogy between the SCOs in a MMUCA and the SCO transitions in the Mixed Auction
Net, as well as between the bids in a MMUCA and the bids transitions in the Mixed
Auction Net. In sectiofi 6112 we provided some intuitions about this mapping. Obvi-
ously, theMixed Auction Newill play a fundamental role in this sense. The central
point is that, as mentioned in sectibn 611.2, we have to impose some conditions on the
number of tokens each place contains at the end of the firing sequence (decfidns 6.1.2
andG.T.P) in order to ensure that:

o the auctioneer fulfils its requirements; and

o the semantics of the bidding language is fulfilled.
In particular, we have to ensure that:

e (Auctionee) the good placeill contain at leasl the number of tokens corre-
sponding to the number of goods the auctioneer expects to end up with (specified
by uout)'

e (Bidding languagg

— the XOR placewill contain at leastzero tokens. This ensures that at most
one among the XOR bids is selediedve sayat leastsince it may be that
no bid is selected, thus leaving a token in the place.

— the SCO placewill contain exactlyzero tokens. This will enforce that
SCOs of a same atomic bid are either all selected with the correct multiplic-
ity, or none of them is selectdd

With these constraints in mind when considering solutions to a MMUCA WDP, we can
finally link the solutions to the MMUCA WDP with the solutions to a CMWOSP over
aMixed Auction Neags follows.

Theorem 6.1. Given a MMUCA with a multiset of available gootfs,, a set of re-
quired goodd4,,;, and a set of bid$3 in the XOR Iangua&over the goods irG,

solving MMUCA WDP amounts to solving the CMWOSP defined oMtked Auc-
tion Net S* = (P*,T*, A*, E, My, C), with destination marking\, fulfilling the

following constrain

Ma(p) > Uout(9) py € Pg (6.26)
Ma(p) =0 pE€ R, (6.27)
Ma(p) >0 p € Pxor (6.28)

Squbstituteat leastfor Exactlyin the case oho-free-disposabn the auctioneer’s side.

SUnder the hypothesis that tiR placecontains one token in the initial marking.

“Under the hypothesis that tiBCO placecontains zero tokens in the initial marking.

8Notice that in the case of OR language we could state exactly the same if we make appropriate changes
to the WPTN. We should just represent all the bids as in figitle 6.3, i.e. omitting the XOR places.

%In case of no free disposal on the auctioneer’s side simply substitie > in equation[E.26).
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Proof. =) First, we begin proving that a solution to the CMWOSP can be transformed
into a solution to the MMUCA WDP. Recall that each atomic bid consists of a multiset
of SCOs and a priceBid;; = (D;;,pi;), WhereD;; € N(N“xNY) js a multiset of SCOs
andp;; € Ris the associated cost/price. The notation employed is the one introduced
in sectiod 6. 1.

We recall that a&olution sequends a mapping- from positions to SCOs:

¥:{1,2,...,0 T

wherel € N is the length of the sequence, afids the overall set of SCOs contained
in all bids. Then, in WPTN terms, we can regard fiodution sequencE as a sequence
of SCO transition®n the mixed auction net.

Say that/* is the solution to the CMWOSP described in the theorem we are prov-
ing and that_* is the sequence obtained 0y restricted to the elements @, (or,
equivalently, without the elements 6}). Recall that/* contains bottbid transitions
andSCO transitions

¥ =Tz, (6.29)
and say thaB* is thesetof transitions removed froni* to obtain:* :
B* = {tij c J*|TB} (630)

Obviously,B* C T is a subset of thbid transitions
We aim at showing that* is the solution to the corresponding MMUCA WDP and
that B* is the set of selected bids. Recall that each transitiofl ip represents an
SCO. Therx* can be seen as a sequence of SCOs as well:
I A

SCO

(6.31)

Notice thatl, ., = T.
For this reason we have to check thatit is a valid solution sequencelhat is, it
must fulfil each of the constraints expressed in definfiigh 5.9:

(1) x* either contains all or none of the SCOs belonging to the same atomic bid, so
that the semantics of the BID-operator is fulfilled:

dk : tijk: ey = Vk |E*_1(tijk‘)| = Dij (tijk:)

In sectio 6.1 we gave the intuitions that this is the case. However, to prove it
formally, we write the state equation (see equafion{2.25)) at a ge®€fixplace
Cijk € cho:

Malein) = Mo(ciji) + AT - x (6.32)

Notice from figurd 64 that that both transitions € T andt;;, € 1., can
add/remove tokens to/from;;. Notice also that according to equati@n{$.23) no
tokens are present initially iy ;. Then, we can rewrite the equation as:

Md(cijk) =0+ — Lt ¢ Dij (ttjk) (633)

ijk
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wherez;,, andx,, , stands for the number of timeg andt,; fire in the firing
sequencd™ respectively.

Then, applying constrainf{627) over plagg, we obtain:

Ma(cijr) =0 Vijk (6.34)
Merging with equation{6.33) we obtain:

0= l‘tijk — ‘rtij . Dij (ttjk) Vljki (635)

(L’t”k = xti] . Dij (t”k) VZ‘]/{? (636)
From equation{6.36) we can derive the following chain of implications:

ijttijk ey :>3k‘1ﬁijk eJ* iﬁij e J* :>tij €eB = ... (637)
. Vk|J*_1(t”k)| = ’D”(t”k) = Vk|2*_1(tijk)| = Dij (tijk:) (638)

Then, taking the first premise and the last consequence, we have:
dk : tijk: eEY = |2*71(tijk)| = Dij (t”k)Vk (639)
That is what we wanted to show.

(2) X* does not contain two SCOs belonging to different atomic bids by the same
bidder, and thus the semantics of the XOR operator is fulfilled:

tijk, tijw €X° = j=7'
In order to demonstrate this result, we write the state equation at each of the
pXOF € Pyor place and we proceed similarly to the previous demonstration.

We obtain:

Ma(pFO") =1-) ay, (6.40)
j
and then applying the constraint in equatibn{b.28), we have:
1= "y, >0 (6.41)
J
> om, <1 (6.42)
J

From equation{6.37) we know that:

tijk ey = tij e J* (643)
tij’k;’ ey = tij/ e J* (644)
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However, for the constraint in equatidn{d.42) we have that:
tij tiy € J"=>j =] (6.45)
Then, joining the implications we have:
tijk, tijiw €5 = j =4 (6.46)
As we wanted to demonstrate.
Equations[{5.30) anfi{5111) hold at each step of the solution seqiiénce
M™(g) = M™7Hg) + Os-(m) (9) — T+ (m) (9) (6.47)
M™Hg) 2 Iy (9) (6.48)

This condition ensures that all SCOs have enough input goods available at each
step of the SCO sequence.

We recall that the places iR; represent the goods {d. For the sake of clarity
we rewrite here both equations:

M™(p) =M™ Hp) + E(t,p) — E(p,t)  VYpe *tUt®  (6.49)
Mm—l(p) > E(p,t) D et (650)
We recall that these equations represent the change invttie ! marking after

the firing of a transitiort (equation [[6.49)), and the condition of activation of
transitiont in marking M (equation[[6.50)).

Next, we aim at writing equationB{Z]15) afid (2.14) at each plad&;iand at
each step of the firing sequend&. Notice from figurd &} that the only transi-
tions that add/remove tokens from/to the placeBdrare the transitions i®, .
Then, instead of *, we can employ* of equation[[6.29):

{Mm(pg) _ Mm—l(pg) + Os(m) (pg) — Zs+(m) (Pg) (6.51)

Mmil(pg) Z IE*(m)(pg)
That is exactly what we required.

The set of goods held by the auctioneer after implementing the SCO sequence is
a superset of the goods the auctioneer is expected to end up with :

4
Uin(9) + Y (O (m)(9) = T+ (m) (9)) = Uour(9)

Considering the constraints on the final marking of equafioni(6.26) and the initial
marking of equatior{6.23), we obtain:

L
Uin(pg) + Z Os+1y(Pg) — Zs+ 1) (Pg)) = Uout(Pg) (6.52)
=0
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Observe that since the only transitions that have associated non-null costs are the
bid transitionsin Tz, and according to equatiof {6]139), the cost associated to the firing
sequence is:

Cr(J*) = > Clty)= > Clty)= > py (6.53)

tije€J* t;;€B* t;;€B*

It is obvious from equatior{{6.B7) that having transitignin the solution sequence
means that bidid;; is in the winning set. Then, we have:

Z bij = Z bij (6.54)

ti; €EB* Bid;; €Winning Set

Then, the quantity maximised by the CMWOSP is equivalent to the auctioneer’s rev-
enue. Hencey* is a valid solution and maximises the auctioneer revenue. Then, it is
the solution to the MMUCA WDP according to definitibnd.10.

<) We prove the converse as well. Given a solution to the MMUCA WDRP, it can be
transformed into a solution to the CMWOSP described in the theorem we are proving.
SayY¥ is the solution to the MMUCA WDP. Then, consider the following constructs.

e The sequence of SCO transition$ : N — T, such that:
Ym € [1,|Z]] I (m) = tiji <= X(m) = tiji (6.55)
Recall thatl' = T, .

e The set of bid transition8* C T’z such that:

ti; € B* <= 3k s.t.ty), € B (6.56)

e The sequence of bid transitiod$, : N — T’z formed by arranging in a random
order the elements dg*. More formally, the sequence must be such that:

1 Vtij € B*

] (6.57)
0 otherwise

|J5 (i) = {

o J*:TpUT,., — [1,|J5|+|X*|] is a sequence of transitions obtained concate-
nating the sequences, andX*. Observe that the sequences are concatenated in

such a way that the elements.ff are placed before the elementsitf.

3* corresponds to the sequence of SCOs solution to the MMUCA WDP, whereas the
sequence;; contains the bid transitions corresponding to the winning bids. That is, if
ti; € Ji, thenBid,; is in the winning set.

Then, we aim at showing that the sequeriéeés a solution to the CMWOSP on the
mixed auction net with final constraints in equations{6.46), {6.27), [andl (6.28). With
this purpose, we have to perform three steps.

(1) we have to make sure that the final marking constraints are fulfilled,;
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(2) we have to make sure that all the transitiond frare enabled at the step they are
executed; and

(3) we have to make sure that the solution is optimal, i.e. that there is not another
solution to the CMWOSP with higher associated cost.

In order to solve item (1), we make the hypothesis that all the transitions iare
enabled. This hypothesis will be confirmed later on. Under this hypothesis, we can
write equationd{2.14) anf{Z115) at the— th step of.J* in the following form:

M™H(p) = E(p, J*(m)) (6.58)
M (p) = M™ X (p) + E(J* (m), p) — E(p, J*(m)) (6.59)

Embedding the recursion, we can obtain the marking at:steg:

M™(p) = Mo + Z — E(p,J*(1))) (6.60)

Then, we write this equation in the final state for all the places in the mixed auction
net. Then, say that = |J*| is the length of the sequend&. Analogously, we note

lp = |J35| andly = |X*| We know from sectiof . 6.713 that the auction net has three
types of placesKg, P, ., andPxor).

e Pxor places. We know that equatidn{8.28) must hold. Then, we must have that:
M pXORY >0 Vi (6.61)

M takes the following form for alh;X°F € Pxor:
ME(pXOR) = pXOR) | Z ), pXOR) — B(pXOF, J*(m)))
that taking into account definitidn_®.1 becomes:
MY XOR_l_ZE XOR (i _1_Z|J*1U _

_1_Z|J* 1 L]

The intuition behind this are provided by figlirel6.4. No transitions are incoming
into placepX©%, and the only outgoing transitions ag andt;;:. It is easy to

see that sinc& |s a solution to the MMUCA WDP, condition (2) of definition
holds, and then we have that:

ME(pXORy Z|J* Yti;)| >0 (6.62)

Then, equatiorl{6.28) is fulfilled.



6.1. Mapping MMUCA to WPTN 129

e P, places. We know that equatidn{6l27) must hold. Then, we have that for all

Cijk € Poo:

¢
Me(cijk) = Mo(cijr) + Z (E(J*(m), ciji.) — E(cijr, J*(m)))

m=1

that considering the mapping of sectlon8.1.3 becomes:

Y4
M (ciji) =0+ Y (B(J*(m), ciji) — E(ci, J*(m))) =

B s

= Z E(B*(m), ciji) — Z E(cijk, 2" (s)) (6.63)
m=1 s=1

= [B* " (tij)| - D(tiji) — |2 (tijn)| (6.64)

Equation [E83) results from considering that only bid transitions have output
places inc;;5, and that only SCO transitions have input places; jp (see figure
B3). Equation[{6.84) follows from the fact thia} is the only input transition to

cijr and that;, is the only output transition af;;,.. Hence, from condition (1)

of definition[&.®, we have the following final marking:

0 tijk €X°

MZ Cij =
( jk) {D(tijk) — D(tijk) tijk: cx*

ThenM*(c;ji) = 0 forall ¢;jx, € Py

e P places. Equatior{6.26) must hold. Analogously to the previous cases, we
write for allp, € Pg:

14
M (pg) = Mo(pg) + Y (E(J*(m),pg) — Elpg, J*(m))) =

m=1

55
=Uin(pg) + Y (E(X*(m),pg) — E(pg, X" (m))) = (6.65)

m=1
55
=U;n (pg) + Z (OZ(m) (pg) - IZ(m) (pg)) (666)

m=1

Equation[[6.65) follows from the fact that the only transitions that can add/remove
tokens to/from places i are the SCO transitions (see figlitel6.4). Equa-
tion (G.66) substitutes the SCO transitions input/output arc weights for the in-
put/output multisets of the corresponding SCOs. Following condition (4) of def-
inition 529, we have that:

55
Me(pg) = Uin(pg) + Z (OZ(m) (pg) — Is:(m) (pg)) > Uout(pg)  (6.67)

m=1
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Next, we show that all the transitions it are enabled.
e The transitions in/3; are trivially enabled, because:

(1) at most one of the transitions outgoing fromX@R placecan fire (accord-
ing to equation[6.82)); and

(2) the only token required to fire such a transition is present in the initial mark-
ing (Mo (p;XF) = 1 according to equatiofi{6.23)).

¢ In order to have the transitions ¥i* enabled as well, it must happen that:
M™(p) > E(p, J*(m)) Vm € [1,£],¥p € Pg U Py, (6.68)

Recall that the XOR places are neither input nor output of the SCO transitions.
Then, the only places modified by transitionsig-o are P and P, :

(1) P,.. places. Observe that only bid transitions can add tokens into the SCO
places, and bid transitions are fired before the SCO trangfiomge also
know that if a SCO transitioty, is in £*, then the corresponding bid tran-
sitionst;; is in B* (equation[[8&96)). Thert,;; has added;;(t;;) into
the ¢;;. places before any of the transitionsiif has fired. As a conse-
guence, transitiot;;;, has available in place;;;, the tokens to be fired at
mOStDij (t”k) times.

(2) Pg places. We write the enabling condition at the generic step m:

M™ Yp,) > E(py, % (m)) Vm € [1,4x],Vp, € Pg (6.69)

Analogously to what we have done in equatibn(b.66), we substitute the input
multiset of the SCO for the input arc weights of the corresponding SCO transi-
tion:

Mmil(pg) Z IE(m) (pg) Vm € [1762]7VPg € PG (670)
That is fulfilled at each step because of condition (3) of definffioh 5.9.

Finally, we have to prove that there is no other solution with a higher associated
cost. Notice that, as shown in equati@n {®.54), the cost maximised in the CMWOSP
is the auctioneer revenue. Then, say per absurd there exists another sdlutin
the CMWOSP with a cost’ higher than the revenue associated to the corresponding
MMUCA WDP. For the=) side of the demonstration, this would be a solution to the
corresponding MMUCA WDP as well, since it has a higher revenue. This is impossible
for the optimality of the solution to the MMUCA WDP.

([l

Summarising, each firing sequenkesolution to the CMWOSP can be transformed
into an optimal solution sequence of the MMUCA WDP. This can be done simply by
removing fromJ* the bid transitions(7’z). The obtained subsequence is a solution to
the MMUCA WDP.

10Recall thatJ* is a concatenation of 5 andX*.
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6.1.5 Solving the MMUCA WDP with IP

Thanks to theorerfid.1 we can exploit all the results proved for WPTN and the CM-
WOSP in sectioizZ7.1. In that section we showed that if a WPTN is acyclic, any
CMWOSP on it can be efficiently solved by means of IP (see cordllaty 4.1).

In this section we explicitly present the IP formulation of the MMUCA WDP when
the corresponding mixed auction net is acyclic.

The mathematical model is built according to the following rules:

(1) there aren good placesindexed withg € {1,2,...,n} (for each good € G)
(2) there aré XOR placesindexed withi € {1,2,...,1} (for each biddet)

(3) thebid transitionst;; are indexed with € {1,2,...,1},5 € {1,2,...,m;} (for
each bidj of each biddef)

(4) theSCO transitions;;;, are indexed with:

ie{1,2,...,1} (6.71)
je{1,2,...,m} (6.72)
ke{l,2,...,f,} (6.73)

(for each SCCk of each bidj of each bidder).

(5) zi1 € Nis an integer decision variable (for each SCO transitigy) taking on
valuew if SCO labelled byijk is presentv times in the optimal firing sequence.
Namely, the SCO is used times.

(6) xi; € {0,1} is a binary decision variable (for eabid transitiont;;), taking on
valuel if transitiont,; is in the optimal firing sequence.

With this in mind, the CMWOSP can be expressed by the following integer program-
ming:

max Z.TIZJ . O(tZJ)

ij

Mo(pg) + > xij - (E(tijr, pg) — E(pg, tijr)) > Uout(pg) Ypg € Pa

ik

0+ zi; E(tij, ciji) — Tiju E(Ciji, tijr) =0 Ve € Boo

1= 2y B(pFoF ti;) > 0 VprOf € Pxor
J

The first equation maximises the cost associated to the optimal firing sequence, the
second, third and fourth inequalities correspond to equations (626}l (6.27).—add (6.28)
respectively.
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Then, considering the mapping proposed in definffich 6.1, this IP turns into:

max }_ Tij - Pij
i

Uin(9) + - ziji - (Oije(9) — Zijr(9)) = Uout(pg) Y9 € G

ik
(6.74)
Tijk = Ti; D(tijk) Vijk
1-> 23>0 Vi
J

Finally, settinga;jxy = Oijx(9) — Ziji(g), uz” = Uin(g) anduZ“t = Uput(g), We
have:

max »_ Tij - Pij
ij
uz" + D TijrQijrg > uZUt Y9
(6.75)
Tijk = i D(tijn) vk
L Tay 0 Vi
J

The interpretation of the model above is rather intuitive. The first equation maximises
the auctioneer revenue. The second one ensures that at least as many goods as required
by the auctioneer are produced at the end of the production process. The third equa-
tion enforces that the semantics of atomic bids is selected, i.e. all the SCOs with the
corresponding multiplicity are selected or none of then. The fourth one ensures that
the semantics of complex bids is fulfilled, i.e. that at most one atomic bid per bidder is
selected.

In appendi Al we present this model encoded in the OPL language (see section
P12 and[(Van Hentenryck, 1999)).

Notice that the solution to the IP above is represented by the value assigned to
decision variables;;;, andz;;. Recall thatin such a solution the information about the
order in which the SCOs must be performed is not included. However, according to
corollary[Z1, this information can be easily extracted by the solution to the IP since the
Mixed Auction Net is acyclic.

Problem Size

Next, we assess the number of decision variables and constraints required by the above
IP model:
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o for each bid transition;;, corresponding to bidid; ;, we create a binary decision
variablez;;, to total| B| binary decision variables; and

o for each transitiort;;;, € T (corresponding to a SCO), we create iateger
decision variable, for a total 0’| integer decision variables.

Then, the total number of decision variablefB$+ |T'|. Finally, we assess the number
of required constraints:

o for each good € G we create a constraint, for a total |6f| constraints;

o for each transitioni,;;;, € T', we create a constraint, for a total|@f| constraints;
and

o for each biddei € L we create a constraint.

The total number of constraints is thg#| + |T'| 4 |L|.

6.1.6 Advantages of the mapping to CMWOSP

Before going on, we aim at highlighting the advantages brought about by the mapping
of the MMUCA WDP to WPTNSs. In particular such a mapping allows to import all
the PTNs tools and properties presented in the literature to analyse structural and be-
havioural properties of the emerging supply chain. Some examples of application are
listed in what follows.

(1) One can very efficiently solve the underlying IP when the supply chain is acyclic;
this is obtained exploiting an important PTN analysis tool, the state equation.

(2) One may be interested in maintaining under a certain threshold the level of re-
sources present in each place (for instance, for inventory capacity constraints).
This can be mapped to a well known behavioural property of PTN, called bound-
ednesg (Murata, 1989).

(3) Thanks to the very appealing and intuitive WPTN graphical representation, we
can compactly encode and visualise the search space associated to the MMUCA
WDP. This is obtained thanks to the the fact that the semantics of transitions on
PTN naturally accommodates for the representation of SCOs.

(4) Once obtained a solution sequence to the MMUCA WDP, one can visualise it by
means of a token game showing the evolution of the supply chain at any step of
the SCO sequence (as we did in tdblé8 4.6).

(5) One can graphically visualise the MMUCA WDP problem. This provides a very
helpful guidance in obtaining insights about such problem. For instance, by visu-
alising the MMUCA WDP by means of WPTN, one can incorporate new bidding
language constructs with a minimum effort. For instance, consider the following
example.
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Example 6.3. We explained that switching to th@R language instead of the
XORbidding language is as simple as removing ¥@Rplace from figuré6l4

(as done in figurE®l3). However, there is another widely employed bidding lan-
guage that is very compact and human readable. Is is called@ieof-OR
bidding language (refer to sectibn3]2.2). Such a language is such that any XOR
combination of OR combinations of atomic bids can be selected. For instance,
the bid:

((a,1) OR(a,1) OR(a, 1) OR(a, 1) OR (a, 1)) XOR(b, 2) (6.76)

means that an auctioneer can select from 0 to 5 copies of the atonig, bhidor
(exclusive) one copy of the atomic bfd, 2).

In figure[&5, we graphically show how to incorporate ¥@R-of-ORbidding
language. In figure we depict the following bid:

(BID(lltijl + 3/tij2 + QItijg, 720) OR (6.77)
BID(1't;j1 + 1't;j2, —10)) XOR (6.78)
BID(1't45111, —2) (6.79)
XOR
>0
1 1
€ 72 Cij/Q
tOR
Cij”l tij” ()

1 tijro
1
tij
Cijr1
Cij1
1
1 tiji
tij1 tij3

Figure 6.5: XOR-of-OR of atomic bids
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The reader can check that this topology allows either fiting or (exclusive)
any of thet;; andt,; if the final contraints represented by inequalities in places
in figure[&5 are fulfilled.

O

Notice that in this dissertation we only exploit directly adtages (1) and (3), and we
envisage a promising path for future developments the study of all the implications
connected with advantage (2),(4), and (5). We did not deepen into considerations con-
nected with the study of behavioural and structural properties of the resulting supply
chain. Nevertheless, by means of the mapping to WPTNSs, we provide all the theoreti-
cal and practical tools to deal with such a study.

6.2 Solving the WDP on Cyclic Mixed Auction Nets

So far, we have not been concerned about whether a Mixed Auction Net is cyclic or
not. Is it a reasonable hypothesis considering that a mixed auction net does not contain
any cycle? The answer is that it depends. One could see a market as a big production
cycle. However, when we consider local production processes, one could think that it is
possible to avoid considering cycles in the topology. Unfortunately, this is not always
the case. Even locally, production cycles are often characterised by cycles. Moreover,
we will see that, in our semantics, cycles are required to represent shared resources or
resources that can be employed more than once. This is the case, for instance, of a piece
of software or of a tool that is na@onsumedbut used That is, at the end of the supply
chain operation the resource is still present, but the operation cannot take place without
it. With the purpose of clarifying this concept we slightly modify the example of figure
6.4

Example 6.4. We recall that in example8.2 five bidders participate in a MMUCA. We
modify bid bid3 introducing the fact that a bidder needs a machifi€ to perform the
hydrolysis operation. Bidids, which stood for a bid on the hydrolysis process&8,
namely:

bids = BID(1'(2'H,0,1'05 + 2'Hy), —8) (6.80)

turns now into:
bidy = BID(1'(2'HoO + 1"MC,1'O3 + 2'Hy + 1M C), —3) (6.81)

Notice that the bidder only requires the MC machine to run the hydrolysis process, and
it will release it afterwards. Obviously, we have to include a bid that offers machine
MC as well. This is bichidg:

bids =BID(1'(0,1'MC),—5) (6.82)

The new configuration of the Mixed Auction Net substitutirig; with bids is shown
in figureB81.

11in the figure we have omitted all tR€OR placesbid transitions andSCO placegor the sake of com-
prehension.
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bid; € —10 bida | € —14

bide 1

€-3 )

€23 | bidy €25 | bids

Figure 6.6: Example of a MMUCA in form of WPTN.

We can think about other types of resources that have this type of behaviour, as
for instance an oven, a piece of software, a consultant, and so on. Those type of re-
sources are not consumed, and eventually can be shared. In fact, we can see in figure
that transitiorbid; requires thel/ C' machine, and that after using it, the machine
is still available (and could eventually be employed by another supply chain operation).
Generalising, we can modesource usagsmamely the machinery that production pro-
cesses require.

Before explaining how to solve this new problem, we would like to show why the
IP introduced in section 6.1.5 does not work in this case. We know from thdarém 2.2
that it is not guaranteed to work since the Mixed Auction Net contains a cycle. Then,
we write the IP in equation§{6175) as if the mixed auction net was acyclic to detect
and show the problem. We can get rid of side constraints 2 and 3 in equafich (6.75)
since we consider that each bidder submits a bid over a single SCO. Then, we assign
the binary decision variable; to bid bid;. We also hypothesise that the auctioneer has
no preferences on the number of goods available at the end of the production process
Uout = Uy, = ). Then, we have:

max —10xy — 14x9 — 3x3 — 3z + 2324 + 2575

201 4+ 229 — 223 >0 pIaceHgO
rg — T3 +x3 >0 placeM C (6.83)
r3— x4 —x5 >0 placeO,

2x3 — 2x4 — 225 > 0 placeH.
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If we simplify the equations above we obtain:

max —10xy — 14x9 — 3x3 — 3w + 2324 + 2575

2 2wy — 223 > laceH.

1 + 222 I3 = 0 p 20 (684)
zg >0 placeM C
T3 — x4 —x5 >0 p|aC€OQ

the optimal solution iscs = 23 = x; = 1 and the remaining; are0. However, this
solution is not valid! Let us apply the solution. At a first step, Si2€ is used, provid-
ing two units of H,O to the auctioneer. The following supply chain operation should
bebid;. However, it cannot be used without oféC, which is currently unavailable
because we can only obtain it throulglds. Thus, it is unfeasible to used; because
bidg is not part of the winning bid set.

([l

Then, the solution to the I nota valid solution to the MMUCA WDP. This
happens because the circularity of the net causes the elimination of; thariable
from the equation of placé/C. This is not the only problem. Say that one is lucky
and the IP solution matches the solution to the MMUCA WDP, he still should find the
ordered sequenaaf operations. In this case the netis not acyclic and therefore a unique
order among transitions cannot be ensured (as stated in cofallhry 4.1).

We end up this section with a remark that, though neither developed nor formally
proved, can be useful in practice. Say that we compute the IP shown in decfidn 6.1.5
for a cyclic mixed auction net (likewise in exam|il€l6.4). Say that we find a solution
represented by* (the decision variables;;;, with assigned a value). Say also that
Sx+ Is the subnet obtained by the mixed auction net by removing all the transitions not
included in the solutiox™ (i.e. removing the;;;, such thate;;;, = 0). It is intuitive to
think that if Sx~ is acyclic, then the solution is a valid solution sequence. The sketch of
the demonstration follows. Recall that a necessary condition for a state to be reachable
ina PTN is thai* is a solution to the state equation (see se¢fionl?.3.2). However, since
the hypothesis is that the mixed auction net is cyclic, we cannot guarantee that the state
is reachable. Nevertheless, observe tat a solution to the state equation associated
to the subnefSy~ as well. Then, ifSx- is acyclic, the state is reachable in virtue of
corollarylZ]. Thenx* is a valid solution.

Although this observation may seem very powerful, in practise the situation de-
scribed above is rather unusual. However, it should be taken into account.

6.2.1 Modifying the representation

By means of example.4 we showed that on cyclic nets the IP defined in dection 6.2
cannot be applied. In the example we have also shown that the circularity of the net may
cause an elimination of some decision variables. This elimination acts so that a check
on the feasibility of a given solution is required. In order to overcome such problem,
we modify the IP presented in sectibnl6.2 in such a way that it is possible to check at
each step of the SCO sequence whether enough resources are available to perform the
selected SCO. In particular, we modify the way the SCOs are represented.
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The new SCO encoding incorporates some information about the order in which
the SCOs must be performed. In order to obtain this new representation, we build
directly upon the definition of WDP (definitidi’5110). However, notice that building
upon the mixed auction net or on the CMWOSP one can obtain similar conclusions.
The improved IP model resulting from the new representation is cBliextt Integer
Programming(DIP) solver.

According to definitiod 5.0, a solution to the WDP is a mappgihfyom the posi-
tions in the solution sequence to the atomic SCOs. Based on this, we define an IP model
with the following decision variablest}?;, € {0, 1} is a binary decision variable that
takes on value 1 if SC@;, holds positionn in the solution sequence, and 0 otherwise.
These variables are the mathematical representation of something sinlilaintdact,
we can associate to an elemep}, a positionm in a sequence i}, = 1. However,
we can have somempty positionsThe problem is that prevents from having a solution
such that:’, = 0 Vijk. This would leave positiom empty. Then, we call a sequence
with empty positiongartial sequenceObtaining the corresponding sequence from a
partial sequence is as easy as removing the empty elements from the partial sequence.
Thus, in what follows we will consider thal is a partial sequence, and if we want to
retrieve the corresponding sequence we simply remove fdhe empty positions.

¥ is obtained from the variableg’, in the following way:

(m) = {tijk Tk = (6.85)
1L otherwise

Obviously we do not know a priori how long the solution sequence will be. Then, we
rely on the fact that iy SCOs are submitted overall by all bidders, the length of the
solution sequence will be at mos{(there can not be more SCOs in the sequence than
the ones overall offered).

Observe that employing the binary decision variables above, we can state the fol-
lowing relationshi;E:

Os(m)(9) = Y 2710k (9) Vg (6.86)
ijk
Tom)(9) = D 2 Tij(9) Vg (6.87)
ijk
Mm(g) = Mmil(g) + OZ(m) (g) - IZ(m) (g) Vm, g (688)
M™(g) =M™ Hg) + > 2l (Osl9) — Tiji(9)) Vm, g (6.89)
ijk

Equation [6:89) can be expanded into the following equation by making explicit its

12\\e anticipate that the following constraints must be added to ensurE tisaifunction

> e <1

ijk
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recursive structure:

m

M™(9) = @l (Oirl9) — Tiji(9)) ¥m,g  (6.90)

=1 ijk

6.2.2 The general IP formulation

We now show how to map the WDP in definitibn3.10 into integer programming (IP).
Therefore, the issue is to decide for each SCO whether it is selected for the solution
sequence, and if so, to choose its position in the solution sequence. Thus, we define a
set of binary decision variableg, € {0,1}, wherez, takes on value 1 if the SCO

ti;k IS selected at then-th position of the solution sequencg;f, = X(m)), and 0
otherwise. Here and in what follows:

e m always ranges from 1 t, the maximum length of the solution sequence;
e 4 ranges over all bidders;
o for each biddet, j ranges from 1 to the number of atomic bids submitted;by

o for each atomic big of bidderi, k£ ranges from 1 to the number of SCO in that
atomic bid;

e granges over all goods.
We also introduce several sets of auxiliary binary decision variables:

e z;;; € Nis an integer decision variables that takes on vailu# transition ¢,
is present anywhere in the sequencmes (X' (t;;;)| = w);

o 1;; € {0,1} takes on value 1 iff any of the SCOs in t}ih atomic bid of biddet
are selected. Equivalently;; takes on value 1 iff bid3id;; is selected.

In what follows, we define the set of constraints that the solution sequence must fulfil:

(1) We enforce the constraints expressed by condition (1) of defifiifidn 5.9. Thus,
if bid Bid,; is selected, all the SCQs;,. in that bid must be selected exactly
D;;(tijx) times. In other words, if bidBid;; is selected, all the SCOs in it must
be selected with the required multiplicity. Formally,

Lij ',Dij(ﬁijk) = Zl’?jk (Vljki) (691)

(2) We enforce that the atomic bids submitted by each bidder are exclusive (XOR).
This amounts to satisfying the following constraints (cf. condition (2) of Defini-
tion[229):

> wy <1 (Vi) (6.92)
J

Observe that in the case of tRR bidding language we simply have to remove
this constraint.
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(3) We also impose that at most one SCO is selected at each position of the sequence:
> am <1 (vm) (6.93)
ijk

This equation encodes the hypothesis of no simultaneous firings and enforces that
the X built with thez}, is a function, i.e. it does not have two images associated
the same element (cfr. equati®én{8.85))

(4) Next, we capture condition (3) of Definitien$.9: enough goods must be available
at stepm to perform the next SCO (cf. equatidn(3.15)). We recall that this maps
to the following condition:

M™Hg) > I™(g) Vg
which is translated, according to equatidas{b.87) Bnd16.90), into:

m—1
)+ 2D whie - [Oun(9) = Tige(9)] = 3ol - Tige(g)  (6:94)
=0 ijk ijk

Vg,Ym

(5) And finally, after having performed all the selected SCOs, the set of goods held
by the auctioneer must be a superset of the final gbgs(cf. condition (4) of
Definition[&2.9):

Mé(g) 2 uout(g) VQ

that turns into

)+ Z Dl [Ouk(9) = Tijn(9)] > Uoui(g) Vg (6.95)

m=0 ijk

Now solving the WDP for MMUCAs with XOR-bids amounts to solving the fol-
lowing integer program:

max » ;- p;; Subject to constraintE{E01)=T6l95) (6.96)
)
In tablel&1, we summarise the DIP formulation employing the same notation as the IP
in equation[[&75), with the exception of the symlig},, that stands foZ; ;4 (g).

Finally, a valid solution according to definiti@n 5110 is obtained from the solution of
the IP by making transitioty;, them-th element of the partial sequenceff x;?;k =1,
and then removing the empty positions. In appehdiX A.2 we present this model encoded
in the OPL language (see sectlon2.1.2 and (Van Hentenryck} 1999)).

Observe that our proposed implementation can easily be amended so as to directly
encode the constraints imposed by language constructs other than the XOR-operator.
This would remove the need for translating into the XOR-language first and thereby
greatly improve efficiency.
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@ | Vijk | zin=>_ al

(b) Vljki Tijk = T4y 'Dij (tijk) Vljki

(C) Vi Zl‘i]‘ <1
J

@ | vm | ap <1

ijk

© | Yo |ul+Y > al - aike > ugt

m  ijk
m—1
in l m
) | Vg,YVm | ug" + E E Tijk - Qijkg = E Tk Lijkg
=0 ijk ijk
(9) max Y @y - pi;
ij

Table 6.1: Resume of the IP formulation of solver DIP.

Problem Size

The number of decision variables in the above integer program is of the or@¢|Bff-

d) (corresponding ta;”,). More in details, we create a binary decision variable

for each bidBid;; € B, for a total of| B| binary decision variables. Then, we create a
decision variabl@;?k for each SCQ;;, € T and for each positiom in the solution
sequence, for a total ¢T'| - £ binary decision variables. Assuming, in the general case,
that the maximum length of the solution sequencé is §, then we haveT| - 6 =

|T| - >_,; |Di;| decision variables. Then, we create a total of
|Bl +|T|(1+6) € O(T] - 9)

decision variables. With a similar process, we compute the total number of constraints,
that is:
IT|+ |L| + 6 +|G|§ + |G| € O(|G|9) (6.97)
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Example 6.5. For the problem presented in figlirel6.4, we have the following data:

L] =1 1B| =2
1G] =9 IT|=5
5=8

Then, in the case of the IP in section6l1.5 the number of decision variables created is
7, and the number of constraints is 9+5+1=15. In the case of the IP presented in this
section, we have 45 decision variables and 5+1+8+56+9=79 constraints.

6.3 Computational Complexity

In his master thesis (Oftens, 2007), Ottens provides a detailed proof of the NP-
completeness of the decision problem underlying the MMUCA WDP. We briefly recall
the employed argumentation in what follows.

The (decision problem underlying the) WDP for standard combinatorial auctions is
known to be NP-complete, with respect to the number of gbods(Rothkopf et all, 1998).
NP-hardness can, for instance, be shown by reduction from the well-knewRA& K -

ING problem. As our mixed auction model generalises standard combinatorial auctions,
winner determination remains NP-hard also here. NP-membership (and thereby NP-
completeness) of the problem of checking whether there exists a solution exceeding a
given revenue (for finite bids) follows from the fact that a candidate solution provided
by an oracle can always be verified in polynomial time. That is, despite of the gen-
eralisations we have introduced, the computational complexity of the WDP does not
increase, at least not with respect to the polynomial hierarchy.

6.4 Conclusions

In this chapter we dealt with the problem of solving the MMUCA WDP, as defined in
chapteEb. With this aim, we provided a mapping of the MMUCA WDP to a CMWOSP
on the Mixed Auction Net. Some benefits stemed from this mapping. Firstly, since
the mixed auction net is a WPTN, it provides a very powerful theoretical framework
for analysing the MMUCA WDP computational, structural and behavioural proper-
ties. Secondly, consequence of the first benefit, we provide an efficient mapping of the
MMUCA WDP to ILP for acyclic mixed auction nets. Thirdly, since WPTNs have asso-
ciated a very appealing graphical representation, they provide a graphical framework to
compactly represent both the search space and the solutions associated to the MMUCA
WDP. This is due to the perfect matching between the semantics of transitions and the
semantics of SCOs. We recall that we focus on the computational advantages provided
by the mapping to CMWOSP, and leave out for future developments the analysis of the
structural and behavioural properties of the solutions to the MMUCA WDP. However,
we remark that the mapping to CMWOSP provides the needed theoretical and practical
tools to perform such analysis.

Next, we show that the hypothesis that the mixed auction net is acyclic sometimes
may not hold. In such a case, the ILP based on the CMWOSP cannot be employed.
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Hence, we provide a general IP solver, Dieect Integer ProgrammingDIP) solver,
that directly builds upon the definition of the MMUCA WDP. This solver allows to
solve the MMUCA WDP on any supply chain network topology. However, it has the
disadvantage to be computationally more costly. In fact, it requires more decision vari-
ables to be encoded.

Notice that the mixed auction net provides a framework fiori assess the solver
to employ, either the CMWOSP-based, if no cycles are present in the mixed auction
net, or the DIP otherwise. With this tool at hand, one can build computationally effi-
cient MMUCAs. For instance, one approach could be constraining the participants to
an MMUCA to bid on sets of SCOs that do not form cycles. This would ensure the
absence of cycles in the correspondiiged Auction Netthus allowing the use of the
CMWOSP-based solver. However, as motivated by some examples provided in this
chapter, sometimes it is not possible to avoid cycles irMhed Auction Net

Recent contributions on computationally efficient WDP solvers for different auc-
tion types (namely/(Lehmann et al., 2006) for CAs gnd (Engel et al.| 2006) for multi-
attribute double auctions) agree on and defend that a careful, formal analysis of the
structure of WDPs can provide guidance for developing efficient winner determina-
tion solvers. Along the lines of these works, in the next chapter, we propose an IP for
MMUCAs that dramatically improves the computational efficiency of the DIP solver.
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Chapter 7

Connected Component-based
Solver

In the previous chapter we presented DIP, an ILP that can solve MMUCA WDPs on any
network topology. Then, in secti@n 6.P.2 we showed that DIP requirgs/®decision
variables to be represented. This means that the associated search space is very large.
In this section we reduce the search space associated the MMUCA WDP.

Recent contributions on computationally efficient WDP solvers for different auction
types (nhamely, (Lehmann et al., 2006) for CAs, (Engel et al.,|2006) for multi-attribute
double auctions, as well as our contribution in sedfion 4 for MUCRAtR) agree on and
defend that a careful, formal analysis of the structure of WDPs can provide guidance
for developing efficient winner determination solvers. Along the lines of these works,
in this chapter we present a technique to reduce the search space associated to the
MMUCA WDP. This will result in an ILP formulation for MMUCA WDPs that dra-
matically improves the computational efficiency of the DIP solver presented in section
BE22.

At this aim, we found our analysis on observing the structure of the WDP that re-
sults after establishindependence relationshipsnong transformations. For instance,
in the example ofsrandma & co(depicted in figur€Il1l) thBakingSCO potentially
depends on thilake DouglBCO, since the output provided Make Doughmay be re-
quired to perfornBaking The analysis of the WDP based on dependency relationships
helps design an IP that priori establishesvhento useeach transformation. There-
fore, the search space reduction is achieved by enforcing MMUCA solutions to fulfil a
template. The template reduces the possible orderings among transformations without
losing solutions.

This chapter is organised as follows. In secfian) 7.1 we explain the intuitions under-
lying the improvementwe propose by means of examples, and in the remaining sections
we develop a rigorous description of those intuitions. In se¢fioh 7.2 we introduce the
solution template allowing a reduction in the search space along with some mathemat-
ical tools required in the chapter. In sectlon] 7.3 we presenttvenected Component
Integer ProgrammindCCIP) solver, an ILP formulation improving the DIP solver by

145
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exploiting the solution template. Then, in sectionl 7.4, we prove that the search space
reduction imposed by the solution templates does not cause a loss of solutions. Finally,
in sectio_Zb we draw some conclusions.

7.1 Motivation and Example

In this chapter we introduce a technique to reduce the search space associated to the
solution of MMUCA WDPs. Then, we apply this new representation to encode a new
ILP solver for MMUCA, the CCIP. CCIP substantially reduces the number of variables
and constraints used by DIP.

The search space reduction is obtained by observing that DIP produces several
equivalentsolutions. We regard two solutions aguivalentif they select the same
bids. As a consequence, equivalent solutions contain the same supply chain operations
(SCOs) (even if arranged in different order), and they have associated the same cost. In
what follows we provide the rationale to achieve such reduction and to found CCIP.

Example 7.1. Recall from sectiofi’5.4].2 that in a MMUCA WDP the input is composed
of: (1) the initially available goodd4;,, € N); (2) the finally required good$4;,,; €
N%); and (3) a set of bids in the XOR bidding languad&d;; = (D;;,pi;)). Hence,

let us consider an MMUCA WDP scenario characterised as follows:

e U;, = 0 andit,,; = 0: no goods are initially available and no goods are required
at the end of the auction.

e Eight bidders submit the eight bids showed in equafiods 17110 7.8.

Bidy; = (3'tg + 1't1, —3 USD) (7.1)
Bidy; = (2't2,9 USD) (7.2)
Bids; = (1't3, —2 USD) (7.3)
Bidy = (1't4,—1 USD) (7.4)
Bids; = (1't5, —8 USD) (7.5)
Bidg; = (2'tg + 2't7, —3 USD) (7.6)
Bid7, = (1'ts, —12 USD) (7.7)
Bidg; = (1'tg + 2't10, —4 USD) (7.8)

We recall thatBid;; = («},th, pij) means that bidderoffersa;, copies of SCO
tn (Di;(tn) = k) at pricep;; in his j-th bid. For instance, bidid,, offers in

a bundle (combinatorial bid) three units ©@f and one unit ot; at a price of3

usHl. More formally,Dy; = {3'to + 1't,}.

Recall from sectiol 5412 tha? = W,;; D;; is the union of multisets submitted in
each bid. For the bids in equatidnsl7.11d 7.8, we have:

D={3tg+ 1t +2ta+ Utz + 1ty + 1t5 +2'ts + 2't7 + 1'tg + 1'tg +2't10} (7.9)

1Recall that the negative sign means that a bidder is willing to be paid.
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Recall also that the maximum lengttof the solution sequence will be at most equal to
the overall number of atomic SCOs submitted, namely

(=6=> |Dy| =17
]

Finally, recall that" is the set of all the received SCOs (disregarding their multi-
plicity).
T = {to,t1,t2,t3,t4,t5,t6, t7,ts, to, t10} (7.10)

1"ty
I
1 1

1't3 2'tq 11
1 1
/
g3 1 1 t4 1 94
1
1'ts 1 1
1

1'tg

2'tg

Figure 7.1: Graphical representation for the SCOs in bids in equdfidns[Z] to 7.8

In figure[Z1 we graphically represent SC@s. .., t1o contained in the bids of
equation§7]1 tb718. The formalism employed in the figure is similar to the one em-
ployed in chaptelrl6. Figufe.1 represents a Petri Net Structure (PTNS) in which each
transitions represents a SCO and each place a good. The input/outputarcs from/to SCOs
depict the input/output multisets of each SCO. We recall that the arc weights represent
the input and output multiplicity of each SCO (for instance, according to fl[guke 7.1, the
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input and output multisets of SCQ are respectivelf;, = {g5} andO., = {g7, gs })
Notice that in our example every arc has weitjht

Unlike the formalism employed in chapfdr 6, in the PTNS of fiduré 7.1 the infor-
mation about complementarities among SCOs and the XOR relationships is omitted.
Furthermore, we label each SCO with its multiplicity in each bid. For instadi¢ceg,
means that three units &f have been submitted in a bid.

At this point consider that solver DIP solves the WDP with the input expressed by
equation§7]1 tb 78, and finds the solution sequence infiable 7.1. The first row in table
[Z7 represents a position within the solution sequencerfthedex in variablesr7,
of sectiof&.R), whereas the second row shows the SCO assigned to the each position
within the solution sequence. For instance, the fact that in the second row and second
column we find SCQ@,; means that positio2 of the solution sequence is assignedsto
(in DIP this means that in the solutiarf, = 1).

Position 1(12(3|{4,5|6|7|8(9(10(11|12|13|14|15|16/|17| Revenue
Sequence 1 tg | teo ty [to |ty |to |2 ts +3 USD

Table 7.1: Example of solution found by solver DIP.

Thus, according to definitiodn 3.9 of sectibnbl4.2, the solution of {@ble 7.1 corre-
sponds to the following solution sequence:

Y= <t()7t27t17t07t47t07t27t3> (711)

Notice that the solution sequen&g according to what explained in sectibn612.1, is
obtained by removing thempty positiong Sequence &f table[7].

Accordingly, the winning bids ar®id,1, Bids;, Bids1, and Bidy, and the rev-
enue associated to this solutiorH8 + 9 — 2 — 1 = 3. As the reader can check, this
solution is valid, since the semantics of the bidding language is fulfilled, and at each
step of the solution sequence there are enough input goods available to perform the
corresponding SCO. Now consider all the solutions in tBbIE 7.2. These solutions are
all valid and optimal (they have associated the same revenue) as much as the one in
table[Z1. They are simply a rearrangement of the very same solution along different
positions of the solution sequence, without modifying the relative order among them
(i.e. they all represent the sarleof equatiof Z.111).

Position 112|3|4|5|6|7|8|9|10(11|12|13|14|15|16| 17| Revenue
Sequence 4 tp | t2 | t1 | to ty | to|te | ts +3 USD
Sequence 3 to |te | t1 |to |ty |to |2 ts | +3USD
Sequence 4 to | te t; [to |ty [to|te|ts +3 USD
Sequence § ¢y to t1 to ty to to ts +3 USD
Sequence § to |to |ti |to |ty |to]|te ]|ty | +3USD

Table 7.2: Solutions equivalent to the solution in tdbIé 7ithwame relative order.

Now consider the solutions in talfle]7.3. They are still valid solutions equivalent to
Sequence In table[Z1, though not only the positions assigned to SCOs are different,
but also the relative order among them has been altered. Although those solutions
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correspond to valid solution sequences different from the one in eqiiafidn 7.11, it is
easy to check that those solutions are still valid. Indeed, at each step of the solution
sequence there are enough inputs to perform the corresponding SCOs. Hence, all the
considered solutions are Pareto optimal, and equivalent among them.

Position 112|3|4|5|6|7|8|9|10(11|12|13|14|15|16|17| Revenue
Sequence 7 to tr | to to | to to | t) | ts +3 USD
Sequence 8 tg | to | to | t1 | te | t2 t; | ts +3 USD

Table 7.3: Solutions equivalent to the solutions in tbI&vwith different order.

O

At this point, the reader is ready to understand what we measgbiyalent solu-
tions Solutions of solver DIP that select the same bids (and thus the same SCOs) have
associated the same cost. Thus, we hypothesise that they are indistinguishable for an
auctioneer.

Notice that, as shown in examgle]7.1, the search space of solver DIP contains a
huge amount of equivalent solutions. Hence, in order to reduce the complexity of our
problem, we aim at understanding why all those redundant solutions are found. As
explained in sectiof@.2, the IP formulation of solver DIP is founded on the hypothesis
that a SCO can hold any position within the solution sequence (recall that we create
decision variable%?fk for each positionn and for each SC®;;;, € T), and we set the
length of the solution sequence equal to the overall number of received SCOs, namely
4. Thus, in principle, each SCO can take one ambaggailable positions. This explains
why all those equivalent solutions are contained in the DIP search space: a large number
of equivalent rearrangements of SCOs within the solution sequence are allowed.

The fact that many equivalent solutions can be found implies a larger search space
than needed, and thus an increased computational cost. Such computational cost is
reflected in the number of decision variables employed for solver DIP. In the case of
exampld_ZlL, for instance, has the possibility to take on any of the positions of the
solution sequence. Hence, DIP requit@sdecision variables foty. Then, for all the
SCOs it requires|T'| = 11 x 17 = 187 decision variables. If we manage to reduce the
number of equivalent solutions contained in the search space, we cut down the number
of decisions, and consequently the search space.

Then, the strategy we follow to reduce the search space consists in limiting the
possible positions each SCO may take on in a solution sequence. In this way the number
of feasible solutions is reduced. Obviously, if we limit the positions each SCO can take
on we lose solutions as well. The main point herdesing solutions that are equivalent
to solutions that in turn are found-or instance, an auctioneer is willing to lose all but
one of the solutions in tabl€sT[1.17.2, 7.3. If at least one is found, we assume that
an auctioneer is not bothered by losing all the other equivalent solutions.

We assume that if two solutions are equivalent, from an auctioneer’s point of view
eliminating one of them from the space of feasible solutions does not constitute a prob-
lem. However, given a set of equivalent solutions, the auctioneer needs that at least one
of them is included in the space of feasible solutions.
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We employ a terminology related to equivalence classes in order to explain this
concept. It is easy to verify that the relatiznequivalent tan the set of DIP solutions
is an equivalence relation (refer to sectiond.4.1 for the theory underlying equivalence
relations). In these terms, our goal consists in finding a solution template that:

e reduces the number of equivalent solutions contained in the search space, and
e ensures that at least one feasible solution for each equivalence class is found.

That is, we must ensure that no solution class is completely removed from the search
space. Hereafter, with an abuse of terminology, we say thdbgeea solution class
when we lose a whole equivalence class of solutions.

In what follows we explain how to reduce the search space. We employ a function
that reduces the possible positions any SCOs can take on in the solution sequence.

Example 7.2. Say that we constraify to hold only the first position in a solution
sequence. All the solutions in tab[esITT] 7.2, 7.3 are still valid if we qetead

in front of the sequence. For instance, the solution sequences il fable 7.3 produces the
equivalent solutions represented in tdblé 7.4.

Position 1(2(3(4|5|6|7(8(9]10(11|12(13|14(15|16/|17|Revenue
Sequence 9| t; to to to | to to | t) | ts +3 USD
Sequence 1Q t; |to [to |to | te [te |ty | L3 +3 USD

Table 7.4: Solutions equivalent to the solutions in téblEplighingt; ahead.

In general, every solution found by DIP to the considered problem can be reordered
into a solution witht; in the first position. Then, we push in the first position of the
solution sequences in talfle]7.3, and we obtain the sequences idable 7.5.

Position 1(2(3(4|5|6|7(8(9]10(11|12(13|14|15|16/|17| Revenue
Sequence 11 t2 to to to | to ty [t | ts +3 USD
Sequence 12 to |ty |to |to |t [te |ty | L3 +3 USD

Table 7.5: Solutions equivalent to the solutions in téblEpighingt, ahead.

None of the sequences in tablgl7.5 is a valid solution to solver DIP sjinc@nnot
operate without input goodgd). In this case, placingp, at the first position is natafe
since the SCOs that can provide it with input goods are not performed before it.

Then, all the solutions found by solver DIP can be reordered into solutions having
t; at the first position without losing solution classes. Oppositely, not all the solutions
found by DIP can be reordered into a solution havingt the first position. Therefore,
if we constraint, to take on the first position, we lose solution classes.

Why it is possible to push aheadand nott2? The reason is tha maydependn
other SCOs to be performed. In fastmay need some inputs that in turn are produced
by other SCOst(, andt; in the case of,). Then, if we want provide a solution template
that limits the positions that each SCO can hold without causing a loss of solutions, then
we have to consider those dependencies among SCOs.
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A SCOt’ depend®nt if any of the output goods dfis an input good of’. In such
a caset{’ may need the output afto operate. Hypothesising thdtdepend®n ¢ andt
does not depend anwe have that:

e if in a solutiont’ comes before, then the solution remains valid by moving
beforet’.

¢ if in a solutiont comes before’, then the solution may not be feasible anymore
by movingt’ beforet.

Along this line, given two SCOs, we can differentiate three cases:
e ¢t depend®nt’ andt’ does not depend an # O—O¢

e ¢ depends o’ andt’ depends on: t Q_’Q t
That is, they arenutually dependent

e otherwise (the case of no dependence at all}/ O O t

By analysing the dependencies above we can limit the positions each SCO can assume
without losing solutions.

Example 7.3. Consider once more examfle]7.1, graphically depicted in figule 7.1.
Notice thatt; does not have any input good. Then, it does not depend on any SCO.
Then, we can constrain SC to hold the first position within the solution sequence
(as in exampl€712): any solution with at a different position than the first one can
be reordered into a solution in whi¢his at the first position. We can assign only one
position in a solution sequence since only one unit,aé offered. Positiorl is safeto

t1. Then, we assign position 1Ro,.

Next, things are different with,. Recall that three units af, are offered by bid
Bidyp, and thug, might appear up to three times within a solution sequence. Then, we
cannot simply assigty to position2. Sincet, can be performed three times, it needs
at least three positions in a solution sequence. Then, we assign po2jtioamsd4 of a
solution sequence iy, as represented in talfle]?.6.

Positions |1 |2 |3 |4 |5 |6 |7 |8 |9 10(11|12|13|14|15|16| 17
Solution
Template

t1 |to|to]|to

Table 7.6: Assigning positions t@ within a solution sequence.

At this point we wonder whether we can carry on witht¢s, andt, and so on.
Unfortunately, we cannot. This is becausets, andt, form a loop, i.e. they are
mutually dependenObserving carefully figule—d.1 we can say that:

e t9,t3, andt, depend ornty andty;

2In terms of decision variables for DIP this means that we are not genem@l}ng)r all the positions

m € {1,...,17}, but we generate only one decision variabﬂg, sincet; is allowed to hold only position
1.
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e 1y, t3, andt, do not dependeionts, . . ., to;
e 15,13, andt, are mutually dependdhtand
e t5,...,t10 dependends ohy, t5, andty.

Then,ts,t3, andt, must come befores, ..., 19 and afterty and¢;. However, we
cannot establish an order among them since they are mutually dependent. Thus, we
must consider all their possible orderings. For instance, we can assigitdpandt,
positionss, 6, 7, and8 (since two units of,, are available, we must assign two positions

to t5). TabldZ¥ outlines teemplateof a solution built in this way.

Positions| 1|2 [(3|4| 5|6 |7 |8|9|10|11|12|13|14|15| 16|17
to| ta| ta| t2
ty|to|to|to| t3| t3| t3| ta|ts5 | to | Lio|tio0
ta| ta| ta| ta

|#Variables] 1[1]1[1[3[3[3[3[1J1J1]1]2]2]2]2]1]

Solution
Template

te| te| tg| ts

t,
tr| t7| tr | tr 8

Table 7.7: Positions within the solution sequence assigf@iba to SCOs.

Notice that we now need a decision variable for each of the elements ifiidble 7.7 (as
expressed in the last row of the table). As4ots, andt,, the possible choices can be
encoded by the following variables:

6 7 8 6 7 8
{$t2»mtgv$t2»$t2»$t3»mtg,»$t3»$t3»$t4»$t4»$t4»$t4} (7.12)
wherez?, = 1 means that, is performed at thé-th position.

Then, the total number of decision variables required to represent the problem
amounts to:

T4+1 414143 4414+14+14+142-441=29 (7.13)

In contrast, tablEZ18 illustrates the assignment of positions as required by DIP. DIP em-
ploys 11 x 17 = 187 variables overall. Therefore, the difference when constraining
SCOs to limited number of positions is very significa2fl yersusl87 in the example).

To conclude, we have to detect the dependencies present in the structure induced by
the SCOs and apply the process described above: we assign an a-priori limited number
of positions within the solution sequence to each SCO (or group of SCOSs).

In what follows, we formally analyse how we can extend the intuitions above to the
general case in order to yield a new IP, the so called CCIP, by relying on the notion of

dependence among transformations, and using it to constrain the positions at which a
transformation can be used.

3No matter the ordering among, t3, andt4, we can always assign to them positions befgrer to
without losing solutions.

4Notice thatte, t3, andt4 lie on a cycle in the net. For this reason, each of them could contribute to
provide goods to the inputs of the other.
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Positions| 1 | 2 |3 |4 | 5| 6|7 |8|9(10|11|12|13|14|15|16|17
to| to| to| to| to| to| to| to| to| to| to| to| to| to| to| to | to
tir|ti| |ttt |t |t |ttt |ttt ta|ta]| t1]| ta
to| ta| ta| ta| ta| ta|ta| ta| ta|ta]| ta| ta| ta]| ta]| ta| ta] t2
t3 t3 t3 t3 t3 t3 t3 t3 t3 t3 t3 t3 t3 t3 t3 t3 t3
g | ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta| ta
ts | ts | ts | ts | ts | ts | 5| s | 5| 5| ts| L5 | t5| L5 | &5 | t5| 5
te | te | te | te | te | te| e | te| le| te|tle|le| te| le| te| te| Lo
tr | tr | tr |ty | tr | tr | o | e | br | o | b7 | br| br | L | tr| E7 | 7
ts ts ts ts ts ts ts ts ts t8 t8 t8 t8 t8 t8 t8 t8
t9 tg tg t9 tg t9 t9 t9 t9 t9 t9 t9 t9 t9 t9 t9 t9
t10| t10| t10| t10| t10| 10| 10| 10| 10| 10| 10| t10| t10| t10| t10| t10| t10
[#Variable 11[11[11J11[11J1aJaaJaaJaaJa1JaaJaaJaaJa1J1111]11]

Solution
Template

Table 7.8: Positions assigned a-priori without constraints

7.2 SCO Dependencies and Solution Template

In this section we formally introduce a solution template that limits the possible posi-
tions each SCOs can take (like in taBlg 7.7) without losing any solution class. With this
purpose, firstly we formally introduce the conceptejpendencgmong SCOs. Next,
we introduce a function that constrain the SCOs to hold a limited number of positions
within a solution sequence, that isalution template

But before that we would like to clarify the conceptd#pendencyThe fact that an
SCOt depends on another SGOdoes not enforce that must be forcedly executed
beforet. In fact this could happen. The fact thatlepends or’ only means that it
is always possible to change the relative ordet ahdt’ bringing¢’ in front without
losing solutions classes.

7.2.1 The SCO Dependency Graph (SDG)

In this section we formally capture the conceptdefpendencgmong SCOs. All the
background knowledge required to understand this section is summarised in section
242

An SCO dependency graph (SDG) is a graph that encodes the dependencies, in
terms of precedence relationships, between the Baog. The SDG is a directed
graph whose nodes stand for SCOs, and an edge fromt&6@@CO¢’ reflects that
there exists a good that is both output@nd input tot’.

Example 7.4. The SDG associated to examplel 7.1 (see fifulle 7.1) is depicted in figure
[Z2(b). For the sake of comprehension, we include a copy of figuke 7.1 in figlire 7.2(a).

Definition 7.1 (SCO Dependency Graph)siven a set of bids in the XOR bidding
language, such thdtis the overall set of SCOs, the associated SCO Dependency Graph
(SDG) is a graptb DG = (V, E) such that:

5Recall that, given the input to a MMUCA WDP, is the set of overall SCOs present in all bids. The
corresponding to the bid of exam|ile]7.1 is represented in equafidn 7.10.
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e Each SCOisaverte¥ =T,

e A directed arc connects two SC@saand¢’ iff there exists a good that is both
output oft and input tat’. More formally,

(t,t)eEiff O,NTy #0

An SDG may or may not contain cycles. However, we have to assume that the graph
is cyclic in the general case. As explained in seclion®.4.3, a (cyclic) graph defines a
preorder< overT. We denote this preorder as a pél, <). The semantics of the
preorder is that < t' iff a path exists betweehandt’. As illustrated in sectiohZ.4.3,
a preorder allows the existence of pdirst’) such that < ¢ andt’ < t.

Example 7.5. In the order defined by the graph in figlirel7.2(b) we havethaf t5
andt, < tg. However, considering that < t3 andts < t, to andts cannot be

~ ~

ordered among them.

Figured{ZP (a) and (b) depict the PTN structure representing the SCOs of example
[ along with the corresponding SDG. We recall from chapter 2 that, given’d set
equipped with a preordet, we can define an equivalence relatioronT" as follows:

t~tifft <t'andt’ <t (7.14)

Example 7.6. Regarding the example of figurelr.2(b), the equivalence classes are:

[to] = {to} (7.15)
[t1] = {t:} (7.16)
[ta] = {t2, 3, ta} (7.17)
[ts] = {ts} (7.18)
[t6] = {t6, 17} (7.19)
[ts] = {ts} (7.20)
[to] = {to} (7.21)
[t10] = {t10} (7.22)

(7.23)

Recall also that it is possible to define a strict partial order over the quotient set
(T'/~, =) such that:
[t] < [t']ifft <t andt £t (7.24)
Equivalently, we define a strict order on the $et7", <) such that:
t < t"iff [t] < [t']

Example 7.7. As to the example in figufe—d.2(H}.] < [ts] (t2 < t5) since there exists

a simple path from, to 5 ((t2, t5)J. Howeverit,] < [t4] does not hold since, although
a simple path exists froms to ¢4 ((t2, t4)), we have thaty ~ ¢4. In fact there are cycles

(<t27 ty,ts, t2>)

6Recall that according to the notation employed in sedionP.4.2 a path in a graph is néted.as, v, ),
where thev; are the nodes belonging to the path.
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93
(a) A PTNS representing SCOs (b) SDG

G=0) (=)
scco scel
0 © (o2
§cc23A

(=

scc67 sccs’/ scc9 @ @
: CDRCD
G CO || ¢=D
O (=)

(c) SCCs of the SDG (d) The strict order

Figure 7.2: A PTN structure, the corresponding SDG, SCC, and Order Relation.

Then, we are now ready to formally define the concepdegendenceWe recall
that two SCOg,t’ can be such that: (¥)depends on’ andt’ does not depend an
or (3)t andt’ are mutually dependent; or (4andt’ are not dependent on one another.
More formally, we can distinguish the following three cases:

(1) t < t': t dependont’. A one-way directed path betweerandt’ exists in
the SDG. Then, all the SCOs along the path connecting’ can contribute to
increase the input goods of Then,t’ depend®n their execution. For instance,
in exampld_ZJ7, we have thai depends on,. Therefore, pushingahead of’
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in a solution sequence does not cause a loss of solution classes.

(2) t' ~ t: t andt’ aremutually dependenfThere exist both a simple path franto
t' and another one fromi to t. Therefore, they lie on a simple cycle of the SDG.
For instance, in figule—4.2(b), we have that~ t,. Obviously, we cannot order
them since the circularity of the relationship implies that they depend on each
other. Then, we may risk to lose some solution class if we change their relative
order in a solution sequence.

(3) t £ ¢ andt’ £ t: no path exists betweenandt’. The relative positions of
andt’ within the solution sequence does not affect the feasibility of the solution
in any case. Then, it does not matter the relative orderanfd:’ in the solution
sequence, and it can be changed arbitrarily.

In what follows we present three examples referring to the three items in the list above.

Example 7.8(Dependence)in exampld_ZR we were able to mowgin the first po-
sition of the solution sequence without losing solutions, whereas we could not do the
same fort,. This happens sinadg does not depend on any SC@ uch that < t'),
whereag, depends om; (t1 < t2) andtqg (tg < t2). Then,t; andty must hold posi-
tions previous td,. This is why in the solution template in talilel7¢7 comes after;

andi.

Example 7.9(Mutual Dependence)in exampld_Z13, we saw that in the casegfts,

andt, we could not assign to each of these SCOs only one place in the solution se-
quence. In fact, we have that ~ t3 ~ t4. Then, in order to consider all the possible
orderings among them, we assigned to them posifiofis7, andS in the solution tem-

plate of tablé7]7.

Example 7.10(Independence)in exampld ZR we were able to motein the first
position of the solution sequence without losing solutions. The reader can check that
equivalentlyty can be brought to the first position without affecting the validity of the
solution. Thus, the solution template of tablel 7.7 can be modified by switching the
positions ofty andt; as shown in tablg—4.9.

Positons| 1|2 (3|4| 5| 6|7 |8(9|10{11|12|13|14|15|16|17
to| ta| to| to

Solution te | te| te| te

to|to|to |t t: t t ts|ts | to | t t t
Template 0 0 0 1 3 3 3 3 9 10 10 t7 t7 t7 t7 8
ta| ta| ta| ta

Table 7.9: Interchanging the positionstefand ¢.

Hence, while we can a-priori establish an order among SCOs belonging to different
equivalence classes, for SCOs within the same equivalence class we cannot since they
are mutually dependent. As to the case of SCOs, we can chose any ordering.
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7.2.2 Computing the equivalence classes

As shown in sectiofi:214, the definition of Strongly Connected Component (SCC) in
graph theory coincides with the notion of equivalence class we defined above. The very
good news is that there exists an algorithm that can find the SCCs of a@raphin
polynomial time @(V + E)), as explained in (Cormen, 2001). The fact that we have
available this algorithm significantly simplifies the first of our subproblems, that is the
problem of finding an execution order among SCOs. In fact, once obtained the strongly
connected components, enforcing a suitable ordering among them amounts to building
a solution template.

Henceforth, we will refer indifferently to equivalence classes or SCCs.

Example 7.11. The strongly connected components of the graph in figute 7.2(b) are:

scc0 = {to} = [to] 5cc67 = {t6, t7} = [to]

scel = {t1} = [t1] sce8 = {tg} = [tg]
5ce234 = {ta, ts, t4} = [to] sced = {to} = [to]

scch = {ts} = [ts] sccl0 = {tio} = [t10]

They are graphically depicted in figurel7.2(c). As mentioned in seEfldn 2.4, it is also
possible to define a strict order among equivalence classes (SCCs), graphically depicted
in figure[Z2(d).

7.2.3 Order Enforcing Function

We mentioned at the beginning of this section that our aim is to butrglatethat

allows us to a-priori limit the set of positions that each SCO can hold within a solution
sequence in such a way that no solution class is lost. As illustrated by the template in
table[ZY, there is a link between the dependencies among SCOs and their relative order.
Most precisely, a solution template must comply with the strict order stemming from
dependencies. Next, we provide a formal definition of solution template, the so-called
D-bounded Order Enforcing Function

Definition 7.2 (D-bounded Order Enforcing Functionfiven a strict orde(T'/ ., <)
and a multi-seD € N7, aD-bounded Order Enforcing Functigh: {1,...,|D|} —
T/.. is a sequence of equivalence classes satisfying the following constraints:

(z) S(j ):z’<j (7.25)
) =Y D) V[t €T/ (7.26)
t'eft]

Where |S~1([t])| is the number of times the equivalence cl@sappears in the se-
guencesS. Henceforth,S will denote aD-bounded order enforcing function for

(T/~ =)-

Equation’Z2b guarantees that all the position assigned to the equivalence classes
are in increasing order with respect(tf/ .., <). This means that ift] comes before
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[t'] according to(T'/ ., <), then[t] comes beforgt’] in S. Equatior 226 ensures that
enough positions i¥ are available to contain all the SCOsIinwith their multiplicity.

For instance, if three units af, are offered, it means that up to three copiegpof

may be present in the solution sequence. Then, three positions must be assigned to
to in S. Notice that there is no overlapping among the positions assigned to different
equivalence classes in virtue of equaflony.25.

Example 7.12. If D is the multi-set of the overall SCOs received in the MMUCA of
exampld—Zll. We define2-bounded enforcing functiofi as follows:

S(1) = [t S(2) = [to];

S(3) = [to];  S(4) = [tol;

S(5) = [t2];  S(6) = [ta];

S(7) = [ta]s  S(8) = [ta]

S(9) = [ts];  S(10) = [to);
S(11) = [tio];  S(12) = [t10);
S(13) = [te];  S(14) = [te);
S(15) =[te];  S(16) = [ts);
S(17) = [ts];

Departing from solution template in talle17.7 we can represent funétiaa shown

in table[ZID. The solution template readily leads to the mapping in 7.10 by
substituting each set of elements for the equivalence class it belongs to. For instance
{tQ, ts, t4} for [tg] and{tﬁ, t7} for [tﬁ].

Positions 112|3|4|5|6]|7]|8]...
Equiv. classeq [t:] | [to] | [to] | [to] | [t2] | [te] | [te] | [te] |- .-

9 10 | 11 12 | 13|14 | 15| 16 | 17
[t5] | [to] | [ti0] | [t10] | [ts] | [26] | [t6] | [t6] | [ts]

Table 7.10:D-bounded enforcing function for examjplel7. 1.

We employS~! to indicate the inverse of an enforcing functién S—([¢]) indi-
cates the set of integers (positions) that map to the equivalence[@lags.S. More
formally:

S7H[t) = {m e {1,...,|DI} | S(m) = [t]}

Example 7.13. Regarding exampleZ]12,
S ([te]) = S ([t7]) = {13,14,15,16}

In what follows, we show that it is always possible to build at least one solution
template. We prove this by construction. This result is fundamental to our purposes
since theS function is employed to encode our problem.
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Lemma 7.1. Given a strict order(7'/ ..., <) and a multi-setD € N7 such thatvt €
T D(t) > 1, at least aD-bounded order enforcing functiofiexists.

Proof of lemmalZ1 Let (q1,q2,...,qx), Wherek = |T/.|, be an ordering of the
elements off'/ . satisfying=<. Then, we buildS as follows:

S =aq 52)=aq o S =a

SA1+1)=q S(A+2)=¢q o S X)) =g

S Mt =a SIS N+ = . SO0 M) =
where); = >, D(t) Notice thatS satisfies the constraints specified by equations
andZ26. O

Notice that this proof also explains how to practically budldsolution template
given the SCCs.

S is thus a function that assigns positions within a sequence to set of SCOs. The
main property ofS is that every solution that DIP finds can be reordered intecariva-
lentandfeasiblesolution that fulfils the solution templafe In order to formally define
the concept ofulfilment we have to introduce some notation. In fact, we need to link a
solution to DIP to the solution templafe We begin by introducing partial sequences,

a generalisation of the concept of sequence that captures the formal representation of a
solution to solver DIP (see tadle.1).

7.2.4 Partial Sequences
We begin by recalling the definition of sequence.

Definition 7.3 (Sequence) A Sequenc@ver a non-empty finite séf’ is a function
K :[1,n] = T,withn € N.

Notice thatin tablE7]1 we represented a solution as a mapping from positions within
a sequence to SCOs. In what follows we illustrate the conceptdfal sequence
which intuitively is a sequence with “holes”, meaning that there could be some posi-
tions of the sequence that ampty This notion will be employed to formally capture
solution sequences like the ones in tables[Z1, 7.2 ahd 7.3.

Definition 7.4 (Partial Sequence)A Partial Sequencever a non-empty finite sét is
apartial functionK : [1,n] — T, withn € N.

The fact the function ipartial implies that some integers may have no image,
representing the holes in the sequence.
From now on, we will employ the following notation:

(1) | K| the length of the sequence. Henceforth, we will ass{ifle= n;

(2 K~' : T — 2[b7lis a partial injective function such that € K~'(t) iff
K (m) =t (inverse function);

(3) |[K~1(t)| is the number of timesappears in sequende;
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(4) Givena multi-seD : T'— N, we will note asD(t) the multiplicity of¢ in D;
(5) Dom(K) is the subset ofL, n] that admits an image vi& (domain);
(6) Im(K)={teT| K(m)=tforsomem € [1,n]} (image)

Example 7.14. The partial sequence representing the solution sequence ifiidble 7.1 is:
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Obviously, a solution sequence can not contain more SCOs than the ones submitted
in bids overall. Then, we further refine the representation of solutions by limiting the
number of times each SCO can appear within a partial sequence.

Definition 7.5 (D-bounded Partial Sequencepiven apartial sequencéd( over a set
T and a multi-seD € N7, we say thaty is D-bounded if:

|K~1(t)] < D(t) vt € Im(K) (7.27)

Example 7.15.The partial function defined in examjle.14 is bounded by the multi-set
D in equatior.ZP:

D = {to, to, to, t1,ta, ta, ta, ta, ts, te, te, tr, tr, ts, to, tio, tio}
this happens since:

(|K~*(to)| = 3 andD(to) = 3) implies| K~ (to)| < D(to) (7.28)
...... (7.29)

and a similar equation applies to all the other elemenfsifK).

O
Notice that the multi-seD = ,;D;; associated to an MMUCA bounds all of its
solutions, as state in the following observation.

Remark7.1 Every solution to an MMUCA is &-bounded partial sequence.

Now that we have all the formal tools to describe a solution, we can define when a
solutionfulfils a solution templat&' (order enforcing function). This is a central point
and leads us to the definition Sffulfilment:
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Definition 7.6 (S-fulfilment). Given aD-bounded partial sequenééand aD-bounded
order enforcing functioty, we say that fulfils S iff:

Vi € dom(K) K(i) € S(i) (7.30)

This means that a solutioi complies with a solution template if each SCOHAn
takes on a positioallowedby S.

Example 7.16. COnsider tablE=Z11

e the partial sequencg in does not fulfil the order enforcing function (solution
template)S, sinceK (1) = t2 andS(1) = [t1], butts & [t1];

e the partial sequenck’ fulfils S.

In table the highlighted SCOs do not hold the positions enforced by the solution tem-
plate.

O

Positons |12 |3 (4|5 |6 | 7|8 |9|10|11|12|13|14|15]|16/|17

(S) Solution ba| t2] t2| 12 te | te| te| ts

ty|to |to|to| t3| t3| ta3| t3 |5 | Lo | ti0 | t10 ts
Template il | tal b tz | tr| tr| t7
L K [tofte] [ [tftoltaftofta] [ [ [ [t [ [ |
LK Jttltelto[tetalta[ts [ | | [ [ [ | [ [ |

Table 7.11: Partial sequence fulfilling() and not fulfilling (K’) S in table[ZID.

Then, now we can explain why the solution template representéti®pf central
importance. We will formally prove in sectignT.4 that each partial sequence, solution
to the MMUCA WDP, can be reordered into agquivalentandfeasiblesolution that
fulfils S. Consequently, if we limit the search space so tmdy the solutions fulfilling
S are included, we guarantee that no solution class is lost. Therefore, we achieve what
we intended, obtaining a space search reduction without sacrificing solution classes.

In the next section we show how to apply an ordering enforcing function to ILP.
We will present a new solver for the MMUCA WDP, that employs considerably less
decision variables than DIP by exploitig

7.3 The improved IP formulation

The aim of this section is to introduce a new IP that improves solver DIP. We call
the improved solver, described in the remaining of this section, solver CCIP. The idea
underlying the improvement of solver DIP is to consider as possible solutions only
partial sequences fulfilling ®-bounded order enforcing functiagh and excluding all
other solutions. With this purpose, we employ the order enforcing function introduced
in definition[Z2.
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In sectio_ZZ311, we introduce a preliminary version of the IP formulation of solver
CCIP. In sectiolZ312 we introduce a further simplification that allows to eliminate
part of the constraints. In secti@a7I3.3 we show that CCIP turns into a CMWOSP
solver when the Mixed Auction Net is acyclic. Finally, in section4.3.4 we show that
CCIP turns into the DIP solver when the SDG is connected.

7.3.1 The Model

As usual, the input to the MMUCA WDP is a set of bif¥éd;;, each one over a multi-
setD;; along with some pricg;;. D = Uij D;; is the multi-set of all the submitted
SCOs. Then, the maximum length of the solution sequenge-$D].

According to remark7]1, a partial sequence representing a solution to the WDP is
always bounded b, since the partial sequence will at most contain all the submitted
SCOs. Then, we considerZa-bounded order enforcing functioi. The associated
order relation(T’/ .., <) is the one defined by the SDG graph®Bn

In solver DIP we employed binary decision variablg, taking on value 1 iff SCO
tijk 1s selected at then-th position within the solution sequence. In the case of DIP,
m ranges in all the positions of the solution sequenge [1, ¢]). However, now we
can assign a limited number of positions to each SCOSvidf we want to allow as
feasible solutions only partial sequences fulfilliigwe only create decision variables
for the positions each SCO can hold. More precisely we create decision varighles
for all m € S=!([t;;x]). By means of this operation we manage to drastically reduce
the search space.

Next, analogously to sectidn .2, we employ the following auxiliary decision vari-
ables. Firstly,z;;; is an integer variable that represents the number of positions that
SCOt;j, holds in the solution sequence. Secondly, is a binary decision variables
taking on value one if bidBid;; is selected and O otherwise. Then, we impose the
following constraints.

(1) We obtain the number of positions that S&Q, holds in the solution sequence
(zijx) by summing upe, over all the positions. assigned tat ;1.

vgr= Y, ay Vijk (7.31)
meS™([tizn])
Example 7.17. Regarding exampl[ed.1 we have:
Ty, = a7, + 1:?2 + l‘; + 2}, (7.32)
and
Ty, = 3y + ) + 2} (7.33)
and so on.
(2) We are interested in that at most one SCO can hold each position. Consequently,

we impose that:

> a2 <1 Vm (7.34)

t,,jk-,GS(m)
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®3)

(4)

(®)

(6)

Notice that the sum is only over the SCOs of a single equivalence class. These
constraints enforce that the solution is a partial sequence. Without such a con-
straint we could have more than one SCO assigned to the same position of the
sequence.

Example 7.18. Following exampld—7Z]1, at step (= 5) the following con-
straints hold:
xp, + l‘?s +ap, <1 (7.35)

We need decision variables controlling if a given bid has been selected. As we
know, the semantics of a bid implies that selecting at least one SCO within a
bid implies selecting all the SCOs within the same bid with the corresponding
multiplicity. That is:

Example 7.19. For SCOt in bid Bid;; of the MMUCA of exampld_Z]1 we
have:
Ty, =11+ 3 (7.37)

and so on.

We impose that the XOR semantics of a bid is fulfilled, i.e. at most one bid per
bidder can be selected:
Zl‘i]‘ <1 Vi (738)
r

We need to encode the constraint enforcing that each SCO selected is enabled at
any step of the solution sequence.

m—1

Uo(g) + Z Z 2l - (O (9) = Zijr(9)] > Z 7k - Lijk(9)
1=0 t;5,€5(l) tijr€S(m)

(7.39)
Vg € G,Vm € [1, 6]

We express the constraint enforcing that the goods available to the auctioneer at
the end of the solution sequence is at |éags};:

¢
Uo(g) + Z Z QUZLk [0ik(g) — Ziji(9)] > Uout(g) Vg € G (7.40)

m=0t;;,€S(m)

In table[ZIP we summarise the CCIP ILP formulation.
Finally, solving the MMUCA WDP is equivalent to optimise the objective function:

maXinj * Pij (741)
ij

subject to constraints (a-f) in tafle 7112.
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@ vk |- Y
meS~ ([tijx])

J

| Vm Yoo <1

tijk €S (m)

(€)| VgeG |Uly +Z o @ [Our(9) — Tigi(9)] > Uour(9)

m=0 tL]kGS(m)

m—1

Vg eqG + Z Z L]k L]k g) _IZJk(g)] >
=0 tijk GS(l)
() | vm € [1,0] Z ol Tin(9)
tijr€S(m)
(9) maxz:pij “ Dij
j

Table 7.12: Resume of the IP formulation of solver CCIP.

7.3.2 Eliminating some Equations

There is a further simplification that we can add. Not only we can reduce the number
of variables, but we are also able to eliminate some redundant constraints. It follows
from some considerations on the IP structure that we can remove some constraints
from solver CCIP because redundant. In what follows we provide the corresponding
intuitions.

Equation[[Z3PB) ensures that enough goods are present to perform the selected SCOs
at each step of the solution sequence. It must be applied at each step of the solution
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sequence.

Uo(g)+i > @i Ouk(9) = Tin(9)] = D @ Turlg) (7.42)

1=0 t;;5€S(1) tijx €S(m)
Vg € G,¥Ym € [1, ]

Equation [Z220) states that at the end of the sequence atdgasgoods are available
to the auctioneer.

4
U()+ D D o [Oir(9) = Tin(9)] = Uoui(g) Vg€ G (7.43)

m=0t;;,€S(m)

The application of the two constraints above plus the fact$hanits the possible
position assignments makes some of those constraints redundant. In particular, we can
get rid of constrainf=ZZ42 at each stepif the group of SCO assigned to step via
S does not belong to any cycle of the graph. The following example will clarify the
statement.

Example 7.20. Consider the MMUCA WDP presented in examplg 7.1. In particular,
we will focus on the equations regarding gog@djust before the firing ot;. Then,
considering that the only SCOs that can add or remove tokepsare {tz, t4, t5,t9 },
equatioiiZZ43 beconlks

Tty — Tty — Tty — Tty Z 0 (746)

Notice that ther;, in in equatior_Z46 are integer, not binary variables. Now we
consider equation—Z¥2 at stépand for goodgs. According to tablé7]7, SC®, is
assigned to positiof. Then, equatioREZ-42 becorfies

Tty — Tty > Tty (749)

"Equatior[Z-4B can be rewritten as

14
0+> ., > xh-[0i(ga) — Te(ga)] 2 0 (7.44)

1=0te{ta,tq,t5,t9}

that can be rewritten as
0+ > xt - [Ot(g94) — Ze(g94)] > 0 (7.45)
te{ta,ty,ts,to}

sincer; = Zf:o z! (equatio&91). Expanding equation].45, we ofaml 7.46.
8Equatior.Z4R can be rewritten as:

8
0+ > > ai-[0u(ga) — Te(ga)] = @, - Tes (94) (7.47)
1=0teT

Once again, since the only SCOs that can add or remove tokensai@{t2, ¢4, t5, t9 } and their assigned
positions in tabl€Z17 arg5, 6, 7, 8,9, 10}, equatioZ47 becomes:
0o+ > > ah - [0i(9a) = Tu(ga)] > a7, - Tes (94) (7.48)
1€{5,6,7,8} te{ta,ta}

The reader can check that expanding this expression we obtain eduafibn 7.49.
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Notice that equatiofi{Z}9) is automatically satisfied if equalion]7.46) is fulfilled. Then,
equatior .49 is redundant, and we can get rid of it.

Example 220 above shows an important properties of our model. This property
is not very intuitive because it depends on the equations and on their relationships.
Anyway, as we mentioned above, this property does not hold if the SCO lies on a
simple cycle or on a self-loop of the SDG. A counter example will clarify this sentence.

Example 7.21. We consider again examfdIeF’.1, but in this case we focus on the equa-
tions for goody; . Notice that a a self-loop is present og. This self-loop prevents to
apply the same reasoning of examlple¥.20. First, we write the equivalent of equation
[Z28 and we obtain:

Tty + Tt,0 — Ttyq > 0= Tty = 0 (750)
Next, we consider equatién 7142 at stigp We obtain:
Tty — Tty Z 0 (751)

Itis easy too see that equation4.50 does not imply equiafioh 7.51. Then, we cannot get
rid of equatior.Z31.

Intuitively, equatiori .43 is global condition enforcing that at the end of the se-
guence the global input-output balance at each good of the net infiiglire 7.1 is positive.
On the other hand, equatibn7.4ddsal to each step, and enforces that enough input
goods are available at each step.

As showed by examp[eZP1, we have to check consfraint 7.42 only when the SCOs
assigned to positiom belong to a cycle. Notice that by definition each time an equiv-
alence class contains > 1 SCOs, each SCO in the equivalence class belongs to a
simple cycle of length.

Example 7.22. (1) t1o in figure[Z2(a) has googh both as input and output. Then it
belongs to a self-loop({10, t10)). (2) t2 belongs to the simple cyclgs, t4, t5,t2). (3)
t; does not belong to any cycle.

To conclude, with respect to the encoding of solver CCIP presented in decfidn 7.3.1,
we can get rid of a set of inequations. Thus, besides reducing the number of variables,
we decrements the number of constraints of solver DIP.

Employing the terminology introduced in sectibn713.2, we can say that equation
must be added only if the SCOs assigned tostdyy S belong to a simple cycle.
Then, definingL z as:

Ly ={me{l,...£} | S(m) contains a simple cycle

We can rewrite equatiofi{Z139) as:

m—1

Uo(g)+ Y Y @l [Our9) = Tunl(9)l = D @i -Turlg) (7.52)

=0 t;;,€5(l) tijr€S(m)
Vg€ G,Vm € Lp

In appendi’AB we present the CCIP model with reduced constraints encoded in
the OPL language (see sectlon211.2 and (Van Hentenryck} 1999)).
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Problem Size

The number of decision variables in the above integer program is of the order of
O i |S~*(ti;x)|) (corresponding te}7, ). More in details, we create a binary deci-
sion variable for each bi#id,; € B, for a total of| B| binary decision variables. Then,

we create a decision variahlg;; for each SCQ;;, € T, for a total of|T’| decision
variables. Then, we create a decision variable for each §& 1" and for each posi-

tion it is allowed to take on within the solution sequence, for a total’of, IS (tim)]
binary decision variables. Then, we create a total of

1Bl + >[5 (tije) € OO 18~ (tijn)])

ijk ijk

decision variables.
With a similar process, we compute the total number of constraints, that is:

21T+ |L|+ 6+ |GI(L + |LF)) (7.53)

7.3.3 The CMWOSP-based solver is a special case of CCIP

In this section, we show that the CMWOSP-based solver introduced in sEcfioh 6.1.5 is
a special case of CCIP. Say that we know that no cycles are present in the TDG. That
means that we will have exactly as many SCCs as the number of SCOs. Then, we have
that equation (a) in tab[e“Z115 turns into:

Tijk = Ty, (7.54)
Considering this,
e equation (d) becomes redundant and we can eliminate it;
e equation (e) turns into
4
U(g)+ Y D mijr - [Oiwl9) = Ziji(9)] = Uourl9) Vg€ G (7.55)
m=01t,;,€S(m)

that can be rewritten as:

Uo(g) + Zﬂfijk: [0ik(9) — Ziju(9)] = Uput (9) Vge G (7.56)

ijk

Since the net has no cycles, it happens figt| = 0. Then, equation (f) can be
eliminated. Sincer}, is not employed in any equation, we can eliminate equation
(ZR3) as well.

Then, joining equations (b), (c), and (g) in tablef.15 with equalionk7.56), we obtain
exactly the same ILP model as the one in equatibnsl(7.55).
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7.3.4 CCIP amounts to DIP when the SDG is connected

Analogously, we show that when the SDG is connected CCIP turns into DIP. If the SDG
is connected, then there is a big SCC encompassing all the SCOs. It happens that:

S(m)=T Vm € [1,0] (7.57)
Lp={1,...,0} (7.58)

Then, we create decision variabl;e’gk Vti;re € S(m). Then, basically, we create

the same decision variables as in DIP. Next, the constraint in equBiiah (7.52) must be
applied at each step of the solution sequence. Then, we obtain the same formulation as
DIP.

7.4 Equivalence between solvers DIP and CCIP

In this section we formally prove that no solution class is lost limiting the possible
positions of SCOs vi&. This result is indirectly proved by showing that:

e each solution found by solver DIP can be reordered into a solution to CCIP; and
e each solution to solver CCIP is also a solution to DIP.

If this holds, then we are guaranteed that: (1) for each solution in DIP solution space
there is always an equivalent solution in CCIP solution space; and (2) the CCIP solution
space is a subset of the DIP solution space. Then, CCIP does not lose solutions nor
create new solutions not fulfilling DIP.

Such proofis rather complex. Then, before going on, we introduce some definitions
and constructs that will be employed in the demonstration. To this end, in sdciiofs 7.4.1
and[Z.ZP we provide formal tools to capture the notion of reordering of a solution.
Then, in sectioh 7.414 we introduce some properties of partial sequences of SCOs to be
employed for the proof. Finally, in secti@nZ}4.5, we provide the formal proof.

7.4.1 Subseguences

In what follows we introduce the concept of subsequence of a partial sequence. A
subsequence of some partial sequence is aseguencebtained from the former one
by removing some of the elements and all the empty positions without disturbing the
relative positions of the remaining elements. An example will clarify the sentence:

Example 7.23. Consider the partial sequence in table¥.13.

Position 1(12(3|{4,5|6|7|8(9(10(11|12|13|14|15|16|17| Revenue
Sequence 1 tg | teo ty [to |ty |to | te ts +3 USD

Table 7.13: Example of solution found by solver DIP.

Example of subsequences of the partial sequence of fablk 7.13 are showed in the
following. At the left hand side we have shown the subsequence, while on the right
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hand side the original partial sequence with highlighted the elements selected to form
the subsequence. The elemeiridicates &olein the partial sequence.

(t1,t4,t2) (to,t2, €, 6,81, t0,t4,t0,ta,€,€,€,€, t3,€,€,€) (7.59)
(t1,t0,to, ta) (to,ta,€,6,t1,t0,1;,t0,t2, €6, €, €, ¢, 3, €, €,€) (7.60)
(t1) (to,ta,€,6,81, 80,1, to, ta, €, €,€,€ t3,€,€,€) (7.61)

(ta,ta) (to,ta, €€, ty,to, ta, to, b2, €, €, €,€,t3, €, €,€) (7.62)
(ta,t1,tq) (to,ta,€,6,t1,10,ta,t0,t2,€,€,€,€ t3,€,€,€) (7.63)
(to,ta,to,ts) (to, t2,€,€,t1,t0,tq,tn, t2,€,€,€, €, t3, €, €, €) (7.64)

Notice that the order among the elements is maintained. That is, for ingtaocmes
aftert, in the partial sequence of talile]7.1, then the same must happen in efuafion 7.64.

Definition 7.7 (Subsequence of a partial sequencday K : [1,n] — T is a partial
sequence. We say that' is a subsequence &f iff:

e K'is asequencef elements off’. More formally, K’ : {1,...,m} — T where
m € Nandl m < n.

e There is a strictly increasing function (called characteristic function of the se-
quence)f : {1,...,m} — [1,n] such that:

K'(i) = K(f(i)) Vi € {1,...,m}

Example 7.24. The characteristic function of subsequelncel7.59 is:

f(1) =5 — the first element of{’corresponds to the fifth element &f
f(2) =7— the second element éf'corresponds to the seventh elemenfof
f(3) =9 — the third element ok’ corresponds to the nine-th elementrof

We call theinverse characteristic functioof a subsequenc&” the function re-
trieving the position of an element of the subsequence within the original sequence.
We denote it ag . : [1,n] — {1,...,m}. Forinstancef;/(j) = k means that the
position within the original sequence of thie- th element of the subsequence was

Example 7.25. The inverse of the characteristic function of exaniplel7.24 is:

1) =1
17 m =2
179 =3

Given a partial sequend€ : N — T and a sefl” C T', we define the subsequence
of K restricted tdl"”, denote ad(|_,, as the subsequenceiifobtained removing from
K all the elements not belonging 3. More formally:

9Notice thatK’ is asequencenot apartial sequence
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Definition 7.8 (Sequence restricted to a subséBjven a partial sequend€ : N — T'
and asefl” C T, K7 (to be read ag( restricted tdl”) is a subsequence @& such
that:

K7 (6)] = |K ()] VteT (7.65)
K ()] =0 vt T (7.66)

Example 7.26. Given the partial sequence of tabBle 1. 53y, ¢, +,} = (t2,t4,t2,t3).

In the following section we introduce a formalism to describe how to order a partial
sequence in order to make it comply with a solution template.

7.4.2 Reordering Sequences

The main goal of this section is to introduce the theoretical tools to check whether the
reordering of a partial sequence complies with a solution template. We recall that this
is useful since we have to prove that, for each solution to DIP, there always exists a
reordering of it that complies with the solution template. Then, in this section, as a first
step we provide a definition of reordering of a partial sequence that fulfils the solution
templatesS.

Intuitively, an S-fulfilling reordering is a reordering o into a new partial se-
quenceK’ that fulfils S and that preserves the order definedAyamong the SCOs
within the same equivalence class. Before giving the formal details, we present an
example.

Example 7.27. Consider order enforcing functiofi and the partial sequendg in
table[Z.TH. In tablEZZ14 we present als6, an S—fulfilling reordering of K, and K"’

a partial sequence that is not &r-fulfilling reordering of K. Notice that inK’ the
elementsg, andt; have been reordered, whereas the elements of the equivalence class
[t2] maintain the same order asiif. Observe thak™ fulfils .S, but the elements of the
equivalence claslg,| are in a different relative order than i (¢2 comes aftet,).

Positions (1|2 (3|45 (6| 7|8 (9|10{11|12({13|14|15|16|17
. to| ta| t2| t2
(S) Solution te | | te| te
Template ti | to |to | to| ta| ts| ts| ta|ts | to | tio | tio P T 12
ta| ta| ta| ta
L K [tofte] [ [tiftoltaltofta] [ [ [ [t [ [ |
K’ tr | to |to|to|t2 | ta | b2 |t
K" ti|to|to|to|ta|ta | t2|ts
A4

Table 7.14: Examples of S-fulfilling/(’) and not S-fulfilling (<"’) reordering ofK..

Thus, we proceed to the formal definition®ffulfilling reordering.

Definition 7.9 (S-fulfilling reordering) Given aD-bounded partial sequenéé and a
D-bounded order enforcing functid K’ is an S-fulfilling reordering of« iff:

(1) K’ fulfils S
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) K, =K, Vg eT)

Point (1) implies thaf&’ complies with the solution template. Point (2) of definition
[Z3 implies that the order among SCOs belonging to the same equivalence di&ss in
is the same as ik .

In sectior_Z1 we will be interested in retrieving the original position in of the ele-
ments of a reordered sequence. That is, giérb-fulfilling reordering of K, we are
interested in retrieving the original positiein K of the j-th element of’, as shown
in the following example.

Example 7.28. Consider the partial sequencEsand K’ employed in example_Z.P7.
Say that we are interested in retrieving the original positions withiof the 7th el-
ement of K’. From tabld_ZT4 we know thdt’(7) = t». The natural way of doing

it would be to look for the position of SC@®, in K. But this does not work since
appears more than once if. Indeed, we have thdt —!(t2) = {5, 7}. Then, we have
to recur to the characteristic functions that are employed to build the subseqmqgces
and K, (point (2) of definitior ZD).

Remark7.2 SayK’ is anS fulfilling reordering of K. Then, the original positio& in
K of them-th element ofK” is:

5= fic, (Fied (o) (7.67)

Whereq = [K'(m)] is the equivalence class that contains theh element ofK’,
fI;,l‘q is the characteristic function associated to the subsequéhgeand fx, is the
inverse characteristic function associated to the subsequéncgsee definition§~717
andZB).

Now we are going to provide an existence result: no matter which is the partial
sequence, there always exists gfulfilling reordering of it. Hence, in what follows
we provide both a theorem of existence and a way to build-&mifilling reordering.

Proposition 7.1. Given aD-bounded partial sequend€ and aD-bounded order en-
forcing functionS, an S-fulfilling reorderingk”’ always exists.

Proof of proposition[Zd The demonstration is carried out by construction. For each
equivalence clasg] € T/.. we define two sequences. One contains all the integers
mapping to[t] via S (i.e. S~!([t])) ordered in increasing value. The other one is the

sequencey restricted to the set] (the subsequendg ;). Then,V[t] € T/

be(sl, 89y Siyenny Sa) s.t.s; < Sit1 and{si}le = S_l([t]) (768)
be(ﬁl,tg,...,tj,...,tb):K‘m (769)

Then, we definé\’ asK'(s;) =t; Vi € [1,...,b]andV[t] € T/~.

Point (2) of definitiod_ZP is trivially satisfied by construction. Point (1) of definition
[£3 is satisfied i (s;) € S(s;). But per construction we have th&t(s;) = t;,t; € [{]
andS(s;) = [t]. O

In the following section we add some complementary definitiabout sequences
and order relationships.
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7.4.3 Order Fulfilling Sequences

Our aim is to assess the positions to a-priori assign to SCOs in such a way that the order
established by the SDG is not violated. We explained in seEfion] 7.2.1 that we have to
make sure that all the SCOs such thak ¢’ must be assigned positions such that
comes before’ in the sequence. Thus, the first step is knowing which ones, among
the possible solutions, do not violate the strict order imposedgy. (<). With this
purpose, we give a definition to decide whether a partial sequence fulfils a strict order
relationship.

Definition 7.10 (Order Fulfilling Sequence)We say that a partial sequenieoverT
fulfils an order relation{T’/ ., <) iff:

Vi, j € dom(K) (K@) < [K()] =i < j (7.70)

This definition formally states that a partial sequeActulfils the order relationship
=< only if the relative order among SCOs withiti does not violate<.

Example 7.29.The partial functiork in tabledZ.TH does not fulfil the order relationship
defined by the SDG in figur€sT.2(b) and (&).violates the order relationship in various
points. For instance, we have thiatappears beforg althought; < ¢2 holds. Observe
that this does not mean that this solution is not valid, but only that it does not fulfil
the order relation. On the opposite, partial sequekicand K" in table[ZT# fulfil the
order relationshipx.

As mentioned aboves is a template that a partial sequence must adhere in order to
fulfil <. Hence, we must define the conditions for a partial sequence to satisfy a given
solution template.

In what follows we formally show that a sequence fulfilliSgalso fulfils the order
relationship-<.

Lemma 7.2. If K fulfils S, thenK fulfils (T/~, <).

Proof of lemmal7.2
From equationE 780 ad 7125 it follows that(:)] < [K(j)] = i < j. O

The order enforcing function is exactly the solution templae were looking for.
Any partial sequence (and thus any solution) fulfilling it also fulfils the order relation-
ship (T'/ ., <). This is a very important property, since it means that the precedence
relationship among SCOs are fulfilled within such a partial sequence.

In what follows, we detail some definition and properties employed in the proof of
sectio ZZb.

7.4.4 Properties of partial sequences of SCOs

In this section we demonstrate some properties of partial sequences of SCOs that fulfil
an order relationshipI{/.., <). Those properties will be useful in sectibn714.5. In
particular we will deal with a special case: the case in which two SC&wt’ are

such that < t' butt comes aftet’ in a partial sequence fulfillindl{/ .., <). We will
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call it the case oforward swapping Notice that this can happen onlytindt’ are in
the same equivalence class. Then, in what follows:

e T is a set of SCOs equipped with the preorder defined by its §D&) (as in
sectiol”ZZ]1). Recall that a SGO= T is composed by a pair of multisets of
goods:t = (Z;, ©;), whereZ;, O; € N&,

e J : N — T is a partial sequence of SCOs that fulfils the order relationship
T/~ =)

(a) g is output of J(Z) and input ofJ ().

 J

I
0

5+
Ny -

(b) Positionmh comes before positiofin the J partial sequence.
Figure 7.3:J(2) is forwardly swappedvith J(m) in g.

J has some important properties that we detail in the following. But before that, we
give an important definition, the definition of SC@swardly swapped

We provide an example with some intuitions of the definitiofooivardly swapped
Forinstance, figule—4.3 graphically depicts the case in wiiiéh is forwardly swapped
with J(m). Intuitively, say thatn is a position of the partial sequendesuch that the
associated SCQO(m) hasg as an input goﬂ (Zym)(9) > 0). Say also that further
ahead in the sequence, at positior»> m, there is a SCO that hasas output good
(O(z)(g) > 0). In such a case we say that SO%) is forwardly swapped with (1712).
In figure[ZB(a) we show thatis both input ofJ(m) and output of/ (%), whereas in
figure[Z-B(b) we graphically represent thatomes aftern in the J solution sequence.

10The notation here is such théx; ;) meansO;;;, where the corresponding SCOtig, = J(1)
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Figure 7.4: Part of the SDG of examfile]7.1

Definition 7.11 (Forwardly Swapped)Given a partial sequenckthat fulfils an order
relationship(T'/ .., <), a goodyg € G and two positionsn, Z € dom(J) such that:

(1) Zymy(g) >0
) i < 3
() Oyz(9) >0

then we say thaf/ (%) is forwardly swappedvith J(/) in g. If i = Z we say that
J(m) has aself-loop

In what follows we present a lemma that describes three important properties of
partial sequences with swapped SCOs. The lemma is very intuitive. The intuition
behind this is explained by the following example.

Example 7.30. Consider the partial sequenég in table[ZIH . By definition it fulfils
S. Saym = 6, then we have thak(m) = t4. We also have thdf;, (g4) > 0 (See
figure[Z3). In figuré7]l4 we extend figurel7.1 by highlighting in thick black the SCOs
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that are concerned in this example. Observe thatvhose output good ig,, is at
positionz = 7 of K’, aftert,. The reader can check that:

(1) t2 andt4 belong to a simple cycle;
(2) t4 < t5,t4 < tg; and
(3) to ~ t4.
This means that i (2) is forwardly swapped with/ (1) in g, then it holds that:
(1) J(m) andJ(2) belong to the same equivalence class;

(2) any SCQ that hag as input good must be such that eittiém) < ¢t or J(m) ~
t;

(3) any SCOt that hasg as output good must be such that eithex J(m) or
t ~ J(m).
These properties are generalised in the following lemma.
Lemma 7.3. If J(Z2) is forwardly swapped witlf () in g, then:
@) J(m) ~ J(2);
(2) for all t such thatZ,(g) > 0, eitherJ(m) ~ t or J(m) < t;
(3) for all ¢ such thatO,(g) > 0, eitherJ(m) ~ tort < J(mn).

Proof of lemmalZ_3

(1) If Z = m this is trivially true. Otherwise, we have thd(z) < J(m) since
g is output of J(Z) and input of J(m). If we had thatJ(m) ¢ J(Z), then
[J(2)] < [J(m)] would hold. Hence, from definitidn4.9:

[JE)] < [J(m)]=2=<m (7.71)
that is against the initial hypothesis. Then, we can concludefiha) ~ J(Z).

(2) J(2) < tsinceg is output of.J(Z) and input oft. But we know from the previous
point thatJ(m) ~ J(2). Then, it cannot be/ () £ t by transitivity. At this
point only two possibilities remain, eithdi(m) ~ ¢ or J(m) < t. If m = Z the
same discussion holds settidgmn) = J(Zz).

(3) ltis clear that < J(m) sinceg is output oft and input ofJ(m). But we know
from the previous point thaf (/) ~ J(2). At this point only two possibilities
remain, eithert ~ J(m) ort < J(m). If m = Z the same discussion holds
settingJ(m) = J(2).

O

Notice that from lemm&=3 follows that, under the hypothesissidered above,
there cannot be any SCO withas input or output good that is not in relation with
J(m) via <.

Corollary 7.1. If J(Z) is forwardly swapped witly (i) in g, then for allt such that
O:(g) > 00rZ(g) > 0: itcannot bet & J(m).
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7.4.5 Equivalence between solvers

In this section we prove that no solution class is lost by limiting the positions via an
ordering enforcing function. We prove this result indirectly. Instead of relying on the
definition of MMUCA WDP, we build our proof departing from the corresponding ILP
formulation, that is DIP (see sectibnb.2).

In fact, if we prove that (1) each solution to DIP can be reordered into a solution
to CCIP, and that (2) each solution to CCIP is also a solution to solver DIP, then we
demonstrate that no solution class is lost. In fact, there is a reason for employing this
indirect proof. By doing this, we also prove that the operation performed in section
[£32 — the elimination of part of the constraints of solver CCIP— is legal.

With this in mind we demonstrate the following two theorems:

Theorem 7.1. Given a partial sequencél, solution to solver DIP, any S-fulfilling
reorderingJ of H fulfils all the constraints of solver CCIP.

Theorem 7.2. Given a partial sequencé, solution to solver CCIP, it fulfils all the
constraints of DIP.

Theorem§711 anld4.2 will be proved in the remaining of the chapter. Relying on
those theorems, we can prove that:

Corollary 7.2. Any solution found by solver DIP can be reordered into a solution to
solver CCIP.

Proof of corollary L2 Say H is a solution to solver DIP with objective valug;.
Assume that there exists an S-fulfilling reorderihgf H that is not a solution to solver
CCIR The cost associated to solution sequehéeequal to the costy associated to
solution H since J is a reordering off. For theoreni Z]11/ fulfils all the constraints of
CCIR SinceJ is not an optimal solution to solver CCIR there must exist another solution
J’ to solver CCIP with objective value;: > c¢; = cy. However, from theorefn4.2,

we have that each solution to solver CCIP fulfils all the constraints imposed by DIP
. Then,J’ should be an optimal solution to DIP since it fulfils all its constraints and its
objective value is larger thaty;. This is against the hypothesis that the solutiof/is

It follows that.J is an optimal solution to CCIP. O

Corollary 7.3. Any solution found by solver CCIP is a solution to solver DIP.

Proof of corollary L3 Say.J is an optimal solution to solver CCIP with cosj.
Assume that it is not an optimal solution to solver DIP From thedréin 7.2 we have that
J fulfils all the constraints of solver DIP. Then, there should be another solétioh

DIP with costcy > cs. In this case, in virtue of theore[nF.1, it could be reordered
into a solution sequence fulfilling the constraints of solver CCIP. Skctilfils the
constraints of CCIP and has cast > c¢j, it should be an optimal solution to solver
CCIP. This is against the hypothesis that the solutios sith objective value:;. It
follows thatJ is an optimal solution to DIP. O
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7.4.6 Proof of theorenT7Z1L

As mentioned above, a solution to the IP model of the MMUCA WDP defined in section
can be expressed by means of a partial sequencgl, . . ., |D|} — T such thdt]
H(m) = tiff z}* = 1. A solution to solver CCIP, too, can be expressed by means of a
partial sequencé : {1,...,|D|} — T suchthat/(m) = tiff «}* = 1.

The first step is thus proving that for each solution to DIP there exists a reordering
of it that fulfils the constraints of CCIP. The intuition behind this theorem is illustrated
by the following example:

Example 7.31. Consider again example—7127. The partial sequéite table[ZIh
is an S-fulfilling reordering of sequende in table[ZT# . Recall thak  is a solution
to the MMUCA of exampl€_Z]1 found by solver DIR is a still valid solution to the
MMUCA of exampleZ1L.

With theoren_ZI1 we aim at demonstrating the universality of the result of example
[Z33: anyS-fulfilling reordering of a solution is still a valid solution to the MMUCA
WDP. For the sake of simplicity we resume the IP CCIP in tBhIg] 7.15.

Since the proof of theorelnT.1 is complex and rather long, we begin by demonstrat-
ing several lemmas.

First, we show that/ fulfils equations (a),(b), and (c) in tadle 7115. Equation (a)
sums intax; 5, the number of times SCQ;;, appears in a solution sequence. Equation
(b) enforces that either all or none of the SCOs within a bid are selected. Equation
(c)enforces that at most one bid is selected for each bidder.

Lemma 7.4. Given a partial sequenc#, solution to solver DIP, any S-fulfilling re-
orderingJ of H fulfils constraints (a),(b), and (c) in tab[e7]115.

Proof of lemmalZ3 z;;;, of equatior 691 counts the number of times, appears
in the solutionH. Thus, we have that;;, = |H*(t;jx)|. On the other handy;;x
in equatior . ZTI5(a) counts the number of times SCPappears inJ. Then, we have
zije = |J " (tin)]. SinceJ is anS-fulfilling reordering ofH, from point (2) of defini-
tion[Z9 we can derive that? —* (¢;;x)| = |J~*(tijx)| Vtijk. Then, the variables;
assume the same values in equafionl6.9Hars in equation (a) in table7115 fdr

From this follows trivially that equations (b) and (c) in taBIe_T.15 are fulfilled/by
if equationd6.91 and 6.b2 are fulfilled By. Furthermore, the objective values of the
two IPs DIP and CCIP assume the same optimal value, i.e. equBfiohs 6.96 and (g) in
table[ZIb assume the same valuesHoand.J respectively. O

Next we consider equation (d) in talille4.15. Equation (d) e@®that at most one
SCO can hold each position of the solution sequence.

Lemma 7.5. Given a partial sequenc#, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraint (d) in tabl&Z15.

Proof of lemmalZ® Constraint (d) in tabl&Z15 is fulfilled iff at most one SCO is
selected at each position of the solution sequence. Sinisea partial sequence, it

11n order to ease the notation we will henceforth empidyr indicating the generic SC®,. Equiva-

lently, we will employt,, to indicatet; , ;,,, andt’ to indicatet s ;.
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Table 7.15: Resume of the IP formulation of solver CCIP.

cannot be the case that more than one SCOs is associated to a single position. Then it
is always fulfilled. O

Next, we consider equation (e) of table4.15. Equation (edreek that the goods
available to the auctioneer at the end of the solution sequence is dfjgast

Lemma 7.6. Given a partial sequencé, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraints (e) of table_Z1L5.

Proof of lemma[Z® We can rewrite equation (e) of talfle 4.15 considering that the
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solution isJ. Then we have:

Uo(g) + Z [O1m)(9) = Li(m)(9)] = Uout(9) (7.72)

medom(J)

Now we rewrite equation 6.95 of solver DIP considering that the solutiéftis

Uo(g) + Z [OH(m) (g) - IH(m) (g)] > Uput (g) (773)

medom(H)

Notice thatvt € T |H1(t)| = |J~1(¢)| sinceJ is anS — fulfilling reordering of

H. Then, the Left Hand Side (LHS) of equatidns¥.72@andl7.73 assume the same value.
Then, trivially, equation (e) of tab[e 715 is fulfilled bYyif equatior6.9b is fulfilled by

H. [l

The most complex demonstration is ensuring that all the sle8COs are enabled
at each step. This means checking that equation (f) of [abI& 7.15 is always fulfilled by
J given tha{& 9 is fulfilled byHf. Then, we further divide the demonstration of this
lemma in some sub lemmas. But before that, we rewrite equdilofds 6.94 and (f) of table
[ZI3 considering that the solutions dieand.J respectlveIE

m—1
Uo(g) + Z Oru)(9) — T (9)] = Zam)(9) (7.74)
- Vg € G,Ym € [1,...,{]
for equatior 6.94 and
m—1
)+ Z Os0)(9) = Zs0y(9)] = Zyim)(9) (7.75)
- Vg € G,Ym € [1,...,4]
for equation (f) of tablEZ14.

In the demonstration, we will prove that equafion¥.75 is fulfilled/tfpr a general
goodg and at a stepr that complies with different hypothesis. The different hypothesis
will be treated in the different lemmas that follow.

The first non trivial case is obviously when the SCO associated torsteguires
input goods fromy. In this case, too, we have to distinguish two sub-cases that are
described in lemmds1.7 ahd]7.9. Lemimd 7.7 deals with the case in which there is no
SCO that adds tokens intoholding a position aftefh — 1 in partial solution sequence
J, whereas lemni{az.9 considers the complementary case.

m—1
121 order not to overcharge the notation, we er instead of >
= I<m: ledom(J)

13we should add constrailiZJ75 only for stepsassomated to SCOs belonging to cycles € Lp).
Instead, we add it for everyr. However, this case is more restrictive and then, if it is satisfied in this case, it
will be also fulfilled if we remove the equations correspondingit@ L .
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Lemma 7.7. Given a partial sequencé, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraints (f) of tablEZZ15 at a step and at a goody such
that:

® Zimy(g) >0

e VZ2>mOyz(9) =0

Proof of lemmalZT In this case we can write equatimj%s

Uo(g) + Z Osu)(g ZIJ(Z) (7.77)

=0

since after stepn no SCO can add further contributions to gagpdWe can also write
the following inequation:

m

¢
Z Zra(g Z Ziay(g (7.78)
=0 =0

since there could be SCOs with positions afiethat remove tokens from. Then,
equatior.ZA7 is fulfilled if the following equation is fulfilled:

Uo(g) + Z Osa)(g ZIJ(Z) (7.79)
=0 =0
Considering that equatidn 7172 holds, equafionl7.79 is satisfied. O

Now we deal with the most problematic sub-case, i.e. whertbeists a SCO that
can add tokens intg and holds a position aftef.. Notice that this case is someway
connected to the case of forwardly swapped SCOs (see defiifioh 7.11). In order to
cover this case, we have to demonstrate two lemmas. The first follows:

Lemma 7.8. Given a partial sequencé/, solution to solver DIP, and an S-fulfilling
reordering of it.J, assume that at a step € dom(J) and for a goody € G it holds
that:

(1) Z;(m)(g) > 0, i.e.gis aninput good to transition/ (1n);
(2) 3z > msuchthatD ) (g9) > 0, i.e. J(Z) is forwardly swapped witl () in g;

(3) ¢ = [J(m)], i.eqis the equivalence class d{m);

14EquatiorfZ7b can be rewritten in an equivalent form if we bring to the right hand side of the equation all
the terms containing:

m—1 m
Uo(9)+ Y Osayle) =D Iy (7.76)
=0 =0
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(4) 5= fu, (fj“j (m)), i.e. 5 is the position inH corresponding to the positiofi
in JE.

Then, we have that:

s5—1 m—1
> 0uw(9) <> 0s0(9) (7.80)
=0 =0

and
s—1 m—1
> Tuw(9) = D Iy (g) (7.81)
=0 1=0

Proof of lemmalZ8 We begin by checking that equatibn-4.80 holds. Recall that since
hypothesis (2) of lemn{azd.8 holds, from lemma 7.3 we have that all the $Giiis g

as output good®; (g) > 0) that exist are such that< .J(mm) ort ~ J(m). Then, only

those SCOs can contribute to increase the Right Hand Side (RHS) and LHS of equation
[Z80.
With this in mind we show that equatidn_7180 is fulfiled. Then, denoting
J(m) = H(3), we have that:

(1) All'the SCOst=J(p) such that < £ andO;(g) > 0 have added their contribution
to the RHS of equationZ.BO0, but not necessarily to the LHS. This is because for
point (1) of definitio_ZP we have that:

[J(p)] < [J(m)] = p=<m (7.82)

Oppositely, not necessarily all the SCOs; ¢ have added their contribute to the
LHS of equatiofiZ.80.

(2) Any SCOt ~ t that has added its contribute to the RHS of equdfionl 7.80 has
also given its contribute to the LHS either. This is because per hypotheSis of
fulfilling reordering H( () = J|[s(m))» I-€. the order in which the SCO within
the same equivalence class are executed is the samkdaod.J.

Similarly, we check that equatidn7]81 is fulfilled. Recall that since hypothesis
(2) of lemmdZB, from lemm@a_4.3 we have that all the SE@sth ¢ as input good
(Z:(g) > 0) that exist are such that(m) < t ort ~ J(m). Then, only those SCOs can
contribute to increase the RHS and LHS of equdiionl7.80.

With this in mind we show that equatidi7181 is fulfilled since, denofting-
J(m) = H(3), we have that:

15Since H is a reordering off, there must exists a stéfto which-is associated the SCO corresponding to
them-th position ofJ. Steps, corresponding to the original position i of the m-th element of/, can be
computed as explained in propositlonl7.2. Recalll yf}Qt[ Jm] is the characteristic function of the sequence

H restricted to the sdt/(m)], whereast_‘[lJ( ) is the inverse characteristic function of the sequesice
restricted to the st/ (m)].
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(1) No SCOt such that > ¢, andl;(g) > 0 has given its contribute to the RHS of
equatiorZ.81. This is because, gay J(p), then for point (1) of definitiol 719
we have that:

[(J(m)] < [J(p)] = m <p (7.83)

Oppositely, some of the SCQs< t may have contributed to increase the LHS
of equatior .81

(2) Any SCOt such that ~ # that has not executed in the RHS of equaliionl7.80 has
not been executed in the LHS either. This is because per hypoﬂi%s(is =
Ji(s¢my» 1-€. the order in which the SCO within the same equivalence class are
executed is the same féf andJ.

O

With the result of lemmB718 at hand we can proceed to deal hétimtost problem-
atic sub-case:

Lemma 7.9. Given a partial sequenc#, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraints (f) of tablEZZ15 at a stefp and at a good; such
that:

® Zimy(g) >0

e JZ > msuchthatO ;) (g) > 0

Proof of lemmal[Z9 Notice that we are under the hypothesis (1) and (2) of lemma
[Z8. .As we mentioned in footndfell5, singes a reordering off, there must exists a
positions of H corresponding to positior in J. Thatiss = fp,, (f(;j(m)), asin
hypothesis (4) of lemma.8.

Now consider that equatién 7174 is fulfilled for a#l, sinceH is a solution to solver
DIP. In particular it will hold at positiors. Then, if we rewrite expressiofis 7174 and
[Z73 at those stepsandm

)+ ZOH 0(9) —Zuw(9) = T (9) (7.84)

Uo(g) + Os(9) = Ziy(9) = Ziemy(9) (7.85)

an we check that the LHS of equat[an_.84 is smaller than the LHS of eqliafion 7.85,
we are sure that equatibn 7185 is fulfilled at stepsince it is fulfilled in equation 284
per hypothesis. Then, we check if the following equation is fulfilled:

Sx

5—1
Z Ouw(9) — Tuwlg Z T (9) — Ly (g) (7.86)

=0 1=(
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With easy algebraic SCOs is is easy to check that equBfioh 7.86 is satisfied if both
equation

5—1 m—1
Z Onay(g) < O (9) (7.87)
=0 =0

and equation
5—1 m—1
ZIH(Z)(Q) > Zrwy(9) (7.88)
1=0 1=0

are satisfied. In virtue of lemnlaY.8 the equations above are satisfied. O

The last lemma deals with a trivial case. That is, when we cdensi goody and a
stepm of the partial sequence for which g in not an input good to the selected SCO
J(m). Sinceg is not an input good, equati@n 7175 assume a trivial form.

Lemma 7.10. Given a partial sequenc#, solution to solver DIP, any S-fulfilling re-
ordering J of H fulfils constraints (f) of tablEZZ15 at a step and at a goody such

Proof of lemmalZI0 The SCO enabled at step does not require input goods from
goody. It is a trivial case since if the equation was enabled at8tep1 it is enabled
at stepm. At stepl it is enabled sincéfy(g) > 0. O

In conclusion, we showed that equation .76 is fulfilled faergwn and for every
whenJ is the solution sequence. Then we can now give a further lemma:

Lemma 7.11. Given a partial sequenc#, solution to solver DIP, any S-fulfilling re-
ordering.J of H fulfils constraints (f) of tablEZ15.

Proof of lemmalZI1 all the possible cases are covered by lemimag 10, 7.7_and 7.9.

O
Finally, after proving all the parts of the theorem, we restaand prove it.

Theorem 7.3. Given a partial sequencél, solution to solver DIP, any S-fulfilling
reorderingJ of H fulfils all the constraints of solver CCIP.

Proof of theorem[ZZ1 All the equations are covered by lemnhag [Z3[Z86]l7.M1

7.4.7 Proof of theorenT 7P

At this point we have to check that the other way around is true, too. That is, given a
solution to solver CCIP, this fulfils all the constraints of solver DIP.

Proof of theorem[Z2 First, notice that imposing that}, = 0 Vm ¢ S([t;;]) for
DIP we obtain the same equations as for solver CCIP, excepting expression (f) of table
[ZT13. The fact the we do apply the expression only when the positimassociated
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to a SCO belonging to a cyclel € Ly) creates an asymmetry between the two prob-
lems. However, in what follows we show that equation (f) of thbIel7.15 is automatically
fulfilled for J in solver CCIP whenn ¢ Lr. We rewrite equation (f) of tableE_ZIL5
considering that the solution i (as in equatiofZT5) for a generic stépg L to
which a SCO¥ = J(1n) is associated:

m—1

Uo(9) + Y [0 (9) = Loy (9)] = Ly (9) (7.89)
=0

Per absurd, say that for a solutidrof solver CCIP this does not hold:

m—1

)+ Y1050 (9) = Ty (9)] < Ly (9) (7.90)

=0

Notice that constraififZ.¥2 enforces that at the end of the sequence the units gf good
available must be at least 0:

14

m=0

Then, if equatiof 2290 holds at stép there must exist some SGC= J (%), holding a
positionz > m in the solution sequence that adds tokens inf®;(g) > 0). we have
two cases:

(1) 2 = m: in this caseJ(m) has a self-loop, and thug(r7) belongs to the cycle
(J(m), J(m

J(im), J(7)).

(2) z > m: Inthis caseJ (%) is forwardly swapped witlf (/) in g. From this follows
that, in virtue of point (1) of lemm@=.3/(z) ~ J(m). Then,J(m) belongs to a
cycle.

Both of the possibilities contradicts the initial hypothegis¢ Lr. Then, we can
conclude that any solution to solver CCIP fulfils equafion]7.89 whetoes not belong
to acycle. O

7.5 Conclusions

In this chapter we have proposed a representation of the MMUCA WDP that consid-
erably reduces the search space. This is obtained by reducing the space of feasible
solutions. We have showed that the pruned solutions can be always reordered into
equivalent solutions belonging to the reduced solution space. Such a reduction in the
solution space entails a reduction in the size of the search space.

Notice also that computing the order enforcing function is computationally easy.
In fact, there is a very efficient algorithm to compute the SCCs of the SDG graph
(Cormen, 2001). This is an important point to consider. Thus, we managed to divide
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the MMUCA WDP problem into two subproblems, and one of those subproblems is
solvable in polynomial time.

Obviously, the number of decision variables and the size of the search space depend
on the size of cycles in a mixed auction net. In fact, we showed that the number of
required decision variables for CCIP @3(}_, ;. |S~Y(ti;1)]). Thus, the bigger the
strongly connected components, the more the number of decision variables. In the next
section we provide a preliminary empirical test that confirms that the reduction in the
search space corresponds to a reduction in the solving time of CCIP with respects to
DIP.

Finally, notice that when all the SCOs form a unique Strongly Connected Compo-
nent (i.e. the SDG is connected), DIP and CCIP provide exactly the same ILP model.
Whereas when the SCOs do not form any cycle, CCIP is equivalent to the CMWOSP-
based solver. Then. we can infer that CCIP perfectly exploits the topology associated
to SCOs and generalises both solvers CCIP and DIP.
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Chapter 8

Empirical Evaluation

The purpose of this chapter is to perform a preliminary empirical evaluation of the
CMWOSP-based (presented in secfion ®.1.5), DIP, and CCIP solvers. In fact, our goal
is to provide some useful hints on the applicability of MMUCAs.

The chapter is structured as follows. In secfiod 8.1, we motivate the experiments
provided in this chapter. In secti@nB.2 we summarise the artificial data set generator
for MMUCAs presented in{ (Vinyals, 200[7b), and detail the corresponding algorithm.
In sectior 8B, we analyse some early, empirical results after:

¢ running and comparing DIP and CCIP solvers on arbitrary network topologies;
e running the CMWOSP-based solver on acyclic network topoIEgies

Finally, we draw some conclusions in section 8.4.

8.1 Motivation

Despite its potential for application, and like CAs, little is known about the practical
application of MMUCASs since no real-world data is available to test WD algorithms.
Such results are unlikely to come up unless researchers are provided with algorithms
or test suites to generate artificial data representative of the auction scenarios a WD
algorithm is likely to encounter.

In the very recent past, there have been some attempts to empirically evalu-
ate the performances of MMUCA WDP algorithms. In particular, Vinyals et. al.
(Vinyals et al., 20074d; Vinyals et al., 2007b; Vinyals, 2007b) carefully analyse the per-
formances of the DIP solver, after providing an algorithm to generate artificial data sets
that are representative of the sort of scenarios a WD algorithm is likely to encounter.
In those works Vinyals et al. show that DIP scales up to small and medium scenarios
depending on the testing parameters.

1We recall that the CMWOSP-based solver, introduced in selciiod 6.1.5, can only deal with acyclic network
topologies.
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In this chapter, we employ Vinyals’ bid generator algorithm to generate ar-
tificial data and subsequently compare the performances of Integer Programming
(IP) implementations of the DIP, CCIP, and CMWOSP-based solvers. In appendix
Bl we present those models encoded in the OPL language (see secfidn 2.1.2 and
(Van Hentenryck, 1999)).

Firstly, we compare DIP and CCIP on arbitrary network topologies. Recall that, as
proved in chaptdr7, CCIP provides a more concise IP formulation than DIP in terms
of both number of decision variables and constraints. In this chapter we empirically
quantify the computational cost reduction deriving from the reduction of the number of
decision variables. Secondly, we run the CMWOSP-based solver to assess the perfor-
mances of CCIP on acyclic networks.

Notice that our empirical evaluation focuses on a proof-of-concept scenario. There-
fore, an accurate quantitative comparison would require a much wider range of sce-
narios. However, this is left out for future work because it is beyond the scope of this
thesis.

8.2 The Artificial Data Set Generator

In order to perform our evaluation, we employ a test set generator designed and imple-
mented by Vinyals in her master’s thegis (Vinyals, 2007b), and thoroughly explained in
other publications (Vinyals et al., 2007a; Vinyals et al., 2007b). Vinyals et. al present
an algorithm to generate artificial data that is representative of the sort of scenarios a
winner determination algorithm is likely to encounter and provide a very detailed anal-
ysis of the computational performance of DIP. The empirical evaluation contained in
this chapter has been developed in close collaboration with Vinyals.

In what follows, we summarise the details of the generator proposed by Vinyals et.
al. Firstly, we specify the requirements the generator is expected to fulfil, and then we
present some implementation details.

Since the bid generator is not a contribution of this dissertation, we only briefly
summarise some of the bid generator features. The reader that is interested in the bid
generator details should refer to the above mentioned publications.

8.2.1 Bid Generator Requirements

In order to test and compare MMUCA WD algorithms, researchers must be provided
with algorithms or test suites to generate artificial data that is representative of the
auction scenarios a WD algorithm is likely to encounter. Hence, WD algorithms can be
accurately tested, compared, and improved. Unfortunately, we cannot benefit from any
previous results in the literature since they do not take into account the notion of SCO
introduced in chaptefd 4 a@il 5. In this section, we make explicit the requirements for
a bid generation technigue considering that in MMUCA agents trade SCOs instead of
goods.

A naive approach to artificial bid generation would be to create bids uniformly at
random. However, this approach would generate unrealistic bids and therefore unre-
alistic scenarios. Let us consider a randombbig (1'(Z, O), p). If goods appearing
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in setsZ and O are selected uniformly at random, there is little chance that they will
represent a realistic SCO. Also,jifis chosen uniformly at random, it will not be re-
lated with the actual values of the goods in the geamd O and consequently the SCO
would be either too profitable or too expensive for the auctioneer, unrealistically easing
the problem.

If individual bids uniformly at random generated may be unrealistic, bundles of
random bids also present similar drawbacks.

Then, testing WD algorithms on these scenarios is almost useless, because any ex-
tracted conclusion cannot be used in real settings. The bid generator has to satisfy a
number of requirements to make the artificial bids close to the bids that are likely to
appear in a real-world auction.

In what follows, we introduce an example to illustrate the requirements the genera-
tor must fulfil.

Example 8.1. Consider the assembly of a car’'s engine, whose structure is depicted
in Figure[81. In the figure, we employ a graphical representation analogous to Place
Transition Nets. Notice that each part in the diagram, in turn, is produced form further
components or raw materials. For instance, a cylinder ring (part 8) is produced by
transforming some amount of stainless steel with the aid of an appropriate machine.
Therefore, there are several production levels involved in the making of a car’s engine.
A MMUCA allows to run an auction where bidders can bid over bundles of parts,
bundles of SCOs, or any combination of parts and SCOs. Notice that the result of
an MMUCA WD algorithm would be an ordered sequence of bids making explicit
how bidders coordinate to progressively transform goods till producing engines as final
products. Therefore, an MMUCA would allow to assemble a supply chain from bids.

O
Since MMUCASs generalise CAs, as discussed in chapter 5, @aph is to depart
from artificial data sets generators for CAs, keeping the requirements summarised in
(Ceyton-Brown and Shoham, 2006), namely:

(1) there is afinite set of goods;
(2) certain goods are more likely to appear together than others;

(3) the number of goods in a bundle is often related to which goods compose the
bundle;

(4) valuations are related to which goods appear in the bundle;

(5) valuations can be configured to be sub-additive, additive or super-additive in the
number of goods requested; and

(6) sets of XOR’ed bids are constructed on a per-bidder basis.

Notice though that the requirements above must be reformulated, and eventually
extended, in terms of SCOs since a bidder in a MMUCA bids over a bundle of SCOs,
whereas a bidder in a CA bids over a bundle of goods. Hence, in what follows we
discuss the CA requirements listed above reformulated for MMUCA.
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Part # QTY DESCRIPTION

Crankcase
Crankshaft
Cylinder
Piston
Screws

Bearings
Cylinder line
Cylinder ring
Cylinder head
Piston Ring
Piston Line

=)
O R O B

Figure 8.1: Components of a car engine.

1. There is a finite set of SCOs.A CA generator bundles goods from a given set of
goods to construct bids. What is the set of SCOs from which a MMUCA generator
constructs bids? In order to provide a proper answer we must take inspiration on real-
istic scenarios faced by buyers and providers. If so, within a given market we expect
several producers to offer the very same or similar services (SCOs) at different prices,
as well as several consumers to require the very same or similar services (SCOs) valued
at different prices. In other words, within a given market we can identify a collection

of common services that companies request and offer. For instance, in the example in
Figure[81, several providers may offer to assemble a cylinder through the very same
SCO:

t = (6'screwst 1’cylinderline + 1’cylinderrig + 1’cylinderhead 1'cylinder)

Eventually, a provider may either offer to perform such SCO several times (e.g. as
many times as cylinders are required), or to bundle it with other SCOs, or the two.
Hereafter, we shall consider the common goods and services in a given market to be
represented as a collection of SCOs that we shall refer toaaket SCOsTherefore,
market SCOsire equivalent to thgoodsin a combinatorial auction, that is the object
providers and buyers can request and offer. Hence, bids for MMUCAs shall be
composed as combinations of market SCOs. In this generator, the set of market SCOs
is always finite and includes at least two market SCOs for every go6H ensuring

that every good is individually available to buy and/or sell. As an example, Higdre 8.2
depicts a sample of market SCOs if intending to build the car engine in Higtire 8.1.
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Figure 8.2: Market SCOs for a car’s engine.

2. Certain SCOs are more likely to appear together than others.In any market,
services and goods are related to each other. For example, the production process for
a good can also generate some by-products that can be sold with it or used in another
industrial process. Also, some services or products are usually bought together by the
final customer.

3. There could be multiple copies of similar SCOs in a bundle.Since bids are
composed as combinations of market SCOs, we must introduce the no@O»mul-
tiplicity as the counterpart of good multiplicity (the nhumber of units of a given good
within an offer or a request). Say that in a CA a bidder submits a bid for the goods in
multi-set{2’'engine + 1'piston}. Itis clear that the multiplicity of goo@nginein this
bundle is two, whereas the multiplicity of gopistonis one.

When SCOs are considered things change slightly. In fact, there are two ways to
assign a multiplicity to SCOs, one is repeating the SCO several times , and the other
one is to simultaneously increase the required input goods and produced output goods
while maintaining the same input/output ratio. For instance, consider the following
supply chain operation

t=(3'a,2'b) = (Z,, O) (8.1)

Then, we could repeat three times it either offering three times operatiamely:
D =3t=23(3a,3b) (8.2)
or triplicating both the input and output goods:

D= (3 . It, 3- Ot) = (9/(1, 6/b) (83)
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Notice that the semantics of the two types of multiplicity are different. On the one
hand, equatiori{8.2) means that three copies of the same SCOs are offered and can be
separatelyused at three different steps of the solution sequence. On the other hand,
equation[[818) implies that the three copies must be employed at the very same step.
That is, while in the former case there can be three different steps in the solution se-
quence in which 3 copies of “a” are available, in the latter case the bidder needs
copies if “a” available at a given step to perform the operation. Then, we will refer to
the multiplicity intended as in equatiofi{B.3) mpetition multiplicity whereas to the

one in equatior{812) ammponent-wise multiplicity

4. Valuations are related to which SCOs appear in the bundle; furthermore SCO
valuations keep consistency with respect to bidder valuations for goods involved

in each SCO.A further issue has to do with the way bidders value SCOs and bundles
of SCOs. Notice that performing a SCO to assemble the engine in Higlire 8.1 results
in a new product that has more market value than its parts. Therefore, a car maker
values the SCO according to his expected benefits, namely the difference between the
expected market value of the engine and the cost of its parts. Therefore, if the parts cost
$850 and the expected market value of the enging1ig00, the car maker should be
willing to offer to pay less tha$150 for the SCO. On the other hand, any provider is
expected to request less th#irb0 in order to perform the SCO. In general, buyers and
providers in a MMUCA should value a SCO on the basis of the difference between the
expected market value of its output goods and the cost of its input goods. Notice though
that we are not assuming here that such difference must always be positive. Likewise
bidders should value bundles of SCOs considering the values of SCOs included in it.

5. Appropriate valuations can be configured to be sub-additive, additive or
super-additive in the number of SCOs requestedThis requirement tries to capture

the multiplicity-based (volume- based) discounts policies that are applied in real world.
Significant discounts are applied in real markets when goods and services are traded
at certain number of units. For example in figlirel 8.1, we observe that screws are
usually traded in higher quantities than full engines. Thus, not surprisingly the same
(percentage) discount may apply to an offer for 100 screws than to an offer for 5
engines. Hence, an offer to produce more than 5 engines, being more unlikely, should
reflect higher discounts.

6. Sets of XOR’ed bids are constructed on per-bidder basidiVe recall from chapter
that when a bidder submits different bids in XOR he declares that they are mutually
exclusive offers. For example, the following offer

BID1(1'(1'engine, @), 100) XOR (8.4)
BID2(1'(2'engine, 1), 190) (8.5)

stands for a bidder that offers to buy two engines or one engine but in any case three
engines. On the other hand when a bidder expresses complementarity he translates the
OR bids as XOR bids. For example if a bidder wants to buy one engine or one cylinder
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he submits the following XOR-bid:

BID1(1'(1'engine, ), 100) XOR (8.6)
BID2(1'(1'cylinder, (), 30) XOR (8.7)
BID3(1'(1'cylinder + 1'engine, 0)),120) (8.8)

As you can observe in both cases bids submitted in the same XOR bid are likely to have
similarities and, consequently, combining bids into XOR bids uniformly at random
does not capture this property.

7. Unrequested goods by the auctioneer may become involved in the auction.
Finally, we add a last requirement that stems from the fact that, unlike auctioneers in
CAs, not all goods involved in a MMUCA must be requested by the auctioneer. Back
to our example of a car maker in need of engines depicted in Higdre 8.1, it can run a
MMUCA only requesting engines. Thereafter, bidders may offer already-assembled
engines, or other goods (e.g. parts like crankcases, crankshafts, or screws) that jointly
with SCOs over such goods help produce the requested goods.

Requested Good Uour
Generation ¥
@
Q
°
£
S [~ Good Generation .| Bid Generation | BidS
=
o
£
Market Transformation
Generation

Figure 8.3: Modules of the bid generator and their interactio

8.2.2 An Algorithm for Artificial Data Set Generation

In what follows we describe a bid generation algorithm that automates the generation
of artificial data sets for MMUCA while capturing the requirements above. The
algorithm’s purpose is to generate MMUCA WDP (each one composed of a collection
of XOR bids and the set of goods available to and requested by the auctioneer) that
can be subsequently fed into an MMUCA WD algorithm. The algorithm starts by
generating the set of goods involved in MMUCA. Next, it generates the goods the
auctioneer requests. After that, it creates a subset of atomic SCOs, which are the



194 Chapter 8. Empirical Evaluation

market SCOs to employ for bid generation. Thereafter, it generates bids as linear
combinations of market SCOs, which are subsequently priced according to a pricing
policy. The resulting bids are further composed into XOR (mutually exclusive) bids
because the XOR language is fully expressive (as proved in sécfioh 5.3.6). Hence,
the bid generation algorittfrassumes that each bidder formulates a single XOR bid,
being the number of bidders equal to the number of XOR bids. In fl[gule 8.3 we depict
the different modules of the generator and their interacfion (Vinyals, 2007a).

Good Generation. This process requires the number of different goods ;) in-
volved in an auction along with the maximum price any good can takewan Price).

Based on these values, it assesses for each go@h) its average market price.)

drawn from a uniform distributiod/[1, max Price] wheremax Price stands for the
maximum market price any good can take on; and (2) the distribution to assess its
multiplicity, or more precisely, the success probabilityefmetric) Of @ geometric
probability distribution from which the good multiplicity can be drawn.

Requested Goods Generation.This process assesses the number of units of each
good the auctioneer requests, namely the multisgt. Since the auctioneer must not
request all goods, this process selects a subset of the goadsarbe part ofif,.,;.

Firstly, it determines whether a gogds requested by the auctioneer by comparing the
value drawn from a uniform distributiofi [0, 1] With pgood_requested, the probability of
adding a new good t&f,,;. Once a given good is included ini4,,;, the number of

units requested fay is drawn from a geometric distribution with the success probability
Jgeometric Obtained by the good generation process. Notice that by selecting a subset
of the goods we fulfil the requirement 7 listed in secilon 8 hiequested goods by

the auctioneer may be involved in the auction

Market SCOs Generation. This process generatesfinite set of SCOf be em-
ployed as the building blocks to subsequently compose bids and consequently fulfilling
requirement 1 listed in secti@@8.P.1. For each good, this procedure constructs two mar-
ket SCOs, one with only input goods$CO) and one with only output good&®¢SCQ.

Each SCO involves a single good with multiplicity one. For instai€engine}, {})
and({}, {engine}) stand respectively for the I- SCO and O-SCO for gengline. Af-

ter that, the algorithm generates a limited number of market SCO (I0-SCOs) with both
input and output goodsi(o_market.scos)- IN order to generate each market 10-SCO,
this procedure chooses the goods to include in its input and output set employing the
probabilities of adding some good to the input and output set respectively (n_input

and pgood_in_output). Whenever a good is included to either the input or output set, its
multiplicity is calculated from a geometric distribution parametrised Q¥ metric-

Finally, we attach to each market SCO a probability distribution to draw its
component-wise multiplicity It is assumed that the bid generation process, detailed
by algorithml, uses a geometric distribution to calculatecthi®ponent-wise multi-
plicity of each market SCO. Hence, the generation of market SCOs assesses the success

2Here we only provide the bid generation algorithm. The interested reader must réfer to (Vinyalg, 2007b)
for a complete description of all algorithms required by the artificial data set generator.
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probability to be employed by such geometric distributions, namely the probability of
adding an extra unit of a SCO already included in a bundle bid. Thus, eacht SCO
is assigned a success probabitify,...ric. HOwever, success probabilities cannot be
uniformly at random generated because SCOs are defined over multisets of goods, and
therefore consistency must be kept with respect to the success probabilities assigned to
each good by the good generation process. Therefore, the success probability for each
SCO is set as follows. Given a SGG-= (Z, O), for each good involved in the SCO,
The success probability ofis set to:

Imz(g)—mo(g)l (8.9)

ﬁgeomet'r'ic = Ig?(élél 9geometric

wheremz(g) (respectivelymo(g)) stands for the number of occurrencesgoin 7
(respectivelyO).

Bid Generation. The bid generation algorithm (algorithth 1) generates bids that are
subsequently combined into XOR bids, each one encoding the offer or request of a
bidder. This process makes explicit:

(1) which SCOs and how many of them to offer/request in a bundle;
(2) how to price the bundle; and
(3) which bids to combine in an XOR bid.

In what follows we detail each of this functions:

(1) Selecting the SCOs requested in a bundle and their multiplicitiésstly, for
each XOR bid £ ORBid) the algorithm composes each bigif ) by combining
the market SCOsMT'S ) returned by the market SCO generation process. The
number of market SCO%.{ransfBid ) to compose each bid is obtained from a
normal distributionV (ieddnew.sco, Taddnew.sco) (line 12).

Market SCOs are chosen from the set of market SCQ9'§ ) and their
component-wise multiplicityn the bundle bid is obtained from a geometric

distribution with success probabilitycometric (line 15-16). By assessing the
number of units to include in a bundle using a probabilistic distribution that de-
pends on each SCO we partially fulfil requirementtBere could be multiple
copies of similar SCOs in a bundldn fact, in this way SCOs repeated as in
equation[[BB) are likely to appear. In this way the authors providpatition
multiplicity associated to SCOs as well.

We also consider that, given an existing bundle, not all SCOs are equally likely
to be requested becausertain SCOs (for which complementarities hold) will be
more likely to appear together than otheas stated by requirement 2 in section
BZ1. To ease these complementarities we assume that the probability of adding
a new market SCO to an existing bundle only depends on the last SCO added and
not on the whole bundle (Markov property).

Itis clear that different copies of the same SCOs may be included in the solution.
That is, we may haveepetitionsof SCOs (as the one in equatidn{8.2)). Then,
requirement 3 is completely fulfilled.
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(2) Pricing the bundle. Next, the algorithm prices the SCO according to its
component-wise multiplicitylines 17-21). To fulfil valuations requirements
listed in sectiof.8.211, a pricing policy must provide the means to price a good,

Algorlthm 1 Bid Generation{/T'S, nxoRrwbids, [ Opricess MHaddnew.XOR.clauses
Oadd-new_SCO; Madd-new.SCO» Oadd-new_SCO» Oé)

1: for g = 1t0 ngoods dO

2: for b = 1tonxor.upids do

3: ppm’ces_bid[b7 g} — lu[g] : N(ly Uprices)
4:  end for
5: end for
6: Bids — ()
7: for b = 1tonxoRrwids do
8. XORBid — EmptyX ORBid()
9: nXORClauses N(Hadd.new.XOR_clausw Uadd.new.XOR_clause)
10:  for x = 1tonXORClauses do
11: Bid — EmptyCombinatorial Bid()
12: nTransfBid «— N (ftaddnew.SCO; Taddnew-SCO)
13: if z == 1then
14: for t = 1tonTransfBid do
15: MT — Select a SCO using Markov model frabdT'S with stateM T
16: multiplicity «— Geometric(MT .tgeometric) bid B.
17: T.inputs «— MT.inputs - multiplicity
18: T.outputs «— MT.outputs - multiplicity
19: T-pTiCC — Z pp'rices_bid[b7 g} - Z Pprices.bid [b7 g}
geT.outputs g€T.inputs
20: DPoffer < (T-tgeometric)multiplicjty
: 1—¢' “Poffer
21: discount «— a=—5————
22: Bid.t +— Bid.tUT
23: Bid.price — Bid.price + T.price - (1 — discount)
24: end for
25: else
26: model —Uniformly At Random generate a number between 1 and x-1
27: Bid «— XORBid(model)
28: if nTransfBid > length(XORBid(model).t) then
29: Bid — removeRandomTransition(Bid)
30: Bid «— recalculate Prices(Bid)
31 end if
32: if nTransfBid < length(XORBid(model).t) then
33 Bid — addRandomTransition(Bid)
34: Bid «— recalculatePrices(Bid)
35: end if
36: end if
37 XORBid «— XORBid U {Bid}
38:  end for
39:  Bids < Bids U {XORBid}
40: end for

41: return Bids
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a SCO, multiple units of the very same SCO, and a bundle of SCOs in a realistic
manner. As to pricing goods, in order to vary prices among bidders, the algorithm
generates a price for biddérfor good g, represented ag,ices bia[D, g], from

a normal distributionV (u[g], oprices), Wherepu[g] stands for good’s average
price in the market andl,, ;.. for the variance among bidders’ prices (lines 2-4).
Thereafter, a SCO’s price for bidders assessed in terms of the difference from
his valuation of its output goods with respect to his valuation of its input goods
(line 19). Accordingly,SCO valuations keep consistency with respect to bidder
valuations for goods involved in each S@® stated by requirement 5 in section
BZ1. Each bid valuation is obtained by adding the prices of its SCOs (line 23).
Hencevaluations are related to which SCOs compose the bussitated by re-
quirement 6 although varying among different bidders. Furthermore we propose
to introduce super-additivity by applying multiplicity-based discounts to SCOs
addressing the requirement thvatluations can be configured to be sub-additive,
additive o super-additive in the number of SCOs requeshkedther words, as

a general rule, the more unlikely for a SCO to be traded at certain units (multi-
plicity), the higher the discount to apply to its overall price. In this way we try
to capture in a realistic manner the way multiplicity-based (volume-based) dis-
counts are applied in the real world. Therefore, given SC®e firstly assess

the probabilityp, ¢ . Of the SCO to be traded wittbomponent-wise multiplicity

m from a geometric distribution with success probability,e:ric as follows:
Doffer = tgeometric™ P (line 20). Secondly, we compute the discount
to apply {iscount) as follows: discount = a# . Indeed, in this way

we manage to apply higher discounts to more unlikely offers within the range
[0,«]. Notice too that setting: to zero leads to no discounts, and thus to no
super-additivity.

(3) Which bids to combine in an XOR bidrinally, after creating each bid, the
algorithm adds it to the XOR bid under construction (line 37). The num-
ber of bids that compose an XOR bid is obtained from a normal distribution
N (Baddonew-X O Roclause, Tadd-new-X O R-clause) (IIN€ 9). We consider here require-
ment 7 listed in section8.2.1 and since different bids in XOR-relationships stand
for different alternatives or options for the bidder we propose to generate similar
bids for the same XORBId. The first bid of each XORBId is generated uniformly
at random (lines 13-24) whereas the rest of bids are created applying some mod-
ifications over one existing bid in the bundle (lines 25-36). The number of modi-
fications depends on the difference between the number of SCOs assigned to the
new bid and the existent one:

o ifitis less we remove randomly one SCO;
e ifitis greater we add uniformly at random new SCOs; and
o if it is equal we apply once both operations.
In all cases we finally recalculate the prices following the proposed price policy.

Hence the requirement theg¢ts of XOR’ed bids are constructed on a per-bidder
basisis fulfilled.
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Ngoods 20

NI0O market.SCOs n—SCOS/B
maxprice 100

Oprices 0.05
Pgood_requested 0.3
Hadd.new-SCO 1.0
Oadd-new-SCO 0

MHadd-new_XOR_clause 10

Oadd-new_XOR_clause 0

Pgood_in_input 0.2
Pgood_in_output 0.1
a 0.1
p_ISCOs 0.6
p.OSCOs 0.1
allow_cycles 1

Table 8.1: Artificial generator parameter values.

8.3 Empirical Evaluation

In this section, we firstly provide a preliminary comparison of DIP and CCIP on ar-
bitrary supply chain network topologies. Next, we run the CMWOSP-based solver on
acyclic network topologies.

8.3.1 DIP versus CCIP

In what follows, we provide a preliminary experiment to quantitatively assess the size
of the supply chain formation scenarios that CCIP allows to solve compared to DIP.

According to [Hillier and Lieberman, 1986), the number of decision variables is a
good index of the difficulty of an optimisation problem (although not the only one).
Since the number of decision variables of both DIP and CCIP depend on the number of
SCOs within the submitted bids, in order to compare their computational performances
and to analyse their scalability, we have chosen to observe their solving times as the
number of SCOs increases. In order to compare the DIP and CCIP MMUCA WD
algorithms, we have employed randomly generated MMUCA WDPs using the artificial
data set generator presented in sedfioh 8.2. We have set the generator parameters for
this experiment as listed in TalleB.1.

We ran our experiments as follows. We generated MMUCA WDP instances with
SCOs within the rang, 300]. We sampled the interval to generate 50 WDP instances
every 20 SCOs. Both solvers DIP and CCIP were fed with the very same WDP in-
stances. We solved each WDP instance using implementations of both solvers on
CPLEX 10.1 [ILOG, 2007), recording both the solutions and solving times. More-
over, we set a maximum time limit to 4800 seconds for each solver to find a solution for
each WDP instance. Whenever any of the solvers exceeded the time limit, we marked
the WDP agime exceedednd assigned. After that, we set its solving time to the time
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Figure 8.4: Comparison between DIP and CCIP.

limit to subsequently record it. Notice that we only considered feasible WDP instances
to calculate solving times since the time required by CPLEX to prove unfeasibility is
(usually) significantly lower than the time required to find an optimal solution. Finally,
we ran all tests on a Dell Precision 490 with double processor Dual-Core Xeon 5060
running at 3.2 GHz with 2Gb RAM on a Linux 2.6.

Figure{8M and 85 summarise the results of this experiment. [Eiglire 8.4 depicts the
median of the solving times obtained when varying the number of SCOs. Higilire 8.5
shows for both DIP and CCIP the number of instances that have been solved within
the time limit. Then, given a time limit, CCIP was able to solve problems with more
than twice the number of SCOs than DIP did solve. Indeed, whereas 120 represents
the empirical limit ¢50% of solved instances) on the number of SCOs for DIP, CCIP
starts reaching the time limit when solving WDP instances containing more than 250
SCOs. Furthermore, for WDPs with close to 100 SCOs, DIP is in median about 70
times slower than CCIP. This ratio rapidly increases as the number of SCOs gets close
to 120 in the presented scenario.

The observations stemming from this experiment are very promising. They in-
dicatethat we can obtain substantial reductions in the solving time when employing
CCIP instead of DIPdepending on the features of the scenario. The search space reduc-
tion obtained with solver CCIP translates into a significant decrease in computational
solving time complexity.
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8.3.2 Performances of the CMWOSP-based solver

In this section we aim at testing the performances of the CMWOSP algorithm (that can
be used only when thilixed Auction Nets acyclic). Recall that (sectidn_Z.B.3) at the
theoretical level the CMWOSP-based and CCIP solvers are equivalent whighxege
Auction Netis acyclic. However, if we employ CCIP we should compute the strongly
connected components beforehand. In this case, since we a-priori know thikée
Auction Nets acyclic, we directly employ the CMWOSP-based solver.

We have run this experiment as described in sedfion]8.3.1, but enforcing the bid
generator to build instances with no cycles. Fiduré 8.6 shows the CPU time required to
solve problem instances on acyclic nets for the CMWOSP-based solver.

Notice that the axis time scale in figufel8.6 is nearly four orders of magnitude
smaller than in figurEZ8l4. Hence, cycles in the mixed auction net may lead to a signifi-
cant increase in computational cost.

8.4 Conclusions

In this chapter we presented a preliminary empirical comparison of the CMWOSP-
based, DIP and CCIP solvers. Firstly, we compared DIP and CCIP on any type of
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Figure 8.6: Experiments with acyclic network topologiesl(reed time scale).

network topology. Next, we empirically assessed the performances of the CMWOSP-
based solver on acyclidixed Auction Nets

In chaptef, we proposed CCIP, a solver that dramatically improves the computa-
tional efficiency of DIP by taking advantage of the topological characteristics of WDPSs.
At the theoretical level, we proved that CCIP brings a drastic reduction in the number
of decision variables required to solve the WDP. In this chapter, we have empirically
observed that in the presented scenario CCIP:

(1) can deal with WDPs with more than twice SCOs than DIP;
(2) can significantly reduce the computation time (by a factor larger than 70).

Finally, we observed that in the considered parameter setting the CMWOSP-based
solver is four orders of magnitude faster in solving acyclic instances than DIP and
CCIP in solving instances produced by Vinyals’ generator.
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Chapter 9

Conclusions and Future Work

In this chapter, we draw some conclusions about the work developed in this dissertation
and we show some open paths to future development.

9.1 Conclusions

Most of the currently studied and employed combinatorial auctions deal with the nego-
tiation of goods, disregarding eventual production relationships holding among them.
The information about such relationships helps improve the outcome of a negotiation.
In order to fill this gap, we introduced two novel combinatorial auction extensions that
help in determining the revenue-maximising strategy for partner selection in supply
chain network design and planning. The former, caNadti Unit Combinatorial Re-
verse Auctions with Transformability Relationships among Goods (MUCR&aRgs

with make-or-buydecisions. The latter, calledixed Multi-unit Combinatorial Auc-
tions (MMUCA) deals withmake-or-buy-or-collaboratdecisions. Below, we sepa-
rately summarise our two contributions.

9.1.1 Make-or-Buy Decisions

In chaptefll, we thoroughly described the requirements that must be fulfilled in order to
solvemake-or-buydecision problems. Since we built upon combinatorial auctions, we
also explained the of CAs limitations that hinder their application to our problem. In
table[@1 we recall both the requirements and the corresponding CAs limitations associ-
ated with thamake-or-buydecision problem. We observed that all the CAs limitations
stem from the fact that they can neither express nor represent an auctioneer’s internal
manufacturing operations.

The first requirement hindering the application of CAs to our problem is that they
can neither represent internal manufacturing operations nor the producer/consumer re-
lationships among them. In order to apply CAs to solvertiadke-or-buydecision prob-
lem, we provided a formal framework to represent internal manufacturing operations.
At this aim we decided to employ Place/Transition Nets (PTNs) (Reisig, 1985) because:

203
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Requirements CAs | MUCRALR
express a request on bundles of goods v
express an auctioneer’s initial stock

express producer/consumer relationships among intereahtipns|
specify an auctioneer’s final requirements

express relationships among manufacturing operations,
auctioned goods, and received bids

formally and graphical represent the search space

associated to the auctioneer’s decision problem

7 | specify the auctioneer’s internal cost structure

8 | information about which in-house operations to perform

and in which order v

NNENENEN

Q| W|I N
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Table 9.1: Requirements of to tiaake-or-buyproblem.

(1) they naturally help us capture the notion of manufacturing operation;

(2) they have a well-defined semantics that can naturally accommodate the notion of
sequence of operations and consumer/producer relationships;

(3) they have an integrated description of both states and actions to characterise the
search space where operations occur;

(4) they have a large number of formal analysis methods that allow the investigation
of structural and behavioural (dynamic) properties of the net; and

(5) they have a graphical representation that is intuitively very appealing to study
problems related to the topology of the supply chain.

Thus, we modelled the internal production structure of an auctioneer by means of a
PTN, that we referred to aB7'N;. Not only does this formal representation allow us
to describe the quantity of resources either produced or consumed by a manufacturing
operation, the producer/consumer relationships among operations, and the quantity of
goods available to an auctioneer after each operation, but it also allow us to express
preconditions over a manufacturing operation by meansfiving rule. By the appli-
cation of the firing rule, we impose that a manufacturing operatiorocéybe run if
its input goods are available. This property is critical for the correct representation of a
production process: the implementation order of a production process is constrained by
the availability of resources at each step.

Then, aPT N; completely specifies an auctioneer’s internal manufacturing oper-
ations and the producer/consumer relationships among them (requirement (5) in table
B1). Moreover, aPT Ny allows an auctioneer to specify his requirements and com-
municate them to bidders (requirement (4) in tdbIé 9.1). This is obtained by specifying
a configuration (marking) to end up with. If an auctioneer communicates to a set of
bidders hisPT Ny along with a description of the final state of such PTN describing
his requirements, then the bidders can infer all the possible configurations of offers
fulfilling such requirements.
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Next, in order to express the relationships among internal manufacturing operations,
auctioned goods, and received bids ( requirement (3) in [20le 9.1), we incorporated the
received bids intd®T' N;. At this aim, we exploited the fact that a bid that offers goods
can be regarded as a transitidnd transition) that injects tokens int@7 N;. Unlike
transitions corresponding to manufacturing operations, bid transitions do not consume
input resources and can be fired only once. Pi1&V; augmented with bid transitions
was calledPT Ng (whereFE stands folExtendedl

By means of aPT Ng, an auctioneer can compactly express all the possible out-
comes of any of his possible decisions. By decision we mean the selection of bids
together with a sequence of internal operations to perform. Thi&d, & both for-
mally and graphically represents the search space associated to the auctioneer’s deci-
sion problem (requirement 6 in tafleP.1). We successfully linked bids, manufacturing
operations, and goods at auction, and we fully represent all the possible decisions an
auctioneer may take in a unified representation.

However, the goal of the auctioneer is not only to find a feasible outcome, but also
to find an outcome that minimises his costs. Thus, an auctioneer needs to quantify the
cost associated to each decision. With this aim, he has to associate a cost to the selection
of a bid, and a cost to the performance of a manufacturing operation. Unfortunately,
in their original definition, place transition nets do not incorporate the notion of cost
associated to the firing of a transition. Then, we defined a new type of Place Transition
Net, the so-calledVeighted Place Transition Nef8VPTN), to express the notion of
cost associated to transition firings or to the firing of sequences of transitions.

Then, we transformed botRT N; and PT Ng into WPTNs by associating to each
operation transitiorthe cost of the corresponding manufacturing operation and to each
bid transitionthe bid cost. The resulting WPTNs were callednsformability Network
Structure(TNS) andAuction Netrespectively: a TNS completely describes an auction-
eer’s internal manufacturing operations, whereas an Auction Net compactly represents
the set of possible auctioneer’s decisions along with the corresponding cost. Then,
Transformability Network Structu@ndAuction Netallow the auctioneer to express his
internal cost structure and to incorporate it into his decision problem (requirement (7)
in table[31).

The auctioneer needs to select the set of offers along with the sequence of internal
manufacturing operations to perform that minimise his costs and allow him to obtain
his final requirements (point (8) in tadleP.1). With this purpose, we defined the auc-
tioneer’s decision problem as an optimisation problem onAhetion Net Thus, we
introduced a new type of reachability problem over WPTNSs, and called this new op-
timisation problem th&Constrained Maximum Weight Occurrence Sequence Problem
(CMWOSP). Intuitively, this optimisation problem involves finding an optimal cost
sequence of transitions on a WPTN that leads to a final state which fulfils some con-
straints.

Additionally, we provided an important result on the CMWOSP. We showed that
the CMWOSP can be solved by means of Integer Programming on acyclic WPTNSs,
namely on WPTNs that do not contain any directed cycle.

The CMWOSP perfectly captures the semantics of the auctioneer’s decision prob-
lem in a MUCRAC(R: to find the set abid and operation transitionghat minimises
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an auctioneer’s revenue. Thus, we formalised the auctioneer’s decision problem in a
MUCRAtR as a CMWOSP on the Auction Net. Two major benefits, and therefore
contributions, stemmed from the formalisation of the MUCRAtR WDP by means of a
CMWOSP:

(1) the CMWOSP provides as a result both the set of bids to accept and the sequence
of operations to perform in order to obtain the auctioneer’s final requirements
(requirement (8) in tablgd.1);

(2) themake-or-buydecision problem can be solved by means of Integer Program-
ming for a large class of supply chain network topologies (acyclic).

Summarising, we provide to the auctioneer with a formalism to express his require-
ments and communicating them to bidders; and a rule for determining the optimal allo-
cation, i.e. the set of winning bids and the sequence of internal operations to perform.
In this way we provide a solution to all the requirements needed for extending combi-
natorial auctions for dealing with thmake-or-buydecision problem.

The solution to the WDP that we provide can be employed as a decision support
system in different settings:

e Combinatorial auctionsAs a winner determination solver in a MUCRAtR.

e Negotiation A buyer, after receiving a set of offers from his providers, can com-
pute the best offers and eventually counter-offer.

o What-if supply chain analysi\ buyer, aware of the prices and capacities of his
providers, can test different configurations of his supply chain.

Summary of MUCRAIR contributions
To summarise, the main contributions related torttake-or-buydecision problem are:

¢ MUCRAtR, an extension of combinatorial auctions that allows dealing with
make-or-buyecision problems in scenarios characterised by combinatorial pref-
erences. This new auction type provides an auctioneer with a framework to opti-
mise his outsourcing strategy.

e Weighted Place Transition Nets (WPTN) an extension of Place Transition
Nets. In WPTNs it is possible to associate a weight (cost) to the firing of each
transition. WPTN is a formal framework introduced to represent the MUCRAtR
space of auctioneer’s decisions and associated revenues.

e Constrained Maximum Weighted Occurrence Sequence Problem (CM-
WOSP), a new reachability problem defined on WPTNSs. It formalises the prob-
lem of selecting a cost-maximising sequence of actions leading from an initial
state to a set of possible final states.

e ILP solution to the CMWOSP. We prove that the CMWOSP can be solved by
means of ILP when the underlying WPTN is acyclic. We obtain this contribution
by exploiting results imported from the literature on Place Transition Nets.
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e Formalisation of the MUCRAtR WDP as a CMWOSP on an Auction Net
We show that CMWOSP perfectly captures the features of the auctioneer’s de-
cision problem in a MUCRALtR. This results provides three important benefits:
(1) an ILP formulation for a wide class of MUCRAtR WDPs (acyclic); (2) a for-
malism (PTN) to analyse the decision problem; and (3) the result of the WDP
provides both the set of selected bids andsbguencef operations to perform.

9.1.2 Make-Or-Buy-Or-Collaborate

In the second part of this dissertation we dealt with tineke-or-buy-or-collaborate
decision problem. As thoroughly explained in secfion.4.2, most of the requirements
arising in themake-or-buy-or-collaboratdecision problem are currently not supported

by state-of-the-art methodologies and tools. In tRBIE 9.2 we summarise the requirements
and the limitations of two state-of-the-art solutions, namely combinatorial auctions and
task dependency networks.

MMUCA

In order to overcome such limitations, we introduced an extension to combinatorial
auctions, calledMixed Multi-unit Combinatorial Auction§MMUCA), that fulfils all
the requirements of this decision problem.

Requirements CAs | TDN
1 | express an offer/request on bundles of goods v v
2 | express an offer of a SCO with a single output product v
3 | express an offer of a SCO with multiple output products
4 | express arequest of a SCO
5 | express the offer/request of a bundle of SCOs
6 | express combinations of bids v
7 | express the min/max number of times SCOs are performed
8 | express resource sharing
9 | express an auctioneer’s initial stock
10 | express the auctioneer’s final requirements
11 | supportacyclic supply chain networks v
12 | supportcyclic supply chain networks
13 | compute thescheduled sequenad SCOs to perform
14 | ensure computational tractability while preserving optitpa
15 | solve SCF decision problem v
16 | solve themake-or-buy-or-collaboratelecision problem
17 | formally represent the search space
18 | graphically represent the search space
19 | assess the computational tractability based on the proliteictisre

Table 9.2: Requirements of timeake-or-buy-or-collaboratproblem.

MMUCAs support the trading of operations across the supply chain: from the sup-
ply and demand of components to the supply and demand of manufacturing operations
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or services. With the aim of making MMUCA operative:

(1) we provided a formal language allowing bidders to express offers and requests
over supply chain operations; and

(2) we formalised the optimisation problem faced by an auctioneer aiming at select-
ing the subset of the offered supply chain operations maximising his revenue.

As to the formal language, we introduced a general-purpose concept that can rep-
resent any operation or service negotiated across the supply chain by any supply chain
stakeholder, the so-calleslipply chain operatioflSCO). The characterising features
of SCOs are the required and consumed input resources and the output resources pro-
duced by the service. According to requirements (1-8) in @able 9.2, the different actors
involved in a MMUCA require a language to express the offer/request of supply chain
operations. Then, we extended traditional bidding languages in the literature to deal
with SCOs

Bidding Language

We set SCOs as the atomic entities that can be negotiated across a supply chain. Build-
ing upon such building blocks, we defined a new bidding language that allows bidders:

(1) associating a value to bundles of SCOs withiratomic bid and

(2) combiningatomic biddnto complex expressions encoding a wide variety of pref-
erences over SCOs.

The provided bidding language generalises state-of-the art bidding languages and
provides supports to express bids in the following auction types:

e Multi-unit combinatorial auctions, where there may be several indistinguishable
copies of the same good available in the system.

e Double auctionavhere there are multiple buyers and multiple sellers. We inte-
grate direct and reverse auctions, the auctioneer will be able to both sell and
buy goods within a single auction. Or considering the bidders’ point of view, a
bidder can submit both offers and demands on sets of goods.

e Combinatorial exchange€ombinatorial case of double auctions. In this auction
type both buyers and seller submit combinatorial bids.

e Multi-unit Combinatorial Reverse Auctions with Transformability Relationships
among Good¢MUCRALR). We integrate the notion of internal manufacturing
operation into MMUCASs.

e Combinatorial auctions for supply chain formationntroduced in
(Walsh et al., 2000).
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The novelty of our bidding language with respect to the above-mentioned auction types
is that we further extend the idea of manufacturing operations by allowing agents to also
bid for supply chain operationsSince in our language a bidder is allowed to bid over
bundlesf supply chain operations, such language captures potential complementarities
among such operations. This extension offers a higher degree of expressiveness and
allows to generalise bidding languages for the above-listed auction types.

Summarising, the proposed bidding language can express several types of complex
bids and allows for bids on bundles of SCOs. By means of the introduced bidding
language we overcome requirements (1-8) in tBble 9.2.

The Winner Determination Problem

As to the Winner Determination Problem, we cannot rely on previous definitions in the
literature. According to requirement (13) in tabl€]9.2, and similarly to MUCRAIR, a
new dimension comes into play: tieederamong SCOs. For this reason, we provided

a new and general definition of winner determination problem that builds upon our
SCO-based bidding language. The WDP describes the rules to:

e select the winning bids that maximise an auctioneer’s revenue; and
e assess thexecution ordeof the SCOs contained in the winning bids.
Notice that the winning bids are those that:
o they fulfil the constraints specified by bidders via the bidding language;
e they maximise the auctioneer revenue.
and the sequence of SCOs representing the execution order is such that:
e it contains all and only the SCOs included in the winning bids;

e itis implementable, i.e. each SCO in the sequence must have its required inputs
available at the position where it is scheduled; and

e it produces at its end at least the set of goods required by the auctioneer.

Observe that therderin which agents consume and produce goods is of central impor-
tance in our model and affects the definition of the winner determination problem.

The rule to assess the set of winners provides a solution to requirements 10, 13,
15, and 16 in tablE®@.2. By including the constraint that the goods available after run-
ning all the selected supply chain operations are the ones specified by the auctioneer,
we provided a solution to requirement (9) in tablel 9.2. Since the definition does not
depend on the particular topology of the supply chain network, we provided a solution
to requirement (11-12) in table..2.

The new WDP definition extends and generalises the definition of winner determi-
nation for:

e Multi-unit combinatorial auctions



210 Chapter 9. Conclusions and Future Work

e Double auctions

e Combinatorial exchanges

¢ MUCRAIR

e Combinatorial auctions for supply chain formation

Thus, we provided both a bidding language and a definition of winner determination
problem that extends and generalises all the above-mentioned auction types. The bid-
ding language along with the winning rule fully characteristssed Multi-unit Combi-
natorial AuctiondMMUCAS).

A mathematical framework for the MMUCA WDP

Analogously to the MUCRAtR WDP, we provided a mapping of the MMUCA winner
determination problem to@onstrained Maximum Weight Occurrence Sequence Prob-
lem on theMixed Auction Net Via this mapping, we obtained the same advantages as
in the case of MUCRALR: (1) the solution is expressed asg@iencef SCOs; (2) we
provide a formal framework to analyse the properties of the decision problem; and (3)
we obtain an ILP-based formulation of the MMUCA WDP for acyclic Mixed Auction
Nets.

The Mixed Auction Netprovides a formalism to reason about MMUCAS,
and therefore also about all the WDPs associated to auctions subsumed by
MMUCA (requirements (17-18) in tablEZ®.2). In particular, we showed that the
Mixed Auction Netsubsumes the TNS and the Transformability Network Structure
(Walsh and Wellman, 2003).

Solving the MMUCA WDP

In this dissertation we provided three different IP solvers for computing the solutions
to the MMUCA WDP. The first one is based on the mapping to CMWOSP. This solver
deals with acyclic supply chain network topologies. The second one (DIP) was directly
built upon the definition of MMUCA WDP and applies to arbitrary network topologies.
The third one (CCIP) improves the performances of the second solver by exploiting
some domain knowledge.

The CMWOSP-based Solver By mapping to CMWOSP we obtain an ILP-based
formulation of the MMUCA WDP with integer programming for a wide class of WPTN
topologies.

The DIP Solver. We showed that restricting the Mixed Auction Net to be acyclic is
a significant limitation in some scenarios: it does not allow representing cyclic oper-
ations, resource sharing, and so on. We provided a new IP formulation, Catést
Integer ProgrammingDIP) solver, that is directly built upon the definition of MMUCA
WDP. DIP solves the WDP associated to any supply chain network topology, thus
broadening the classes of solvable problems.
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The CCIP solver. The main drawback of DIP is that it generates a number of decision
variables and constraints that limit its applicability to small-size and medium-size sce-
narios. DIP guarantees optimality, but decrements the computational tractability. We
proposed an ILP-based formulation for MMUCA WDP, namely@wnnected Compo-
nent Based Integer Programmii®@plver (CCIP), that dramatically improves the com-
putational efficiency of DIP. A search space reduction is achieved by analysing and
exploiting the precedence relationships among SCOs.

We conclude by observing that our approach solves some of the problems related
to centralised approaches to supply chain formation and scheduling (see Egciion 3.3.1).
Firstly, we can reduce the complexity associated to optimise the scheduling problem.
In fact, we have that

o the complexity of the scheduling problem is reduced due to the absence of time
dimension, without losing the possibility to express precedence relationships
among operations; and

e we provide a very efficient optimisation problem solver (CCIP).

Secondly, agents are not forced to reveal all their information truthfully. The part of
information revealed by agents (the bidders) is regulated by the bidding language and
the market-based mechanism. In market-based mechanisms agents can act strategically,
hide or lie on critical information, decide what to communicate and what not.

Empirical Evaluation

In the last part of this dissertation we provided a preliminary proof of concept about
the performances of the CMWOSP-based, DIP and CCIP solvers in a single scenario.
On the one hand, we compared DIP and CCIP on arbitrary network topologies. On the
other hand, we empirically assessed the performances of the CMWOSP-based solver
on acyclicMixed Auction NetsWe observed that in the considered parameter setting:

e CCIP outperforms DIP

e acyclic instances are much easier to solve

Summary of MMUCA Contributions

To summarise, the contributions in this dissertation related torrthke-or-buy-or-
collaboratedecision problem are listed in what follows.

¢ MMUCA is a new type of auction that allows to deal withake-or-buy-or-
collaborate decisions. This new auction type provides an auctioneer with a
framework to optimally select supply chain partners. MMUCA generalises and
extends several types of auctions (including MUCRAtR). Our contribution devel-
ops along two dimensions:

— MMUCA Bidding Language. We provide a novel bidding language that
allows agents to trade any type of operation across the supply chain. Such
a language extends and generalises several previous bidding languages.
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— MMUCA Winner Determination Problem . We provide a definition of
winner determination problem that selects, among the received bids, the
revenue-maximisingrdered sequencef supply chain operations to per-
form. The definition of MMUCA WDP extends and generalises the defini-
tion of winner determination problem of several existing auction types.

e Mixed Auction Net is a WPTN that compactly represents the space of possible
decisions an auctioneer may take, along with the revenue associated to each de-
cision. Thus, it formally and graphically represents the search space associated
to the MMUCA WDP, and therefore of theake-or-buy-or-collaboratdecision
problem.

e Mapping the MMUCA WDP to the CMWOSP . We succeeded in mapping the
MMUCA WDP to a CMWOSP on théMixed Auction Net As in the case of
MUCRALR, three benefits stemmed from this mapping: (1) the provided solution
is a sequence of SCOs; (2) a whole corpus of theoretical results from the PTN
literature can be imported to analyse the decision problem; and (3) we obtain an
ILP formulation of the WDP for acyclidlixed Auction Nets

o MMUCA WDP Solvers.

— CMWOSP-Based Solver This ILP-based solver is based on the mapping
of MMUCA and MUCRAtR to a CMWOSP and applies only to acyclic
mixed auction nets.

— DIP solver. This ILP-based solver works on arbitrary supply chain network
topologies. It overcomes a set of limitations connected with the use of the
CMWOSP-based solver.

— CCIP solver. This ILP-based solver dramatically improves the perfor-
mances of DIP solver because it allows a more concise representation of
the optimisation problem. This is obtained by exploiting the precedence
relations among supply chain operations.

Finally, consider that MUCRAtR and Combinatorial Auctions for supply chain
formation are a special case of MMUCA. Thus, the three solvers presented above
can be used to solve problems on any network topologies for them as well. Thus,
besides broadening the applicability of MMUCAS, we have also broadened the
applicability of MUCRAtR and CAs for SCF. MUCRAtR and CAs for SCF can

be extended to any network topology!

9.2 Future Work

We believe that this dissertation opens several paths to future developments. The most
interesting extension we envisage to MMUCAs is the incorporation of time and uncer-
tainty in the MMUCA model.

On the one hand, we envisage the possibility to express the release time and duration
of a supply chain operation. This information should be also included within the winner
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determination problem. In this way, an auctioneer would be able to fix deadlines to have
his production process completed. Moreover, the participants to the supply chain would
synchronise their operations by fulfilling not only the producer/consumer relationships,

but also eventual time constraints.

On the other hand, an auctioneer may be interested in assigning a success proba-
bility to each supply chain operation. In this way, he could minimise the incidence of
failures and shortcoming across the supply chain.

Next, in order to outperform CCIP we plan to explore the design of a local algo-
rithm. Although solutions may be sub-optimal with a local approach, the number of
transformations that can be dealt with is expected to be larger, and hence the size of the
supply chain scenarios we could tackle.

Furthermore, a more realistic setting requires to incorporate logistic providers, be-
sides component suppliers, contract manufacturers, and final customers. We do be-
lieve that, by relying on the intuitions provided by the graphical representation of
WPTNSs, we can easily incorporate constructs dealing with this kind of problems.
Along the same line, we aim at assessing the value of our approach in actual sce-
narios with real-world data (for instance in the automotive industry). If this was
not possible, we plan to improve the artificial bid generator summarised in section
by incorporating actual-world supply chain topologies, following the strategy of
(Ceyton-Brown and Shoham, 2006). Furthermore, we need to perform extensive exper-
iments with different parameter settings in order to empirically assess the improvement
of CCIP over DIP under different market conditions.

As to bidding languages, we have seen that the XOR-language is fully expressive
(over finitely-peaked valuations) in sectibnl5.3. Future work should address the ex-
pressive power of different fragments of the bidding language and compare the suc-
cinctness of different fragments for certain classes of valuations: which languages can
express what valuations, and which languages can do so using less space than others?
As to the case of direct single-unit combinatorial auctions, several results are given by
Nisan [Nisan, 2006), and some of these results may be relatively easy to transfer to our
model.

Theoretically, as to mechanism design, we do believe that we provided to game
theorists a new interesting and difficult problem. An interesting question to consider in
future work would be what exactly the auctioneer shamthouncevhen opening an
MMUCA. In the case of direct auctions this is the set of goods to be sold. If bidding for
transformations is possible, however, it may be difficult to foresee what types of goods
will be relevant to a solution, as this depends on the transformation capabilities of the
bidders in the market. Notice also that we have not provided any suggestion on how to
run a MUCRALR. This is not within the scope of this dissertation since it is a subject of
mechanism design. However, in order to illustrate how our contribution can be used by
a given mechanism, we offer an example about how a MUCRATR could be run:

(1) the auctioneer sends to bidders a WPTN representing his internal cost structure
along with some constraints on the final state of the WPTN (its requirements)

(2) the bidders compose and send back to the auctioneer meaningful combinatorial
offers based on the received information
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(3) the auctioneer builds aauction netand solves a CMWOSP on it

(4) from the CMWOSP solution the auctioneer can extract the set of winning bids
and the sequence of internal operations to subsequently perform

As to the mapping of the MMUCA WDP to CMWOSP, we have only exploited
a small portion of its potentiality. We recall that we employed it to provide an ILP
formulation for solving the WDP when the underlying topology is acyclic. However,
we do believe that we can exploit further theoretical tools derived by our mapping
along several dimensions. Some examples of this idea follows. First, it is known from
the literature that it is possible to increase the classes of Petri nets for which the state
equation represents the whole reachability set. As an example one may add linear side
constraints to the state equatipn (Esparza and Melzer| 2004). Therefore, we would like
to assess the applicability of these types of techniques to our problem. Secondly, the
validity of the mapping from MMUCA WDP to WPTNS is not restricted to bids in the
XOR language, but in fact it can easily cope with other languages. For instance, as
explained in sectiof 8.5, the extension to the OR-of-XOR bidding language is trivial.
Third, and most importantly, our mapping allows to analyse structural and behavioural
properties of the solutions to the MMUCA WDP. Thus, we aim at exploring the Petri
net techniques that is possible to import in the context of MMUCAs.

Finally, we do strongly believe that CMWOSP can be employed to study other
optimisation problems. In fact, the extension of CMWOSP to a broader class of opti-
misation problems that share similar features is a path that deserves much attention. In
particular, we talk about domains characterised by preconditions and postconditions on
variables interacting at multiple levels. The most promising of those domains is surely
deterministic planning.



Appendix A

OPL models of the MMUCA
WDP solvers

In this appendix, we present the ILP models of the solvers presented in this dissera-
tion expressed in the OPL modeling languége (Van Hentenryck] 1999). We present the
CMWOSP-based (secti@n 6.11.5), the DIP (sediionb.2.2), and the CCIP (decfidn 7.3.1)
solvers.

A.1 The CMWOSP-based Solver

{string} CGoods=...;

int nBids=...;

int nTransfornmations=...;
i nt nGoods=...;

int nBidders=...;

range Bids = 1..nBids;
range Transfs = 1..nTransformations;
range Bi dders= 1..nBi dders;

/ | DECLARATI ONS

/1l nput goods of each transformation

int T_in[Transfs][CGoods]=...;

/] Qut put goods of each transfornmation

int T out[Transfs][Goods]-=...;

/'l Associates to each SCO the nmultiplicity it appears
/1 within the bid

int multiplicity[Transfs]=...;

/1A set contains the transitions i ndexes correspondi ng
//to the same atomic bid
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{int} transf_same_bids[Bids]=...

/] Associ ates to each SCOits bid
int transf_to_bids[Transfs]=...

/I Whi ch bids conmpose which XORbid
{int} xor_bids[Bidders]=...

[llnitial marking provided by the auctioneer for free
int U.in[Goods]=...;

/I RFQ goods required by the auctioneer
int Uout[Goods]=...

/1 The cost associated to each bid
float costs[Bids]=...

/I Variables associated to eac SCOis fired at each step
dvar bool ean x_t[Transfs];

//Vari abl es associated to atoni ¢ bids
dvar bool ean x_b[ Bi ds];

/1 THE MODEL
nmnimze

sumb in Bids) x_b[b]*costs[b];
subject to {

/1(1) Each SCO can be fired as many tines as its
[l multiplicity if only if its bid is activated.
/1 This condidition also controls that selecting
/1 at least one SCOwithin a bid inplies selecting
/1 all the SCOs within the sane bid
forall(t in Transfs)

ct OnePosi ti onSel ect ed:

(x_t[t]) ==(x_b[transf to bids[t]]*multiplicity[t]);

[1(2) W enforce that the atom c bids subnmitted
/1l by each bidder are exclusive (XOR)
forall (b in Bidders)

ct XORbi d:
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/1(3) After having performed all

The DIP solver

(sum ( j in xor_bids[b]) x_b[j]) <=1:

t he sel ected SCOs,

/1 the set of goods held by the auctioneer nmust be
/1 a superset of the final goods Uout
forall (g in Goods)

ct Fi nal Confi guration:

(Ulin[g] + sunm(j in Transfs) x_ t[j]* ...

+(T_out[j][gl-T_in[j][g]))>=U_out[g];

A.2 The DIP solver

{string} Goods=...;

i nt
int
int
int
i nt

nBi ds=. . .;
nTransformati ons=. . .;
nGoods=. . . ;

nBi dders=. . .;

nSt eps=...;

range Bids = 1..nBids;

range Transfs = 1..nTransformations;
range Bi dders= 1..nBi dders;

range Steps= 1..nSteps;

/1l nput goods of each transformation
int T_in[Transfs][Goods]=...;

/] Qut put goods of each transfornmation
int T out[Transfs][Goods]-=...;

!/l Associates to each transfornation the
[l appears within the bid

int

multiplicity[Transfs]=...;

multiplicity it

/1A set contains the transitions indexes correspondi ng
/'l to the sane atonic bid
{int} transf_same_bids[Bids]=...;

/| Associ ates to each transformation its bid
int transf_to_bids[Transfs]=...;

/I Whi ch bids conpose which XORbid
{int} xor_bids[Bidders]=...;
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[llnitial marking provided by the auctioneer for free
int U.in[Goods]=...;

/I RFQ goods required by the auctioneer
int U out[Goods]=...

/1 The cost associated to each bid
float costs[Bids]=...

[l Variabl es associated to which transfornmation is fired
/1 at each step
dvar bool ean x_t[Steps][Transfs];

[/ Vari abl es associated to atom c bids
dvar bool ean x_b[ Bi ds];

mnimze
sum(b in Bids) x_b[b]*costs[b];
subject to {

/1(1) Each transformation can be fired as many tines

/[las its nultiplicity if only if its bid is activated.

/1 This condidition also controls that selecting at

/11 east one transformation within a bid inplies selecting

/1 all the transformations within the sane bid

forall (t in Transfs)

ct OnePosi ti onSel ect ed:
(sum(p in Steps) x_ t[p][t])==..

...==(x_b[transf_to_bids[t]]*multiplicity[t]);

/[1(2) W inmpose that at nost one transformation is
/] selected at each position of the sequence
forall (p in Steps)

ct OneTransf ormati onSel ect ed:

sum(t in Transfs) x_ t[p][t] <=1

[1(3) W enforce that the atom c bids subnmitted
/'l by each bidder are exclusive (XOR)
forall (b in Bidders)
ct XORbi d:
(sun(j in xor_bids[b]) x_b[j]) <=1
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[1(4) Check that each transition selected is enabl ed

/] at steps in the solution sequence where nore than

/1 one transition can be fired

forall (s in Steps,g in Goods)

ct Enoughl nput s:
(Ulinfg]l+sumk in 1..s-1,j in Transfs) x_t[Kk][j]*..

coox( T_out[j][g] - T_in[j][g]) )>= ..
..>= sum(l in Transfs) x_t[s][I]+*T_in[I][d];

[1(5) After having perforned all the sel ected

/ltransformations, the set of goods held by the

/1 auctioneer nust be a superset of the final goods

/1 Uout

forall (g in Goods)

ct Fi nal Confi gurati on:

(U.in[g]+sum(s in Steps,j in Transfs) x t[s][j]*...

coox(T_out[j][9]-T_in[j][g]))>=U out[g];

A.3 The CCIP Solver

{string} Goods=...; //CGood nanes

int nBids=...; //Nunber of bids

int nTransformations=...; //Nunber of transfornmations
int nGoods=...; //Nunmber of goods

int nBidders = ...; //Nunber of bidders or XORbids

/I Nurmber of sol utions positions
/1 = nunber of transformations * nmultiplicities
int nSteps=...

range Bids = 1..nBids;

range Transfs = 1..nTransformations;
range Bi dders=1.. nBi dders;

range Steps=1..nSteps;

/1l nput goods of each transformation
int T_in[Transfs][CGoods]=...

/] Qut put goods of each transfornmation
int T out[Transfs][Goods]=...

/'l Associates to each transformation the nultiplicity
/1 it appears within the bid
int multiplicity[Transfs]=...
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/1A set contains the transitions i ndexes correspondi ng
/'l to the same atomic bid
{int} transf_sanme_bids[Bids]=...

/[ Associ ates to each transformation its bid
int transf_to_bids[ Transfs]=...

/1A set contains the transitions indexes correspondi ng
/1 to bids of the same bidder
{int} xor_bids[Bidders]=...

[llnitial marking provided by the auctioneer for free
int U.in[Goods]=...;

/I RFQ goods required by the auctioneer
int U out[Goods]=...

/1 The cost associated to each bid
float costs[Bids]=...

/1 This array associates to each position in the solution
/'l the set of transformations that can fire
int S[Steps][Transfs] = ...

/1 This array associates 1 when the set of transfornations
/1 that might be fired at this positionis >1 or is one
/1 transformation that contains a self-1oop

int steps_to_check[Steps]=...

[/ Variabl es associated to which transformation is fired
/1 at each step
dvar bool ean x_t[Steps][Transfs];

[/ Vari abl es associated to atom c bids
dvar bool ean x_b[ Bi ds];

mnimze
sumb in Bids) x_b[b]*costs[b];
subject to {

/1(1) Each transformation can be should be fired as many
/] times as its multiplicity if only if its bid is activated.
/1 This condidition also controls that selecting at |east
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/1 one transformation within a bid inplies selecting al
/1 the transformations within the sane bid
forall (t in Transfs)
ct OnePosi ti onSel ect ed:
(sum(p in Steps) x_t[p][t])==(x_b[transf_to_bids[t]]=*...
xmultiplicity[t]);

/1(2) At npst one transformation can fire at each position
forall (p in Steps)
ct OneTransfornmati onSel ect ed:
sum(t in Transfs) x_ t[p][t] <=1

/[1(3) XOR semantics of a bidis fulfilled, at nobst one bid
/1 per bidder can be sel ected
forall (b in Bidders)
ct XORbi d:
(sum(j in xor_bids[b]) x_b[j])<=1

/1(4) Check that each transition selected is enabl ed at
/1 steps in the solution sequence where nore than one
// transition can be fired
forall (s in Steps:steps_to_check[s]==1,g in CGoods)
ct Enoughl nput s:
(Uin[g]l+sumk in Steps:k<s,j in Transfs) x t[K][j]*...
H(T_out[j][g]-T_in[j]l[g]) )>= ...
...>=sun(l in Transfs) x t[s][I]*T_in[I][9g];

[1(5) After having perforned all the sel ected,
/1 transformations the set of goods held by the
/'l auctioneer nust be a supersetof the final goods Uout
forall (g in Goods)
ct Fi nal Confi guration:
(U.in[g]+sum(s in Steps, j in Transfs) x_t[s][j]*...
+(T_out[j][gl-T_in[j]l[g]l))>=U_out[g];

[1(6) Transformations that can fired in each position
/1 of the solution sequence are restricted by function S
forall(p in Steps, j in Transfs)

ct Transformati onsPosition:

x_tipllil<=S[pl[i];
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