
Chapter 1

Introduction

Autonomous agents and multi-agent systems (MAS) are a recent approach to
analysing, designing and implementing complex software systems. Using agents
as a key abstraction provides a large and powerful collection of metaphors,
methodologies and tools that have allowed conceiving and implementing many
innovative types of software [Jennings et al., 1998].

One of the open questions posed in [Jennings et al., 1998] about MAS was:
“How to avoid or mitigate harmful overall system behaviour, such as chaotic
or oscillatory behaviour?”. One possible answer to this question is researchers’
proposal to regulate MAS by arranging agents in organisations or institutions.

Organisations and institutions are a key metaphor to regulate interactions of
self-interested agents because of the following properties:

openness – agents may enter and leave the MAS at runtime.

regulation – a MAS limits the range of agent behaviour accepted at runtime.
That is, all the actions agents can perform are not always permitted.

social structure – Agents are distinguished by their role or their goals.

activity structure – Analogously, each multi-agent activity is also classified by
the protocol, i.e. possible sequence of actions, that agents have to follow
to fulfil certain goals.

For instance, in a virtual market agents are usually classified as providers or cus-
tomers, and purchasing activities may be classified as different types of auctions
with their particular rules. These auctions guide and restrict the behaviour of
agents in order to acquire goods. Furthermore, in a virtual market new providers
and customers may appear or the existing ones may decide to cease their trading
behaviour for a long period of time.

Norms are an intrinsic part of human organisations and institutions. Norms
have subdued human societies for centuries thanks mainly to their fear of punish-
ments when violating them. Although agents cannot feel fear, they can emulate

1

2 Chapter 1. Introduction

it by reasoning for instance about the money loss of the fine(s) when trans-
gressing norms. Initially, agents were regimented following standard software
methodologies where software executes a given set of commands in a predeter-
mined order. However, as the agent community agreed autonomy is an essential
feature of agents, modelling agent behaviour with norms has been gaining pop-
ularity as they allow the partial characterisation of desirable actions of agents.

The purpose of this thesis is to explore how to computationally realise norms
in open, regulated, and structured MAS.

1.1 Motivation

In this section, using a motivating scenario, we pose the questions that this
thesis tries to answer. The scenario used throughout this thesis is a supply-
chain scenario in which companies and individuals come together in a virtual
(electronic) marketplace to conduct business.

Consider a wire factory WireMaking Ltd. that starts an auction to find
suppliers of copper. A buyer agent starts an auction for WireMaking Ltd. for
copper to which supplier agents may respond. A bid consists of the number of
kilograms of the given prime material. Then, after receiving bids the auctioneer
assesses the best offer(s).

To discourage unfulfilled promises, buyers may establish economic sanctions
or other persuasive measures to be applied in case of delivery problems. Thus,
the first setting is the regulation of one activity with norms of behaviour and
the following question arises: What kind of language should be used to specify
these norms of behaviour?

Some attempts to answer this question have been made, e.g. [Esteva, 2003] or
[López y López, 2003]1. However, an essential feature has not been thoroughly
treated by these approaches while establishing desirable agent behaviour, i.e.
time requirements. For instance, the wire factory may want a certain amount
of copper to be delivered by the end of the week after the auction takes place.
Therefore, after winning an auction, the suppliers are expected to deliver the
promised quantity of copper on time. Although the management of time re-
quirements is a desirable feature of the language we are searching for, we notice
that dealing with further constraints is also necessary. For instance, when a
supplier wins an auction it is expected to deliver the goods by the deadline, but
also to fulfil the quantity requirements claimed in the bid. Thus, a question that
this thesis tries to answer are:

Q.1 How to specify norms and make them operational to regulate a multi-agent
activity?

Retaking our supply chain example, WireMaking Ltd. may settle the bill
from time to time for the delivery of the promised quantity of copper. That
is, apart from the auction activity, agents may participate in a delivery activity

1See Chapter 2 for a more comprehensive list of work on norm languages.

1.1. Motivation 3

Regulatory
Middleware

Agent
k

Agent
j· · ·

Activity 1

Agent
f

Agent
i· · ·

Agent
x

Agent
1

Agent
y

· · ·

· · · Message

Regulatory
Middleware

Agent
y Agent· · ·

Activity i

Agent
g

Agent
i

···

Agent
2

Agent
m

Normative Position

· · ·

Normative Position

Figure 1.1: Propagation of normative positions

where goods and money are changed according to the agreement established by
successfully finishing an auction. Thus, when a supplier wins an auction, it is
expected to deliver the promised goods by participating in the delivery activity.

As figure 1.1 shows, in this setting actions in one activity may have effect on
other activities, e.g. a bid in an auction may generate the expectation of copper
deliveries. Furthermore, when the MAS is composed of a large number of activ-
ities, it is desirable to distribute them among several computers to reduce their
workload and provide a smoother and faster evolution of the activities. Thus,
the second setting we shall consider is the regulation of multiple distributed
activities. From the previous statements, a question that arises is:

Q.2 How to specify norms and make them operational to handle multiple con-
current activities?

In the literature it is admitted that norms may be contradictory
[Sartor, 1992]. Let us consider that a norm may allow all suppliers in an auction
to bid at a given moment. However, another norm may state that Shining-
Copper Co., a specific supplier agent, is forbidden to bid because of previous
unfulfilled deadlines on delivery. In [Kollingbaum, 2005], agents are provided
with mechanisms to resolve conflicts among norms. However, the norms have
to be conflict-free in order to apply them. For instance, what should the MAS
do? Should the MAS allow the bid or should it punish the agent? Thus, in
our opinion, the resolution of conflicts among norms should be applied in the
activity by the MAS.

Since our main goal is to regulate with norms MASs with multiple distributed
activities, the following questions also arise:

Q.3 How to computationally enact distributed regulation?

The questions posed above are the main concerns of this thesis. Figure 1.2
shows where the problem addressed in this thesis are. The main concern is to

4 Chapter 1. Introduction

Regulation of
interactions in

MAS

Multi-agent
Systems

Software
Engineering

Norms

Figure 1.2: This thesis as intersection of research fields.

provide a means to build a computational realisation of a class of MASs regulated
by norms. To accomplish this task we will benefit from studies on norms like
deontic logics [von Wright, 1951] and from already built, regulated MAS such
as electronic institutions [Rodŕıguez-Aguilar, 2001].

1.2 Contributions

In this section we introduce the key contributions of this thesis. We envisage the
software cycle of a norm as the translation from some requirements represented
in natural language to some executable language.

Figure 1.3 shows this process. We start with a representation of require-
ments in natural language. The representation of requirements as norms is
studied deeply in Law. Then, at design time, we envisage the representation
of norms with computer languages that it is also deeply studied in the field of
Artificial Intelligence and Law. Afterwards, during development, we translate
norms into a computer executable language and, in run-time, we feed the system
with normative positions and speech acts.

We use as starting point the work in [Noriega, 1997]
[Rodŕıguez-Aguilar, 2001] [Esteva, 2003] that proposes and implements
the Electronic Institution metaphor and software tools to establish an agent
framework where norms are implemented. We will explore this notion in
Chapter 2.

Later on, we will use a broader notion of institution based on [Searle, 1995]
where some unprocessed facts, called brute facts, are taken into consideration
and constitute by convention following the principles of constitutive rules new

1.2. Contributions 5

•  Obliged
•  Permitted
•  Forbidden
•  Uttered

Design
time

Development
Time

(translation)

Norms

Normative
positions and

Events
(Speech acts)

Production rules

Requirements

Run time

Normative state

• Jess
• IRL
• 

• VS2004
• AI & Law Ontologies
• … I

Figure 1.3: Implementation process of a norm

facts that are called institutional facts. That is, constitutive rules establish what
real facts count as some other virtual facts. For example, some pieces of paper
may count as a 5 euro bill if it follows pre-defined features as being issued by
certain authorities. Furthermore, regulative rules establish the restrictions on
the use of institutional facts. For instance, they defined the legal (and illegal)
use of bills, e.g it may be exchanged by items as a car but it is forbidden to
acquire certain substances considered illegal.

Initially, we focused on the regulation of an activity. The initial contributions
of this thesis are the translation of a norm language into a computer executable
language, namely a standard rule production system2, and the implementation
of two rule languages enhanced with norms and constraints3. Then, we focused
on the regulation of multiple distributed activities. The latter contribution of
this thesis is the implementation of a distributed architecture that models and
implements norm propagation and the resolution of normative conflicts that may
appear during norm propagation.

In order to answer our research question about how to specify norms that

2Upper horizontal arrow in Figure 1.3.
3Vertical arrow in Figure 1.3

6 Chapter 1. Introduction

regulate a multi-agent activity, we provide three norm languages. First, we pro-
pose a high-level language that allows the user to specify temporal aspects of
norms, e.g. activation, deactivation and deadlines. Second, we propose a rule
language to specify norms with arithmetic constraints. Third, we propose a lan-
guage with different types of rules to specify norms (with temporal aspects and
arithmetical constraints) over agents’ simultaneous speech acts and to specify
preventive and corrective actions that the system has to perform in each case.

Features Approach
Jess Norms (Ch. 3) IRL (Ch. 4) I (Ch. 5)

Constraints time management management
Distribution centralised one activity one activity

Concurrent Behaviour activities actions actions
Concurrent Regulation one action one action simultaneous actions

Rule execution forward-chaining no forward-chaining regulative rules

Table 1.1: Comparison of the different approaches of chapters 3, 4, and 5

Table 1.1 shows a comparison of features of the three languages. In order to
compare normative languages we use the following features:

Constraints – This feature depicts the degree of constraint management. We
distinguish no specification (–), specification only of time constraints
(time), specification of constraints (specification) and specification and
modification (management).

Distribution – This feature reflects the degree of distribution of norms. We
distinguish no distribution of norms (centralised), norms distributed in
each agent (agents) and norms distributed in each activity (activities).

Concurrent Behaviour – This feature shows the degree of concurrency on
actions. We distringuish no concurrency (–), concurrent actions in one
or no activity (actions), and concurrent actions in concurrent activities
(activities).

Concurrent Regulation – This feature depicts the degree of regulation on
concurrent actions. We distinguish:

• no regulation of actions (–),

• no regulation of actions but regulation of goals (goals),

• just monitoring and sanctioning of actions (monitoring),

• monitoring, sanctioning and prevention of one action at a time (one
action),

• monitoring, sanctioning and prevention of simultaneous actions (si-
multaneous actions).

1.2. Contributions 7

Rule execution – This feature shows how rules are triggered. We distin-
guish rules that are triggered until no new rule can be triggered (forward-
chaining), one execution per rule with different parameters (no forward-
chaining) and (regulative rules) different types of rules that change the
execution of forward-chaining and one-execution rules.

Jess norms is the first norm language dealing with time in electronic insti-
tutions. However, it does not manage arithmetic constraints. IRL is the first
language to include constraint management and the specification of the effects of
valid events. Notice that it has improved the aspect of constraint management.
However, it does not regulate a set of simultaneous actions. Finally, I is the first
language to include that aspect allowing, e.g., to prevent simultaneous actions
from being performed. For instance, we may avoid the modification by different
agents of the same variable at the same time. As for rule execution, Jess norms
uses a standard production system with forward chaining. However, IRL is a
rule-based system without forward chaining. Finally, language I provides sev-
eral types of rules: standard production rules with forward chaining, standard
reactive rules without forward chaining and rules to modify the execution of
previous rules, e.g. by ignoring agents’ actions or by preventing certain states.

In order to answer our research question about how to make norms oper-
ational to regulate a multi-agent activity, we provide an implementation for
the automatic translation of norms in our high-level language of chapter 3 into
rules of a standard production system. Using this automatic translation, we also
implemented a norm service for electronic institutions that complements the reg-
ulation of activities. Furthermore, we provide an implementation of interpreters
for the non-standard rule languages proposed in chapters 4–6.

In order to answer our research question about how to specify norms that
handle multiple concurrent activities, we propose a rule language for the propa-
gation of normative positions of agents among activities that we refer to as the
language of the normative structure.

Distribution

Ex
pr

es
siv

en
es

s

+

+

3:

4:

5:

6: Normative
Structure

Jess Norms

IRL

I

Figure 1.4: Comparison of the approaches proposed in each chapter

8 Chapter 1. Introduction

Figure 1.4 shows a comparison of the proposed languages in terms of ex-
pressiveness and distribution. On the one hand, the languages of chapters 3 -
5 grow in expressiveness without dealing with distribution. On the other hand,
the language of chapter 6 deals with distribution of activities in the same degree
of expressiveness as that of the language presented in chapter 4.

In order to answer our research question about how to make norms oper-
ational to regulate multiple concurrent and distributed activities, we provide
normative structures, a computational model for the propagation of normative
positions, and an algorithm to manage conflicting norms at runtime to com-
plement formal verification techniques. Our algorithm resolves conflicts among
norms at runtime (possibly enriched with arithmetical constraints). If the sys-
tem does not resolve a given conflict in the normative structure, agents can use
conflict resolution techniques to decide which conflicting normative position to
comply with. Supplementing formal verification techniques with practical cor-
rection techniques used at runtime is not new in software engineering. Usually,
imperative programming languages have constructs to detect and repair runtime
errors or exceptions. However, these techniques have not been applied before at
runtime to norms with constraints. The use of our proposed algorithm enables
software designers to correct the specification of desired behaviour of software
components at runtime.

Finally, in order to address our research question about how to computation-
ally enact distributed regulation a distributed architecture is presented for the
enactment of a regulated MAS. The architecture supports:

• the regulation of agent activities with norms activated as result of agent
behaviour,

• the activation of norms among activities and

• the resolution of conflicts among norms in an activity at runtime.

This architecture establishes the basis for building MAS enriched to enforce,
propagate, and resolve conflicts in, sets of norms at runtime. Furthermore, by
providing this architecture to electronic institutions we enable these to incorpo-
rate all the conceptual contributions we have proposed.

1.3 Structure

This thesis is organised as follows:
Chapter 2 surveys the work on the topics dealt with in this thesis. The

chapter is divided into an overview on norms in deontic logics and multi-agent
systems, on computational normative languages and on regulated multi-agent
systems.

Chapter 3 starts addressing Q.1 (normative language and computational
model) in a centralised manner and introduces a language for the representation
of norms in electronic institutions and its translation into Jess rules to give

1.4. Publications 9

them an operational semantics. These norms are complemented with temporal
operators to establish deadlines and the time of activation and deactivation.

In chapters 4 and 5, we start by regulating a single activity:
Chapter 4 presents IRL, a language for the representation and explicit

management of normative positions, i.e. permissions, prohibitions, and obliga-
tions active at runtime. This language replaces the language of chapter 3 in the
pursuit of Q.1 (normative language and computational model). This language
is supplemented with constraints conferring normative positions with more ex-
pressiveness since not only temporal constraints can be represented with this
language. In this chapter, we introduce the notion of normative positions, dif-
ferentiate various types of prohibitions and obligations and provide the means
to implement activities without taking into account relations among them.

Chapter 5 describes I, a language for the representation of normative po-
sitions, i.e. permissions, prohibitions, and obligations active at runtime, and
the system behaviour given these normative positions. The system, following
its specification, ignores, forces, expects events or prevents states of affairs. In
this chapter, we establish how to enforce normative positions by providing the
specification of the system behaviour. Furthermore, we classify the usual be-
haviour of systems that enforce normative positions and also we extend it with
the notion of preventing a state or ignoring, forcing, expecting or sanctioning
sets of simultaneous events. This language replaces the language of chapter 4 in
the pursuit of Q.1 (normative language and computational model).

Then, in chapters 6 and 7, we regulate multiple distributed activities:
Chapter 6 addresses Q.2, introducing the normative structure, an addi-

tional layer in the MAS model that propagates the effects of actions among
activities, and presenting an algorithm for the resolution of normative conflicts.
In this chapter, we extend the behaviour of the system with the actions of prop-
agating and resolving conflicts among normative positions, i.e. active norms. In
addition, we propose that activities specified in different languages can propagate
normative positions by means of the normative structure.

Chapter 7 addresses Q.3 by describing AMELI+, an extension of the agent
middleware for electronic institutions that incorporates the enactment of the
normative structure propagating formulae, including normative positions, among
several activities. These activities are regulated by normative positions and the
specification of their behaviour using languages as the ones presented in chapters
4 and 5. The architecture also embeds the algorithm presented in chapter 6 for
the resolution of normative conflicts.

Chapter 8 discusses the contributions of this research and how it can be
extended in the future.

1.4 Publications

The work in Chapter 3 has been published in:

• [Garćıa-Camino et al., 2005a] Garćıa-Camino, A., Noriega, P., and
Rodŕıguez-Aguilar, J.-A. Implementing Norms in Electronic Institutions.

10 Chapter 1. Introduction

In Proceedings of 4th International Joint Conference on Autonomous
Agents and Multi-agent Systems (AAMAS’05), pages 667–673, Utrecht,
The Netherlands.

• [Garćıa-Camino et al., 2005b] Garćıa-Camino, A., Noriega, P., and
Rodŕıguez-Aguilar, J.-A. Implementing Norms in Electronic Institutions
(Extended Abstract). In 3rd European Workshop on Multi-agent Systems
(EUMAS’05), Brussels, Belgium.

The work in Chapter 4 has been published in:

• [Garćıa-Camino et al., 2008] Garćıa-Camino, A., Rodŕıguez-Aguilar, J. A.,
Sierra, C., and Vasconcelos, W. (2008). Constraint rule-based program-
ming of norms for electronic institutions. Journal on Autonomous Agents
and Multi-Agent Systems. (In press).

• [Garćıa-Camino et al., 2006a] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-
A., Sierra, C., and Vasconcelos, W. A Distributed Architecture for Norm-
Aware Agent Societies. In Baldoni, M. et al., editors, Declarative Agent
Languages and Technologies III, volume 3904 of Lecture Notes in Artificial
Intelligence (LNAI), pages 89–105. Springer, Berlin Heidelberg.

• [Garćıa-Camino et al., 2006b] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-
A., Sierra, C., and Vasconcelos, W. A Rule-based Approach to Norm-
Oriented Programming of Electronic Institutions. ACM SIGecom Ex-
changes, 5(5):33–40.

• [Garćıa-Camino et al., 2006c] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-
A., Sierra, C., and Vasconcelos, W. Norm Oriented Programming of Elec-
tronic Institutions. In Proceedings of 5th International Joint Conference
on Autonomous Agents and Multiagent Systems. (AAMAS’06).

• [Garćıa-Camino et al., 2007b] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-
A., Sierra, C., and Vasconcelos, W. Norm-Oriented Programming of Elec-
tronic Institutions: A Rule-based Approach. In Coordination, Organiza-
tion, Institutions and Norms in agent systems II, volume 4386 of Lecture
Notes in Computer Science, pages 177–193. Springer-Verlag.

• [Garćıa-Camino et al., 2006d] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-
A., Sierra, C., and Vasconcelos, W. Norm-Oriented Programming of Elec-
tronic Institutions (Extended Abstract). In Fourth European Workshop
on Multi-Agent Systems (EUMAS’06), Lisbon, Portugal.

The work in Chapter 5 has been published in:

• [Garćıa-Camino, 2007] Garćıa-Camino, A. Ignoring, Forcing and Expect-
ing Concurrent Events in Electronic Institutions. In COIN III: Coordi-
nation, Organization, Institutions and Norms in Agent Systems. Revised
Selected Papers from the 2007 Workshop Series, volume 4870 of Lecture
Notes in Computer Science, pages 15–26. Springer.

1.4. Publications 11

The work in Chapter 6 has been published in:

• [Garćıa-Camino et al., 2007a] Garćıa-Camino, A., Noriega, P., and
Rodŕıguez-Aguilar, J.-A. (2006) An Algorithm for Conflict Resolution in
Regulated Compound Activities. In Engineering Societies in the Agents
World VII, volume 4457 of Lecture Notes in Computer Science, pages 193–
208.

• [Gaertner et al., 2007] Gaertner, D., Garćıa-Camino, A., Noriega, P.,
Rodŕıguez-Aguilar, J.-A., and Vasconcelos, W. Distributed Norm Man-
agement in Regulated Multi-agent Systems. In Proceedings of 6th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems.
(AAMAS’07).

• [Gaertner et al., 2008] Gaertner, D., Garćıa-Camino, A., Noriega, P.,
Rodŕıguez-Aguilar, J. A., and Vasconcelos, W. (2008). Normative struc-
tures for regulating open multi-agent systems. Journal on Autonomous
Agents and Multi-Agent Systems. (submitted).

• [Kollingbaum et al., 2007a] Kollingbaum, M. J., Vasconcelos, W. W.,
Garćıa-Camino, A., and Norman, T. J. Conflict resolution in norm-
regulated environments via unification and constraints. In Declarative
Agent Languages and Technologies V, volume 4897 of Lecture Notes in
Artificial Intelligence, pages 158–174. Springer.

• [Kollingbaum et al., 2007b] Kollingbaum, M. J., Vasconcelos, W. W.,
Garćıa-Camino, A., and Norman, T. J. Managing conflict resolution in
norm-regulated environments. In Engineering Societies in the Agents
World VIII, volume (In press) of Lecture Notes in Artificial Intelligence.
Springer.

The work in Chapter 7 has been published in:

• [Garćıa-Camino et al., 2007c] Garćıa-Camino, A., Rodŕıguez-Aguilar,
J. A., and Vasconcelos, W. (2007). A Distributed Architecture for Norm
Management in Multi-Agent Systems. In COIN III: Coordination, Or-
ganization, Institutions and Norms in Agent Systems. Revised Selected
Papers from the 2007 Workshop Series, volume 4870 of Lecture Notes in
Computer Science, pages 275–286. Springer.

