
E
x
p
l
o

it
in

g
 t

h
E
 S

t
r

u
c

t
u

r
E
 o

f
 D

iS
t
r

ib
u

t
E
D
 c

o
n

S
t
r

a
in

t
 o

p
t
im

iz
a

t
io

n

p

r
o

b
l
E
m

S
 t

o
 a

S
S
E
S
S
 a

n
D
 b

o
u

n
D
 c

o
o

r
D

in
a

t
io

n
 a

c
t
io

n
S
 i

n
 m

a
S

MONOGRAFIES DE L’INSTITUT D´INVESTIGACIÓ EN
INTEL·LIGÈNCIA ARTIFICIAL

4644447

M
e
ri

tx
e
ll
 V

in
ya

ls
 S

a
lg

a
d

o

CSIC

 Jordi Planes Cid

DESign anD implEmEntation of
Exact max-Sat SolvErS

 Consell Superior d´Investigacions Científiques

MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ

EN INTEL·LIGÈNCIA ARTIFICIAL

Number 38

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

Design and Implementation of Exact

MAX-SAT Solvers

Jordi Planes

Foreword by Chu Min Li and Felip Manyà

2008 Consell Superior d’Investigacions Cient́ıfiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Foreword by
Chu Min Li Felip Manyà
Modélisation, Information et Systèmes Institut d’Investigació en Intel·ligència Artificial
Université de Picardie Jules Verne Consell Superior d’Investigacions Cient́ıfiques

Volume Author
Jordi Planes
Departament d’Informàtica i Enginyeria Industrial
Universitat de Lleida

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

c© 2008 by Jordi Planes
NIPO: 472-08-052-7
ISBN: 978-84-00-08709-8
Dip. Legal: B-46479-2008

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IIIA, Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

A l’Àngels.

Contents

Foreword xv

Abstract xvii

Acknowledgments xix

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 4
1.3 Contributions . 5
1.4 Publications . 6
1.5 Overview . 8

2 Algorithms for SAT and MAX-SAT 11
2.1 Definitions . 11
2.2 SAT algorithms . 13

2.2.1 Resolution . 13
2.2.2 The Davis-Putnam procedure 13
2.2.3 The Davis-Logemann-Loveland procedure 15
2.2.4 Local search procedures for SAT 17
2.2.5 Overview of SAT algorithms 19

2.3 MAX-SAT algorithms . 25
2.3.1 Branch and Bound . 26
2.3.2 Local search and approximation algorithms for MAX-SAT 28
2.3.3 Overview of BnB algorithms for MAX-SAT 29
2.3.4 Solvers submitted to the MAX-SAT Evaluation 2006 . . . 33

2.4 Summary . 34

3 Lower Bounds 35
3.1 Related work . 35
3.2 Star rule . 38
3.3 Lower Bound UP . 39

3.3.1 Understanding the lower bound through the implication
graph . 40

vii

3.3.2 Implementing the lower bound UP 42
3.4 UP improved: Choosing the best unit clause 43

3.4.1 Lower bounds improving UP 43
3.4.2 Extending lower bound UP with Failed Literal Detection 50

3.5 Empirical evaluation . 51
3.5.1 Benchmarks . 51
3.5.2 Experimental results . 52

3.6 Summary . 55

4 Inference rules 65
4.1 Related work . 66
4.2 UP based inference rules . 68

4.2.1 Integer programming transformation of a CNF formula . 69
4.2.2 Inference rules . 69

4.3 On implementing the inference rules 73
4.3.1 Complexity, termination, and (in)completeness of the ap-

plications of the rules . 75
4.4 Experimental results . 76
4.5 Summary . 88

5 Implementing a weighted MAX-SAT solver 91
5.1 Basic equivalences for weighted MAX-SAT 92
5.2 Lazy solver . 92

5.2.1 Data structures . 93
5.2.2 Variable selection heuristic 94

5.3 Empirical evaluation . 96
5.3.1 Benchmarks . 96
5.3.2 Experimental results . 97

5.4 Summary . 106

6 Empirical comparison of MAX-SAT and weighted MAX-SAT 109
6.1 Solvers . 109

6.1.1 Other existing MAX-SAT solvers 109
6.1.2 Our contribution . 111

6.2 Experimentation on MAX-SAT 112
6.3 Experimentation on weighted MAX-SAT 113
6.4 Summary . 116

7 Conclusions 125

A Additional inference rules 127
A.1 Unit clause creation rules . 127

Bibliography 129

viii

List of Figures

2.1 Search tree for DLL applied to Example 2.4. 17
2.2 Search tree for MAX-SAT BnB applied to Example 2.5. 29

3.1 Created implication graph for Example 3.5 applying lower bound
UP. The dotted area contains the conflict graph. 45

3.2 Created implication graphs for Example 3.5 applying lower bound
UPS . Both graphs correspond to the conflict graphs. 46

3.3 Created implication graphs for Example 3.5 applying lower bound
UP∗. Both graphs correspond to the conflic graphs. 46

3.4 Implication graph for Example 3.6. The dotted area contains
the conflict graph nodes detected by UPS ; and the dashed area
contains the conflict graph nodes detected by UP∗. 47

3.5 Implication graph for Example 3.7. The dotted area contains the
conflict graph nodes detected by UPS and UP∗. 49

3.6 Impact of heuristics UP, UP∗ and UPS 53
3.7 Impact of failed literal detection on heuristics UP, UP∗ and UPS 54
3.8 Impact of failed literal detection on heuristics UP, UP∗ and UPS 56
3.9 Random MAX-2-SAT with 50 variables 57
3.10 Random MAX-2-SAT with 100 variables 58
3.11 Random MAX-3-SAT with 50 variables 59
3.12 Random MAX-3-SAT with 70 variables 60
3.13 Impact of heuristics UP, UP∗ and UPS on MAX-CUT 61
3.14 Impact of failed literal detection on heuristics UP, UP∗ and UPS

on MAX-CUT . 61
3.15 Impact of failed literal detection on heuristics UP, UP∗ and UPS

in MAX-CUT . 62
3.16 Random MAX-CUT with 50 variables 63

4.1 Random MAX-2-SAT with 50 variables 77
4.2 Random MAX-2-SAT with 100 variables 78
4.3 Random MAX-3-SAT with 50 variables 79
4.4 Random MAX-3-SAT with 70 variables 80
4.5 Random MAX-CUT with 50 variables 81
4.6 Random MAX-2-SAT 50 variables 82
4.7 Random MAX-2-SAT 100 variables 83

ix

4.8 Random MAX-3-SAT 50 variables 84
4.9 Random MAX-3-SAT 70 variables 85
4.10 MAX-CUT . 86

5.1 Comparison of applying the first phase only and the two phases
in the variable selection heuristic. 95

5.2 Weighted Random MAX-2-SAT 50 variables 99
5.3 Weighted Random MAX-2-SAT 100 variables 100
5.4 Weighted Random MAX-3-SAT 50 variables 101
5.5 Weighted Random MAX-3-SAT 70 variables 102
5.6 Random Graph Coloring . 103
5.7 Random MAX-ONES 2-SAT . 104
5.8 Random MAX-ONES 3-SAT . 105

6.1 Random MAX-2-SAT solver comparison 114
6.2 Random MAX-2-SAT with 150 variables solver comparison . . . 116
6.3 Random MAX-3-SAT solver comparison 117
6.4 Random MAX-CUT solver comparison 119
6.5 Random weighted MAX-2-SAT solver comparison 120
6.6 Random weighted MAX-3-SAT solver comparison 121
6.7 Graph coloring solver comparison 122
6.8 MAX-ONES solver comparison 123

x

List of Tables

2.1 Execution track of a BnB for Example 2.5. 28

4.1 Rule evaluation by benchmarks in the MAX-SAT Evaluation 2006. 90
4.2 Rule evaluation by benchmarks in the MAX-SAT Evaluation 2006

with failed literal detection . 90

5.1 Evaluation results for the seven solvers 107

6.1 MAX-SAT solvers from other research works. 111
6.2 MAX-SAT solvers we have implemented 112
6.3 Experimental results for all the unweighted benchmarks in the

MAX-SAT Evaluation 2006. 115
6.4 Experimental results for all the weighted benchmarks in the MAX-

SAT Evaluation 2006. 118

xi

List of Algorithms

2.1 Resolution(φ) . 14
2.2 DavisPutnam(φ) . 15
2.3 DavisLogemannLoveland(φ) . 16
2.4 LocalSearch(φ) : Outline of a general local search procedure for

SAT . 18
2.5 MaxSatBnB(φ) : Branch and Bound for MAX-SAT 26
3.1 LowerBoundIC(φ) : Computation of lower bound inconsistency count 36
3.2 LowerBoundLB4(φ) : Computation of lower bound LB4 37
3.3 StarRule(φ) : Computation of lower bound star rule 39
3.4 LowerBoundUP(φ) : Computation of lower bound UP 43
3.5 UnitPropagation(φ) : Application of unit propagation for lower

bound UP . 44
3.6 FailedLiteral(φ′, underestimation) : Computation of lower bound

Failed Literal . 50
5.1 SolverLazy(φ, i) : Branch and Bound in Lazy 92

xiii

Foreword

A growing number of academic and real-world combinatorial problems are suc-
cessfully being tackled by reducing them to Boolean Satisfiability (SAT), or to
some well-known extensions of SAT such as Maximum Satisfiability (MAX-SAT),
Multiple-Valued Satisfiability (Mv-SAT), Pseudo-Boolean Optimization (PBO),
Quantified Boolean Formulas (QBF), and Satisfiability Modulo Theories (SMT).
In fact, for many combinatorial search and reasoning tasks, the translation into
a clausal formalism followed by the use of a satisfiability solver is often more
effective than the use of a solver dealing with the original problem formulation.

This monograph, which is based on the Ph.D. dissertation of Dr. Jordi Planes,
is concerned with the design, implementation and evaluation of exact MAX-SAT
solvers, with special emphasis on devising good quality lower bounds, powerful
inference techniques, clever variable selection heuristics, and suitable data struc-
tures. As a result of that research, four new MAX-SAT solvers —implementing
the branch and bound scheme and incorporating the novel techniques presented
here— are currently publicly available, and often used by the research commu-
nity.

Among all the contributions, we would like to highlight the new inference
rules, which transform a MAX-SAT instance into an equivalent and simpler
MAX-SAT instance; and the computation of underestimations in the lower
bound based on detecting disjoint unsatisfiable subformulas by applying unit
propagation and failed literal detection. Such techniques are, nowadays, part
of some of the most successful MAX-SAT solvers, and have shown, in the in-
ternational evaluations of MAX-SAT solvers held so far, that they have a great
impact on the solvers performance.

Finally, we hope that you enjoy reading this monograph, which is the fruit
of the enthusiasm and effort that the author put into this scientific adventure
which we had the pleasure to supervise.

Bellaterra, October 2008

Chu-Min Li
Université de Picardie Jules Verne

Felip Manyà
IIIA-CSIC

xv

Abstract

The Propositional Satisfiability Problem (SAT) is the problem of determining
whether a truth assignment satisfies a CNF formula. Nowadays, many hard
combinatorial problems such as practical verification problems in hardware and
software can be solved efficiently by encoding them into SAT.

In this thesis, we focus on the Maximum Satisfiability Problem (MAX-SAT),
an optimization version of SAT which consists of finding a truth assignment that
satisfies the maximum number of clauses in a CNF formula. We also consider
a variant of MAX-SAT, called weighted MAX-SAT, in which every clause is
associated with a weight and the problem consists of finding a truth assignment
in which the sum of weights of violated clauses is minimum. While SAT is NP-
complete and well-suited for encoding and solving decision problems, MAX-SAT
and weighted MAX-SAT are NP-hard and well-suited for encoding and solving
optimization problems.

This thesis is concerned with the design, implementation and evaluation of
exact MAX-SAT solvers based on the branch and bound scheme, with special
emphasis on defining good quality lower bounds, powerful inference techniques,
clever variable selection heuristics and suitable data structures.

First, we have defined three original lower bound computation methods: star
rule, UP, and UP enhanced with failed literal detection. All of them compute an
underestimation of the number of clauses that will become unsatisfied if a partial
assignment is completed. Such an underestimation is the number of disjoint
subsets that can be declared unsatisfiable by deriving, in polynomial time, a
resolution refutation from the clauses in the subset. The star rule considers
subsets formed by n unit clauses and an n-ary clause which is the disjunction of
the complementary literals of the literals occurring in the unit clauses; a linear
unit refutation can be derived from those clauses. UP detects contradictions via
unit propagation and identifies, for every contradiction, a subset of the clauses
involved in the unit propagation from which a unit refutation can be derived.
UP enhanced with failed literal detection allows to identify subsets from which
both unit and non-unit refutations can be derived.

Second, we have defined a set of novel inference rules that transform a MAX-
SAT instance φ into another MAX-SAT instance φ′ in such a way that the
number of unsatisfied clauses in φ is the same as the number of unsatisfied
clauses in φ′ for every assignment. All of them can be seen as unit resolution

xvii

refinements adapted to MAX-SAT.
Third, we have incorporated the lower bounds and the inference rules into a

branch and bound algorithm in such a way that the computation of the lower
bounds and the application of the inference rules is done simultaneously by
inspecting the implication graph. As a result, we have developed a MAX-SAT
solver, called MaxSatz, which was the best performing solver in the First MAX-
SAT Evaluation, which was a co-located event of SAT-2006.

Fourth, we have defined extremely efficient lazy data structures for branch
and bound MAX-SAT solvers with a static variable ordering. We have incorpo-
rated those data structures into a weighted MAX-SAT solver, called Lazy, which
implements a lower bound and simple weighted MAX-SAT inference rules.

Finally, we have conducted a comprehensive experimental investigation that
provides empirical evidence of the good performance profile of the lower bounds,
inference rules, variable selection heuristics and data structures introduced. The
results for both randomly generated and realistic problems show that the solvers
developed in this thesis outperform state-of-the-art MAX-SAT and weighted
MAX-SAT solvers on a wide range of instances.

xviii

Acknowledgments

First, I would like to thank my supervisors Dr. Chu Min Li and Dr. Felip
Manyà. They have been continuously fostering enthusiasm and come along with
new challenges. I feel extremely lucky working with them because I consider
they are together the perfect Ph.D. supervisor: they have some complementary
skills. Yet, they share something in common: generosity. I am in debt with
them.

I also thank the members of the examining committee: Dr. Javier Larrosa,
Dr. Daniel Le Berre, Dr. Jordi Levy, Dr. Hans van Maaren, and Dr. Pedro
Meseguer. They have given valuable comments to improve the dissertation.

I would also like to thank the members of Escola Politècnica Superior with
whom I shared coffees and friendship: Josep, Paula and Carlos, Tere, Carlos,
Carles, Ramón, Cèsar, Fernando, Josep Llúıs, Maite, . . . Many thanks to mes
collègues amiénois too, with whom I relished many more coffees and friendship
in Le Cyrano: Stéphane, Sylvain, Sidney, Gilles and Laure.

Thanks to the Universitat de Lleida for their technical support and assis-
tance. Specially to Carles, who maintains the cluster, and is relished that I have
finished my Ph.D. dissertation (and the corresponding experimentation).

And finally, thanks to my wife Àngels. This thesis is dedicated to her, without
whose love and support this would not have been possible.

xix

Chapter 1

Introduction

As soon as an Analytical Engine exists,
it will necessarily guide the future course of the science.

Whenever any result is sought by its aid,
the question will then arise —

But what course of calculation can these
results be arrived at by the machine

in the shortest time?
Charles Babbage (1864)

1.1 Context

Since Charles Babbage, many computer scientists have been asking themselves
the same question: may I find a way to make the computer solve a problem in
shorter time? In the process of pursuing such a goal, several important compu-
tational problems have been identified as core problems in Computer Science.
Among them it stands out the satisfiability problem (SAT), which is the prob-
lem of deciding if there exists a truth assignment that satisfies a propositional
formula in conjunctive normal form (CNF formula). Such a problem is classified
among combinatorial problems, which commonly imply finding values to a set
of variables which are restricted by a set of constraints; in some cases the aim is
to find a solution satisfying all the constraints (satisfaction problems), in other
cases the aim is to find a solution satisfying as many constraints as possible
(optimization problems).

In this thesis, we focus on an optimization version of SAT: the Maximum
Satisfiability problem (MAX-SAT). This problem consists of finding a truth as-
signment that satisfies the maximum number of clauses in a CNF formula. We
will see in the sequel that the MAX-SAT algorithms actually solve the equiva-
lent problem of finding a truth assignment that falsifies the minimum number
of clauses in a CNF formula, since this carries implementation benefits. Some-
times, we also consider a variant of MAX-SAT, called weighted MAX-SAT. In

1

2 Chapter 1. Introduction

weighted MAX-SAT, every clause has a weight and the problem consists of find-
ing a truth assignment in which the sum of weights of violated clauses is minimal.
While SAT is NP-complete [Coo71], both MAX-SAT and weighted MAX-SAT
are NP-hard [GJ79].

We started our research on MAX-SAT in 2002, when SAT was —as it
is nowadays— a central topic in Artificial Intelligence and Theoretical Com-
puter Science. At that time, there were publicly available complete solvers
such as Chaff [MMZ+01], GRASP [MSS99], Posit [Fre95], Relsat [BS97], and
Satz [LA97a, LA97b], as well as local search solvers such as GSAT and Walk-
SAT [SK93, SKC94, SLM92]. There was also enough empirical evidence about
the merits of the generic problem solving approach which consists of modeling
NP-complete decision problems as SAT instances, solving the resulting encodings
with a state-of-the-art SAT solver, and mapping the solution back into the origi-
nal problem. This generic problem solving approach was competitive in a variety
of domains, including hardware verification [MSG99, MMZ+01, VB03], quasi-
group completion [AGKS00, KRA+01], planning [KS96, Kau06], and schedul-
ing [BM00].

Despite the remarkable activity on SAT, there was a reduced number of pa-
pers dealing with the design and implementation of exact MAX-SAT solvers, and
solving NP-hard problems by reducing them to MAX-SAT was not considered a
suitable alternative for solving optimization problems. This is in contrast with
what happened in the Constraint Programming community, where the Weighted
Constraint Satisfaction Problem (Weighted CSP) was a problem attracting the
interest of that community, which published a considerable amount of results
about weighted CSP [MRS06].

We decided to start our research by designing and implementing branch and
bound MAX-SAT solvers in the style of the exact solvers developed by Wal-
lace and Freuder [WF96], and Borchers and Furman [BF99], which can be seen
as an adaptation to MAX-SAT of the Davis-Logemann-Loveland (DLL) proce-
dure [DLL62]. We thought that we could produce good performing MAX-SAT
solvers by adapting to MAX-SAT the technology incorporated into the existing
DLL-style SAT solvers, which were equipped with optimized data structures,
clever variable selection heuristics, clause learning, non-chronological backtrack-
ing, randomization and restarts.

Before going into more technical details, let us introduce how works a basic
branch and bound (BnB) algorithm for MAX-SAT: BnB explores the search
space induced by all the possible truth assignments in a depth-first manner. At
each node of the search tree, BnB compares the number of clauses falsified by
the best complete assignment found so far —called Upper Bound (UB)— with
the Lower Bound (LB), which is the number of clauses falsified by the current
partial assignment plus an underestimation of the number of clauses that would
become unsatisfied if the current partial assignment is extended to a complete
assignment. Obviously, if UB ≤ LB, a better assignment cannot be found from
this point in the search, and BnB prunes the subtree below the current node and
backtracks to a higher level in the search tree. If UB > LB, the current partial

1.1. Context 3

assignment is extended by instantiating one more variable; which leads to create
two branches from the current branch: the left branch corresponds to instantiate
the new variable to false, and the right branch corresponds to instantiate the
new variable to true. The solution to MAX-SAT is the value that UB takes
after exploring the entire search tree.

At first sight, we observe two differences between BnB and DLL: unit propa-
gation is not applied since it is unsound for MAX-SAT, and a lower bound has to
be updated at each node of the search tree. On the one hand, the fact that unit
propagation does not preserve the number of unsatisfied clauses led us to study
new forms of inference for MAX-SAT. On the other hand, the fact of having to
compute a lower bound at each node of the search tree led us to improve the
existing lower bound computation methods.

Unit propagation is unsound for MAX-SAT, in the sense that the number of
clauses falsified by an assignment is not preserved between a CNF formula φ and
the formula obtained after applying unit propagation to φ. For example, if we
apply unit propagation to φ = {p1,¬p1∨¬p2,¬p1∨p2,¬p1∨¬p3,¬p1∨p3}, we get
two unsatisfied clauses. While assigning all the variables to false falsifies exactly
one clause of φ. Therefore, if unit propagation is applied in BnB, non-optimal
solutions can be obtained.

We devoted a part of this thesis to define sound and efficiently applied res-
olution rules for MAX-SAT that are, in a sense, the MAX-SAT counterpart of
unit resolution. Let us see an example of inference rule: Given a MAX-SAT
instance φ that contains three clauses of the form l1, l2, l̄1 ∨ l̄2, where l1, l2 are
literals, replace φ with the CNF formula

φ′ = (φ \ {l1, l2, l̄1 ∨ l̄2}) ∪ {�, l1 ∨ l2}.

Note that the rule detects a contradiction from l1, l2, l̄1 ∨ l̄2 and, therefore, re-
places these clauses with an empty clause �. In addition, the rule adds the
clause l1 ∨ l2 to ensure the equivalence between φ and φ′. An assignment that
falsifies l1 and l2 then falsifies 2 of those 3 clauses, while any other asignment
falsifies exactly 1 clause. The last clause added by the rule captures such a state.

The inference rules contribute by deriving new empty clauses, but it is also
important to improve the underestimation of the number of clauses that will
become unsatisfied if the current partial assignment is completed. Basically,
when we started our research, the underestimations defined for MAX-SAT were
based on counting the number of complementary unit clauses in the CNF formula
under consideration.

We realized that a suitable underestimation is provided by the number of
disjoint unsatisfiable subformulas which can be computed with an efficient pro-
cedure. In a first step [LMP05], we defined a powerful lower bound computation
method based on detecting disjoint unsatisfiable subformulas by applying unit
propagation. Once a contradiction is detected by unit propagation, we derive a
unit resolution refutation, and the clauses involved in that refutation are taken
as an unsatisfiable subformula. We repeat that process until we are not able to
detect further unsatisfiable subformulas. We showed that this method, which

4 Chapter 1. Introduction

can be applied in time linear in the length of the CNF formula (O(ub × |φ|),
where ub is an upper bound of the minimum number of unsatisfied clauses in
|φ|, and φ is the length of φ, leads to lower bounds of good quality. In a second
step [LMP06], we enhanced our method by also applying failed literal detection.
This way, we can detect resolution refutations (not necessarily unit resolution
refutations) which can be computed efficiently and are beyond the reach of unit
propagation.

Interestingly, we showed that inference techniques used in SAT cannot be
applied to MAX-SAT because they can produce non-optimal solutions, but we
applied such techniques to dramatically improve the computation of underesti-
mations for lower bounds.

Besides defining original inference rules and good quality lower bounds, a
constant concern of our work was to pay special attention to implementation
issues and, in particular, to the definition of suitable data structures that allow
one to perform as efficiently as possible the more common operations. Therefore,
we defined optimized data structures for implementing the application of the
inference rules and lower bounds, and investigated the use of very basic lazy
data structures for implementing a simple and fast weighted MAX-SAT solver.

In the course of the thesis, we implemented four MAX-SAT solvers: AMP,
Lazy, UP, and MaxSatz. The more sophisticated solver is MaxSatz, which in-
corporates the main contributions of our research. Further details about these
solvers and the ideas behind can be found in the remaining chapters. At this
point, we just would like to mention that MaxSatz was the best performing solver
on all the sets of MAX-SAT instances that were solved in the First MAX-SAT
Evaluation, a co-located event of the Ninth International Conference on Theory
and Applications of Satisfiability Testing (SAT-2006).

1.2 Objectives

The general objective of our research is the design, implementation and eval-
uation of exact algorithms for MAX-SAT with the ultimate goal of improving,
and converting into a suitable alternative for solving optimization problems, the
generic problem solving approach consisting of modeling optimization problems
as MAX-SAT instances, solving the resulting encodings with a MAX-SAT solver,
and mapping the solution back to the original problem.

The particular objectives of the thesis can be summarized as follows:

• Define underestimations of good quality for lower bound computation
methods that allow one to prune as soon as possible the parts of the search
space that do not contain any optimal solution.

• Define sound resolution-style inference rules for MAX-SAT whose appli-
cation allows one to derive empty clauses as early as possible during the
exploration of the search space.

1.3. Contributions 5

• Design algorithms that combine the computation of underestimations and
the application of inference rules in such a way that both operations can
be done efficiently and accelerate the search for an optimal solution.

• Design and implement MAX-SAT solvers, equipped with optimized data
structures and clever variable selection heuristics, that incorporate the
MAX-SAT solving techniques we defined.

• Conduct an empirical evaluation of the techniques developed in this the-
sis, and in particular of the underestimations and inference rules devised.
Identifying their strengths and weaknesses should allow us to gain new
insights for developing more powerful MAX-SAT solving techniques.

• Conduct an empirical comparison between our solvers and the best per-
forming state-of-the-art MAX-SAT solvers. Knowing the performance pro-
file of our competitors can help improve the performance of our solvers.

• Identify MAX-SAT techniques that can be naturally extended to weighted
MAX-SAT, and analyze the implementation issues that should be recon-
sidered to develop fast weighted MAX-SAT solvers.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

• We defined lower bound computation methods that detect disjoint unsat-
isfiable subformulas by applying unit propagation, and subsume most of
the existing MAX-SAT lower bounds. As a result, we defined three new
lower bounds: UP , UPS , and UP ∗. The main difference among them is
the data structures that implement for storing unit clauses. These data
structures have an impact on the number of unit clauses of the MAX-
SAT instance under consideration that are used in the derivation of unit
resolution refutations.

• We enhanced the previous lower bounds with failed literal detection, giving
rise to three additional lower bounds: UPFL, UPS

FL, and UP ∗
FL.

• We defined a set of original inference rules for MAX-SAT which are sound
and can be applied efficiently. All of them can be seen as unit resolution
refinements adapted to MAX-SAT.

• We have analyzed the time complexity of the lower bounds and the in-
ference rules proposed. Most of them can be applied in time linear in
the size of the CNF formula. In particular, we defined an algorithm that
combines the application of powerful lower bounds and inference rules in
time O(ub× |φ|), where ub is an upper bound of the minimum number of
unsatisfied clauses and |φ| is the size of the CNF formula φ.

6 Chapter 1. Introduction

• We have extended some of the previous lower bounds and inference rules
to weighted MAX-SAT.

• We designed and implemented four MAX-SAT solvers:

AMP : This was our first solver. It extends the solver of Borchers and
Furman [BF99] by incorporating a different variable selection heuris-
tic and a more powerful underestimation.

Lazy : This was our second solver. It deals with very simple lazy data
structures that allow to perform quickly the most common operations.
It is based on a static variable selection heuristic and solves both
MAX-SAT and weighted MAX-SAT instances.

UP : This was our third solver. The main implementation issues were
adaptations to MAX-SAT of the technology implemented in the SAT
solver Satz. The most powerful component of UP is the detection of
disjoint unsatisfiable subformulas by unit propagation.

MaxSatz : This was our last solver. It applies both the underestimations
and the inference rules defined in this thesis.

• We conducted an empirical evaluation of the underestimations and infer-
ence rules developed in the thesis. We observed that UP ∗

FL is usually the
best performing underestimation for the testbed used and, in combination
with our inference rules, gives rise to the best performance profile.

• We conducted an empirical comparison between our solvers and the best
performing state-of-the-art MAX-SAT solvers. We observed that MaxSatz
is extremely competitive and outperforms the rest of MAX-SAT solvers up
to several orders of magnitude on a significant number of instances.

1.4 Publications

Some of the results presented in this thesis have already been published in jour-
nals and conference proceedings. The articles are chronologically listed and
classified according to the solver used on it:

AMP

– Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved branch and
bound algorithms for Max-2-SAT and weighted Max-2-SAT. In Proceedings
of the 6th Catalan Conference on Artificial Intelligence (CCIA 2003), vol-
ume 100 of Frontiers in Artificial Intelligence and Applications, pages 435–
442, P. Mallorca, Spain, 2003. IOS Press.

– Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved branch and
bound algorithms for Max-SAT. In Proceedings of the 6th International
Conference on the Theory and Applications of Satisfiability Testing (SAT
2003), pages 408–415, Portofino, Italy, 2003.

1.4. Publications 7

– Jordi Planes. Improved branch and bound algorithms for Max-2-SAT and
weighted Max-2-SAT. In Francesca Rossi, editor, Proceedings of the 9th
International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2003), volume 2833 of LNCS, page 991, Kinsale, Ireland,
2003. Springer.

Lazy

– Teresa Alsinet, Felip Manyà, and Jordi Planes. A Max-SAT solver with
lazy data structures. In Proceedings of the 9th Ibero-American Confer-
ence on Artificial Intelligence (IBERAMIA 2004), volume 3315 of LNAI,
pages 334–342, Puebla, Mexico, 2004. Springer.

– Teresa Alsinet, Felip Manyà, and Jordi Planes. A Max-SAT solver with
lazy data structures. In Le Thi Hoai An and Pham Dinh Tao, editors, Mod-
eling, Computation and Optimization in Information Systems and Man-
agement Sciences (MCO 2004), pages 491–498, Metz, France, 2004. Her-
mes publishing.

– Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved exact solver for
weighted Max-SAT. In Proceedings of the 8th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2005), volume 3569
of LNCS, pages 371–377, St. Andrews, Scotland, 2005. Springer.

UP

– Chu Min Li, Felip Manyà, and Jordi Planes. Exploiting unit propagation
to compute lower bounds in branch and bound Max-SAT solvers. In
Peter van Beek, editor, Proceedings of the 11th International Conference
on Principles and Practice of Constraint Programming (CP 2005), volume
3609 of LNCS, pages 403–414, Sitges, Spain, 2005. Springer.

MaxSatz

– Chu Min Li, Felip Manyà, and Jordi Planes. Detecting disjoint inconsistent
subformulas for computing lower bounds for Max-SAT. In Proceedings
of the 21st National Conference on Artificial Intelligence (AAAI 2006),
pages 86–91, Boston/MA, USA, 2006. AAAI Press.

After defending the doctoral dissertation, we published two journal articles
containing its main contributions:

– Chu Min Li, Felip Manyà, and Jordi Planes. New Inference Rules for Max-
SAT. In Journal of Artificial Intelligence Research, volume 30, pages 321–
359, 2007.

– Teresa Alsinet, Felip Manyà, and Jordi Planes. An Efficient Solver for
Weighted Max-SAT. In Journal of Global Optimization, volume 41, pages 61–
73, 2008.

8 Chapter 1. Introduction

1.5 Overview

This section provides an overview of the thesis. We briefly describe the contents
of each of the remaining chapters:

Chapter 2: Algorithms for SAT and MAX-SAT. In this chapter we pro-
vide an overview of techniques used in SAT and MAX-SAT solving. First,
some basic concepts commonly used in satisfiability solving are introduced.
Second, different techniques for SAT solving such as the DP algorithm and
the DLL algorithm, recent efficient techniques in complete SAT solving,
as well as representative local search algorithms are described. Third, the
branch and bound algorithm to solve MAX-SAT is also introduced, with
special attention to the techniques in lower bounds, inference rules and
variables selection heuristics for MAX-SAT.

Chapter 3: Lower bounds. In this chapter we focus on computing lower
bounds, the forecasting techniques for MAX-SAT. First, we review some
state-of-the-art lower bounds. Second, we introduce the star rule, which is
our first original lower bound computation method. Third, we define three
original lower bounds that detect disjoint inconsistent subformulas by ap-
plying unit propagation. Fourth, we improve the previous lower bounds
by adding failed literal detection. Finally, we report on the empirical eval-
uation of our lower bound computation methods.

Chapter 4: Inference rules. In this chapter we define a set of unit resolution
refinements for MAX-SAT, describe an efficient way of implementing the
application of the rules at each node of the search tree, and report on an
experimental evaluation that provides empirical evidence that our rules
can speed up a MAX-SAT solver several orders of magnitude.

Chapter 5: Implementing a weighted MAX-SAT solver. In this chapter
we define a lower bound and a set of inference rules for weighted MAX-SAT,
that are extensions of the MAX-SAT ones. We describe their implemen-
tation in an algorithm with a static variable selection heuristic and lazy
data structures, and report on an experimental evaluation that provides
empirical evidence of the good performance of the rules.

Chapter 6: Empirical comparison of MAX-SAT and weighted MAX-
SAT solvers. In this chapter we first describe the best performing state-
of-the-art MAX-SAT solvers, and the solvers we have designed and im-
plemented in this thesis. Then, we report on an experimental comparison
that provides empirical evidence that our solvers outperform the rest of
the solvers in most of the solved instances.

Chapter 7: Conclusions. We briefly summarize the main contributions of the
thesis, and point out some open problems and future research directions
that we plan to tackle in the near future.

1.5. Overview 9

Finally, this thesis has an appendix, with enhanced inference rules that are
provided as future work.

Chapter 2

Algorithms for SAT and
MAX-SAT

This chapter provides some background information with the aim of making the
thesis as self-contained as possible. Section 2.1 defines the syntax and semantics
of CNF formulas, as well as SAT, MAX-SAT and weighted MAX-SAT. Sec-
tion 2.2 describes the complete SAT algorithms Resolution, DP and DLL, two
of the most representative SAT local search algorithms, GSAT and WalkSAT,
and an overview of recent techniques in SAT algorithms. Section 2.3 introduces
a basic MAX-SAT branch and bound algorithm, stressing its more important
points; a brief of local search and approximation algorithms for MAX-SAT; and
an overview of branch and bound algorithms for MAX-SAT, describing relevant
lower bounds, inference rules and variable selection heuristics.

2.1 Definitions

Let P = {p1, . . . , pn} be a set of n propositional variables. A literal ℓ is a
variable pi or its negation ¬pi. The complement of a literal ℓ, denoted by ℓ̄, is
p if ℓ=¬p, and ¬p if ℓ= p. A clause is a disjunction of literals, and a formula
in Conjunctive Normal Form (CNF formula) is a collection of clauses. In the
satisfiability problem (SAT), a CNF formula is considered as a set of clauses. In
the maximum satisfiability problem (MAX-SAT), a CNF formula is considered
as a multiset of clauses. A clause with one literal is called unit, with two literals
is called binary, and with three literals is called ternary. The size of a clause is
the number of literals occurring in the clause, and the size of a CNF formula φ,
denoted by |φ|, is the sum of the sizes of their clauses.

A truth assignment is a mapping that assigns either the truth value 1 (true/T)
or the truth value 0 (false/F) to each propositional variable. A truth assignment
satisfies a literal p if p takes the value 1 (true/T), and satisfies a literal ¬p if
p takes the value 0 (false/F); satisfies a clause if it satisfies at least one literal
of the clause; and satisfies a CNF formula if it satisfies all its clauses. A CNF

11

12 Chapter 2. Algorithms for SAT and MAX-SAT

formula is satisfiable if there exists an assignment that satisfies the formula,
otherwise it is unsatisfiable. A tautology is a CNF formula that is satisfied by
any truth assignment. A clause with no literals is an empty clause (also referred
to as conflict) and is denoted by �. An empty clause is unsatisfied by any truth
assignment.

A truth assignment is complete if, and only if, all the variables have been
assigned; otherwise, it is partial. A partial truth assignment also partitions the
clauses of a CNF formula into three sets: satisfied clauses, the clauses that
contain a satisfied literal; unsatisfied clauses, the clauses in which all the literals
are unsatisfied, and unresolved clauses, the clauses that the partial assignment
makes them not to be decided. The unassigned literals of a clause are referred
to as its free literals. In a search context, an unresolved clause is said to be unit
if the number of its free literals is one. Similarly, an unresolved clause with two
free literals is said to be binary, and an unresolved clause with three free literals
is said to be ternary.

Example 2.1 Let us consider a CNF formula φ having three clauses c1, c2 and
c3:

c1 : (p1 ∨ p2)
c2 : (p2 ∨ ¬p3)
c3 : (p1 ∨ p2 ∨ p3)

Suppose that the current truth assignment is A : {p1 = F, p3 = F}. This implies
having clauses c1 and c3 unresolved and clause c2 satisfied. Observe that clauses
c1 and c3 are also unit due to p2 being the only free literal. Hence, the CNF
formula is unresolved.

Suppose that this assignment is extended with p2 = F ; i.e., A′ : {p1 =
F, p2 = F, p3 = F}. Then, clauses c1 and c3 become unsatisfied. This means
that the CNF formula is unsatisfied by A′, A′(φ) = F . Also, suppose that in the
subsequent search we have the assignment A′′ : {p1 = T, p3 = F}. Clearly, all the
clauses get satisfied and, therefore, the CNF formula is satisfiable, A′′(φ) = T .

The SAT problem for a CNF formula φ is the problem of deciding whether
there exists a satisfying assignment for φ. The MAX-SAT problem for a CNF
formula φ is the problem of finding a complete assignment that maximizes the
number of satisfied clauses in φ, or equivalently that minimizes the number of
unsatisfied clauses in φ (named MIN-UNSAT).1 Both problems are equivalent:
Given an assignment that satisfies the maximum number of clauses in φ, it
actually falsifies the minimum number of clauses in φ.

Example 2.2 Let us consider an unsatisfiable CNF formula φ having 3 clauses:
(p1 ∨ p2), (p1 ∨¬p2),¬p1. One solution for the MAX-SAT problem is the assign-
ment A : {p1 = T, p2 = T}, which satisfies the maximum number of clauses
(2 clauses) and falsifies the minimum number of clauses (1 clause).

1Some authors [LAS05] name MIN-UNSAT to the problem of finding minimally unsatisfi-
able subformulas.

2.2. SAT algorithms 13

A weighted clause is a pair (c, ω) such that c is a clause and ω is a cost asso-
ciated with the clause. We make the usual assumption of weights being natural
numbers, then the pair (c, ω) is clearly equivalent to having ω copies of clause
c in our multiset. A weighted CNF formula is a multiset of weighted clauses.
The weighted MAX-SAT problem is the problem of finding an assignment that
minimizes the sum of weights associated to unsatisfied clauses (or equivalently,
that maximizes the sum of weights associated to satisfied clauses) in a weighted
CNF formula.

In SAT, two formulas φ1 and φ2 are equivalent if they are satisfied by the
same set of assignments. In MAX-SAT, two formulas φ1 and φ2 are equivalent
if both have the same number of unsatisfied clauses for every assignment. In
weighted MAX-SAT, two formulas φ1 and φ2 are equivalent if the sum of the
weights of unsatisfied clauses coincides for every assignment.

2.2 SAT algorithms

We describe the most popular complete methods —resolution, DP and DLL—
for solving SAT, as well as the the local search algorithms GSAT and WalkSAT.
See [GPFW97, AM03, GKSS07] for surveys about SAT algorithms.

2.2.1 Resolution

Resolution [Rob65] is an inference rule that provides a complete inference system
by refutation. Given two clauses c1, c2, called parent clauses, then r is a resolvent
of c1 and c2 if there is one literal ℓ ∈ c1 such that ℓ̄ ∈ c2, and r has the form

r = (c1 \ {ℓ}) ∪ (c2 \ {ℓ̄}).

The resolution step for a CNF formula φ, denoted by Res(φ), is defined as

Res(φ) = φ ∪ {r | r is a resolvent of two clauses in φ}

Resolution is the application of resolution steps to a formula φ until Res(φ) = φ;
i.e., no more resolvents can be derived. Then, the formula is unsatisfiable if � ∈
φ; otherwise, φ is satisfiable. Algorithm 2.1 represents this procedure [Sch89].

2.2.2 The Davis-Putnam procedure

The first effective method for producing resolution refutations [Vel89] was the
Davis-Putnam procedure (DP) [DP60]. The method iteratively simplifies the
formula until the empty clause is generated or until the formula is empty. DP
consists of three rules:

1. Unit Propagation, also referred to as Boolean constraint propagation [ZM88],
is the iterated application of Unit Clause (UC) rule (also referred to as
one-literal rule) until an empty clause is derived or there are no unit clauses
left. If a clause is unit, then the sole free literal must be assigned value

14 Chapter 2. Algorithms for SAT and MAX-SAT

Algorithm 2.1: Resolution(φ)

Output: Satisfiability of φ
Function Resolution(φ : CNF formula) : Boolean

repeat
φ′ ← φ
φ← Res(φ)

until � ∈ φ ∨ φ = φ′

if � ∈ φ then return false

else return true

true. Being {ℓ} a unit clause, UC consists of removing all clauses in φ with
literal ℓ and removing all occurrences of literal ℓ̄.

2. Pure literal rule (also referred to as monotone literal rule). A literal is pure
if its complement does not occur in the CNF formula. The satisfiability
of a CNF formula is unaffected by satisfying those literals. Therefore, all
clauses containing a pure literal can be removed.

3. Resolution is applied in order to iteratively eliminate each variable from
the CNF formula. In order to do so, DP does not apply general resolu-
tion, but a refinement (a restriction) of the resolution method, known as
variable elimination: Let Cℓ be the set of clauses containing ℓ and Cℓ̄ the
set of clauses containing ℓ̄, the method consists of generating all the non-
tautological resolvents using all clauses in Cℓ and all clauses in Cℓ̄, and then
removing all clauses in Cℓ ∪ Cℓ̄. After this step, the CNF formula contains
neither ℓ nor ℓ̄.

The pseudo-code for the Davis-Putnam procedure is given in Algorithm 2.2.
The algorithm selects a variable to be eliminated among the shortest clauses.
Each time a variable is eliminated, the number of clauses in the CNF formula
may grow quadratically in the worst case. Therefore, the worst-case memory
requirement for algorithm DP is exponential. In practice, DP can only handle
SAT instances with tens of variables because of this memory explosion prob-
lem [Urq87, CS00]. The procedure stops applying resolution when the CNF
formula is found to be either satisfiable or unsatisfiable. It is declared to be
unsatisfiable whenever a conflict is reached. If no conflict is reached, the CNF
formula is declared to be satisfiable.

Example 2.3 Given the following CNF formula, we demonstrate its satisfiabil-
ity using algorithm DP:

(p1), (p1 ∨ p2), (p2 ∨ p4), (¬p1 ∨ p3 ∨ ¬p4), (p3 ∨ p5), (¬p1 ∨ ¬p3 ∨ ¬p5)

We show the steps applied by algorithm DP using a table. In the first column the
input formula in CNF format is displayed, where each line represents a different
clause. The rest of the columns represent the result of applying UC. The table

2.2. SAT algorithms 15

Algorithm 2.2: DavisPutnam(φ)

Output: Satisfiability of φ
Function DavisPutnam(φ : CNF formula) : Boolean

UnitPropagation(φ)
PureLiteralRule(φ)
if φ = ∅ then return true

if � ∈ φ then return false

ℓ← literal in c ∈ φ having c the minimum length
Rℓ ← all possible non-tautological resolvent clauses between all
clauses in Cℓ and all clauses in Cℓ̄
return DavisPutnam(φ ∪Rℓ \ (Cℓ ∪ Cℓ̄))

below shows the application of the rule to literal p1. Removed clauses are marked
with a ’×’ and modified clauses are displayed in bold face.

φ p1

(p1) ×
(p1 ∨ p2) ×
(p2 ∨ p4) (p2 ∨ p4)
(¬p1 ∨ p3 ∨ ¬p4) (p3 ∨ ¬p4)
(p3 ∨ p5) (p3 ∨ p5)
(¬p1 ∨ ¬p3 ∨ ¬p5) (¬p3 ∨ ¬p5)

In a second step, DP applies the pure literal rule. The table below shows the
application of the rule to literals p2 and ¬p4.

φ′ p2 ¬p4

(p2 ∨ p4) ×
(p3 ∨ ¬p4) (p3 ∨ ¬p4) ×
(p3 ∨ p5) (p3 ∨ p5) (p3 ∨ p5)
(¬p3 ∨ ¬p5) (¬p3 ∨ ¬p5) (¬p3 ∨ ¬p5)

And finally, DP applies resolution. The table below shows the elimination of
variable p3 by resolution. Observe that a tautological clause appears, and is
removed by the method.

φ′′ p3

(p3 ∨ p5) ×
(¬p3 ∨ ¬p5) (p5 ∨ ¬p5) ×

At the end, the CNF formula becomes empty. Thus, the original CNF formula
is satisfiable.

2.2.3 The Davis-Logemann-Loveland procedure

The vast majority of state-of-the-art complete SAT algorithms are built upon the
backtrack search algorithm of Davis, Logemann and Loveland (DLL) [DLL62].

16 Chapter 2. Algorithms for SAT and MAX-SAT

Algorithm 2.3: DavisLogemannLoveland(φ)

Output: Satisfiability of φ
Function DavisLogemannLoveland(φ : CNF formula) : Boolean

UnitPropagation(φ)
PureLiteralRule(φ)
if φ = ∅ then return true

if � ∈ φ then return false

ℓ← literal in c ∈ φ having c the minimum length
return (DavisLogemannLoveland(φℓ) ∨
DavisLogemannLoveland(φℓ̄))

DLL replaces the application of resolution in DP by the splitting of the CNF
formula in two subproblems. The first subproblem φℓ̄ is the application of UC
over φ with ℓ̄, and the second subproblem φℓ is the application of UC over φ
with ℓ. Then, φ is unsatisfiable if and only if φℓ and φℓ̄ are unsatisfiable. This
method is shown in Algorithm 2.3.

Procedure DLL essentially constructs a binary search tree in a depth-first
manner (e.g., Figure 2.1), each leaf of the search tree represents a dead end
where an empty clause is found, except eventually one for a satisfiable problem.
Using a variable selection heuristic, the branching variables are selected to reach
a dead end as early as possible; i.e., to minimize the length of the current path
in the search tree.

Example 2.4 The search tree for the CNF formula below is displayed in Fig-
ure 2.1.

(p1 ∨ p5), (p1 ∨ ¬p6), (p1 ∨ ¬p2 ∨ p4), (p1 ∨ p2 ∨ ¬p4), (¬p2 ∨ ¬p4), (p2 ∨ p4)∧
(¬p1 ∨ ¬p2), (p2 ∨ p3), (p1 ∨ p2 ∨ p3)

Solid lines are for splitting assignments, and dashed lines for unit propagation
and monotone literal assignments. Black nodes mark whenever a conflict is
found.

The authors in [DLL62] identified three advantages of DLL over DP:

1. DP increases the number and length of the clauses rather quickly. DLL
never increases the length of clauses. The worst-case space complexity is
exponential in DP and polynomial in DLL.

2. Many duplicated clauses may appear after resolution in DP, and seldom
after splitting in DLL.

3. DLL often can yield new unit clauses, while DP not often will.

2.2. SAT algorithms 17

¬p1

p5,¬p6

¬p2

�

p3, p4

p2

�

¬p4

p1

√

¬p2, p3, p4

Figure 2.1: Search tree for DLL applied to Example 2.4.

2.2.4 Local search procedures for SAT

One of the weaknesses of complete methods (e.g., DP and DLL) is their in-
ability to solve hard random 3-SAT instances with more than 700 propositional
variables within a “reasonable” amount of time [CM97, DD01]. This drawback
can be skipped using incomplete2 local search methods like GSAT [SLM92] and
WalkSAT [SKC94]. These procedures are able to solve hard instances with more
than 100,000 variables, though completeness is lost.

The search is done by initializing the search at some point (a complete as-
signment) and from there to iteratively move from one search space position to
a neighboring position. The decision on each step is based on information about
the local neighborhood only.

Most local search SAT algorithms use a 1-flip neighborhood relation for which
two truth value assignments are neighbors if they differ in the truth value of ex-
actly one variable. Thus, the local search steps modify the truth value assigned

2An incomplete method in SAT can find a satisfying assignment, but cannot prove the
unsatisfiability of a CNF formula. If a solution is found, the formula is declared satisfiable
and the algorithm terminates successfully; but if the algorithm fails to find a solution, no
conclusion can be drawn.

18 Chapter 2. Algorithms for SAT and MAX-SAT

Algorithm 2.4: LocalSearch(φ) : Outline of a general local search pro-
cedure for SAT
Output: Satisfying assignment of φ or ’no solution found’

for 1 to maxTries do
A← initAssign(φ)
for 1 to maxSteps do

if A satisfies φ then return A

else
p← chooseVariable(φ,A)
A← A with truth value of p flipped

return ’no solution found’

to one propositional variable; such a move is called a variable flip. The main dif-
ference between different local search algorithms for SAT is in the step function,
that is, in the strategy used to select the variable to be flipped next.

Local search algorithms can get trapped in local minima and plateau regions
of the search space, leading to premature stagnation of the search. One of the
simplest mechanisms for avoiding premature stagnation of the search is random
restart, which reinitializes the search if after a fixed number of steps no solution
has been found. Random restart is used in almost every local search algorithm
for SAT.

A general outline of a local search algorithm for SAT is given in Algorithm 2.4.
The generic procedure initializes the search at some complete truth assignment
(initAssign(φ)) and then iteratively selects a variable according to the input
CNF formula (chooseVariable(φ,A)) and the current assignment, and flips this
variable. If after a maximum of maxSteps flips no solution is found, the al-
gorithm restarts from a new randomly generated initial assignment. If after a
given number maxTries of such tries still no solution is found, the algorithm
terminates unsuccessfully.

In the following, we focus on the GSAT and the WalkSAT algorithms, which
have provided a major driving force in the development of local search algorithms
for SAT [SHR01, HS04].

GSAT algorithm

The GSAT algorithm was introduced in 1992 [SLM92]. It is based on a rather
simple idea: GSAT tries to maximize the number of satisfied clauses by a greedy
ascent in the space of truth assignments. Variable selection in GSAT and most of
its variants is based on the score of a variable p under the current assignment A;
which is defined as the difference between the number of clauses unsatisfied by
the assignment obtained by flipping p in A and the number of clauses unsatisfied
by A.

The basic GSAT algorithm uses the following instantiation of the procedure
chooseVariable(φ, A): In each local search step, one of the variables with maximal

2.2. SAT algorithms 19

score is flipped. If there are several variables with maximal score, one of them
is randomly selected according to a uniform distribution.

WalkSAT algorithm

The WalkSAT algorithm was described by Selman, Kautz, and Cohen [SKC94] in
1994. It is based on a 2-stage variable selection process focused on the variables
occurring in currently unsatisfied clauses. For each local search step, in a first
stage, a currently unsatisfied clause c′ is randomly selected. In a second stage,
one of the variables appearing in c′ is then flipped to obtain the new assignment.

Thus, while the GSAT algorithm is characterized by a static neighborhood
relation between assignments with Hamming distance one, in WalkSAT the vari-
able to be flipped is no longer picked among all variables but from a randomly
selected unsatisfied clause [SHR01].

2.2.5 Overview of SAT algorithms

There have been developed many algorithms that have improved the above de-
scribed algorithms. One of the main driving forces has been the SAT competi-
tion3, organized by Le Berre and Simon since 2002 [BS03, SB04, SBH05, BS06].
In such a competition, the last advances in SAT solvers race each other, bring-
ing winners every year in three benchmark categories: industrial, handmade and
random.

In the following, we present an overview of SAT algorithms following three
lines:

1. the algorithms that improved algorithm DLL with the implementation of
better variable selection heuristics, learning techniques, efficient data struc-
tures, reasoning about special structures in SAT instances and restarts;

2. the algorithms based on local search methods; and

3. other algorithms.

Algorithms based on DLL

In this section we focus on important points to consider when designing and
implementing SAT solvers: the variable selection heuristic, the data structures,
clause learning, application of restarts and reasoning on special structures.

Variable selection heuristics The variable selection heuristic in algorithm
DLL is decisive for finding as quick as possible a solution in SAT [MS99]. A
bad heuristic can lead to explore the whole search tree, whereas a good heuristic
allows to cut several branches, and even not to traverse more than a single branch
in the best case.

3The results can be checked at http://www.satcompetition.org/.

20 Chapter 2. Algorithms for SAT and MAX-SAT

The original variable selection heuristic in algorithm DP selects a variable of
a literal among the shortest clauses. The variable selected is used to apply res-
olution and is selected after applying unit clause rule and pure literal rule. This
choice is justified by the fact that the length of the resolvent clauses depends on
the length of the parent clauses. For instance, in the case all the clauses have
two literals, resolvents have at most two literals. Furthermore, this heuristic en-
forces the unit clause rule. The same heuristic is used in the original description
of algorithm DLL to select the next branching variable.

Let φ be the following CNF formula:

φ : (¬p1 ∨ p2) , (¬p2 ∨ p4 ∨ ¬p3)

(p1 ∨ ¬p5) , (p2 ∨ p4 ∨ p6)

(¬p2 ∨ p4 ∨ p6) , (p2 ∨ ¬p3 ∨ p4) (2.1)

The shortest clauses in φ are (¬p1 ∨ p2) and (p1 ∨ ¬p5), hence DP
heuristic chooses any of the variables p1, p2 or p5.

The MOMS (Maximum Occurrences in clauses of Minimum Size)[DABC93,
Pre93] heuristic is an improvement of the previous heuristic. It selects the vari-
able having the maximum number of occurrences in clauses of minimum size.
Intuitively, these variables allow to well exploit the power of unit propagation
and to augment the chance to reach an empty clause [Fre95].

The shortest clauses in φ are (¬p1∨p2) and (p1∨¬p5), hence MOMS
heuristic chooses variable p1.

Two-sided Jeroslow-Wang (JW) heuristic [JW90, HV95] is based on the same
principle as MOMS heuristic. It gives the possibility of being chosen to the
variables that appear in the shortest clauses. In contrast with MOMS, the
number of occurrences in the rest of clauses is also involved. The possibility
that a variable is selected by JW is inversely proportional to the size of the
clauses in which it appears. JW uses a function J that takes as input the literal
ℓ and returns a weight for such a literal:

J(ℓ) =
∑

{c∈φ|ℓ∈c}

2−|c|,

where |c| is the number of literals in clause c. Heuristic JW chooses a variable p
that maximizes J(p)+ (J¬p). In this heuristic the weight given to a literal with
an occurrence in a binary clause is equivalent to the occurrence in two ternary
clauses4.

4In [LA97a, XZ05] a different proportion is considered J(ℓ) =
P

5−|c|, and is referred to
as MOMS.

2.2. SAT algorithms 21

Let φ be the CNF formula 2.1. With function J , one can get: J(p1) =
0.25, J(¬p1) = 0.25, J(p2) = 0.5, J(¬p2) = 0.25, J(p3) = 0,
J(¬p3) = 0.25, J(p4) = 0.5, J(¬p4) = 0, J(p5) = 0, J(¬p5) = 0.25,
J(p6) = 0.25, J(¬p6) = 0. The variable p2 with J(p2) + J(¬p2) =
0.75 is chosen by heuristic JW.

Another set of heuristics are based on the application of unit propagation;
e.g. POSIT [Fre95] and Tableau [CA96]. They have been proved useful and
allow to exploit the power of unit propagation and the detection of failed lit-
erals. A failed literal is a literal whose addition to a CNF formula brings the
empty clause after unit propagation. Given a variable p, a unit propagation
heuristic examines p by respectively adding the unit clause p and ¬p to a CNF
formula, and independently makes two unit propagations. The real effect of the
unit propagations is then used to weight p and detect failed literals. Thus, by
considering w(ℓ) and w(ℓ̄), the number of clauses reduced respectively by ℓ and
ℓ̄, this heuristics consists of choosing the literal which maximizes at the same
time w(ℓ) and w(ℓ̄). If literal ℓ is a failed literal, then ℓ̄ is fixed. This approach
makes possible to better prevent the consequences that the choice of the literal
will produce.

Let φ be the CNF formula 2.1. With function w, one can get the
following values: w(p1) = 3, w(¬p1) = 1, w(p2) = 2, w(¬p2) =
4, w(p3) = 2, w(¬p3) = 0, w(p4) = 0, w(¬p4) = 4, w(p5) = 4,
w(¬p5) = 0, w(p6) = 0, w(¬p6) = 2. The variable p2 with w(p2) =
2, w(¬p2) = 4 is chosen by a unit propagation heuristic.

Since examining a variable by two unit propagations is time consuming, two
major problems remain open: should one examine every free variable by unit
propagation at every node of a search tree? Otherwise, what are the variables
to be examined at a search tree node? In [LA97a], the authors try to experi-
mentally address these two questions to obtain an optimal exploitation of the
unit propagation heuristic. They define predicate PROPz at a search tree node
whose meaning is the set of variables to be examined at that node. PROPz is
defined as follows: if there are more than T (parameter empirically set to 10)
variables occurring both negatively and positively in binary clauses and having
at least 4 occurrences, then only such variables are examined using a unit prop-
agation heuristic; otherwise, if there are more than T variables occurring both
negatively and positively in binary clauses and having at least 3 occurrences,
then only all these variables are examined using a unit propagation heuristic;
otherwise, all free variables are examined.

An alternative approach, particularly good performing for random 3-SAT, is
to select a variable that is likely to be a backbone variable [DD01, KSTW05].
A backbone literal is a literal that must be true in all the solutions to a given
instance. Given a CNF formula φ, this heuristics tries on variables that belong
(in fact, are expected to belong) to the backbone of φ. If backbone variables
are selected first, the algorithm searches through less branches, speeding up the

22 Chapter 2. Algorithms for SAT and MAX-SAT

solver. Heuristics based on unit propagation and backbone are usually effective
on computationally difficult random SAT instances.

The previous heuristics were created without the addition of learning tech-
niques into SAT solvers. Marques-Silva [MS99, LMS05] compared several DLL
heuristics with a solver applying learning, GRASP [MSS96b], using real-world
SAT instances, and found that none was a clear winner. The two following
heuristics are thought for this kind of solvers, focusing on a kind of locality
rather than formula simplification [Mit05], i.e. the heuristic has no informa-
tion of the whole formula, but of the recent changes performed on it. For the
solver Chaff [MMZ+01, ZM02, Zha03], the authors proposed a branching heuris-
tic called Variable State Independent Decaying Sum (VSIDS). This heuristic
keeps a score for each literal. Initially, the scores are the number of occurrences
of a literal in the initial problem instance. Because of the learning mechanism,
clauses are added to the formula as the search progresses. VSIDS increases the
score of a literal by a constant whenever an added clause contains the literal.
The VSIDS score is a literal occurrence count with higher weight on the vari-
ables occurring in more recently added clauses. Periodically, it computes all
literal scores as s(l) = r(l) + s(l)/2, where s(l) is the score for literal l, and r(l)
is the number of occurrences of l in a conflict clause since the previous update.
VSIDS will choose the free variable with the highest combined score to branch.

Goldberg and Novikov went a step forward with the heuristic used in Berk-
Min [GN01]. This heuristic responds more dynamically to recently learned
clauses, with a new scoring computation s(l) = r(l) + s(l)/4, that penalizes
the oldest variables. Scores are incremented for all variables used in the conflict
clause derivation, not just those in the conflict clause. The BerkMin heuristic
prefers to branch on variables involved in the derivation of the most recently
learned clause.

Recent versions of Chaff (e.g. zChaff [MFM04]) use a heuristic that combines
BerkMin heuristic with a version of heuristic VSIDS, and a scheme for deleting
part of the current assignment when a newly derived conflict clause is very large,
as a means of trying to keep conflict clause sizes small.

Efficient data structures. The performance of the DLL procedure critically
depends upon the care taken of the implementation. SAT solvers spent much
of its time in the unit propagation procedure [Zha97, LMS02], and there have
been many attempts to improve the unit propagation implementation. A simple
and intuitive approach consists in keeping counters for each clause. This scheme
is attributed to Crawford and Auton [CA93] by [ZS96]. Similar schemes are
subsequently employed in many solvers such as GRASP [MSS99], Relsat [BS97]
and Satz [LA97a]. For example, in GRASP each clause keeps two counters,
one for the satisfied literals in the clause and another for the unsatisfied literals
in the clause. Each variable has two lists that contain all the clauses where
that variable appears with positive and negative polarity. When a variable is
assigned a value, all the clauses that contain this literal will have their counters
updated. If a clause count of unsatisfied literals becomes equal to the total

2.2. SAT algorithms 23

number of literals in the clause, then it is a conflicting clause. If a clause count
of unsatisfied literals is one less than the total number of literals in the clause
and the count of satisfied literals is null, then the clause is a unit clause. A
counter based unit propagation procedure is easy to understand and implement,
but this scheme is not always the most efficient one.

As it is pointed out in [ZM02], Zhang and Stickel [ZS96], in order to speed
up this procedure, created a new data structure in solver SATO: head/tail lists.
In this mechanism, each clause has two pointers associated with it, called the
head and tail pointer respectively. A clause stores all its literals in an array.
Initially, the head pointer points to the first literal of the clause and the tail
pointer points to the last literal of the clause. Each variable keeps four linked
lists that contain pointer to clauses. Each of these lists contains the pointers to
the clauses that have their head/tail literal in positive/negative polarity for a
given variable. Whenever a variable is assigned, only two of the four lists will
be examined. The head/tail list method is faster than the counter-based scheme
because is more efficient when a variable is assigned. The main goal of this
data structure is the detection of unit clauses, and is specially efficient in unit
propagation. For both the counter-based algorithm and the head/tail list-based
algorithm, undoing a variable assignment during backtrack has about the same
computational complexity as assigning the variable.

In Chaff, the authors proposed another unit propagation method called 2-
literal watching. Similar to the head/tail list method, 2-literal watching also has
two special literals for each clause called watched literals. Each variable has two
lists containing pointers to all the watched literals in either polarity. In contrast
to the head/tail list scheme in SATO, there is no imposed order on the two
pointers within a clause, and each of the pointers can move in either direction.
The main advantage of this method is the fact that unassigning a variable can
be done in constant time. This data structure was also used in solvers BerkMin
and MiniSat [NE03].

Clause Learning. Many industrial SAT instances bear a pattern, that usually
means that conflicts found throughout the search are due to sets of related
clauses. Once one of this unsatisfiable sets is found, the reasons that caused the
conflict can be stored adding redundant clauses. These clauses will facilitate to
find unsatisfied clauses earlier in future branches [BS94, BGS99]. To find the
reasons, a conflict graph is created (cf. Section 3.3.1), which helps to analyse and
learn the reason of the failure. This technique is called clause learning [MSS96a,
MSS96b], or conflict driven clause learning and is used in solvers like GRASP,
Chaff, BerkMin, MiniSat and Siege [Rya04].

Restarts. Another problem with a complete procedure like DLL is that a bad
decision in the branching heuristic can be very costly. Bad decisions made in the
top of the search tree can lead to bad search branches, and therefore to a waste
of time. Gent and Walsh [GW93a] identified SAT instances which were typically
easy but could occasionally trip up the DLL procedure. Sometimes, this could

24 Chapter 2. Algorithms for SAT and MAX-SAT

be explained by the heavy tailed behaviour [GSCK00]. Gomes, Selman and
Kautz [GSK98, KHR+02] showed that a strategy of randomization and rapid
restarts can often be effective attacking such early mistakes. The restart cutoff
can be gradual [GSK98, BMS00] or fixed [GSCK00]. Restarting with increasing
cutoff [Hua07] is used in solver MiniSat, and with fixed cutoff in solvers Chaff,
BerkMin and Siege.

Reasoning on special structures in SAT instances. Given that many
problems like pigeonhole or graph coloring involve a great deal of symmetry in
their arguments, a variety of authors have suggested extending Boolean represen-
tation or inference in a way that allows this symmetry to be exploited directly.
The basic idea is to add so-called symmetry-breaking clauses to the original
formula, clauses that break the existing symmetry without affecting the overall
satisfiability of the formula [CGLR96, ASM06, BS07]. Rather than modifying
the set of clauses in the problem, it is also possible to modify the notion of infer-
ence, so that once a particular conflict has been derived, symmetric equivalents
can be derived in a single step [Kri85].5

Another explored deduction mechanism for special structured instances is
equivalence reasoning. Solver eqsatz [Li03] incorporates equivalence reasoning
into the solver Satz, and its authors found that it is effective on some particular
classes of benchmarks (e.g., Dubois6). In that work, the equivalence reasoning is
accomplished by a pattern-matching scheme for equivalence clauses. In partic-
ular, finding equivalences of the type p↔ q can reduce the number of variables
and clauses of the formula, since variables p and q can be collapsed into one
variable. A related deduction mechanism was proposed in [LMS01]. There, the
authors propose to include more patterns in the matching process for simplifi-
cation purposes. A more complex equivalence reasoning, with several steps, is
performed in [WvM98, HDvMvZ04] as a pre-processing.

Improved local search SAT algorithms

Following the steps of GSAT and WalkSAT, the most relevant local search al-
gorithms developed in the last years are:

HSAT [GW93b] by Ian Gent and Toby Walsh. An improvement of GSAT,
which flips the variable that was flipped longest ago.

TSAT [MSG97] GSAT algorithm with tabu search, by Bertrand Mazure, Lakhdar
Säıs and Eric Grégoire.

novelty [MSK97] by McAllester, Selman, Kautz. This strategy sorts the vari-
ables by the total number of clauses that the variable falsifies, breaking
ties in favor of the least recently flipped variable.

5Symmetry breaking has acquired such an interest in the research commu-
nity that a new conference has been created, International Symmetry Conference
(http://isc.dcs.st-and.ac.uk/), hold in Scotland in 2007.

6Benchmark available at ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/
or http://www.cs.ubc.ca/∼hoos/SATLIB/benchm.html.

2.3. MAX-SAT algorithms 25

novelty+ [Hoo99] by Holger Hoos, novelty with random walk and a user fixed
noise in the choice of flip. Another variant of the same author is adapt
novelty+, with self-fixed (adaptive) noise in the choice of flip.

SAPS [HTH02] by Holger Hoos et al. A weight is given to each clause, incre-
menting the weight to unsatisfied clauses. The variable in more clauses of
maximum weight is chosen.

g2wsat [LH05b] by Li and Huang, and adaptg2wsat, which chooses a promising
decreasing variable. A variable is decreasing if flipping it would decrease
the number of unsatisfied clauses. A variable is promising decreasing if it
becomes a decreasing variable after flipping another variable.

VW by Steve Prestwitch, in SAT 2005 Competition. A weight is given to each
variable, which is increased in variables that are often flipped. The variable
with minimum weight is chosen.

Most of these techniques can be checked in solver UBCSAT [TH04], from the
University of British Columbia.

Recently, novel local search algorithms for SAT have been defined: (i) a
complete local search method for SAT [FR04] wherein each step is a resolution
step instead of a variable assignment; and (ii) two local search algorithms for
unsatisfiability [PL06], one with a search space of proof graphs, and a second
one with resolvent multisets.

Other incomplete algorithms

Finally, we mention survey propagation, a method inspired in results from Sta-
tistical Physics [BMZ05]. This is not a local search method, but it is incomplete.
It has demonstrated to be a very efficient approach, in the case of random k-SAT,
mainly in the threshold point.

2.3 MAX-SAT algorithms

We present the most representative MAX-SAT algorithms that have been de-
veloped to solve the problem both in an exact manner and with local search.
The exact algorithms are improvements of the branch and bound scheme with
better forecasting of bad branches (i.e., lower bounds), efficient transformations
of the formula into an easier one (i.e., inference rules), and good orderings of the
variables (variable selection heuristics). Local search algorithms are adaptations
of SAT local search algorithms. At the end, we present the solvers submitted
to the MAX-SAT evaluation, which is expected to be one of the driving forces
in the development of efficient MAX-SAT solvers, as the SAT competition has
been for SAT solvers.

26 Chapter 2. Algorithms for SAT and MAX-SAT

Algorithm 2.5: MaxSatBnB(φ) : Branch and Bound for MAX-SAT

Output: The minimum number of clauses of CNF formula φ that can be
unsatisfied by an assignment

Function MaxSatBnB (φ : CNF formula) : Natural
InferenceRules(φ)
if φ = ∅ or φ only contains empty clauses then

return EmptyClauses(φ)

if LowerBound(φ) ≥ UpperBound(φ) then
return UpperBound(φ)

p← SelectVariable(φ)
return min(MaxSatBnB(φ¬p), MaxSatBnB(φp))

2.3.1 Branch and Bound

In MAX-SAT, once a solution is found, the search cannot be stopped like in
SAT, because MAX-SAT is not an NP problem but an NP-hard problem.7 This
makes the algorithm to explore all possible branches in the pursue of an optimal
solution. Through the searching, the best solution found so far is stored in order
to compare it with the solutions to be found. This is, in essence, a Branch and
Bound8 (BnB) algorithm [LD60].

We describe a basic algorithm for MAX-SAT, which is a DLL-style BnB
algorithm. Most of the best performing exact algorithms for MAX-SAT are
variants of that algorithm.

A BnB algorithm solving MAX-SAT explores the search tree induced by all
the possible assignments in a depth-first manner. At each node, the algorithm
compares the number of clauses unsatisfied by the best complete assignment
found so far —called Upper Bound (UB)— with the Lower Bound (LB), the
number of clauses unsatisfied by the current partial assignment plus an underes-
timation of the number of clauses that will become unsatisfied if we extend the
current partial assignment to a complete assignment. Obviously, if UB ≤ LB,
a better assignment cannot be found from this point in the search (cf. Algo-
rithm 2.5). In that case, the algorithm prunes the subtree below the current
node and backtracks to a higher level in the search tree. If UB > LB, the cur-
rent partial assignment is extended by instantiating one more variable p; which
leads to create two branches from the current branch: the left branch amounts
to solve the MAX-SAT instance that results to assign variable p to false, φ¬p;
and the right branch amounts to solve the MAX-SAT instance that results to
assign variable p to true, φp. The solution to MAX-SAT is the value that the
upper bound takes after exploring the entire search tree.

7More insights on MAX-SAT complexity can be found in [Kre88, AJ03].
8The term was created by Little et al. [LMSK63] for the Traveling Salesman problem. Soon

after, a survey was published collecting all related methods solving combinatorial optimization
problems [LW66].

2.3. MAX-SAT algorithms 27

In Algorithm 2.5, we use the following notation:

• EmptyClauses(φ) is a function that returns the number of empty clauses
in φ.

• LowerBound(φ) is the sum of EmptyClauses(φ) plus an underestimation.
The simplest lower bound incorporates no underestimation. Powerful lower
bounds incorporate an underestimation easy to compute but able to es-
timate the number of unsatisfied clauses in an optimal solution of φ. In
such a computation, the formula may be modified (as it actually happens
in most of the lower bounds), but must be restored as soon as the compu-
tation is done in order to preserve the optimality of the solution.

• InferenceRules(φ) is a function that transforms a MAX-SAT instance
into an equivalent MAX-SAT instance. The goal is to create an instance
which is easier to solve. It is important to highlight that the modifications
of the formula can be kept in the downward nodes of the search tree, in
contrast with what happens in the lower bound computation.

• UpperBound(φ) is the number of unsatisfied clauses in the best solution
found so far. The initial value is the number of clauses in the input MAX-
SAT instance.

• SelectVariable(φ) is a function that heuristically selects an uninstanti-
ated variable of φ.

Example 2.5 Given the MAX-SAT instance

(p1 ∨ p2), ¬p1, (p1 ∨ ¬p2), (p2 ∨ p3), (¬p2 ∨ ¬p3), p2

we describe in Table 2.1 the application of algorithm MAX-SAT BnB: Every time
a leaf in the search tree is reached, the upper bound is updated. In the current
example, once a solution with 1 unsatisfied clause is found, most of the branches
are pruned, the bound is reached. The search tree for this example is shown in
Figure 2.2, where boxed figures represent partial solutions.

One of the most powerful techniques exploited in complete SAT algorithms
is unit propagation. It is very useful for simplifying the SAT instance associ-
ated with each node of the search tree. As we show in the next example, unit
propagation is not a sound inference rule in MAX-SAT.

Example 2.6 Suppose we have the following CNF formula:

¬p1, (p1 ∨ p2), (p1 ∨ p3), (¬p2 ∨ ¬p3), (p1 ∨ p4), (p1 ∨ ¬p4)

Applying unit propagation with unit clause ¬p1 will bring a solution with 2 un-
satisfied clauses, while the optimal solution has 1 unsatisfied clause (with the
assignment p1 = true, p2 = false, p3 = false).

28 Chapter 2. Algorithms for SAT and MAX-SAT

Literal Level CNF formula UB LB
Start p1 ∨ p2,¬p1, p1 ∨ ¬p2, p2 ∨ p3,¬p2 ∨ ¬p3, p2 6 0

p1 1 �, p2 ∨ p3,¬p2 ∨ ¬p3, p2 6 1
p2 2 �,¬p3 6 1
p3 3 �,� 6 2

Leaf UB updated to 2

¬p3 3 � 2 1
Leaf UB updated to 1

¬p2 2 �, p3,� 1 2
Bound

¬p1 1 p2,¬p2, p2 ∨ p3,¬p2 ∨ ¬p3, p2 1 0
p2 2 �,¬p3 1 1

Bound

¬p2 2 �, p3,� 1 2
Bound

Table 2.1: Execution track of a BnB for Example 2.5.

2.3.2 Local search and approximation algorithms for MAX-
SAT

Local search algorithms for MAX-SAT use an objective function which is defined
as the number of clauses that are satisfied under the given truth assignment. The
general idea for solving MAX-SAT by local search is to perform a random walk
in the search space which is biased in such a way that the number of satisfied
clauses is maximized. In SAT, every time a satisfying assignment is found, the
local search algorithm stops searching. Oppositely, a MAX-SAT local search
algorithm never reaches such a situation, since there is no way to prove that a
solution is optimal, unless traversing the whole search space.

The first known attempt to solve MAX-SAT by a local search algorithm is the
Steepest Ascent-Mildest Descent approach due to Hansen and Jaumard [HJ90],
that uses an underlying local search engine similar to GSAT incorporating tabu
search and focusing only on MAX-SAT. Theoretical investigation on tabu search
and MAX-SAT is described in [MG04, MG05].

Every local search algorithm for SAT can be used as a local search algorithm
for MAX-SAT, since both try to minimize the number of unsatisfied clauses.
There is an extended report on state-of-the-art local search algorithms for MAX-
SAT in [SHR01]. Besides the solvers commented in such a report, it is worth
to cite solvers that incorporate the last advances in local search for MAX-SAT:
Telelis and Stamatopoulos [TS02], and Zang et al. [ZRL03] used an heuristic
based on finding a pseudo-backbone; Smyth et al. [SHS03] used tabu search;
Lardeux et al. [FL05] introduced three-valued variables.

Recent approximation algorithms used to compute upper bounds and lower

2.3. MAX-SAT algorithms 29

p1

p2

2

p3

1

¬p3

×

¬p2

×

¬p1

Figure 2.2: Search tree for MAX-SAT BnB applied to Example 2.5.

bounds for MAX-SAT are: van Maaren and van Norden [vMvN05] relaxed MAX-
SAT to a sum of squares, and solved it using semidefinite programming; and
Gomes et al. [GvHL06] relaxed MAX-SAT directly to semidefinite programming
and solved it.

2.3.3 Overview of BnB algorithms for MAX-SAT

MAX-SAT has received the interest of a considerable number of researchers
that have implemented many solvers with original techniques. To improve the
performance of BnB MAX-SAT solvers, the design of algorithms has mainly
focused on finding lower bounds that efficiently forecast the largest number of
unsatisfied clauses, and inference rules that make the formula easier to solve.

We briefly present the lower bounds and the inference rules developed before
and during the current research work. Our contributions on these topics are
deeply analyzed in Chapter 3 and Chapter 4. Then, we describe the most rep-
resentative variable selection heuristics. We conclude the section enumerating
some extensions of MAX-SAT and weighted MAX-SAT.

Lower bounds

The first implemented exact algorithm solving MAX-SAT was due to Wallace
and Freuder [WF96]. They applied their knowledge of Constraint Program-

30 Chapter 2. Algorithms for SAT and MAX-SAT

ming9 to MAX-SAT solving, and implemented a simple lower bound based on
inconsistency counts:

LBIC(φ) = EmptyClauses(φ) +
∑

p occurs in φ

min(ic(p), ic(¬p)),

where φ is the CNF formula associated with the current partial assignment,
and ic(ℓ) —inconsistency count of literal ℓ— is the number of clauses that would
become unsatisfied if ℓ is satisfied; in other words, ic(ℓ) coincides with the number
of unit clauses of φ that contain ℓ̄.

Shen and Zhang [ZSM03a, SZ04] defined a lower bound for MAX-2-SAT,
called LB4, which detects disjoint inconsistent subformulas in MAX-2-SAT in-
stances via linear unit resolution. This lower bound was implemented in a deci-
sion procedure with a static ordering of the variables.

Soon after, we developed a solver from scratch, Lazy [AMP04a, AMP04b,
AMP05], within an original lower bound called Star. It detects disjoint inconsis-
tent subformulas of the form: l1, l2, . . . , lk, l̄1 ∨ l̄2 · · · ∨ l̄k. A description of Lazy
is given in Chapter 5.

Xing and Zhang [XZ05] created a solver, MaxSolver, which uses an integer
programming approach. A CNF formula is transformed into an integer program-
ming formulation in order to efficiently compute a lower bound.

Then, we performed a powerful lower bound, UP [LMP05, LMP06], that
detects disjoint inconsistent subformulas applying unit propagation. Such a
lower bound is described in detail in Chapter 3.

Recently, Gomes et al. [GvHL06] have defined a lower bound based on
semidefinite programming. They considered both the previous formulation of
Xing and Zhang and the semidefinite relaxation for MAX-2-SAT proposed by
Goemans and Williamson [GW95].

Inference rules

In Wallace and Freuder’s algorithm [WF96], a similar strategy to that of forward
checking [McG79] is applied, except that variables are fixed rather than reducing
domains.The algorithm is as follows:

forall variable p occurs in φ do
if EmptyClauses(φ)+min(ic(p), ic(¬p))+ |ic(p)− ic(¬p)| ≥ UpperBound(φ)
then

if ic(p) > ic(¬p) then φ¬p else φp

When the first if-condition holds, the UC rule is applied to φ over the literal that
brings the minimum number of inconsistencies.

The second implemented algorithm, and first available source code, was due
to Borchers and Furman [BF99]. Although they implemented no underesti-
mation, they incorporated two important techniques into MAX-SAT solving:

9Recently, it has been published an ACM survey [BHZ06] comparing constraint program-
ming with SAT.

2.3. MAX-SAT algorithms 31

(i) the initial upper bound is computed with a local search algorithm, which
allows them to solve MAX-SAT instances up to seven times faster than without
that preprocessing; and (ii) when the difference between the lower bound and
the upper bound is 1 (UB−LB = 1), unit propagation can be safely applied (in
fact, when such a condition holds a SAT solver can be used to solve it). These
two techniques were extended to weighted MAX-SAT.

Another important work, with a novel approach in MAX-SAT solving, is a
set of articles due to Alber et al. [AGN01], Bansal and Raman [BR99] and Nie-
dermeier et al. [NR00], which defined a set of MAX-SAT inference rules, created
an algorithm and demonstrated its complexity.10 In that algorithm, there is no
underestimation. Gramm [GN00] implemented a MAX-2-SAT solver that incor-
porates the following rules: pure literal rule, Complementary Unit Clause (CUC)
rule, restricted resolution rule11, Almost Common Clauses (ACC) rule and three
occurrences rule. This set of rules is very useful because either they fix the value
of variables or reduce the arity of clauses, that makes a MAX-SAT instance to be
easier to be solved. Most of such rules have been implemented in other solvers
(e.g., Lazy, toolbar [LH05a], MaxSolver [XZ05] and MaxSatz [LMP05]).

Later, Shen and Zhang implemented a MAX-SAT solver [SZ05] with a static
ordering of variables, which uses the implication graph and its strong connected
components (SCC) in order to simplify a MAX-2-SAT instance, implementing
two simplification techniques:

• If a SCC does not contain any conflicting literal, delete the clauses in the
SCC from the original MAX-2-SAT formula.

• If there are more than one SCC, divide the original MAX-2-SAT formula
according to the SCCs and run the MAX-2-SAT algorithm against each
component separately.

Yet they found not useful those techniques because those situations are difficult
to be found in a MAX-SAT instance. They also implemented ACC and restricted
resolution rule as a preprocessing.

With a previous experience on solving Max-CSP [LMS99, LM02] and weighted
CSP, de Givry et al. [dGLMS03] started to solve MAX-SAT by reducing it to
weighted CSP and using the weighted CSP solver toolbar [LMS99]. Then, they
developed a DLL-like BnB solver, inside the toolbar framework, equipped with
efficient MAX-SAT inference rules [LH05a, HL06b].

Xing and Zhang [XZ05] created a solver, MaxSolver, using the inference rules
pure literal, CUC and ACC, and defined the non-linear programming inference
rule, which tries to fix variables. All these techniques were extended to weighted
MAX-SAT.

10The most general time complexity is O(|φ| · 1.3803|C|), where |φ| is the length of the CNF
formula φ and |C| is the number of clauses in φ.

11Restricted resolution rule is the application of resolution in variables occurring exactly
once positively and once negatively. Restricted resolution is called resolution in some papers
that appeared before the definition of a sound and complete resolution rule for MAX-SAT.

32 Chapter 2. Algorithms for SAT and MAX-SAT

Recently, there has been an effort to define a more general resolution rule
for MAX-SAT. The first MAX-SAT resolution rule was defined in [LH05a], but
the conclusions of the rules were not in clausal form. The definition of the
conclusions in clausal form was done, independently, in [HL06b] and in [BLM06].
The completeness of the rule was proved in [BLM06]. From that completeness
proof, it is easy to derive an exact variable elimination solver, which can be seen
as an adaptation of DP [DP60] to MAX-SAT.

Variable selection heuristics

Most of the dynamic variable selection heuristics devoted to MAX-SAT are vari-
ants of the SAT heuristics MOMS and JW. We describe only the novel heuristics:

B+C Joy et al. [JMB97] designed a heuristic for a branch and cut algorithm12

with a variable selection heuristic similar to JW:

J(ℓ) =
∑

ℓ∈c

1− 21−|c|

This is the first heuristic devoted to MAX-SAT. In this heuristic, the larger
a clause, the greater its influence, with the exception of unit clauses that
have no influence.

AMP Alsinet et al. [AMP03a] proposed another modification of JW heuristic:

J(ℓ) =
∑

ℓ∈c

α(|c|)

where α(i) is the weight assigned to clauses of length i. Particularly, the
weights given were α(1) = 1, α(2) = 3 and α(j) = 0.125, if j ≥ 3. The
settings were determined experimentally.

MaxSolver Xing and Zhang [XZ05] implemented two variants of JW heuristic,
for MAX-2-SAT:

J(ℓ) =
∑

ℓ∈c

5−|c|

and for MAX-3-SAT:
J(ℓ) =

∑

ℓ∈c

β(r)−|c|

where β is a value that depends on the clause to variable ratio of the
MAX-SAT instance. It varies from β = 5 to β = 2.

In general, we observe that the heuristics tend to reduce the influence of unit
clauses, and increase the influence of binary clauses. All these heuristics were

12A branch and cut algorithm is similar to a branch and bound algorithm. Instead of apply-
ing inference rules, there is the addition of constraints or cuts. See [PR02] for an introductory
survey.

2.3. MAX-SAT algorithms 33

extended to weighted MAX-SAT, multiplying each element in the addition by
the weight of the clause. In the case of Jeroslow-Wang:

J(ℓ) =
∑

ℓ∈c

wi · 2−|c|

where wi is the weight of clause i.
For static ordering variable selection heuristic, the solvers sort the variables

by number of occurrences. We focus on the two available solvers that perform
an additional procedure:

maxsat LB4 Shen and Zhang [SZ05] used the created graph in order to im-
prove their heuristic. A weight function is computed using the following
procedure: At first each variable has a weight equal to 0. Then, they up-
date the weight by finding the shortest path between every pair of (l1, l̄2)
in a strongly connected component. If the path goes through node l2 to l3,
they increase both the weights of l2 and l3 by 1. The experimental results
in [SZ05] show that the ordering by the new weight function performs bet-
ter than the occurrence ordering when the clause to variable ratio or the
number of unsatisfied clauses is small.

Lazy Alsinet et al. [AMP04a] performed in Lazy a two-phase ordering variable
heuristic: variables are ordered by number of occurrences and ties are bro-
ken depending on the variables that share the same clause. This heuristic
will be described in detail in Chapter 5.

Extensions of MAX-SAT and weighted MAX-SAT

Finally, it is important to note that MAX-SAT and weighted MAX-SAT for-
malisms have been recently extended in several ways giving rise to new for-
malisms with more expressive power: multi-valued MAX-SAT [ADM+06, ABLM07],
partial MAX-SAT [CIKM97, bM05, FM06, AM06b], quantified weighted MAX-
SAT [Mal05], and Soft-SAT [AM06a]. There have been developed solvers imple-
menting a branch and bound scheme and incorporating some of the MAX-SAT
solving techniques for such formalisms.

2.3.4 Solvers submitted to the MAX-SAT Evaluation 2006

In the 9th International Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT-2006), following the steps of the SAT competition, the first
MAX-SAT evaluation was hold.13 A set of MAX-SAT and weighted MAX-SAT
benchmarks and solvers were submitted and evaluated. The solvers submitted
were:

• ChaffBS and ChaffLS, by Zhaoui Fu and Sharak Malik. It solves MAX-
SAT. In order to translate a MAX-SAT instance into a MAX-SAT decision

13The results can be checked at http://www.iiia.csic.es/maxsat06/ and in [ALMP08].

34 Chapter 2. Algorithms for SAT and MAX-SAT

instance (a SAT instance), they append a distinct slack variable (or selector
variable) to every MAX-SAT clause. A slack variable essentially means
that the corresponding MAX-SAT clause can be left unsatisfied. Then,
the problem can be: (i) asking if k clauses can be satisfied, or (ii) asking
if at least k clauses can be satisfied (for further details refer to [FM06]).

• MaxSatz, by Li, Manyà and Planes. It solves MAX-SAT.

• Lazy, by Alsinet, Manyà and Planes. It solves MAX-SAT and weighted
MAX-SAT.

• SAT4jmaxsat, by Le Berre. It solves MAX-SAT and weighted MAX-SAT.
This solver uses a similar approach to the Chaff-based solvers, translating
a MAX-SAT instance into a MAX-SAT decision instance and solving it
with the SAT solver SAT4J. Such a solver is an implementation in Java of
MiniSat [NE03].

• Toolbar, by de Givry, Heras, Larrosa and Shiex [HL06a]. It solves MAX-
SAT and weighted MAX-SAT. It is actually a Weighted CSP solver, which
offers the possibility of maintaining different forms of local consistency
during search (e.g., full directional arc consistency).

2.4 Summary

This chapter gives an overview of techniques used in SAT and MAX-SAT solv-
ing. Firstly, some basic concepts commonly used in satisfiability solving have
been introduced. Secondly, different techniques for SAT solving such as the DP
algorithm and the DLL algorithm, recent efficient techniques in complete SAT
solving, as well as representative local search algorithms are described. Thirdly,
the branch and bound algorithm to solve MAX-SAT is also introduced, which
is the basis for all discussions in the rest of the thesis, with special attention to
the advances in lower bounds, inference rules and variables selection heuristics
for MAX-SAT.

Chapter 3

Lower Bounds

A branch and bound algorithm solving MAX-SAT takes, at each node, the num-
ber of clauses unsatisfied by the best complete assignment found so far as an
upper bound (UB), and the number of clauses unsatisfied by the current partial
assignment plus an underestimation of the number of clauses that would become
unsatisfied if we extend the current partial assignment to a complete assignment
as a lower bound (LB). In this chapter, we focus on computing underestimations,
although we call them lower bounds, making an abuse of language.

The quality of the lower bound has a great impact on the performance of
branch and bound MAX-SAT solvers, because the better the lower bound, the
more the search tree can be pruned. A good lower bound reaches early the upper
bound in order to make the algorithm backtrack. The information gained in the
lower bound computation cannot usually be kept throughout the search tree
and needs to be recomputed at several nodes. Hence, the lower bound should
be both as large and as cheap to compute as possible.

This chapter is structured as follows. In Section 3.1, we review some state-
of-the-art lower bounds. In Section 3.2, we introduce the star rule, which is our
first original lower bound. In Section 3.3, we define three original lower bounds
that detect inconsistent disjoint subformulas by applying unit propagation. In
Section 3.4, we improve the previous lower bound in two ways: by improving
the manner the unit clauses are chosen in unit propagation; and by adding
failed literal detection. We conclude the chapter in Section 3.5 reporting on the
empirical evaluation.

3.1 Related work

In this section we review some of the most relevant lower bounds defined for
MAX-SAT in the literature. We illustrate the behavior of the lower bounds
using the following CNF formula:

φ = { �, ¬p1, p1, ¬p2, (p2 ∨ p3), (p2 ∨ ¬p3), ¬p4,¬p5, p6, (p4 ∨ p5 ∨ ¬p6) }
(3.1)

35

36 Chapter 3. Lower Bounds

Observe that the minimum number of unsatisfied clauses in φ is 4. For clarity,
we placed a space between each disjoint unsatisfiable subformula.

No underestimation The simplest method for computing lower bounds con-
sists of counting the number of clauses unsatisfied by the current partial
assignment (empty clauses) without considering any underestimation.

Given the CNF formula φ in Equation 3.1, the lower bound com-
puted by this method is 1.

Inconsistency Counts (IC) The following lower bound, based on inconsis-
tency counts, was defined by Wallace and Freuder [WF96] :

LBIC(φ) = EmptyClauses(φ) +
∑

p occurs in φ

min(ic(p), ic(¬p)),

where φ is the CNF formula associated with the current partial assignment,
EmptyClauses(φ) is the number of empty clauses derived so far, and ic(ℓ)
—inconsistency count of literal ℓ— is the number of clauses that would
become unsatisfied if ℓ is satisfied; in other words, ic(ℓ) coincides with the
number of unit clauses of φ that contain ℓ̄.

Given the CNF formula φ in Equation 3.1,

LowerBoundIC(φ) = 2.

Algorithm 3.1: LowerBoundIC(φ) : Computation of lower bound incon-
sistency count

Function LowerBoundIC(φ : CNF formula) : Natural
Data: Uℓ : set of unit clauses in φ containing ℓ
underestimation ← EmptyClauses (φ)
forall variable p ∈ V ar(φ) do

⊲ Computation of IC for unassigned variable p ⊳
while Up 6= ∅ ∧ U¬p 6= ∅ do
Up ← Up \ (p)
U¬p ← U¬p \ (¬p)
underestimation ← underestimation + 1

return underestimation

Time complexity : O(|φ|)

The application of the lower bound is shown in Algorithm 3.1. In the
analysis of the algorithm, we assume that, for each literal there is a list
of the binary clauses in which the literal occurs. For each variable, we
have to count the number of unit clauses for the positive literal, and the
number of unit clauses for the negative literal. Since the algorithm has to
deal with all the literals in the worst case, its cost is in O(|φ|).

3.1. Related work 37

LB4 Shen and Zhang [SZ04] defined a lower bound for MAX-2-SAT, called LB4:
they detect disjoint inconsistent subformulas in MAX-2-SAT instances via
linear unit resolution (cf. Algorithm 3.2). They assume a static ordering
of the variables.

Given the CNF formula φ in Equation 3.1,

LowerBoundLB4(φ) = 3.

Notice that the algorithm only considers unary and binary clauses.

Algorithm 3.2: LowerBoundLB4(φ) : Computation of lower bound LB4

Function LowerBoundLB4(φ : CNF formula) : Natural
Data: Uℓ : set of unit clauses in φ containing ℓ
underestimation ← EmptyClauses (φ)
forall variable p ∈ V ar(φ) do

forall literal l1 ∈ {p,¬p} do
underestimation ← underestimation + min(ic(p), ic(¬p))
forall binary clause (l̄1 ∨ l2) ∈ φ do

⊲ Assuming that the variable in l2 is assigned
later than the variable in l1 ⊳

if Ul1 6= ∅ then
Ul1 ← Ul1 \ (l1)
Ul2 ← Ul2 ∪ (l2)

return underestimation

Time complexity : O(|φ|)

In the analysis of Algorithm 3.2, we assume that, for each literal, there is
a counter of the number of unit clauses containing that literal, and a list
of the clauses in which the literal occurs. The operations in each loop can
be performed in constant time, and each loop is executed at most m times,
where m is the number of clauses. So, the complexity of the three loops is
in O(|φ|).

Integer programming based lower bound Xing and Zhang [XZ05] use an
integer programming approach to compute a fast lower bound. A CNF
formula is transformed into an integer programming (IP) formulation, and
rather than solving it with IP, it allows the variables to take a continuous
value in the range [0− 1]. This makes the computation faster. When the
values of the variables obtained are close to 0 or 1, they are approximated
to the closest value. But when the value is close to 1/2, it yields no
information. In order to avoid this situation, they restrict the application
of the computation to the partial formulas having unit clauses. Xing and
Zhang observed that such a lower bound is not efficient when the problem
is underconstrained.

38 Chapter 3. Lower Bounds

Given the CNF formula φ in Equation 3.1,

LowerBoundIP (φ) = 4.

Semi-Definite Programming Gomes et al. [GvHL06] have recently defined a
lower bound based on semidefinite programming.1 They considered both
the previous formulation of Xing and Zhang and the semidefinite relaxation
for MAX-2-SAT proposed by Goemans and Williamson [GW95]. In both
cases, they apply the following scheme:

1. solve the relaxation

2. order the variables by their absolute value

3. fix the first n variables (this value is an algorithm parameter)

4. extend the partial assignment to a total assignment.

The lower bound defined by Gomes et al. experimentally outperforms the
theoretical approximation of 0.940 [LLZ02] for random MAX-2-SAT.

3.2 Star rule

Our first original lower bound is the star rule [AMP04a], in which the underes-
timation of the lower bound is the number of disjoint inconsistent subformulas
of the form

{l1, . . . , lk, l̄1 ∨ · · · ∨ l̄k}.

In contrast to previous lower bounds, clauses with size greater than 2 can be
considered to compute underestimations.

When k = 1, the star rule becomes LBIC ; i.e., the star rule subsumes the
lower bound based on inconsistency counts. When k = 2, the star rule detects
inconsistencies that are also detected by LB4. Nevertheless, the star rule and
LB4 cannot be compared because LB4 detects inconsistencies like {l1,¬l1 ∨
l2,¬l2 ∨ l3,¬l3} which are beyond the reach of the star rule, and the star rule
detects inconsistencies like {l1, l2, l3,¬l1∨¬l2∨¬l3} which are beyond the reach
of LB4.

In Algorithm 3.3, we show the algorithm as it was implemented in [AMP04a]:
It only deals with k = 2 with a static variable ordering. In this solver, the
algorithm can be efficiently implemented with cost O(|φ|).

Given the CNF formula φ in Equation 3.1, Algorithm 3.3 computes
StarRule(φ) = 2. Although the general star rule computes StarRule(φ) =
3.

1A survey of SDP-based approximation algorithms for the MAX-SAT problem is introduced
in [Anj05].

3.3. Lower Bound UP 39

Algorithm 3.3: StarRule(φ) : Computation of lower bound star rule

Function StarRule(φ : CNF formula) : Natural
Data: Uℓ(φ) : set of unit clauses in φ containing ℓ
underestimation← LowerBoundIC (φ)
forall variable p1 ∈ V ar(φ) do

forall literal l1 ∈ {p1,¬p1} do
if Ul1(φ) 6= ∅ then

forall variable p2 ∈ V ar(φ) further than p1 do
forall literal l2 ∈ {p2,¬p2} do

if Ul2(φ) 6= ∅ ∧ (l̄1 ∨ l̄2) ∈ φ then
φ← φ \ {l1, l2, (l̄1 ∨ l̄2)}
underestimation ← underestimation + 1

return underestimation

Time complexity : O(|φ|)

3.3 Lower Bound UP

Unit propagation is one of the most powerful inference techniques in SAT solv-
ing. Even when it cannot be used like in SAT because its application can lead
to non-optimal solutions, we realized that it can be used to compute an under-
estimations of the lower bound in branch and bound MAX-SAT solvers.

Lower bound UP works as follows: Once a contradiction in a CNF formula
φ is detected via unit propagation, UP identifies a subset of clauses φ′ involved
in that unit propagation from which we can derive a unit refutation.2 Then,
φ := φ−φ′, and the underestimation is increased by one. This process is repeated
until no more contradictions can be derived by unit propagation. Observe that
φ must contain unit clauses for applying unit propagation.

Example 3.1 Let φ be the following CNF formula:

p1, p2, p3, p4, (¬p1 ∨ ¬p2 ∨ ¬p3), (¬p1 ∨ p6),¬p4, p5, (¬p5 ∨ ¬p2), (¬p5 ∨ p2).

Using lower bound UP, we are able to establish that the number of unsatisfied
clauses in φ is at least 3. The steps performed are the following ones:

1. φ′ = {p1, p2, p3,¬p1∨¬p2∨¬p3}, φ = {¬p1∨p6, p4,¬p4, p5,¬p5∨¬p2,¬p5∨
p2}, and the underestimation is 1. Observe that ¬p1∨p6 is involved in the

2Unit resolution states that from ℓ and ¬ℓ ∨ D, where ℓ is a literal and D is a disjunction
of literals, we can derive resolvent D.

A derivation (or proof) of a clause c from a clause set φ is a sequence c1, c2, . . . , cm of clauses
such that cm is the clause c, and for every i = 1, . . . , m, ci is either a clause in φ or a resolvent
of two clauses ca, cb with a, b < i.

A refutation is a derivation having as conclusion the empty clause. A unit refutation is a
refutation in which all resolvents are derived with unit resolution.

40 Chapter 3. Lower Bounds

unit propagation in which we have detected a contradiction, but it is not
included in φ′ because it is not needed to derive a unit refutation.

2. φ′ = {p4,¬p4}, φ = {¬p1 ∨ p6, p5,¬p5 ∨¬p2,¬p5 ∨ p2}, and the underesti-
mation is 2.

3. φ′ = {p5,¬p5 ∨ ¬p2,¬p5 ∨ p2}, φ = {¬p1 ∨ p6}, and the underestimation
is 3.

Lower bound UP captures lower bound IC: if we apply UP to the CNF
formula from Example 3.1, it is captured in step 2, when we derive the empty
clause from p4 and ¬p4. Observe that while UP returns 3, lower bound IC
returns 1.

Lower bound UP also captures the star rule. In the CNF formula from
Example 3.1, the star rule is captured in step 1, when we derive the empty
clause from p1, p2, p3, (¬p1 ∨ ¬p2 ∨ ¬p3), and in step 2, when we derive the
empty clause from p4 and ¬p4. While UP returns 3, the star rule returns 2.

Moreover, UP captures inconsistencies which are beyond the reach of lower
bounds like IC and the star rule. For example, when UP derives a refutation
from p5, (¬p5 ∨ ¬p2), (¬p5 ∨ p2) in the CNF formula from Example 3.1.

3.3.1 Understanding the lower bound through the impli-
cation graph

Given a CNF formula with many clauses and conflicts, it becomes a difficult task
to see which clauses will be chosen by lower bound UP. For the sake of better
understanding lower bound UP, and how it creates a refutation, we introduce
the concept of implication graph.

Following the definition in [BKS04], an implication graph G at a given stage
of DLL is a directed acyclic graph. It is constructed as follows:

1. Create a node for each unit clause, labeled with its literal. These will be
the indegree zero root nodes of G.

2. While there exists a clause c = (l1 ∨ · · · ∨ lk ∨ lk+1) such that ¬l1, . . . ,¬lk
label nodes in G,

(a) Add a node labeled lk+1 if not already present in G.

(b) Add edges (li, lk+1), 1 ≤ i ≤ k, if not already present.

3. Add to G a special node �. For any variable p which occurs both positively
and negatively in G, add directed edges from p and ¬p to �.

Example 3.2 Let φ be the following CNF formula:

(¬p8 ∨ ¬p9 ∨ ¬p10), (¬p1 ∨ ¬p2 ∨ p3), (¬p6 ∨ p9), (¬p6 ∨ p8), (¬p7 ∨ p10),
(¬p4 ∨ p7), (¬p4 ∨ p6), (¬p4 ∨ p5), (¬p7 ∨ p11), (¬p11 ∨ p12), (¬p3 ∨ p4),

(p1), (p2)

3.3. Lower Bound UP 41

Following the steps for the creation of its implication graph, we obtain the graph
below. In the following, each node is labeled with the literal associated with its
unit clause, a square means an empty clause, and black nodes mean starting unit
clauses.

p1

p2

p3 p4

p5

p6

p7

p8

p9

p10

¬p10

p11 p12

In order to derive a unit refutation, there is no need to select all the clauses
involved in an implication graph. Only the nodes having a path to the conflict
are needed. We introduce here the concept of conflict graph [BKS04]. A conflict
graph H is any subgraph of an implication graph with the following properties:

1. H contains � and exactly one conflict variable.

2. All nodes in H have a path to �.

3. Every node ℓ in H other than � either corresponds to a starting unit
clause or has precisely the nodes ¬l1,¬l2, . . . ,¬lk as predecessors where
(l1 ∨ l2 ∨ · · · ∨ lk ∨ ℓ) is a known clause.

While an implication graph may or may not contain conflicts, a conflict graph
always contains exactly one. The set of nodes of a conflict graph represent an
inconsistent formula.

In the creation of graph G, we are interested in obtaining a conflict graph.
Every time a new node is created, UnitPropagation (cf. Algorithm 3.5) saves
the path backwards to the preceding unit clauses, as is shown in Example 3.3.
The implementation of such a path is called an Implemented Graph.

Example 3.3 Given the formula φ c1 : p1, c2 : (¬p1 ∨ p2), c3 : (¬p1 ∨ ¬p2),
its representations is shown below: (a) as an implication graph and (b) as an
implemented graph.

p1

p2

¬p2

c1

c2

c3

p1

p2

¬p2

(a) (b)

42 Chapter 3. Lower Bounds

Once the implication graph is constructed, it is easy to identify all the nodes
from which there exists a path to the contradiction. Starting from the empty
clause, the set of nodes in the path backwards to the root nodes have to be
collected. This makes the nodes that are not in the refutation to be never
reached.

Example 3.4 Taking the implication graph in Example 3.2, the refutation is
formed by all the nodes excluding the nodes having no path to the contradiction,
as shown below:

p1

p2

p3 p4 p6

p7

p8

p9

p10

¬p10

In this case, clauses (¬p7∨p11), (¬p11∨p12) and (¬p4∨p5) have been removed.

3.3.2 Implementing the lower bound UP

The lower bound computation in detail is as follows: If there exists any unit
clause, apply unit propagation until a contradiction is found. In such a case,
remove the set of inconsistent clauses and start the process again. This com-
putation is shown in Algorithm 3.4, where UnitPropagation returns the set
of clauses deriving an empty clause if any; otherwise, the function returns the
empty set.

It is known that the standard unit propagation has a linear time complexity
in the length of the formula, O(|φ|) [GEI91, Fre95]. The loop iterates k steps (it
detects k inconsistent subformulas) plus an additional step if there is any unit
clause left. As a whole, the lower bound computation has a time complexity in
O(k · |φ|). In the worse case, every unit clause may derive an empty clause. So,
the time complexity is also O(|U| · |φ|), where |U| is the number of unit clauses
in φ.

As commented above, UnitPropagation(φ) (cf. Algorithm 3.5) implements
the application of unit propagation. This function returns the set of clauses de-
riving an empty clause if any; otherwise, the function returns ∅. Inside the algo-
rithm, GetDerivation collects the sequence of clauses deriving the empty clause;
i.e., the nodes in the conflict graph. Regarding the analysis of Algorithm 3.5,
UnitPropagation has linear time complexity in the length of the formulaO(|φ|),
in the worst case. Therefore, adding Line Union to UnitPropagation has no
influence on the complexity, because it can be efficiently implemented as an
assignment with constant cost. Thus, the loop has time complexity O(|φ|).
The recursive function GetDerivation has time cost O(min(m,n)), because the

3.4. UP improved: Choosing the best unit clause 43

Algorithm 3.4: LowerBoundUP(φ) : Computation of lower bound UP

Function LowerBoundUP(φ : CNF formula) : Natural
Data: ϕ : set of clauses in the derivation of a conflict, or the empty

set if no conflict is found
underestimation ← EmptyClauses(φ)
finished ← false

while ∃ unit clause in φ ∧ ¬ finished do
ϕ← UnitPropagation(φ)
φ← φ \ ϕ
⊲ Remove the clauses in the refutation ⊳
if ϕ 6= ∅ then

underestimation ← underestimation + 1

else
finished ← true

return underestimation

Time complexity : O(k · |φ|)

implication graph has two implicit constraints: a maximum of n nodes, there
cannot be more nodes than variables in the CNF formula; and a maximum of m
nodes, there cannot be more nodes than clauses in the CNF formula. Therefore,
the overall complexity of the algorithm is O(|φ|), observing that |φ| is a generous
upper bound for GetDerivation.

3.4 UP improved: Choosing the best unit clause

We propose two new lower bounds, called UP∗ and UPS , which improve UP
by using a different heuristic for propagating unit clauses in unit propagation.
Then, we propose three new lower bounds, called UPFL, UP∗

FL and UPS
FL, which

are, respectively, extensions of UP, UP∗ and UPS incorporating the detection of
failed literals.

3.4.1 Lower bounds improving UP

UP gives an underestimation of the number of disjoint inconsistent subformulas
in a CNF formula φ using unit propagation, which means that (i) each incon-
sistent subformula contains at least one unit clause and, therefore, the number
of detected inconsistencies is bounded by the number of unit clauses in φ; and
(ii) clauses in an inconsistent subformula cannot be used to derive other incon-
sistent subformulas.

In order to define better orderings than the one implemented in lower bound
UP for propagating unit clauses in UnitPropagation, the goal is twofold: (i) we
need to find disjoint inconsistent subformulas containing as few unit clauses as
possible, leaving more unit clauses in the remaining formula to derive further

44 Chapter 3. Lower Bounds

Algorithm 3.5: UnitPropagation(φ) : Application of unit propagation
for lower bound UP

Function UnitPropagation(φ : CNF formula) : Set of clauses
Data: G : Implemented graph initialized to empty
φ′ ← φ
while ∃ unit clause in φ′ ∧ � 6∈ φ do

NextUC c← NextUnitClause(φ′)

⊲ Assuming c = {ℓ} ⊳
Union G← G ∪ (c, ℓ)

φ′ ← UnitClauseRule(φ′, ℓ)

if � ∈ φ′ then return GetDerivation(�, φ, G)

else return ∅

Time complexity : O(|φ|)

inconsistent subformulas; and (ii) each inconsistent subformula should also con-
tain as few non-unit clauses as possible. As a result, we provide two new lower
bounds: UP∗ and UPS . We will investigate the differences between the three
different heuristics for choosing unit clauses.

Lower bound UP stores unit clauses in a queue, so that older unit clauses
are preferred to more recent unit clauses when using them. We define a new
lower bound, UPS , that stores all unit clauses in a stack S, so that the last
inserted unit clause is the first used. The last lower bound, UP∗, maintains two
queues: Q1 and Q2. When UP∗ starts to search for an inconsistent subformula,
Q1 contains all the unit clauses of the CNF formula under consideration (more
recently derived unit clauses are at the end of Q1), and Q2 is empty. The unit
clauses derived during the application of unit propagation are stored in Q2, and
unit propagation does not use any unit clause from Q1 unless Q2 is empty. In
other words, UP creates the implication graph in a breadth-first manner, UPS

in a depth-first manner, and UP∗ in a kind of locality and breadth-first manner.

The three different lower bounds are implemented as a different heuristic for
the function NextUnitClause, in line NextUC of Algorithm 3.5.

Examples with lower bounds UP, UPS and UP∗

For the sake of better understanding the three lower bounds, we provide three
examples, to illustrate the different behaviour of each lower bound. In the ex-
amples provided, we observe that: UP consumes more unit clauses than UPS

and UP ∗; UPS consumes more clauses than UP ∗; and UP ∗ consumes fewer unit
clauses than UPS .

Example 3.5 Let φ1 be the MAX-SAT instance {p1, p2, p3,¬p1∨p4,¬p1∨p5,¬p4∨
¬p5,¬p1∨¬p2∨¬p3, p1∨¬p2}. We show that UP detects exactly one inconsistent
subformula while UP∗ and UPS are able to detect two inconsistent subformulas.

3.4. UP improved: Choosing the best unit clause 45

p3

p2

p1 p5

p4

¬p3

Figure 3.1: Created implication graph for Example 3.5 applying lower bound
UP. The dotted area contains the conflict graph.

UP: Initially, Q = [p1, p2, p3]. When p1 is propagated, unit clauses p4 and p5

are added to Q (Q = [p2, p3, p4, p5]), clause p1∨¬p2 is removed, and clause
¬p1 ∨ ¬p2 ∨ ¬p3 becomes ¬p2 ∨ ¬p3. When p2 is propagated, ¬p2 ∨ ¬p3

becomes ¬p3, which is added to Q (Q = [p3, p4, p5,¬p3]). When p3 is prop-
agated, the empty clause is derived. The inconsistent subformula detected
by UP is {p1, p2, p3,¬p1∨¬p2∨¬p3}. The remaining clauses {¬p1∨p4,¬p1∨
p5,¬p4 ∨¬p5, p1 ∨¬p2} do not contain any unit clause and, therefore, UP
stops.

Queue
p1, p2, p3 ¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5,¬p1 ∨ ¬p2 ∨ ¬p3, p1 ∨ ¬p2

p2, p3, p4, p5 ¬p4 ∨ ¬p5,¬p2 ∨ ¬p3

p3, p4, p5,¬p3 ¬p4 ∨ ¬p5

p4, p5 {p1, p2, p3,¬p1 ∨ ¬p2 ∨ ¬p3} ⊢ �

∅ ¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5, p1 ∨ ¬p2

UPS: Initially, S = [p3, p2, p1] (we assume p1 is at the bottom of the stack).
When p3 is propagated, clause ¬p1 ∨ ¬p2 ∨ ¬p3 becomes ¬p1 ∨ ¬p2, and
S = [p2, p1]. When p2 is propagated, unit clauses ¬p1 and p1 are added
to S (S = [p1,¬p1, p1]). When p1 is propagated, the empty clause is de-
rived. The first inconsistent subformula detected is {p2, p3,¬p1 ∨ ¬p2 ∨
¬p3, p1 ∨¬p2}. Next, UPS derives another contradiction from the remain-
ing clauses: {p1,¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5}. Now, S = [p1]. When p1

is propagated, unit clauses p4 and p5 are added to S (S = [p5, p4]). When
p4 is propagated, unit clause ¬p5 is added to S (S = [¬p5, p5]). When
¬p5 is propagated, the empty clause is derived. The second inconsistent
subformula is {p1,¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5}.

46 Chapter 3. Lower Bounds

p1 p5

p4 ¬p5

p3

p2

¬p1

p1

Figure 3.2: Created implication graphs for Example 3.5 applying lower bound
UPS . Both graphs correspond to the conflict graphs.

p1 p5

p4 ¬p5

p2

p3

p1

¬p1

Figure 3.3: Created implication graphs for Example 3.5 applying lower bound
UP∗. Both graphs correspond to the conflic graphs.

Stack
p3, p2, p1 ¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5,¬p1 ∨ ¬p2 ∨ ¬p3, p1 ∨ ¬p2

p2, p1 ¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5,¬p1 ∨ ¬p2, p1 ∨ ¬p2

p1,¬p1, p1 ¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5

p4, p5 {p2, p3,¬p1 ∨ ¬p2 ∨ ¬p3, p1 ∨ ¬p2} ⊢ �

p1 ¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5

p4, p5 ¬p4 ∨ ¬p5

p5,¬p5 ∅
∅ {p1,¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5} ⊢ �

UP∗: Initially, Q1 = [p1, p2, p3]. When p1 is propagated, unit clauses p4 and p5

are added to Q2 (Q2 = [p4, p5]), clause p1 ∨ ¬p2 is removed, and clause

3.4. UP improved: Choosing the best unit clause 47

¬p1 ∨ ¬p2 ∨ ¬p3 becomes ¬p2 ∨ ¬p3. We then propagate p4 and derive
¬p5, which is added to Q2 (Q2 = [p5,¬p5]). When p5 is propagated,
the empty clause is derived. The first inconsistent subformula detected
is {p1,¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨¬p5}. Observe that UP∗ consumed exactly
one unit clause from the input formula. Next, UP∗ detects another con-
tradiction in the remaining clauses: {p2, p3,¬p1 ∨ ¬p2 ∨ ¬p3, p1 ∨ ¬p2}.
Now, Q1 = [p2, p3]. When p2 is propagated, unit clauses p1 is added to
Q2 (Q2 = [p1]) and clause ¬p1 ∨ ¬p2 ∨ ¬p3 becomes ¬p1 ∨ ¬p3. When
p1 is propagated, unit clauses ¬p3 is added to Q2 (Q2 = [¬p3]). When
¬p3 is propagated, the empty clause is derived. The second inconsistent
subformula is {p2, p3,¬p1 ∨ ¬p2 ∨ ¬p3, p1 ∨ ¬p2}.

Q1 Q2

p1, p2, p3 ∅ ¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5,¬p1 ∨ ¬p2 ∨ ¬p3, p1 ∨ ¬p2

p2, p3 p4, p5 ¬p4 ∨ ¬p5,¬p2 ∨ ¬p3

p2, p3 p5,¬p5 ¬p2 ∨ ¬p3

p2, p3 ∅ {p1,¬p1 ∨ p4,¬p1 ∨ p5,¬p4 ∨ ¬p5} ⊢ �

p2, p3 ∅ ¬p1 ∨ ¬p2 ∨ ¬p3, p1 ∨ ¬p2

p3 p1 ¬p1 ∨ ¬p3

p3 ¬p3 ∅
∅ ∅ {p2, p3,¬p1 ∨ ¬p2 ∨ ¬p3, p1 ∨ ¬p2} ⊢ �

Example 3.5 suggests that one of the drawbacks of UP is that it consumes
unit clauses from the input formula that could be avoided, which is a direct
consequence of the ordering in which unit clauses are propagated.

Example 3.6 Let φ2 be the MAX-SAT instance {p1,¬p1 ∨ p2,¬p1 ∨ p3,¬p2 ∨
¬p3,¬p1∨p4,¬p4∨p5,¬p5∨p6,¬p6∨p7,¬p7∨¬p8,¬p7∨¬p9, p8∨p9}. We show
that, in this case, UPS consumes more clauses (not necessarily unit clauses) than
UP∗ when detecting inconsistent subformulas.

p1

p2

p3

¬p3

p4 p5 p6 p7 ¬p9

¬p8 p9

UP∗

UPS

Figure 3.4: Implication graph for Example 3.6. The dotted area contains the
conflict graph nodes detected by UPS ; and the dashed area contains the conflict
graph nodes detected by UP∗.

48 Chapter 3. Lower Bounds

UPS: Initially, S = [p1]. When p1 is propagated, unit clauses p2, p3, and p4 are
added to S (S = [p4, p3, p2]). When p4 is propagated, unit clause p5 is
added to S (S = [p5, p3, p2]). When p5 is propagated, unit clause p6 is
added to S (S = [p6, p3, p2]). When p6 is propagated, unit clause p7 is
added to S (S = [p7, p3, p2]). When p7 is propagated, unit clauses ¬p8 and
¬p9 are added to S (S = [¬p9,¬p8, p3, p2]). When ¬p9 is propagated, unit
clause p8 is added to S. (S = [p8,¬p8, p3, p2]). When p8 is propagated, the
empty clause is derived. The inconsistent subformula detected by UPS is
{p1,¬p1 ∨ p4,¬p4 ∨ p5,¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9, p8 ∨ p9},
which contains 8 clauses.

Stack
p1 ¬p1 ∨ p2,¬p1 ∨ p3,¬p2 ∨ ¬p3,¬p1 ∨ p4,¬p4 ∨ p5,¬p5 ∨ p6,

¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9, p8 ∨ p9

p4, p3, p2 ¬p2 ∨ ¬p3,¬p4 ∨ p5,¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,
¬p7 ∨ ¬p9, p8 ∨ p9

p5, p3, p2 ¬p2 ∨ ¬p3,¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9, p8 ∨ p9

p6, p3, p2 ¬p2 ∨ ¬p3,¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9, p8 ∨ p9

p7, p3, p2 ¬p2 ∨ ¬p3,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9, p8 ∨ p9

¬p8,¬p9, p3, p2 ¬p2 ∨ ¬p3, p8 ∨ p9

p9,¬p9, p3, p2 ¬p2 ∨ ¬p3

¬p9, p3, p2 {p1,¬p1 ∨ p4,¬p4 ∨ p5,¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,
¬p7 ∨ ¬p9, p8 ∨ p9} ⊢ �

¬p1 ∨ p2,¬p1 ∨ p3,¬p2 ∨ ¬p3

UP∗: Initially, Q1 = [p1] and Q2 are empty. When p1 is propagated, unit clauses
p2, p3, and p4 are added to Q2 (Q2 = [p2, p3, p4]). When p2 is propagated,
unit clause ¬p3 is added to Q2 (Q2 = [p3, p4,¬p3]). When p3 is propagated,
the empty clause is derived. The inconsistent subformula detected by UP∗

is {p1,¬p1 ∨ p2,¬p1 ∨ p3,¬p2 ∨ ¬p3}, which contains 4 clauses.

Q1 Q2

p1 ∅ ¬p1 ∨ p2,¬p1 ∨ p3,¬p2 ∨ ¬p3,¬p1 ∨ p4,¬p4 ∨ p5,¬p5 ∨ p6,
¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9, p8 ∨ p9

∅ p2, p3, p4 ¬p2 ∨ ¬p3,¬p4 ∨ p5,¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,
¬p7 ∨ ¬p9, p8 ∨ p9

∅ p3, p4,¬p3 ¬p4 ∨ p5,¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9, p8 ∨ p9

∅ p4 {p1,¬p1 ∨ p2,¬p1 ∨ p3,¬p2 ∨ ¬p3} ⊢ �

∅ ∅ ¬p1 ∨ p4,¬p4 ∨ p5,¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,
¬p7 ∨ ¬p9, p8 ∨ p9

Example 3.6 suggests that UPS tends to find larger inconsistent subformulas
than UP∗; i.e., UPS can consume more clauses than UP∗ to derive an empty

3.4. UP improved: Choosing the best unit clause 49

clause. This is so because UPS , when there are several possibilities of deriving
an empty clause from a unit clause, just finds the first derivation, while it can
be shown that UP∗ tends to find shorter derivations. UP∗ makes one step in
each possible derivation in parallel, stopping all derivations when the first empty
clause is found. In other words, UPS performs a depth-first search while UP∗

performs a breadth-first search.

Example 3.7 Let clauses in φ2 be ordered as follows: {p1,¬p1 ∨ p4,¬p4 ∨
p5,¬p5∨p6,¬p6∨p7,¬p7∨¬p8,¬p7∨¬p9, p8∨p9,¬p1∨p2,¬p1∨p3,¬p2∨¬p3}.
We show that UP ∗ finds a derivation as short as UPS.

p1

p2

p3

¬p3

p4 p5 p6 p7 ¬p8 p9

¬p9

Figure 3.5: Implication graph for Example 3.7. The dotted area contains the
conflict graph nodes detected by UPS and UP∗.

In this case, UPS finds the shortest derivation of an empty clause, because
the shortest derivation happens to be the first one. However, UP∗ always finds
this derivation in the following way: initially, Q1 = [p1] and Q2 is empty. When
p1 is propagated, unit clauses p4, p2, and p3 are added to Q2 (Q2 = [p4, p2, p3]).
When p4 is propagated, unit clause p5 is added to Q2 (Q2 = [p2, p3, p5]). When
p2 is propagated, unit clause ¬p3 is added to Q2 (Q2 = [p3, p5,¬p3]). When p3

is propagated, the empty clause is derived.

Q1 Q2

p1 ∅ ¬p1 ∨ p4,¬p4 ∨ p5,¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9,
p8 ∨ p9,¬p1 ∨ p2,¬p1 ∨ p3,¬p2 ∨ ¬p3

∅ p4, p2, p3 ¬p4 ∨ p5,¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9, p8 ∨ p9,
¬p2 ∨ ¬p3

∅ p2, p3, p5 ¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9, p8 ∨ p9,¬p2 ∨ ¬p3

∅ p3, p5,¬p3 ¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9, p8 ∨ p9

∅ p5 {p1,¬p1 ∨ p2,¬p1 ∨ p3,¬p2 ∨ ¬p3} ⊢ �

∅ ∅ ¬p1 ∨ p4,¬p4 ∨ p5,¬p5 ∨ p6,¬p6 ∨ p7,¬p7 ∨ ¬p8,¬p7 ∨ ¬p9,
p8 ∨ p9

50 Chapter 3. Lower Bounds

3.4.2 Extending lower bound UP with Failed Literal De-
tection

We can incorporate to lower bound UP∗ an additional level of forward look-
ahead based on the detection of failed literals. We next describe in detail UP∗

FL,
and assume that inconsistent subformulas in φ′∪{p} and φ′∪{¬p} are detected
via UP∗. Lower bound UP∗ has been selected because it is generally better than
UP and UPS , but the previous result holds for UP and UPS as well (named
UPFL and UPS

FL respectively in the experimental results in this chapter).
Let φ be a MAX-SAT instance, and let φ′ be the formula resulting from φ

after replacing every inconsistent subformula detected by UP∗ with an empty
clause. Obviously, unit propagation in φ′ cannot derive any additional empty
clause. However, if unit propagation is applied to φ′∪{p} and φ′∪{¬p}, for any
variable p occurring in φ′, and produces an empty clause in each CNF formula
(i.e., p and ¬p are failed literals in φ′), then (ϕ1∪ϕ2)\{p,¬p} is an inconsistent
subformula of φ′, where ϕ1 is the inconsistent subformula detected by UP∗ in
φ′ ∪ {p}, and ϕ2 is the inconsistent subformula detected by UP∗ in φ′ ∪ {¬p}.
That is a direct consequence of the following observation: We can produce a
proof of ¬p by applying resolution to ϕ1 \ {p}, and a proof of p by applying
resolution to ϕ2 \ {¬p}. If we put the two proofs together and resolve p and ¬p,
we get a refutation from (ϕ1∪ϕ2)\{p,¬p}. Note that now: (i) we only consider
clauses of φ′, and (ii) the refutation is a resolution refutation, i.e., it is not
restricted to unit resolution refutations.

Algorithm 3.6: FailedLiteral(φ′, underestimation) : Computation of
lower bound Failed Literal
Function FailedLiteral(φ′ : CNF formula, underestimation: Natural) :
Integer

forall variable p ∈ V arFL(φ′) do
ϕ1 ← UnitPropagation(φ′ ∪ {p})
ϕ2 ← UnitPropagation(φ′ ∪ {¬p})
if ϕ1 6= ∅ ∧ ϕ2 6= ∅ then

⊲ Both produce an empty clause ⊳
φ′ ← φ′ \ (ϕ1 ∪ ϕ2 \ {p,¬p})
underestimation ← underestimation + 1

return underestimation

Time complexity : O(|φ′| · n)

Algorithm 3.6 shows the application of failed literal detection after any of
the lower bounds UP, UPS or UP∗. Assuming that the time complexity of
UnitPropagation is O(|φ′|), and the fact that the loop has to deal with all the
n variables in the worst case, the time complexity of the algorithm is O(|φ′| ·n).

Example 3.8 Let φ′ be {p2∨¬p1,¬p2∨p3,¬p2∨¬p3, p2∨p1}. If unit propagation
is applied to φ′ ∪ {p1}, UP∗ detects the inconsistent subformula ϕ1 = {p1, p2 ∨

3.5. Empirical evaluation 51

¬p1,¬p2 ∨ p3,¬p2 ∨ ¬p3}, and if it is applied to φ′ ∪ {¬p1}, UP∗ detects the
inconsistent subformula ϕ2 = {¬p1,¬p2 ∨ p3,¬p2 ∨¬p3, p2 ∨ p1}. Observe that a
resolution refutation can be derived from (ϕ1∪ϕ2)\{p1,¬p1} = {p2∨¬p1,¬p2∨
p3,¬p2 ∨ ¬p3, p2 ∨ p1}.

As introducing an additional level of look-ahead is time consuming, only a
subset of the variables occurring in the CNF formula are used to detect failed
literals. Let V arFL(φ′) be the set of propositional variables occurring in φ′ such
that (i) they do not occur in unit clauses; and (ii) they have at least two positive
occurrences and two negatives occurrences in binary clauses. UP∗

FL detects, for
each variable p in V arFL(φ′), if p and ¬p are both failed literals in φ′. Once an
inconsistent subformula ϕ is detected, ϕ is replaced with an empty clause in φ′,
and V arFL(φ′) is updated taking into account the new CNF formula derived.

In the definition of V arFL(φ′), variables occurring in unit clauses are not
considered because they did not lead to a contradiction when UP∗ was applied
to φ′. Selecting variables with at least two positive occurrences and two negatives
occurrences in binary clauses was empirically determined. These variables give
at least two new unit clauses when they are set to a truth value.

UP∗
FL computes, in general, tighter bounds (the total number of empty

clauses in the resulting CNF formula) than UP∗ and, in the worst-case, it pro-
vides the same lower bound as UP∗. It is also important to highlight some side
effects of its application: (i) as soon as the new lower bound reaches the upper
bound for some variable p, we can prune the current search subspace, and (ii) if
the difference between the current lower bound and the upper bound is one, and
unit propagation in φ′ ∪{p} (φ′ ∪{¬p}) leads to an empty clause, then p can be
set to false (true) (refer to Section 4.1).

3.5 Empirical evaluation

We first define the benchmarks used in the experimental evaluation, and then
report on the experimental results.

3.5.1 Benchmarks

In the experimentation, we address two problems: random MAX-k-SAT and
random MAX-CUT, a problem that can be reduced to MAX-SAT.

Random MAX-k-SAT

In order to generate random instances, the generation scheme commonly used
in the literature during the last years is random k-SAT, proposed by [FP83] and
that we introduce here.

A random k-SAT instance is defined according to the three following param-
eters: number n of variables, number c of clauses, number k of literals per clause.

52 Chapter 3. Lower Bounds

Given a number n of variables and a number c of clauses, one random k-SAT in-
stance is produced by selecting uniformly, independently, and with replacement
c non-tautological clauses of length k among the 2k

(

n
k

)

possible clauses.
Experimentally, given a satisfiable random propositional CNF formula φ and

a fixed number of variables, the fact of significantly increasing the number of
clauses in φ will end up inevitably in an unsatisfiable formula. Thus, decreasing
the number of clauses will lead to make φ satisfiable. This phenomenon, both
well studied in practice as in theory, is called phase transition.

Since we are interested on unsatisfiable formulas, we show the behavior of a
MAX-SAT solver with plots ranging from the phase transition point, where the
instances start becoming unsatisfiable, to the saturation point, where instances
are forced to have repeated clauses (e.g., saturation point for MAX-2-SAT is
c = 22

(

n
2

)

= 2n(n − 1)). In the experimentation, the saturation point was
reached whenever possible.

For the creation of random MAX-SAT instances, we have used generator
mwff, created by Bart Selman and available from DIMACS3. It allows the cre-
ation of repeated clauses.

MAX-CUT

Let G = (V,E) be an undirected graph. A cut is a partition of the vertices V
into two sets S and T . Any edge (u, v) ∈ E with u ∈ S and v ∈ T is said to be
crossing the cut and is a cut edge. The size of the cut is the number of edges
crossing the cut. A Maximum Cut (MAX-CUT) is then defined as a cut of G of
maximum size.

In order to map MAX-CUT to MAX-SAT, we used the encoding in [Yan94]:
Given a graph with e edges, we created, for each edge (xi, xj), exactly two binary
clauses (pi ∨ pj) and (¬pi ∨ ¬pj). If φ is the collection of such binary clauses,
then the MAX-CUT instance has a cut of k edges if, and only if, the MAX-SAT
instance has an assignment under which e + k clauses are satisfied.

Notice that this mapping provides structure to the CNF formula. This
changes the solver behavior compared with random MAX-SAT, as we show in
the next section.

3.5.2 Experimental results

In this chapter we have introduced three UP based lower bounds: UP, UP∗

and UPS ; and their respective extensions detecting failed literals, UPFL, UP∗
FL

and UPS
FL. In this section, we show the results of testing each of the six lower

bounds in the branch and bound MAX-SAT solver MaxSatz (see Chapter 6 for
a description of the solver).

Here on, for each experiment we display pairwise plots with running time and
number of branches.4 Displaying branching is a good tool to better understand

3Available at ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/.
4A branch is computed every time a Boolean variable is going to be instantiated to both

values.

3.5. Empirical evaluation 53

a given technique. When a technique is added, we have found four cases to be
analyzed:

• If branches and time have been reduced, we have found a good technique.

• If branches have been reduced and time has increased, the source code has
to be improved (whenever possible).

• If branches and time have been increased, the technique has to be dis-
carded.

• If branches have been increased and time has reduced, something unex-
pected happened (e.g., the added technique changes other technique be-
haviour) and the design has to be checked (unless a bug).

Here on, all the experiments have been performed in a Linux cluster, having
all nodes processors AMP Opteron (64bits 2GHz) with 1Mb of memory.

Below, we introduce the experimentation on MAX-k-SAT and MAX-CUT.

MAX-2-SAT and MAX-3-SAT

In the first experiment we have compared the three UP based lower bounds:
UP, UP∗ and UPS . In Figure 3.6, we see that UP∗ is the best performing lower
bound for a low clause to variable ratio, but when the ratio increases UP∗ and
UPS get almost overlapped in time (there is a difference of 1.2%).

In the second experiment we have compared the three UP based lower bounds
extended with failed literal detection: In Figure 3.7, we see that UP∗

FL is the
best performing lower bound; and UPFL is the worst scaling, although it is the
most effective for a low clause to variable ratio, and better than UPS

FL in almost
the whole range.

 0.01

 0.1

 1

 10

 100

 1000

 1000 2000 3000 4000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 50 variables

UP
UP*

UPS

 100

 1000

 10000

 100000

 1e+06

 1000 2000 3000 4000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 50 variables

UP
UP*

UPS

Figure 3.6: Impact of heuristics UP, UP∗ and UPS

We have performed a third experiment in order to get insights of the lower
bounds performance. One observed effect is the influence of failed literal detec-
tion. As can be seen in Figure 3.8, UPS is not affected as much as the other

54 Chapter 3. Lower Bounds

 0.01

 0.1

 1

 10

 100

 1000 2000 3000 4000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 50 variables

UPFL

UP*
FL

UPS

FL
 100

 1000

 10000

 100000

 1000 2000 3000 4000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 50 variables

UPFL

UP*
FL

UPS

FL

Figure 3.7: Impact of failed literal detection on heuristics UP, UP∗ and UPS

two lower bounds. The most probable reason is the number of remaining clauses
after the application of the lower bound: there are fewer binary clauses after ap-
plying UPS than after applying UP and UP∗. The consequence can be observed
in the number of backracks: UPFL and UP∗

FL are the ones that consume less
backtracks.

In the fourth experiment, we add up the three previous experiments in one
plot, Figure 3.9, and observe that UP∗

FL is the best performing solver. Surpris-
ingly, UPFL has a good performance in the less constrained instances.

In the fifth experiment, we increased the number of variables to 100. In
Figure 3.10 the results show that the best performing solvers are UP∗

FL, UP∗

and UPFL. In constrast with the previous experiments, UP∗ plays also a role
in the group of the best ones. We observe that failed literal detection has a
different behaviour, when observing the number of backtracks, for every lower
bound: (i) on lower bound UPS makes no difference, (ii) on lower bound UP∗

there is a little gap, and (iii) on lower bound UP there is a big gap. We think
that failed literal detection reduce more the number of backtracks in this last
case because lower bound UP leaves more inconsistencies to be detected than
the other lower bounds.

The last experiments over random MAX-k-SAT are reported in Figure 3.11
and Figure 3.12. We can see the influence of all of the lower bounds for MAX-3-
SAT with 50 and 70 variables. We observe the same influence of the heuristics
as seen in the previous detailed analysis: UP∗

FL is the best performing solver.

MAX-CUT

Finally we report the results for MAX-CUT with 50 nodes. We have performed,
like for MAX-2-SAT, a separate experiment for the three UP lower bounds and
for their extensions with failed literal detection. In Figure 3.13 we show the lower
bounds UP, UP∗ and UPS . The best performing is UP∗, as seen for random
MAX-k-SAT, and the worst performing is UP. UPS performance goes from UP
with low number of edges to UP∗ when more edges are added. Otherwise, when
failed literal detection is added, UPS

FL performs the worst, and UPFL and UP∗
FL

3.6. Summary 55

perform very similar (Figure 3.14). In the right side in the plot, UPFL becomes
the best one because it is the lower bound that takes more advantage of failed
literal detection, as can be seen in Figure 3.15. The influence of all the lower
bounds on MAX-CUT is shown in Figure 3.16.

3.6 Summary

This chapter describes the work on the definition, efficient implementation and
analysis of MAX-SAT lower bounds on a branch and bound algorithm. Unit
propagation, one of the more useful techniques in SAT, has been extensively
used in the computation of efficient lower bounds. In the application of unit
propagation, the manner a unit clause is chosen changes the performance of the
algorithm. The goal is to take the minimum number of initial unit clauses to
detect the maximum number of disjoint inconsistent subsets of clauses. Three
different lower bounds have been defined: UP, UPS and UP∗.

When there is no unit clause to apply unit propagation, or the existing unit
clauses do not bring any conflict, an estimation can be made detecting failed
literals. This technique puts the solver a step forward. An effect observed in the
experimentation is the deterioration of failed literal detection when improving
lower bound UP. This is because lower bound UP leaves fewer inconsistencies to
be detected.

Many lower bound computations, done in a node in the search tree, have to
be computed again in downward nodes. Many times, this re-computation can
be avoided applying inference rules, as is introduced in the next chapter.

56 Chapter 3. Lower Bounds

 0.01

 0.1

 1

 10

 100

 1000

 1000 2000 3000 4000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 50 variables

UP
UPFL

 100

 1000

 10000

 100000

 1e+06

 1000 2000 3000 4000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 50 variables

UP
UPFL

 0.01

 0.1

 1

 10

 100

 1000 2000 3000 4000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 50 variables

UP*

UP*
FL

 100

 1000

 10000

 100000

 1000 2000 3000 4000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 50 variables

UP*

UP*
FL

 0.01

 0.1

 1

 10

 100

 1000 2000 3000 4000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 50 variables

UPS

UPS
FL

 100

 1000

 10000

 100000

 1000 2000 3000 4000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 50 variables

UPS

UPS
FL

Figure 3.8: Impact of failed literal detection on heuristics UP, UP∗ and UPS

3.6. Summary 57

 0.01

 0.1

 1

 10

 100

 1000

 1000 2000 3000 4000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 50 variables

UP
UPFL

UP*

UP*
FL

UPS

UPS

FL

 100

 1000

 10000

 100000

 1e+06

 1000 2000 3000 4000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 50 variables

UP
UPFL

UP*

UP*
FL

UPS

UPS

FL

Figure 3.9: Random MAX-2-SAT with 50 variables

58 Chapter 3. Lower Bounds

 0.01

 0.1

 1

 10

 100

 1000

 400 500 600 700 800 900

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 100 variables

UP
UPFL

UP*

UP*
FL

UPS

UPS

FL

 100

 1000

 10000

 100000

 1e+06

 1e+07

 400 500 600 700 800 900

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 100 variables

UP
UPFL

UP*

UP*
FL

UPS

UPS

FL

Figure 3.10: Random MAX-2-SAT with 100 variables

3.6. Summary 59

 1

 10

 100

 1000

 600 700 800 900 1000 1100 1200

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 50 variables

UP
UPFL

UP*

UP*
FL

UPS

UPS

FL

 10000

 100000

 1e+06

 1e+07

 600 700 800 900 1000 1100 1200

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-3SAT - 50 variables

UP
UPFL

UP*

UP*
FL

UPS

UPS

FL

Figure 3.11: Random MAX-3-SAT with 50 variables

60 Chapter 3. Lower Bounds

 1

 10

 100

 1000

 10000

 500 600 700 800 900 1000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 70 variables

UP
UPFL

UP*

UP*
FL

UPS

UPS

FL

 10000

 100000

 1e+06

 1e+07

 1e+08

 500 600 700 800 900 1000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-3SAT - 70 variables

UP
UPFL

UP*

UP*
FL

UPS

UPS

FL

Figure 3.12: Random MAX-3-SAT with 70 variables

3.6. Summary 61

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

UP
UP*

UPS

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 200 300 400 500 600

br
an

ch
es

 (
lo

g
sc

al
e)

number of edges

Max-Cut - 50 nodes

UP
UP*

UPS

Figure 3.13: Impact of heuristics UP, UP∗ and UPS on MAX-CUT

 0.01

 0.1

 1

 10

 100

 1000

 200 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

UPFL

UP*
FL

UPS

FL
 100

 1000

 10000

 100000

 1e+06

 1e+07

 200 300 400 500 600

br
an

ch
es

 (
lo

g
sc

al
e)

number of edges

Max-Cut - 50 nodes

UPFL

UP*
FL

UPS

FL

Figure 3.14: Impact of failed literal detection on heuristics UP, UP∗ and UPS

on MAX-CUT

62 Chapter 3. Lower Bounds

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

UP
UPFL

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 200 300 400 500 600

br
an

ch
es

 (
lo

g
sc

al
e)

number of edges

Max-Cut - 50 nodes

UP
UPFL

 0.01

 0.1

 1

 10

 100

 1000

 200 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

UP*

UP*
FL

 100

 1000

 10000

 100000

 1e+06

 1e+07

 200 300 400 500 600

br
an

ch
es

 (
lo

g
sc

al
e)

number of edges

Max-Cut - 50 nodes

UP*

UP*
FL

 0.1

 1

 10

 100

 1000

 200 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

UPS

UPS
FL

 1000

 10000

 100000

 1e+06

 1e+07

 200 300 400 500 600

br
an

ch
es

 (
lo

g
sc

al
e)

number of edges

Max-Cut - 50 nodes

UPS

UPS
FL

Figure 3.15: Impact of failed literal detection on heuristics UP, UP∗ and UPS

in MAX-CUT

3.6. Summary 63

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

UP
UPFL

UP*

UP*
FL

UPS

UPS

FL

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 200 300 400 500 600

br
an

ch
es

 (
lo

g
sc

al
e)

number of edges

Max-Cut - 50 nodes

UP
UPFL

UP*

UP*
FL

UPS

UPS
FL

Figure 3.16: Random MAX-CUT with 50 variables

Chapter 4

Inference rules

The amount of inference performed by a branch and bound MAX-SAT solver
at each node of the search tree is poor compared with the inference performed
in DLL-style SAT solvers. The inference rules that one can apply in MAX-SAT
have to transform the current instance φ into another instance φ′ in such a
way that φ and φ′ have the same number of unsatisfied clauses for every possible
assignment; in other words, the inference rules have to be sound. It is not enough
to preserve satisfiability as in SAT. Unfortunately, unit propagation, which is the
most powerful inference technique applied in SAT, is unsound for MAX-SAT,1

and many MAX-SAT solvers apply rules which are far from being as powerful
as unit propagation in SAT.

The basic MAX-SAT algorithm, when branches on a literal l, enforces the
following inference: removes the clauses containing l and deletes the occurrences
of l̄, but the new unit clauses derived as a consequence of deleting the occur-
rences of l̄ are not propagated as in the DPLL algorithm. Typically, that infer-
ence is enhanced by applying simple inference rules such as (i) the pure literal
rule [BR99, BF99]; (ii) the dominating unit clause rule [NR00], (iii) the almost
common clause rule [BR99], and (iv) the complementary unit clause rule [NR00].
All these rules, which are sound but not complete, have proved to be useful in a
number of MAX-SAT solvers [AMP03b, AMP05, BF99, SZ04, XZ05].

In this thesis, we make a step forward by incorporating more sophisticated
inference rules, which can be seen as an adaptation to MAX-SAT of some unit
resolution refinements. While the rules cited in the previous paragraph can be
seen as SAT inference rules that can be safely applied to MAX-SAT, our new
rules replace a set of clauses S with a set of clauses S′ in such a way that the
number of unsatisfied clauses in S and S′ is the same for every assignment. S′

contains standard resolvents of clauses in S plus some additional clauses that
ensure the soundness of the rule. In standard resolution, the conclusion of the
inference rule is added to the premises, but this cannot be done in MAX-SAT

1The set of clauses {p, ¬p∨ q, ¬p∨¬q, ¬p∨ r, ¬p∨¬r} has a minimum of one unsatisfied
clause (setting p to false). However, performing unit propagation with p leads to a non-optimal
assignment falsifying at least two clauses.

65

66 Chapter 4. Inference rules

because this could increase the number of unsatisfied clauses.
Let us see an example of one of our resolution-style rules for MAX-SAT:
Given a MAX-SAT instance φ that contains three clauses of the form l1, l2, l̄1∨

l̄2, where l1, l2 are literals, replace φ with the CNF formula

φ′ = (φ− {l1, l2, l̄1 ∨ l̄2}) ∪ {�, l1 ∨ l2}.

Note that the rule detects a contradiction from {l1, l2, l̄1 ∨ l̄2} and, therefore,
replaces these clauses with an empty clause. In addition, the rule adds the
clause l1 ∨ l2 to ensure the equivalence between φ and φ′. For any assignment
containing either l1 = 0, l2 = 1, or l1 = 1, l2 = 0, or l1 = 1, l2 = 1, the number
of unsatisfied clauses in {l1, l2, l̄1 ∨ l̄2} is 1, but for any assignment containing
l1 = 0, l2 = 0, the number of unsatisfied clauses is 2. Since l1 ∨ l2 is unsatisfied
for l1 = 0, l2 = 0, the rule takes into account that situation.

In the rest of the chapter we define a set of unit resolution refinements for
MAX-SAT, describe an efficient way of implementing the application of the rules
at each node of the search tree, and report on an experimental evaluation that
provides empirical evidence that our rules can speed up a MAX-SAT solver
several orders of magnitude.

4.1 Related work

As was mentioned in Chapter 2, the first implemented inference rule for MAX-
SAT was due to Wallace and Freuder [WF96], who applied a strategy similar to
forward checking in CSP [McG79]. Notice that in the Boolean case, reducing
the domain means fixing the variables. Using the notation used in the previous
chapter, the algorithm of the rule MAX-SAT-FC is:

forall variable p ∈ V ar(φ) do
if EmptyClauses(φ)+min(ic(p), ic(¬p))+ |ic(p)− ic(¬p)| ≥ UpperBound(φ)
then

if ic(p) > ic(¬p) then Φ¬p else φp

This inference rule can be improved if the computation of EmptyClauses(φ) is
replaced by a lower bound. This can be done if the clauses involved in the lower
bound are not involved in the the inconsistencies detected by the inconsistency
count ic(ℓ). This improvement was implemented in the solver in [AMP04a].

A different inference rule is applied in Borchers and Furman’s solver [BF99]:
when the difference between the number of empty clauses and the upper bound
is 1 (UpperBound(φ)−EmptyClauses(φ) = 1), unit propagation can be safely
applied (in fact, a SAT solver can be used). The condition to apply such an infer-
ence rule is difficult to happen when the instance solution has many unsatisfied
clauses and a good lower bound is computed. This technique was extended
to weighted MAX-SAT. In this case the condition to apply the inference rule
is UpperBound(φ) − EmptyClauses(φ) = ωmin, where ωmin is the minimum
weight of the clauses.

4.1. Related work 67

A relevant previous work on inference rules was due to Bansal and Ra-
man [BR99], and Niedermeier et al.[NR00]. They defined a set of rules to be
applied to a MAX-SAT formula, that Gramm implemented in an MAX-2-SAT
algorithm [GN00]. These inference rules were applied at each node of the proof
tree in order to simplify the formula associated to the node. The six rules are
as follows:

Pure literal Rule If a variable only appears with either positive polarity or
negative polarity, delete the clauses containing that literal.

Complementary Unit Clause (CUC) Rule If a literal appears with both
positive and negative polarity in two unit clauses, remove the two clauses
and add an empty clause.

Dominating Unit Clause (DUC) Rule This inference rule allows fixing the
truth value of a variable. DUC is defined as follows: If the number of
clauses (of any length) in which a literal ℓ̄ appears is not bigger than the
number of unit clauses in which the literal ℓ appears, then the literal ℓ can
be set to true.

(Restricted) Resolution Rule Let φ a CNF formula having two clauses of
the form {p ∨ A} and {¬p ∨ B}, and the rest of clauses of φ having no
occurrences of variable p, then both clauses are removed and the clause
{A ∨B} is added to φ.

Almost Common Clauses (ACC) Rule If there exist clauses of the form
{ℓ ∨A} and {ℓ̄ ∨A}, then replace both clauses with the clause {A}. This
rule was introduced by Bansal and Raman [BR99]. This rule subsumes
CUC Rule when A = �.

Three Occurrence Rules They consider two sub-cases:

1. If p occurs 2 times in one polarity and 1 in the other, φ = {{p ∨
q}, {p ∨ q}, {p̄ ∨ q̄}} ∪ φ′ and φ′ does not contain any occurrence of
variable p, then remove the three clauses.

2. If p occurs 2 times in one polarity and 1 in the other, φ = {{p ∨
q}, {p ∨ q}, {p̄ ∨ ℓ}} ∪ φ′ or φ = {{p ∨ q}, {p ∨ ℓ}, {p̄ ∨ q̄}} ∪ φ′, then
replace φ with {q ∨ ℓ} ∪ φ′ or {q̄ ∨ ℓ} ∪ φ′, respectively.

Xing and Zhang [XZ05] defined the non-linear integer programming inference
rule named UP4. This novel inference rule is based on the integer programming
formulation introduced in Chapter 3. Boolean variables pi in the formula are
converted into 0-1 variables xi, discrete variables taking values 0 or 1. Then,
the coefficients for each variable in the obtained integer equation are grouped,
so that the following pattern is obtained:

c +
∑

xi∈V

πixi +
∑

xi,xj∈V

πi,jxixj + · · ·

68 Chapter 4. Inference rules

c is a constant, and πi, πi,j , πi,j,k, . . . are the coefficients of items xi, xixj , xixjxk, . . . ,
respectively. The inference rule takes a lower bound LB(xi) of the coefficients
of xi and fix the value of pi if the lower bound takes a positive value or zero. It
also takes an upper bound UB(xi) of the coefficients of xi, and fix the value of
pi if the lower bound takes a negative value or zero. If both conditions hold, the
variable can be set to any value.

Example 4.1 Given φ be a CNF formula ¬p1,¬p2, (p1 ∨ p2), its integer pro-
gramming formulation is 1 + x1 + x2 − x1x2. Then, the coefficients are π1 = 1,
π2 = 1, and π1,2 = −1. The lower bound for the coefficients of the variables are
LB(x1) = 0 and LB(x2) = 0. Then, the variables p1 and p2 should be fixed to
false.

Important contributions have its origin in constraint programming. de Givry
et al. [dGLMS03] first encoded MAX-SAT as a constraint network and solved it
with toolbar [LMS99], a weighted CSP solver that enforces weighted CSP local
consistencies (node consistency, arc consistency, directional arc consistency and
full directional arc consistency [LS03, LS04]). This solver was later enhanced
with existential directional arc consistency [dGZHL05]. Larrosa and Heras also
introduced the relation among local consistency in weighted CSP and inference
rules in MAX-SAT [LH05a]. They found that the application of CUC, ACC and
MAX-SAT-FC (called in the article RES0, RES1 and BR3+UCR, respectively)
until quiescence enforces arc-consistency AC*. Recently, Heras and Larrosa
added new weighted MAX-SAT inference rules [HL06b] to the solver (refer to
Section 6.1.1 for a description of the solver). The new rules are:2

Directed Resolution If φ1 = {l1, l̄1 ∨ l2}∪φ′ and φ2 = {l2, l̄2 ∨ l1}∪φ′, then
φ1 and φ2 are equivalent.

Hyper Resolution There are two cases:

2-RES If φ1 = {l1 ∨ l2, l1 ∨ l3, l̄2 ∨ l̄3}∪φ′ and φ2 = {l1, l̄1 ∨ l̄2 ∨ l̄3, l1 ∨
l2 ∨ l3} ∪ φ′, then φ1 and φ2 are equivalent.

3-RES If φ1 = {l1, l̄1∨l2, l̄2∨l3, l̄3}∪φ′ and φ2 = {�, l1∨ l̄2, l2∨ l̄3}∪φ′,
then φ1 and φ2 are equivalent.

4.2 UP based inference rules

We define a set of novel inference rules. They were inspired by different unit
resolution refinements applied in SAT, and were selected because they could be
applied in a natural and efficient way. Some of them are already known in the
literature [BR99, NR00], others are original.

Before presenting the rules, we define an integer programming transformation
of a CNF formula used to establish the soundness of the rules. The method of
proving soundness is novel in MAX-SAT, and provides clear and short proofs.

2For the sake of clearness, the rules are introduced in the unweighted version. Applying
Property 5.3, the rules can be transformed into the weighted version, as it appears in the
article. The notation has also been adapted.

4.2. UP based inference rules 69

4.2.1 Integer programming transformation of a CNF for-
mula

Assume that φ = {c1, . . . , cm} is a CNF formula with m clauses over the variables
p1, . . . , pn. Let ci (1 ≤ i ≤ m) be pi1 ∨ · · · ∨ pik

∨ ¬pik+1
∨ · · · ∨ ¬pik+r

. Note
that all positive literals in ci are put before the negative ones.

We consider all the variables in ci as integer variables taking values 0 or 1,
and define the integer transformation of ci as

Ei(pi1 , . . . , pik
, pik+1

, . . . , pik+r
) = (1− xi1) · · · (1− xik

)xik+1
· · ·xik+r

.

Obviously, Ei has value 0 if, and only if, at least one of the variables xij
’s

(1 ≤ j ≤ k) is instantiated to 1 or at least one of the variables xis
’s (k +1 ≤ s ≤

k + r) is instantiated to 0. In other words, Ei=0 if, and only if, ci is satisfied.
Otherwise Ei=1.

A literal l corresponds to an integer denoted by l itself for our convenience.
The intention of the correspondence is that the literal l is satisfied if the integer
l is 1, and is unsatisfied if the integer l is 0. So, if l is a positive literal x, the
corresponding integer l is x, l̄ is 1− x = 1− l, and if l is a negative literal x̄, l
is 1− x and l̄ is x = 1− (1− x) = 1− l. Consequently, l̄ = 1− l in any case.

We now generically write ci as l1 ∨ l2 ∨ · · · ∨ lk+r. The integer programming
transformation of ci is

Ei = (1− l1)(1− l2) · · · (1− lk+r).

The integer programming transformation of a CNF formula φ = {c1, . . . , cm}
over the variables x1, . . . , xn is defined as

E(x1, . . . , xn) =
m

∑

i=1

Ei (4.1)

That integer programming transformation was used in [HC97, LH05b] to
design a local search procedure. Here, we extend it to empty clauses: if ci is
empty, then Ei=1.

Given an assignment A, the value of E is the number of unsatisfied clauses
in φ. If A satisfies all clauses in φ, then E = 0. Obviously, the minimum number
of unsatisfied clauses of φ is the minimum value of E .

Let φ1 and φ2 be two CNF formulas, and let E1 and E2 be their integer
programming transformations. It is clear that solving the MAX-SAT problem
for φ1 is equivalent to solving it for φ2 if, and only if, E1 = E2. In the sequel,
when we say that φ1 and φ2 are equivalent, we mean that solving the MAX-SAT
problem for φ1 is equivalent to solving it for φ2.

4.2.2 Inference rules

We next define the inference rules and prove their soundness using the previous
integer programming transformation.3 In the rest of the section, φ1, φ2 and φ′

3It is worth to mention that the rules can be also demonstrated using the resolution rule
introduced in [BLM06].

70 Chapter 4. Inference rules

denote CNF formulas, and E1, E2, and E ′ their integer programming transfor-
mations. To prove that φ1 and φ2 are equivalent, we prove that E1 = E2.

Rule 4.1 (ACC) [BR99] If φ1={l1 ∨ l2 ∨ · · · ∨ lk, l̄1 ∨ l2 ∨ · · · ∨ lk} ∪ φ′ and
φ2={l2 ∨ · · · ∨ lk} ∪ φ′, then φ1 and φ2 are equivalent.

Proof

E1 = (1− l1)(1− l2) · · · (1− lk) + l1(1− l2) · · · (1− lk) + E ′
= (1− l2) · · · (1− lk) + E ′
= E2

Rule 4.1 is known in the literature as replacement of almost common clauses
(cf. Section 4.1). We pay special attention to the case k=2, where the resolvent
is a unit clause, and to the case k=1, where the resolvent is the empty clause.
We describe this latter case in the following rule:

Rule 4.2 (CUC) [NR00] If φ1={l, l̄} ∪ φ′, φ2={�} ∪ φ′, then φ1 and φ2 are
equivalent.

Proof E1 = 1− l + l + E ′ = 1 + E ′ = E2
Rule 4.2, which is known as complementary unit clause rule [NR00], can be
used to replace two complementary unit clauses with an empty clause. The
new empty clause contributes to the lower bounds of the search space below
the current node by incrementing the number of unsatisfied clauses, but not by
incrementing the underestimation. Therefore, this contradiction has not to be
detected again. In practice, that simple rule gives rise to considerable gains.

Before presenting the following rules, we define a lemma needed to prove
their soundness.

Lemma 4.1 If φ1={l1, l̄1 ∨ l2} ∪ φ′ and φ2={l2, l̄2 ∨ l1} ∪ φ′, then φ1 and φ2

are equivalent.

Proof

E1 = 1− l1 + l1(1− l2) + E ′
= 1− l1 + l1 − l1l2 + E ′
= 1− l2 + l2 − l1l2 + E ′
= 1− l2 + (1− l1)l2 + E ′
= E2

It is worth to mention that the application of Lemma 4.1 two times in a
formula φ brings φ again.

The following rule, which is original, is a more complicated case:

Rule 4.3 If φ1={l1, l̄1 ∨ l̄2, l2} ∪ φ′ and φ2={�, l1 ∨ l2} ∪ φ′, then φ1 and φ2

are equivalent.

4.2. UP based inference rules 71

Proof Applying Lemma 4.1 to the first two clauses of φ1, we get φ′
1 = {l1 ∨

l2, l̄2, l2}, and applying Rule 4.2 to the last two clauses of φ′
1, we get {�, l1∨ l2}.

Rule 4.3 replaces three clauses with an empty clause, and adds a new binary
clause to keep the equivalence between φ1 and φ2.

That pattern was considered to compute a lower bound in [AMP04a, SZ04],
and is also captured by our method of computing underestimations based on
unit propagation (cf. Chapter 3) .

Let us define a rule that generalizes Rule 4.2 and Rule 4.3.

Rule 4.4 If φ1={l1, l̄1 ∨ l2, l̄2 ∨ l3, . . . , l̄k ∨ lk+1, l̄k+1} ∪ φ′, φ2={�, l1 ∨
l̄2, l2 ∨ l̄3, . . . , lk ∨ l̄k+1} ∪ φ′, then φ1 and φ2 are equivalent.

Proof We prove the soundness of the rule by induction on k. When k=1,
φ1 = {l1, l̄1 ∨ l2, l̄2} ∪ φ′. By applying Rule 4.3, we get {�, l1 ∨ l̄2} ∪ φ′, which
is φ2 when k = 1. Therefore, φ1 and φ2 are equivalent.

Assume that Rule 4.4 is sound for k = n. Let us prove that it is sound for
k = n + 1. In that case:

φ1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, . . . , l̄n ∨ ln+1, l̄n+1 ∨ ln+2, l̄n+2} ∪ φ′.

By applying Lemma 4.1 to the last two clauses of φ1 (before φ′), we get

{l1, l̄1 ∨ l2, l̄2 ∨ l3, . . . , l̄n ∨ ln+1, l̄n+1, ln+1 ∨ l̄n+2} ∪ φ′.

By applying the induction hypothesis to the first n + 1 clauses of the previous
CNF formula, we get

{�, l1 ∨ l̄2, l2 ∨ l̄3, . . . , ln ∨ l̄n+1, ln+1 ∨ l̄n+2} ∪ φ′,

which is φ2 when k = n + 1. Therefore, φ1 and φ2 are equivalent and the rule is
sound.

Rule 4.4 is an original inference rule. It captures linear unit resolution refu-
tations in which clauses and resolvents are used exactly once. The rule simply
eliminates the unit and binary clauses used in the refutation, and adds an empty
clause and k new binary clauses that are obtained by negating the literals of the
eliminated binary clauses. So, all the operations involved can be performed
efficiently.

The lower bounds based on unit propagation described in the previous chap-
ter and lower bound LB4 of Shen and Zhang [SZ04] are the only lower bounds,
to the best of our knowledge, that capture that kind of inconsistencies. The
originality of Rule 4.4 is that it allows to simplify the formula from that incon-
sistencies.

Note that the added binary clauses may contribute to detect other inconsis-
tencies. They can be used by the procedure that applies the inference rules, as
well as by the lower bound computation method.

Finally, we present two new rules that capture unit resolutions refutations
in which there is a linear derivation but the unit clause is used twice in the
derivation of the empty clause.

72 Chapter 4. Inference rules

Rule 4.5 If φ1={l1, l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3} ∪ φ′ and φ2={�, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨
l2 ∨ l3} ∪ φ′, then φ1 and φ2 are equivalent.

Proof

E1 = 1− l1 + l1(1− l2) + l1(1− l3) + l2l3 + E ′
= 1− l1 + l1 − l1l2 + l1 − l1l3 + l2l3 + E ′
= 1 + l2l3 − l1l2l3 + l1 − l1l2 − l1l3 + l1l2l3 + E ′
= 1 + (1− l1)l2l3 + l1(1− l2 − l3 + l2l3) + E ′
= 1 + (1− l1)l2l3 + l1(1− l2)(1− l3) + E ′
= E2

We can combine a linear derivation with Rule 4.5 to obtain Rule 4.6:

Rule 4.6 If φ1={l1, l̄1∨ l2, l̄2∨ l3, . . . , l̄k∨ lk+1, l̄k+1∨ lk+2, l̄k+1∨ lk+3, l̄k+2∨
l̄k+3} ∪ φ′ and φ2={�, l1 ∨ l̄2, l2 ∨ l̄3, . . . , lk ∨ l̄k+1, lk+1 ∨ l̄k+2 ∨ l̄k+3, l̄k+1 ∨
lk+2 ∨ lk+3} ∪ φ′, then φ1 and φ2 are equivalent.

Proof We prove the soundness of the rule by induction on k. When k=1,

φ1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, l̄2 ∨ l4, l̄3 ∨ l̄4} ∪ φ′.

By Lemma 1, we get

{l1 ∨ l̄2, l2, l̄2 ∨ l3, l̄2 ∨ l4, l̄3 ∨ l̄4} ∪ φ′.

By Rule 4.5, we get

{l1 ∨ l̄2, �, l2 ∨ l̄3 ∨ l̄4, l̄2 ∨ l3 ∨ l4} ∪ φ′,

which is φ2 when k = 1. Therefore, φ1 and φ2 are equivalent.
Assume that Rule 4.6 is sound for k = n. Let us prove that it is sound for

k = n + 1. In that case:

φ1 = {l1, l̄1∨l2, l̄2∨l3, . . . , l̄n+1∨ln+2, l̄n+2∨ln+3, l̄n+2∨ln+4, l̄n+3∨ l̄n+4}∪φ′.

By Lemma 4.1, we get

{l1 ∨ l̄2, l2, l̄2 ∨ l3, . . . , l̄n+1 ∨ ln+2, l̄n+2 ∨ ln+3, l̄n+2 ∨ ln+4, l̄n+3 ∨ l̄n+4} ∪ φ′.

By applying the induction hypothesis, we get

{l1 ∨ l̄2, �, l2 ∨ l̄3, . . . , ln+1 ∨ l̄n+2, ln+2 ∨ l̄n+3 ∨ l̄n+4, l̄n+2 ∨ ln+3 ∨ ln+4}∪φ′,

which is φ2 when k = n + 1. Therefore, φ1 and φ2 are equivalent and the rule is
sound.

Our lower bound based on unit propagation [LMP05] is the only lower bound
that captures the kind of inconsistencies detected by Rule 4.5 and Rule 4.6.
Observe that the application of the last two rules can be performed efficiently
too.

4.3. On implementing the inference rules 73

4.3 On implementing the inference rules

The solver constructs, for each literal, a list with the clauses containing that
literal. These lists are constructed when the CNF formula is loaded, and are not
incremented or decremented anymore. This makes the algorithm to be efficiently
implemented because there is no dynamic memory call during the search.

Rules 4.1 and 4.2 can be efficiently implemented by applying a matching al-
gorithm (refer to [CLRS01] for efficient implementation) over the lists of clauses.
Both rules have a time complexity of O(|φ|), being |φ| the length of the CNF
formula. These rules are applied at every node, before any lower bound compu-
tation or inference rule application.

If the lower bound UP detects a contradiction, i.e., if the implication graph
G contains both ℓ and ℓ̄ for some literal ℓ, let Sℓ be the set of all nodes from
which there exists a path to ℓ, Sℓ̄ be the set of all nodes from which there exists
a path to ℓ̄, and S=Sℓ ∪ Sℓ̄. As a clause is associated with each node in G, we
also use S, Sℓ, and Sℓ̄ to denote the corresponding set of clauses. Lemmas 4.2
and 4.3 are used to detect the applicability of Rules 4.3, 4.4, 4.5, and 4.6.

Lemma 4.2 Rules 4.3 and 4.4 are applicable if

1. there is one unit clause in Sℓ (resp. Sℓ̄) and all other clauses are binary,

2. nodes in Sℓ (resp. Sℓ̄) form an implication chain starting at the unit clause,
and ending by ℓ (resp. ℓ̄),

3. Sℓ ∩ Sℓ̄ is empty.

Proof Starting at the node corresponding to the unit clause in Sℓ (resp. Sℓ̄),
and following in parallel the two implication chains, we have φ1 in Rule 4.3 or
4.4 by writing down the clause corresponding to each node.

Example 4.2 Let φ be the following CNF formula containing clauses c1 to c7:
{c1 : p1, c2 : ¬p1∨p2, c3 : ¬p2∨p3, c4 : ¬p3∨p4, c5 : p5, c6 : ¬p5∨p6, c7 :
¬p6 ∨ ¬p4}. The two complementary literals in the implication graph G are p4

and ¬p4. G is as follows:

c1 c2 c3 c4

c5 c6 c7

p1 p2 p3 p4

p5 p6 ¬p4

Rule 4.4 is applicable, since ℓ=p4, Sℓ={p1(c1), p2(c2), p3(c3), p4(c4)},
and Sℓ̄={p5(c5), p6(c6), ¬p4(c7)}. It is easy to verify that the three conditions
of Lemma 4.2 are satisfied.

Remark: φ can be rewritten as {c1 : p1, c2 : ¬p1 ∨ p2, c3 : ¬p2 ∨ p3, c4 :
¬p3 ∨ p4, c7 : ¬p4 ∨ ¬p6, c6 : p6 ∨ ¬p5, c5 : p5} in order to be compared with
φ1 in Rule 4.4.

74 Chapter 4. Inference rules

The application of Rules 4.3 and 4.4 consists in replacing each binary clause
c in S with a binary clause obtained by negating every literal of c, removing the
two unit clauses of S from φ, and incrementing EmptyClauses(φ) by 1.

Lemma 4.3 Rules 4.5 and 4.6 are applicable if

1. there is one unit clause in S=Sℓ ∪Sℓ̄, and all the other clauses are binary,
i.e., all nodes in S have exactly one incoming edge in G, except the node
corresponding to the unit clause,

2. Sℓ ∩ Sℓ̄ is not empty and contains k (k >0) nodes forming an implication
chain like ℓ1 → ℓ2 → ... → ℓk, ℓk being the last node of this chain,

3. (Sℓ ∪ Sℓ̄) − (Sℓ ∩ Sℓ̄) exactly contains three nodes : ℓ, ℓ̄, and a third one.
Let ℓk+1 be this third literal,

if ℓk+1 ∈ Sℓ, then G contains the following implications

ℓk → ℓk+1 → ℓ

ℓk → ℓ̄

if ℓk+1 ∈ Sℓ̄, then G contains the following implications

ℓk → ℓ

ℓk → ℓk+1 → ℓ̄

Proof Without loss of generality, assume ℓk+1 ∈ Sℓ; the case ℓk+1 ∈ Sℓ̄ is
symmetric. The implication chain formed by nodes of Sℓ ∩ Sℓ̄ correspond to
clauses {ℓ1, ℓ̄1 ∨ ℓ2, ..., ℓ̄k−1 ∨ ℓk}, which, together with the three clauses {ℓ̄k ∨
ℓk+1, ℓ̄k+1 ∨ ℓ, ℓ̄k ∨ ℓ̄} corresponding to ℓk → ℓk+1 → ℓ and ℓk → ℓ̄, give φ1 in
Rule 4.5 or Rule 4.6.

Example 4.3 Let φ be the following CNF formula containing clauses c1 to c5:
{c1 : p1, c2 : ¬p1 ∨ p2, c3 : ¬p2 ∨ p3, c4 : ¬p2 ∨ p4, c5 : ¬p3 ∨ ¬p4}. unit
propagation constructs G with two complementary literals p4 and ¬p4 as follows:

c1 c2 c3

c4

c5

p1 p2 p3 ¬p4

p4

We have Sp4
={p1(c1), p2(c2), p4(c4)} and S¬p4

={p1(c1), p2(c2), p3(c3),
¬p4(c5)}. The nodes in Sp4

∩ S¬p4
form an implication chain: p1 → p2.

(Sp4
∪S¬p4

)−(Sp4
∩S¬p4

)={p3(c3), p4(c4), ¬p4(c5)}. G contains p2 → p3 → ¬p4

and p2 → p4. Rule 4.6 is applicable.

The application of Rule 4.5 and Rule 4.6 consists in removing the unit clause
of Sℓ ∪ Sℓ̄ from φ, replacing each binary clause c in Sℓ ∩ Sℓ̄ with a binary
clause obtained from c by negating the two literals of c, replacing the three
binary clauses in (Sℓ ∪ (Sℓ̄)-(Sℓ ∩ Sℓ̄) by two ternary clauses, and incrementing
EmptyClauses(φ) by 1.

4.3. On implementing the inference rules 75

4.3.1 Complexity, termination, and (in)completeness of the
applications of the rules

We combine the application of the inference rules and any of the unit propagation
based lower bounds in the branch and bound algorithm for MAX-SAT. From here
on, we call underestimation the function to compute any of such lower bounds.
Given a CNF formula φ, function underestimation uses unit propagation to
construct an implication graph G. Once G contains two nodes ℓ and ℓ̄ for some
literal ℓ, G is analyzed to see if there is an applicable inference rule. If so, the rule
is applied and φ is transformed. Otherwise, all the clauses contributing to the
contradiction are removed from φ, and the underestimation of unsatisfied clauses
in φ is increased by 1. This procedure is repeated until unit propagation derives
no more contradictions. Finally all the removed clauses, except those removed or
replaced by inference rule applications, are inserted into φ. The underestimation,
together with the new φ, is returned by the function (see Section 3.3 for details
of the lower bound).

It is well known that unit propagation has linear time complexity in the size
of φ [GEI91, Fre95]. The detection of applicability of the inference rules using
Lemma 4.2 and Lemma 4.3 is linear in the size of G, bounded by the number of
literals in φ. The application of an inference rule is obviously linear in the size of
G. So, the whole time complexity of the underestimation function with inference
rule applications is in O(k · |φ|), where k is the number of contradictions that the
function can find by unit propagation (see also Section 3.3.2). Notice that the
larger the parameter k, the more powerful the function underestimation with
inference rule applications, in the reduction of the search tree size.

Since every inference rule application reduces the size of φ, the underestima-
tion function with inference rule applications has linear space complexity. Recall
that new clauses in each inference rule selected in our approach can be stored in
the place of the old ones, and the data structures for loading φ can be statically
and efficiently managed.

We have proved that the rules introduced in Section 4.2.2 are sound. The
following example shows that the application of the rules is not complete in our
implementation.

Example 4.4 Let φ={p1, p3, p4,¬p1 ∨ ¬p3 ∨ ¬p4,¬p1 ∨ ¬p2, p2}, unit propa-
gation called by the underestimation function may discover the inconsistent set
S={p1, p3, p4,¬p1∨¬p3∨¬p4}. In this case, no inference rule is applicable to S,
which is then removed from φ to increase by 1 the underestimation of the number
of unsatisfied clauses in φ. Then, φ becomes {¬p1 ∨ ¬p2, p2}. Unit propagation
finds no more contradictions in φ, and underestimation stops after re-inserting
S={p1, p3, p4,¬p1∨¬p3∨¬p4} into φ. The value 1 is returned, together with the
unchanged φ. Note that Rule 4.3 is applicable to the subset {p1,¬p1 ∨ ¬p2, p2}
of φ but is not applied.

Actually, the underestimation function applies Rule 4.3 only if unit propaga-
tion finds the inconsistent subset {p1,¬p1 ∨¬p2, p2} instead of {p1, p3, p4,¬p1 ∨
¬p3 ∨¬p4}, which depends on the ordering of unit clauses used in unit propaga-

76 Chapter 4. Inference rules

tion. In this example, the inconsistent subset {p1,¬p1 ∨¬p2, p2} is discovered if
unit clause p2 is propagated before p3 and p4.

4.4 Experimental results

In order to compare the six inference rules defined, we have used the solver
MaxSatz (see Chapter 6 for a description of the solver) with lower bound UP∗

(refer to the previous chapter). Then, three solvers have been created, each
solver having an increasing number of inference rules:

• Bare: does not apply any inference rule.

• Basic: applies rules 4.1 and 4.2, but not rules 4.3, 4.4, 4.5 and 4.6.

• Star: applies rules 4.1, 4.2, 4.3 and 4.4, but not rules 4.5 and 4.6.

• All: applies all the rules.

The experimentation has been performed with the same benchmarks used in
the previous chapter: random MAX-k-SAT and random MAX-CUT. Six exper-
iments have been performed: MAX-2-SAT with 50 variables (Figure 4.1) and
with 100 variables (Figure 4.2); MAX-3-SAT with 50 variables (Figure 4.3) and
70 variables (Figure 4.4); and MAX-CUT with 50 nodes (Figure 4.5).

We observe that the rules are very powerful for MAX-2-SAT and the gain
increases as the number of variables and the number of clauses increase. For 50
variables and 1000 clauses (the clause to variable ratio is 20), All is 7.6 times
faster than Star; for 4000 clauses (the clause to variable ratio is 80), All is 19
times faster than Star; and for 100 variables and 1000 clauses (the clause to
variable ratio is 10), All is 9.2 times faster than Star. The search tree of All is
also substantially smaller than the one of Star. Rule 4.5 and Rule 4.6 are more
powerful than Rule 4.3 and Rule 4.4 for MAX-2-SAT. The intuitive explanation
is that All and Star detect many more inconsistent subsets of clauses containing
one unit clause than subsets containing two unit clauses, so that Rule 4.5 and
Rule 4.6 can be applied many times more than Rule 4.3 and Rule 4.4 in All.

We have shown the behavior of the several rules without failed literal detec-
tion. In the next experiments we show the combination of both techniques. In
Figure 4.6 and Figure 4.7 we show the results for random MAX-2-SAT with 50
and 100 variables. In MAX-2-SAT, when failed literal detection is added to the
rules, Basic can take more advantage both reducing the number of branches
and the running time.

In Figure 4.8 and Figure 4.9 we show the results for random MAX-3-SAT
with 50 and 70 variables. In MAX-3-SAT, Basic and Star take the same profit
of failed literal detection.

Finally, in Figure 4.10, we show the results for MAX-CUT. In this case, a
similar behavior as for random MAX-2-SAT and MAX-3-SAT is observed, with
Basic taking more advantage of failed literal detection than Star.

4.4. Experimental results 77

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 2000 3000 4000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-2SAT - 50 variables

Bare
Basic

Star
All

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000 2000 3000 4000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 50 variables

Bare
Basic

Star
All

Figure 4.1: Random MAX-2-SAT with 50 variables

78 Chapter 4. Inference rules

 0.01

 0.1

 1

 10

 100

 1000

 400 500 600 700 800 900 1000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-2SAT - 100 variables

Bare
Basic

Star
All

 100

 1000

 10000

 100000

 1e+06

 1e+07

 400 500 600 700 800 900 1000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 100 variables

Bare
Basic

Star
All

Figure 4.2: Random MAX-2-SAT with 100 variables

4.4. Experimental results 79

 0.1

 1

 10

 100

 1000

 400 600 800 1000 1200

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 50 variables

Bare
Basic

Star
All

 1000

 10000

 100000

 1e+06

 1e+07

 400 600 800 1000 1200

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-3SAT - 50 variables

Bare
Basic

Star
All

Figure 4.3: Random MAX-3-SAT with 50 variables

80 Chapter 4. Inference rules

 1

 10

 100

 1000

 10000

 500 600 700 800 900 1000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-3SAT - 70 variables

Bare
Basic

Star
All

 10000

 100000

 1e+06

 1e+07

 1e+08

 500 600 700 800 900 1000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-3SAT - 70 variables

Bare
Basic

Star
All

Figure 4.4: Random MAX-3-SAT with 70 variables

4.4. Experimental results 81

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 200 300 400 500 600 700 800

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

Bare
Basic

Star
All

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 200 300 400 500 600 700 800

br
an

ch
es

 (
lo

g
sc

al
e)

number of edges

Max-Cut - 50 nodes

Bare
Basic

Star
All

Figure 4.5: Random MAX-CUT with 50 variables

82 Chapter 4. Inference rules

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 2000 3000 4000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-2SAT - 50 variables

Bare
Basic

Star
All

Basic+fl
Star+fl

All+fl

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000 2000 3000 4000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 50 variables

Bare
Basic

Star
All

Basic+fl
Star+fl

All+fl

Figure 4.6: Random MAX-2-SAT 50 variables

4.4. Experimental results 83

 0.01

 0.1

 1

 10

 100

 1000

 400 500 600 700 800 900 1000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-2SAT - 100 variables

Bare
Basic

Star
All

Basic+fl
Star+fl

All+fl

 100

 1000

 10000

 100000

 1e+06

 1e+07

 400 500 600 700 800 900 1000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-2SAT - 100 variables

Bare
Basic

Star
All

Basic+fl
Star+fl

All+fl

Figure 4.7: Random MAX-2-SAT 100 variables

84 Chapter 4. Inference rules

 0.01

 0.1

 1

 10

 100

 1000

 400 600 800 1000 1200

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 50 variables

Bare
Basic

Star
All

Basic+fl
Star+fl

All+fl

 1000

 10000

 100000

 1e+06

 1e+07

 400 600 800 1000 1200

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-3SAT - 50 variables

Bare
Basic

Star
All

Basic+fl
Star+fl

All+fl

Figure 4.8: Random MAX-3-SAT 50 variables

4.4. Experimental results 85

 0.1

 1

 10

 100

 1000

 10000

 500 600 700 800 900 1000

tim
e

(lo
gs

ca
le

)

number of clauses

Max-3SAT - 70 variables

Bare
Basic

Star
All

Basic+fl
Star+fl

All+fl

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 500 600 700 800 900 1000

br
an

ch
es

 (
lo

g
sc

al
e)

number of clauses

Max-3SAT - 70 variables

Bare
Basic

Star
All

Basic+fl
Star+fl

All+fl

Figure 4.9: Random MAX-3-SAT 70 variables

86 Chapter 4. Inference rules

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 200 300 400 500 600 700 800

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

Bare
Basic

Star
All

Basic+fl
Star+fl

All+fl

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 200 300 400 500 600 700 800

br
an

ch
es

 (
lo

g
sc

al
e)

number of edges

Max-Cut - 50 nodes

Bare
Basic

Star
All

Basic+fl
Star+fl

All+fl

Figure 4.10: MAX-CUT

4.4. Experimental results 87

The behavior of Rule 4.3 and Rule 4.4 can be explained by two facts: (i) every
application of Rule 4.3 and Rule 4.4 consumes two unit clauses but only gives one
empty clause, limiting unit propagation in detecting more conflicts in subsequent
search; and (ii) Rule 4.3 and Rule 4.4 add clauses which may contribute to detect
further conflicts.

Looking carefully at Figure 4.2 and Figure 4.3, we observe that this behavior
does not always occur. Depending on the number of clauses (or more precisely,
the clause to variable ratio) in a formula, these two factors have different im-
portance. When there are few clauses, unit propagation does not easily derive a
contradiction from a unit clause, and the binary clauses added by Rule 4.3 and
Rule 4.4 are important for deriving additional conflicts and improving the lower
bound. This makes the search tree of Star smaller than the search tree of Basic
(e.g. MAX-2-SAT instances of 100 variables and fewer than 600 clauses, MAX-
3-SAT instances of 50 variables and fewer than 800 clauses). On the contrary,
when there are many clauses, unit propagation easily derives a contradiction
from a unit clause, so that the two unit clauses consumed by Rule 4.3 and Rule
4.4 probably would allow to derive two disjoint inconsistent subsets of clauses.
In addition, the binary clauses added by Rule 4.3 and Rule 4.4 are relatively
less important for deriving additional conflicts, considering the large number of
clauses in the formula. In this case, the search tree of Star is larger than the
search tree of Basic. We have seen that the rules have different behavior looking
to the number of branches. By contrast, looking to the running time Star is
always faster than Basic, which means that the incremental lower bound com-
putation due to Rule 4.3 and Rule 4.4 is very effective, since the re-detection of
many conflicts is avoided thanks to Rule 4.3 and Rule 4.4.

Rule 4.5 and Rule 4.6 do not limit the lower bound based on unit propagation
in detecting more conflicts, since their application produces one empty clause
and consumes just one unit clause, which allows to derive at most one conflict
in any case. The added ternary clauses allow to improve the lower bound, so
that the search tree of All is substantially smaller than the search tree of Star.
The incremental lower bound computation due to Rule 4.5 and Rule 4.6 also
contributes to the time performance of All. For example, while the search tree
of All for instances with 50 variables and 2000 clauses is about 11.5 times smaller
than the search tree of Star, All is 14 times faster than Star.

Although the rules do not involve ternary clauses, they are also powerful for
MAX-3-SAT. Similarly to MAX-2-SAT, Rule 4.3 and Rule 4.4 slightly improve
the lower bound when there are relatively few clauses, but do not improve the
lower bound when the number of clauses increases. They improve the time
performance thanks to the incremental lower bound computation they allowed.
The gain increases as the number of clauses increases. For example, for problems
with 70 variables, when the number of clauses is 600, Star is 36% faster than
Basic and, when the number of clauses is 1000, the gain is 44%. Rule 4.5 and
Rule 4.6 improve both the lower bound and the time performance of All. The
gain increases as the number of clauses increases.

88 Chapter 4. Inference rules

The intuitive explanation that the rules do not limit the lower bound can
be credited observing the behavior of the solvers with failed literal detection.
In Figure 4.6, Star consumes more branches than Basic while both spend ap-
proximately the same time. When increasing the number of clauses, the effect
dramatically increases, Basic takes more advantage of the improved lower bound
than Star.

As MAX-CUT is a MAX-2-SAT problem, we observe that the rules allow
us to solve MAX-CUT instances much faster. Rule 4.3 and Rule 4.4 do not
improve the lower bound when there are many clauses, but improve the time
performance due to the incremental lower bound computation they allowed.
Rule 4.5 and Rule 4.6 are more powerful than Rule 4.3 and Rule 4.4 for these
instances, which only contain binary clauses but have some structure. In addi-
tion, the reduction of the tree size due to Rule 4.5 and Rule 4.6 contributes to
the time performance of All more than the incrementality of the lower bound
computation. For example, the search tree of All for instances with 800 edges
is 40 times smaller than the search tree of Star, and All is 47 times faster.

In the next experiment, we compared different inference rules on the bench-
marks submitted to the Max-SAT Evaluation 2006. Solvers ran in the same
conditions as in the evaluation. In Table 4.1, the first column is the name of the
benchmark set, the second column is the number of instances in the set, and the
rest of columns display the average time, in seconds, needed by each solver to
solve an instance (the number of solved instances in brackets). The maximum
time allowed to solve an instance was 30 minutes.

In these experiments, it is clear that Basic is better than Bare, Star is better
than Basic, and All is better than Star. For example, All solves three MAX-
CUT Johnson instances within the time limit, while other solvers solve only two.
The average time for All to solve one of these three instances is 44.46 seconds,
the third instance needing more time to be solved than the first two ones.

4.5 Summary

We have introduced several inference rules that improve the performance of a
MAX-SAT branch and bound solver. The rules transform a CNF formula into
an equivalent formula with a larger number of empty clauses.

There are three important points worth to mention:

1. The inference rules do not need to make use of dynamic memory, because
the transformed formulas do not have a greater number of literals.

2. The implication graph created by the lower bound UP (cf. Chapter 3) is
used to apply the inference rules.

3. The transformations done to the formula by the inference rules are pre-
served until the algorithm backtracks to the current node, in contrast with
the lower bound computation that requires to undo the transformations
before any future variable assignment.

4.5. Summary 89

Thanks to them, these rules bring the creation of powerful MAX-SAT solvers,
as will be shown in Chapter 6.

90 Chapter 4. Inference rules

Set Name #Instances Bare Basic Star All

MAX-CUT brock 11 401.47(9) 265.07(11) 215.40(11) 13.17(11)
MAX-CUT c-fat 7 1.92 (5) 3.11 (5) 2.84 (5) 0.07(5)
MAX-CUT hamming 6 39.42(2) 29.43(2) 29.48(2) 171.30(3)
MAX-CUT johnson 4 14.91(2) 8.57 (2) 7.21 (2) 44.46(3)
MAX-CUT keller 2 512.66(2) 213.64(2) 163.26(2) 6.82(2)
MAX-CUT p hat 12 72.16(9) 286.09(12) 226.24(12) 16.81(12)
MAX-CUT san 11 801.95(7) 305.75(7) 245.70(7) 258.65(11)
MAX-CUT sanr 4 323.67(3) 134.74(3) 107.76(3) 71.00(4)
MAX-CUT max cut 40 610.28(35) 481.48(40) 450.05(40) 7.18(40)
MAX-CUT SPINGLASS 5 0.22 (2) 0.19 (2) 0.15 (2) 0.14(2)
MAX-ONE 45 0.03 (45) 0.03 (45) 0.03 (45) 0.03(45)
RAMSEY 48 8.93 (34) 8.42 (34) 7.80 (34) 7.78(34)
MAX2SAT 100VARS 50 95.01(50) 11.30(50) 8.14 (50) 1.25(50)
MAX2SAT 140VARS 50 153.28(49) 51.76(50) 34.14(50) 6.94(50)
MAX2SAT 60VARS 50 1.35 (50) 0.08 (50) 0.06 (50) 0.02(50)
MAX2SAT DISCARDED 180 126.98(162) 71.85(173) 68.97(175) 22.72(180)
MAX3SAT 40VARS 50 11.52(50) 3.33 (50) 2.52 (50) 1.92(50)
MAX3SAT 60VARS 50 167.17(50) 72.72(50) 52.14(50) 40.27(50)

Table 4.1: Rule evaluation by benchmarks in the MAX-SAT Evaluation 2006.

Set Name #Instances Bare Basic+fl Star+fl All+fl

MAX-CUT brock 11 401.47(9) 85.07(11) 87.73(11) 12.50(11)
MAX-CUT c-fat 7 1.92 (5) 0.35 (5) 0.29 (5) 0.07 (5)
MAX-CUT hamming 6 39.42(2) 4.03 (2) 4.57 (2) 179.65(3)
MAX-CUT johnson 4 14.91(2) 577.53(3) 583.82(3) 45.44(3)
MAX-CUT keller 2 512.66(2) 62.86(2) 67.21(2) 6.06 (2)
MAX-CUT p hat 12 72.16(9) 99.12(12) 96.45(12) 15.73(12)
MAX-CUT san 11 801.95(7) 94.67(7) 97.20(7) 273.65(11)
MAX-CUT sanr 4 323.67(3) 413.95(4) 402.46(4) 71.70(4)
MAX-CUT max cut 40 610.28(35) 78.47(40) 88.88(40) 5.54 (40)
MAX-CUT SPINGLASS 5 0.22 (2) 44.73(3) 44.53(3) 44.53(3)
MAX-ONE 45 0.03 (45) 0.06 (45) 0.02 (45) 0.02 (45)
RAMSEY 48 8.93 (34) 11.34(34) 8.96 (34) 8.92 (34)
MAX2SAT 100VARS 50 95.01(50) 9.22 (50) 6.39 (50) 1.39 (50)
MAX2SAT 140VARS 50 153.28(49) 45.73(50) 24.36(50) 6.91 (50)
MAX2SAT 60VARS 50 1.35 (50) 0.10 (50) 0.07 (50) 0.03 (50)
MAX2SAT DISCARDED 180 126.98(162) 61.74(176) 60.89(179) 16.38(180)
MAX3SAT 40VARS 50 11.52(50) 2.37 (50) 1.72 (50) 1.50 (50)
MAX3SAT 60VARS 50 167.17(50) 46.58(50) 26.74(50) 23.35(50)

Table 4.2: Rule evaluation by benchmarks in the MAX-SAT Evaluation 2006
with failed literal detection

Chapter 5

Implementing a weighted
MAX-SAT solver

The MAX-SAT formalism can be extended to weighted MAX-SAT to facilitate
the solving of optimization problems having constraints with different impor-
tance (e.g., Max-Clique converted to a CNF formula). Weighted MAX-SAT has
a richer expressivity which can be exploited in the search.

Let us see an example to show the difference: Let φ be a CNF formula with
four clauses p∨¬q, p∨¬r, q∨r, ¬p. As a MAX-SAT instance, an optimal solution
is the assignment p = false, q = false, r = true, with 1 unsatisfied clause. If we
want an assignment satisfying the two first clauses and the maximum number of
the rest clauses, in MAX-SAT we might add two copies of the first two clauses.
When the problem becomes larger, the number of repeated clauses increases.
To avoid such a situation, a weight can be associated to each clause having the
weighted CNF formula: (p ∨ ¬q, 3), (p ∨ ¬r, 3), (q ∨ r, 1), (¬p, 1). A weighted
MAX-SAT solution is the assignment p = true, q = false, r = false.

Lower bounds and inference rules for MAX-SAT can be naturally extended
to Weighted MAX-SAT. We have performed many of such extensions, and im-
plemented them in solver Lazy [AMP04a], which was created at the beginning of
this research. Its name comes from an original lazy data structure with a static
variable selection heuristic that speeds up the search at the price of delaying the
evaluation of the clauses. Although Lazy lacks the most powerful techniques for
solving weighted MAX-SAT, it is interesting to see the behavior of its weighted
MAX-SAT rules, and the performance of a static variable selection heuristic.

In the rest of the chapter we define a lower bound and a set of inference rules
for weighted MAX-SAT, describe their implementation in the solver Lazy, and
report on an experimental evaluation that provides empirical evidence of the
performance of the rules.

91

92 Chapter 5. Implementing a weighted MAX-SAT solver

5.1 Basic equivalences for weighted MAX-SAT

In the forthcoming sections, we will use three equivalence properties:

Property 5.1 Clauses with null weight can be removed from the formula.

Property 5.2 Two weighted clauses (c, w1) and (c, w2) are equivalent to the
weighted clause (c, w1 + w2).

Property 5.3 Let φ be a weighted CNF formula, let w be the minimum weight
in all the clauses of φ, let φw be φ with all its clauses with weight w, and let φw be
φ where every clause (ci, wi) ∈ φ becomes (ci, wi−w) (i.e., φ = φw∪φw). Then,
an unweighted rule can be applied w times to φw, and φw remains unchanged.

Lower bounds and inference rules applied to MAX-SAT can be extended to
weighted MAX-SAT using Property 5.3.

Example 5.1 Let φ be the weighted CNF formula (l1 ∨ l2, 5), (l̄1, 4), (l̄2, 3).
Having the above properties and applying Rule 4.3, we obtain the following
weighted CNF formula (�, 3), (l̄1 ∨ l̄2, 3), (l1 ∨ l2, 2), (l̄1, 1).

5.2 Lazy solver

We introduce a DLL-based branch and bound algorithm to solve weighted MAX-
SAT, called Lazy. In previous chapters, we have seen that a MAX-SAT algorithm
keeps track of the number of unsatisfied clauses. By contrast, a weighted MAX-
SAT algorithm keeps track of the sum of the weights of unsatisfied clauses.

Lazy has a static variable selection heuristic and lazy data structures. The
variable selection heuristic actually defines an order of the variables to be as-
signed before the branch and bound algorithm is executed. The algorithm
scheme is drawn in Algorithm 5.1.

Algorithm 5.1: SolverLazy(φ, i) : Branch and Bound in Lazy

Output: Minimum sum of weights of unsatisfied clauses by any
assignment of φ

Function SolverLazy(φ : CNF formula, i : Natural) : Natural

⊲ pi is the ith variable to be assigned ⊳
if φ = ∅ or φ only contains empty clauses then

return EmptyClauses(φ)

φ← InferenceRules(φ)
if LowerBound(φ) ≥ UpperBound(φ) then

return UpperBound(φ)

return min(SolverLazy(φpi
, i + 1), SolverLazy(φ¬pi

, i + 1))

5.2. Lazy solver 93

The solver computes a lower bound and applies several inference rules. The
lower bound is a weighted version of lower bound UP for MAX-SAT (cf. Sec-
tion 3.3), and takes into account the static variable selection heuristic. In order
to make this estimation efficient for Lazy, the computation is restricted to binary
clauses. The lower bound computed in Lazy [ZSM03b] is:

1. For every weighted unit clause (p, w1) and for every binary clause of the
form (¬p ∨ q, w2) in φ, add a unit clause (q, w) into φ, and substract a
weight w to unit clause (p, w1), where w = min(w1, w2).

2. If a conflict is found, increase the lower bound by w.

3. If there are not more unit clauses to be propagated, restore the original φ
and return the lower bound.

Lazy implements also two efficient inference rules, the weighted versions of
rules CUC and ACC:

Complementary Unit Clause (CUC) rule Let φ1 = (ℓ, w1), (ℓ̄, w2) ∪ φ′ be
a weighted CNF formula. Then, φ1 is equivalent to the weighted CNF
formula φ2 = (�, w), (ℓ, w1 −w), (ℓ̄, w2 −w) ∪ φ′, where w = min(w1, w2).
Clauses with null weight are removed. Then, φ1 and φ2 are equivalent.

The soundness of the rule follows from the soundness of the unweighted
rule CUC (i.e., Rule 4.2), and the application of Property 5.3.

Almost Common Clause (ACC) rule as Preprocessing Let φ1 = (l1 ∨
l2, w1), (l̄1 ∨ l2, w2) ∪ φ′ be a weighted CNF formula, w = min(w1, w2),
and φ2 = (l2, w), (l1 ∨ l2, w1 −w), (l̄1 ∨ l2, w2 −w)∪ φ′ be a weighted CNF
formula. Clauses with weight null are removed. Then, φ1 and φ2 are
equivalent.

The soundness of the rule follows from the soundness of the unweighted
rule ACC (i.e., Rule 4.1), and the application of Property 5.3.

This rule was applied as a preprocessing due to its expensive computational
cost in Lazy.

5.2.1 Data structures

Similar to the counter based data structure in SAT solvers (cf. Section 2.2.3),
most MAX-SAT branch and bound algorithms represent clauses as lists of literals
with counters, and associate with each variable p a list of the clauses that contain
literal p or literal ¬p. Clearly, after assigning variable p, the clauses with those
literals are immediately aware of the assignment of p. In general, we use the
term adjacency lists to refer to data structures in which each variable p contains
a complete list of the clauses that contain a literal p or a literal ¬p.

As was reported in [Lyn04], adjacency list based data structures share a
common problem: each variable p keeps references to a potentially large number
of clauses. Clearly, this impacts negatively the amount of operations associated

94 Chapter 5. Implementing a weighted MAX-SAT solver

with assigning p. Moreover, it is often the case that most of the clause references
of p do not need to be analyzed when p is assigned, since most of the clauses
do not become unit or unsatisfied. Observe that lazily declaring a clause to be
satisfied does not affect the correctness of the algorithm.

In solver Lazy, we define data structures with three levels, each one contain-
ing clauses of increasing size:

Unit clauses are stored in a vector of integers, where each position represents
the weight of a literal.

Binary clauses are stored in lists of lists. For every literal li there is a list of
pairs (literal, weight). A pair (lj , w) in the list of literal li represents a
binary clause (li ∨ lj , w). The variable in literal li is assigned before the
variable in literal lj .

Larger clauses are stored in a list of clauses, ordered by their antepenultimate
literal.

Every time a literal ℓ takes value true, the following operations are performed:

1. The weight of unit clause {ℓ̄} is added to the empty clause. This addition
is saved for backtracking.

2. For every pair (l2, w) in the list of binary clauses of literal ℓ̄, the weight w
is added to unit clause l2. This addition is saved for backtracking.

3. For every larger clause (l1 ∨ l2 ∨ ℓ̄∨ · · · , w) with antepenultimate literal ℓ,
the clause is evaluated. If the clause is not satisfied, the clause (l1 ∨ l2, w)
is added to the set of binary clauses. The new clause is added at the end
of the list to make the backtracking faster (amortized linear time over the
number of clauses).

The laziness of this data structure is in the set of larger clauses, where clauses
are ordered by their antepenultimate variable following the order used to instan-
tiate variables, and three references: one to the antepenultimate literal, one to
the penultimate literal, and one to the last literal of the clause. When a variable
p is fixed to true (false), the clauses whose antepenultimate literal is ¬p (p) are
evaluated. If there is an instantiated literal in the clause which is satisfied, the
clause becomes satisfied; otherwise, a binary clause with the same weight, whose
literals are the penultimate and the last literal of the clause, is derived. Thus,
given a clause with four literals, it is not necessary to perform any operation in
that clause until two of the literals have been instantiated; i.e., the evaluation of
a clause with k literals can be delayed until k−2 literals have been instantiated.

5.2.2 Variable selection heuristic

The variable selection heuristic in Lazy is static, and computed before the branch
and bound algorithm. The heuristic performs the ordering in two phases: In
the first phase, it orders the literals by the sum of weights associated to their

5.2. Lazy solver 95

 10

 100

 1000

 10000

 1000 1500 2000 2500 3000 3500

tim
e

(lo
g

sc
al

e)

number of clauses

MAX-2-SAT - 50 variables
 Heuristic comparison

two phases
one phase

Figure 5.1: Comparison of applying the first phase only and the two phases in
the variable selection heuristic.

clauses. In the second phase, the weight of a variable is incremented in a directly
proportional manner to its neighboring literals weights. A literal l1 is a neighbor
of literal l2 if there exists a clause having literals l1 and l̄2. A variable p is a
neighbor of literal ℓ, if literals p or ¬p are [NLBH+04]. Such an ordering method
is similar to SAT variable selection heuristic Backbone [DD01] constrained to
only one level.1 This second phase is designed for breaking ties in the first phase,
which often occur in random MAX-k-SAT. The difference of application of one
phase and two phases is shown in Figure 5.1 for random weighted MAX-2-SAT.

We illustrate the variable selection heuristic with the example below. For
clearness, we used an unweighted formula.

Example 5.2 Let variable p have 4 occurrences and two neighboring variables
p1 and p2 with 2 occurrences each variable. Let variable q have also 4 occur-
rences and two neighboring variables q1 and q2 with 3 occurrences each variable.
The instantiation of any of the two variables brings 4 unit clauses, nevertheless
variable q brings clauses with variables with more occurrences. After instanti-
ating variable q, variables q1 and q2 are probably going to be instantiated. The
assignment of q makes the problem have more short clauses, therefore making it
easier to be solved [SW02].

1A method of selecting variables in MAX-SAT using the backbone is found in [ZRL03].

96 Chapter 5. Implementing a weighted MAX-SAT solver

5.3 Empirical evaluation

We first define the benchmarks used in the experimental evaluation: random for-
mulas, graph coloring, and MAX-ONES. The last two problems have been used
in order to check the solver with instances having structure. Then, we report
on the experimental results over the previous problems, and all the weighted
benchmarks of the MaxSAT Evaluation 2006.

5.3.1 Benchmarks

In the experimentation, we solve random weighted MAX-k-SAT problems; and
two problems that can be reduced to weighted MAX-SAT: Graph coloring and
MAX-ONES.

For the random weighted MAX-k-SAT instances generation, we have modi-
fied generator mwff (refer to Section 3.5.1) with the addition of a random integer
weight for each clause. The integer is in the range [1 − 10]. For the random
MAX-ONES instances generation, the same solver has been modified, following
the transformation below.

For the sake of clearness, before mapping the two problems to weighted
MAX-SAT, we will map each problem to an intermediate problem, Partial MAX-
SAT [MIK96]. The CNF formula is split to two sets: the set of hard clauses,
where every clause has to be satisfied, and the set of soft clauses, where the
maximum number of clauses has to be satisfied. Then, partial MAX-SAT can be
mapped to a weighted MAX-SAT instance. This is done applying the following
rule:

Rule 5.1 Given a partial MAX-SAT instance with hard clauses ch1
, . . . , chm

and
soft clauses cs1

, . . . , csn
, it can be transformed to a weighted MAX-SAT instance

associating weight 1 to soft clauses and weight n + 1 to hard clauses:

ch1
, . . . , chm

, cs1
, . . . , csn

⇒ (ch1
, n + 1), . . . , (chm

, n + 1), (cs1
, 1), . . . , (csn

, 1)

Graph coloring

Given an undirected graph G = (V,E), where V is the set of vertices and E is
the set of edges, and a function c : V → K = {1, 2, . . . , k}, where K is the set of
colors, such that c(vi) 6= c(vj) for every edge (vi, vj) ∈ E.2 The graph k-coloring
problem is to determine the minimum number of edges to be removed that make
the graph be colored with k colors.

In order to reduce a graph coloring instance to a partial MAX-SAT instance,
each vertex vi is reduced to |K| variables, where |K| is the number of colors we
have. Thus, the CNF formula will have |V | · |K| Boolean variables, where |V |
is the number of vertices in G. Each Boolean variable will be denoted by xik,
where i denotes a vertex and k a color. Variable xik will be assigned to true if
the vertex i is assigned to color k. Otherwise, it is assigned to false.

2In other words, adjacent vertices must have different colors.

5.3. Empirical evaluation 97

The constraints of the graph coloring problem will be mapped to clauses
according to the three following sets:

• At Least One: to represent that a vertex receives at least a color is ex-
pressed by:

xi1 ∨ · · · ∨ xik ∀vi ∈ V

• At Most One: to represent that one vertex must have at most one assigned
color is expressed by:

¬xik ∨ ¬xik′ ∀vi ∈ V ∀k, k′ ∈ K (1 ≤ k < k′ ≤ |K|)

• The coloring problem itself: to represent that two adjacent vertices must
be displayed in different colors is expressed by:

¬xik ∨ ¬xi′k ∀(vi, vi′) ∈ E ∀k ∈ K (1 ≤ k ≤ |K|)

In the partial MAX-SAT mapping, the first two sets are mapped as hard
clauses, and the third one as soft clauses. Finally, the partial MAX-SAT instance
is mapped to weighted MAX-SAT using Rule 5.1.

MAX-ONES

Another optimization problem derived from the SAT decision problem is MAX-
ONES. The MAX-ONES problem is to find a satisfying truth assignment that
maximizes the number of variables assigned with the value 1 (or true).

In order to apply the mapping to partial MAX-SAT, let φ be a CNF formula.
All the clauses in φ are added to the set of hard clauses, and for each variable
in φ a soft unit clause is added to the set of soft clauses with the variable in
positive polarity. Finally, the partial MAX-SAT instance is mapped to weighted
MAX-SAT using Rule 5.1.

Example 5.3 Let φ = {p∨q}, {¬p∨q}, {p∨¬q} be a CNF formula. The partial
MAX-SAT instance solving the MAX-ONES problem for φ is formed by the set
of hard clauses {p ∨ q}, {¬p ∨ q}, {p ∨ ¬q}, and the set of soft clauses {p}, {q}.

5.3.2 Experimental results

In this section, in order to compare the lower bound and inference rules defined,
we have used three simplified versions of Lazy:

Bare does not apply neither lower bound, nor inference rule.

LB applies the lower bound.

CUC applies inference rule CUC.

ACC applies inference rule ACC.

98 Chapter 5. Implementing a weighted MAX-SAT solver

LB+CUC applies the lower bound and inference rule CUC.

LB+ACC applies the lower bound and inference rule ACC.

Lazy applies the lower bound and both inference rules.

In the first experiment, we observe the behavior of the seven solvers in random
weighted MAX-2-SAT instances with 50 and 100 variables (see Figure 5.2 and
Figure 5.3). We can see that the best solver is Lazy, and the worst is Bare. For
50 variables, the solvers can be divided in four groups, which share the same
number of backtracks. Listing them from the worst to the best are:

• Bare and CUC;

• ACC, that has a slope different from the rest, improving its performance
when the number of clauses increases;

• LB and LB+CUC; and

• LB+ACC and Lazy, that are the best ones.

We can see that the CUC rule does not change the number of backtracks, but
improves the time spent, the ACC rule is more useful when the problem is more
constrained, and the lower bound is useful in the middle of the plot. For 100
variables, the behavior is the same as at the beginning of the plot for 50 variables:
the lower bound is very useful. It is expected that ACC will become more useful
when the number of clauses is increased.

In the second experiment, we observe the performance of the five solvers
for random weighted MAX-3-SAT with 50 and 70 variables (Figure 5.4 and
Figure 5.5). Solvers with ACC have been discarded because the preprocessing is
only applicable to MAX-2-SAT instances. We can see that the best solver is Lazy
and the worst is Bare. In this case, the solvers collapse in two overlapped lines
on the number of backtracks: in the first are Bare and CUC; and in the second
LB, LB+CUC and Lazy. What makes the difference in the number of backtracks
is the application of the lower bound. In running time, CUC helps to decrease it.

In the third experiment, we observe the performance of the five solvers for
random graph coloring with density of 90% and increasing number of nodes
(Figure 5.6). The influence of the lower bound and the inference rules is not so
important as in weighted MAX-3-SAT. This can be confirmed by the fact that
CUC is the fastest algorithm, because the lower bound does not help to reduce
the time. In this case, the solvers also collapse in two overlapped lines on the
number of backtracks, with the same solvers.

In the fourth experiment, we observe the performance of the seven solvers
for random MAX-ONES with 50 and 70 variables (Figure 5.7 and Figure 5.8).
The same behavior as in random weighted MAX-2-SAT can be observed for ran-
dom MAX-ONES 2-SAT (hard clauses are binary), and the same as in random
weighted MAX-3-SAT can be observed for random MAX-ONES 3-SAT (hard
clauses are ternary).

5.3. Empirical evaluation 99

 0.01

 0.1

 1

 10

 100

 1000

 500 1000 1500 2000

tim
e

(lo
g

sc
al

e)

number of clauses

MAX-2SAT - 50 variables

 Bare
LB

CUC
ACC

LB+CUC
LB+ACC

Lazy

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 500 1000 1500 2000

B
ac

kt
ra

ck
s

(lo
g

sc
al

e)

number of clauses

MAX-2SAT - 50 variables

 Bare
LB

CUC
ACC

LB+CUC
LB+ACC

Lazy

Figure 5.2: Weighted Random MAX-2-SAT 50 variables

100 Chapter 5. Implementing a weighted MAX-SAT solver

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 200 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of clauses

MAX-2-SAT - 100 variables

 Bare
LB

CUC
ACC

LB+CUC
LB+ACC

Lazy

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 200 300 400 500 600

B
ac

kt
ra

ck
s

(lo
g

sc
al

e)

number of clauses

MAX-2-SAT - 100 variables

 Bare
LB

CUC
ACC

LB+CUC
LB+ACC

Lazy

Figure 5.3: Weighted Random MAX-2-SAT 100 variables

5.3. Empirical evaluation 101

 0.01

 0.1

 1

 10

 100

 1000

 200 400 600 800 1000

tim
e

(lo
g

sc
al

e)

number of clauses

MAX-3SAT - 50 variables

 Bare
LB

CUC
LB+CUC

Lazy

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 200 400 600 800 1000

B
ac

kt
ra

ck
s

(lo
g

sc
al

e)

number of clauses

MAX-3SAT - 50 variables

 Bare
LB

CUC
LB+CUC

Lazy

Figure 5.4: Weighted Random MAX-3-SAT 50 variables

102 Chapter 5. Implementing a weighted MAX-SAT solver

 0.1

 1

 10

 100

 1000

 10000

 100000

 400 600 800

tim
e

(lo
g

sc
al

e)

number of clauses

MAX-3SAT - 70 variables

 Bare
LB

CUC
LB+CUC

Lazy

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 400 600 800

B
ac

kt
ra

ck
s

(lo
g

sc
al

e)

number of clauses

MAX-3SAT - 70 variables

 Bare
LB

CUC
LB+CUC

Lazy

Figure 5.5: Weighted Random MAX-3-SAT 70 variables

5.3. Empirical evaluation 103

 0.01

 0.1

 1

 10

 100

 1000

 10000

 8 10 12 14 16 18 20

tim
e

(lo
g

sc
al

e)

Number of edges

Graph 3 Coloring

 Bare
LB

CUC
LB+CUC

Lazy

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 8 10 12 14 16 18 20

B
ac

kt
ra

ck
s

(lo
g

sc
al

e)

Number of edges

Graph 3 Coloring

 Bare
LB

CUC
LB+CUC

Lazy

Figure 5.6: Random Graph Coloring

104 Chapter 5. Implementing a weighted MAX-SAT solver

 0.1

 1

 10

 100

 1000

 600 900 1200 1500 1800

tim
e

(lo
g

sc
al

e)

number of clauses

MAX-ONES 2-SAT

 Bare
LB

CUC
ACC

LB+CUC
LB+ACC

Lazy

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 600 900 1200 1500 1800

B
ac

kt
ra

ck
s

(lo
g

sc
al

e)

number of clauses

MAX-ONES 2-SAT

 Bare
LB

CUC
ACC

LB+CUC
LB+ACC

Lazy

Figure 5.7: Random MAX-ONES 2-SAT

5.3. Empirical evaluation 105

 0.1

 1

 10

 100

 1000

 400 600 800 1000

tim
e

(lo
g

sc
al

e)

number of clauses

MAX-ONES 3-SAT

 Bare
LB

CUC
LB+CUC

Lazy

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 400 600 800 1000

B
ac

kt
ra

ck
s

(lo
g

sc
al

e)

number of clauses

MAX-ONES 3-SAT

 Bare
LB

CUC
LB+CUC

Lazy

Figure 5.8: Random MAX-ONES 3-SAT

106 Chapter 5. Implementing a weighted MAX-SAT solver

In the fifth experiment, we have run all the weighted instances from the
Max-SAT Evaluation 2006 on the seven solvers (cf. Table 5.1). Lazy is the best
performing, although not in all the sets (it is the best in 14 sets), since LB+CUC

performs better in 11 sets, and CUC in 5 sets.

5.4 Summary

We have defined lazy data structures for a weighted MAX-SAT solver, and a
novel variable selection heuristic. Several lower bounds and inference rules have
been adapted from MAX-SAT to weighted MAX-SAT, and their performance
has been experimentally evaluated. The lower bound and the application of two
inference rules, ACC and CUC, improve the results of the solver: the lower bound
leads to improvements in all the experiments performed, with more influence in
the less constrained region; the performance of the inference rule ACC increases
with the number of clauses, then in the most constrained region; and inference
rule CUC has a constant and limited impact on the solver performance.

The intuitive reason of the good performance of the inference rules are:

• ACC moves a weight from two binary clauses to a unit clause. This makes
possible the application of more lower bound computations, bringing more
weight to the empty clause.

• CUC saves time in the computation of the lower bound, although it keeps
the number of backtracks.

5.4. Summary 107

B
a
r
e

L
B

C
U
C

A
C
C

L
B
+
C
U
C

L
B
+
A
C
C

L
a
z
y

A
U

C
T

IO
N

P
A
T

H
S

2
2
7
.5

2
(1

1
)

2
8
3
.9

5
(1

7
)

4
4
0
.2

1
(1

5
)

2
2
7
.3

9
(1

1
)

2
3
6
.0

7
(1

7
)

2
8
3
.4

2
(1

7
)

8
5
.5

5
(
1
9
)

A
U

C
T

IO
N

R
E

G
IO

N
S

0
.2

7
(3

0
)

0
.3

7
(3

0
)

0
.1

5
(
3
0
)

0
.2

7
(3

0
)

0
.2

7
(3

0
)

0
.3

7
(3

0
)

2
.0

4
(3

0
)

A
U

C
T

IO
N

S
C

H
E

D
U

L
IN

G
2
1
.8

9
(3

0
)

4
3
.7

3
(3

0
)

9
.3

4
(
3
0
)

2
1
.9

0
(3

0
)

3
2
.1

5
(3

0
)

4
3
.6

6
(3

0
)

6
3
.3

6
(3

0
)

M
A

X
C

L
IQ

U
E

b
ro

ck
6
6
.6

6
(3

)
9
1
.4

5
(3

)
2
2
9
.8

6
(4

)
6
6
.7

1
(3

)
6
0
.1

7
(3

)
9
1
.4

4
(3

)
1
0
4
.8

3
(
4
)

M
A

X
C

L
IQ

U
E

c
-f
a
t

0
.9

8
(5

)
1
.7

1
(5

)
0
.6

2
(5

)
1
.4

3
(5

)
1
.3

5
(5

)
2
.7

4
(5

)
1
7
.5

7
(
7
)

M
A

X
C

L
IQ

U
E

h
a
m

m
in

g
4
1
1
.1

3
(3

)
0
.8

7
(3

)
1
3
2
.9

8
(3

)
4
1
1
.7

9
(3

)
3
3
8
.2

7
(4

)
0
.8

6
(3

)
1
9
5
.0

8
(
5
)

M
A

X
C

L
IQ

U
E

jo
h
n
so

n
2
7
.9

7
(3

)
4
8
.8

7
(3

)
1
0
.5

6
(
3
)

2
7
.9

4
(3

)
3
3
.5

2
(3

)
4
8
.7

9
(3

)
3
8
.6

6
(3

)
M

A
X

C
L
IQ

U
E

k
e
ll
e
r

5
1
.0

7
(1

)
7
0
.6

7
(1

)
1
7
.6

2
(
1
)

5
1
.0

8
(1

)
4
7
.9

1
(1

)
7
0
.5

0
(1

)
4
3
.3

8
(1

)
M

A
X

C
L
IQ

U
E

M
A

N
N

4
.1

9
(1

)
4
.1

2
(1

)
3
.5

5
(1

)
4
.1

9
(1

)
3
.9

8
(1

)
4
.0

6
(1

)
0
.3

1
(
1
)

M
A

X
C

L
IQ

U
E

p
h
a
t

1
9
.8

3
(4

)
2
4
.6

6
(4

)
6
.6

7
(4

)
1
5
.3

9
(3

)
1
6
.1

7
(4

)
3
8
5
.9

4
(4

)
2
1
6
.7

3
(
8
)

M
A

X
C

L
IQ

U
E

sa
n

0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
6
7
.8

4
(
2
)

M
A

X
C

L
IQ

U
E

sa
n
r

7
1
4
.5

6
(2

)
1
1
0
0
.4

3
(2

)
2
0
9
.4

6
(
2
)

7
1
4
.0

1
(2

)
6
8
8
.8

3
(2

)
1
1
0
0
.4

4
(2

)
7
9
2
.0

1
(2

)
W

M
A

X
C

U
T

b
ro

ck
3
9
.4

8
(1

2
)

1
7
.8

9
(1

2
)

2
8
.8

8
(1

2
)

3
9
.7

0
(1

2
)

1
6
.5

6
(
1
2
)

1
7
.8

5
(1

2
)

1
8
.0

0
(1

2
)

W
M

A
X

C
U

T
c
-f
a
t

9
7
.0

8
(7

)
3
0
.5

3
(7

)
6
4
.0

0
(7

)
9
8
.0

8
(7

)
2
7
.3

3
(7

)
3
0
.4

1
(7

)
2
5
.9

5
(
7
)

W
M

A
X

C
U

T
h
a
m

m
in

g
3
8
5
.7

9
(4

)
4
0
2
.6

2
(5

)
2
5
2
.4

6
(4

)
3
8
6
.5

5
(4

)
3
8
5
.0

0
(
5
)

4
0
3
.7

2
(5

)
8
9
.1

0
(4

)
W

M
A

X
C

U
T

jo
h
n
so

n
1
6
6
.1

5
(3

)
6
5
.3

1
(3

)
1
3
3
.4

7
(3

)
1
6
7
.3

8
(3

)
6
1
.8

6
(
3
)

6
4
.9

8
(3

)
7
4
.4

4
(3

)
W

M
A

X
C

U
T

k
e
ll
e
r

4
1
.7

2
(2

)
1
8
.0

4
(2

)
3
1
.2

3
(2

)
4
1
.9

6
(2

)
1
6
.8

5
(
2
)

1
8
.0

1
(2

)
1
7
.4

4
(2

)
W

M
A

X
C

U
T

M
A

N
N

1
2
7
4
.5

4
(3

)
8
5
9
.3

6
(4

)
1
0
5
7
.6

1
(3

)
1
2
7
6
.0

2
(3

)
8
2
0
.4

9
(
4
)

8
5
6
.7

1
(4

)
1
0
1
6
.2

8
(4

)
W

M
A

X
C

U
T

p
h
a
t

3
4
.8

9
(1

2
)

1
1
.8

2
(1

2
)

2
4
.4

7
(1

2
)

3
5
.1

6
(1

2
)

1
0
.9

1
(
1
2
)

1
1
.7

7
(1

2
)

1
0
.9

1
(
1
2
)

W
M

A
X

C
U

T
sa

n
1
2
5
.8

5
(1

1
)

5
3
.6

8
(1

1
)

9
7
.5

7
(1

1
)

1
2
7
.7

0
(1

1
)

5
0
.5

0
(
1
1
)

5
3
.5

4
(1

1
)

5
7
.4

1
(1

1
)

W
M

A
X

C
U

T
sa

n
r

6
3
.3

2
(4

)
2
4
.3

2
(4

)
4
8
.7

0
(4

)
6
4
.3

6
(4

)
2
2
.9

6
(
4
)

2
4
.1

9
(4

)
2
5
.9

2
(4

)
W

M
A

X
C

U
T

m
a
x

c
u
t

8
0
4
.8

0
(1

3
)

3
0
3
.6

6
(4

0
)

7
4
0
.3

5
(2

5
)

8
0
7
.1

9
(1

3
)

2
6
6
.2

6
(4

0
)

3
0
3
.0

5
(4

0
)

2
4
7
.0

6
(
4
0
)

W
M

A
X

C
U

T
S
P

IN
G

L
A

S
S

6
.5

4
(2

)
0
.1

9
(2

)
3
.3

6
(2

)
6
.5

6
(2

)
0
.1

7
(
2
)

0
.1

8
(2

)
0
.2

6
(2

)
M

A
X

O
N

E
4
8
5
.5

9
(1

)
3
6
6
.3

6
(1

7
)

9
9
3
.6

4
(2

)
4
8
4
.8

5
(1

)
4
3
3
.6

4
(1

8
)

3
6
6
.5

5
(1

7
)

3
4
3
.5

8
(
2
7
)

Q
C

P
9
7
8
.2

9
(2

)
7
4
4
.7

7
(1

)
8
4
4
.7

3
(2

)
9
7
8
.8

0
(2

)
7
3
7
.8

4
(1

)
7
4
2
.7

3
(1

)
9
4
.5

2
(
6
)

R
A

M
S
E

Y
1
1
1
.1

8
(2

8
)

3
7
.6

3
(2

9
)

1
0
5
.2

1
(2

8
)

1
1
1
.8

9
(2

8
)

3
7
.2

2
(
2
9
)

3
7
.6

2
(2

9
)

5
4
.8

7
(2

9
)

W
C

S
P

D
E

N
S
E

L
O

O
S
E

5
3
9
.6

1
(2

0
)

7
3
0
.9

0
(2

1
)

5
1
0
.8

9
(2

0
)

5
4
2
.3

3
(2

0
)

7
3
9
.1

0
(2

1
)

7
2
9
.2

4
(2

1
)

5
2
7
.4

2
(
3
2
)

W
C

S
P

D
E

N
S
E

T
IG

H
T

0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
W

C
S
P

S
P
A

R
S
E

L
O

O
S
E

4
6
5
.9

7
(1

4
)

5
5
1
.0

2
(1

3
)

4
4
2
.3

5
(1

4
)

4
6
7
.4

0
(1

4
)

5
6
6
.6

8
(1

3
)

5
4
9
.2

9
(1

3
)

3
9
3
.1

1
(
2
7
)

W
C

S
P

S
P
A

R
S
E

T
IG

H
T

0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
0
.0

0
(0

)
W

C
S
P

S
P

O
T

0
.1

2
(8

)
7
4
.9

1
(9

)
0
.1

2
(8

)
0
.1

3
(8

)
7
0
.3

6
(
9
)

7
4
.7

6
(9

)
1
4
.6

5
(6

)

T
ab

le
5.

1:
E

va
lu

at
io

n
re

su
lt

s
fo

r
th

e
se

ve
n

so
lv

er
s

Chapter 6

Empirical comparison of
MAX-SAT and weighted
MAX-SAT solvers

Since Borchers and Furman’s work in 1995, there have been many exact solvers
addressing MAX-SAT solving. We will compare our contributions to MAX-SAT
solving with other researchers’ work.

First, we describe all the solvers available to be compared with, then our con-
tributed solvers, and finally we report on the results on MAX-SAT and weighted
MAX-SAT, that provide empirical evidence that our best solvers outperform the
state-of-the-art solvers on the solved MAX-SAT instances and in many cases on
the solved weighted MAX-SAT instances.

6.1 Solvers

In this section we describe ten competitive exact branch and bound solvers for
MAX-SAT and weighted MAX-SAT: six were implemented by other researchers
and four are our contribution. Since the main contributions of such solvers
were given in Section 2.3.3, here we only sketch them, and additionally provide
technical details.

6.1.1 Other existing MAX-SAT solvers

Before starting our research on MAX-SAT, there were three implemented solvers:

BF Borchers and Furman [BF95, BF99] implemented branch and bound solvers
for MAX-SAT and weighted MAX-SAT. They initialized the initial upper
bound using a local search method (cf. Section 2.3) and incorporated the
inference rule of unit propagation likewise SAT when the number of unit

109

110 Chapter 6. Empirical comparison of MAX-SAT and weighted MAX-SAT

clauses is one less than the upper bound (cf. Section 4.1). As variable
selection heuristic they used MOMS. The solvers were implemented in C.

Later on, Joy, Mitchell and Borchers [JMB97] compared this solver with a
Branch-and-Cut algorithm. This solver is not publicly available.

Wallace&Freuder Wallace and Freuder [WF96] implemented a solver for MAX-
SAT. It incorporated lower bound inconsistencies count; and inference rule
MAX-SAT-FC. As variable selection heuristic they used MOMS. It was
implemented in Lisp. The solver is not publicly available.

AGN For his Master’s Thesis, Gramm created a MAX-2-SAT solver [Gra99,
GN00], implementing ideas described in [NR00]. He incorporated the fol-
lowing inference rules: pure literal, CUC, DUC, restricted resolution rule,
three occurrences rule and ACC. He did not incorporate any underestima-
tion of the lower bound. In order to select the variables, Gramm imple-
mented eight branching rules. Each branching rule depends on the number
of occurrences of the literals and on the clauses in which the literals occur.
It was implemented in Java.

Since we started our research, there have been a number of researchers that
have focused on exact MAX-SAT solver design:

max2sat lb4a (LB4) Zhang and Shen [ZSM03b, SZ04, SZ05] implemented
two solvers for MAX-2-SAT with a static variable selection heuristic, sort-
ing variables by occurrence. Both incorporated a new lower bound com-
putation, LB4, and a new variable selection heuristic based on SCC (cf.
Section 2.3.3). The first solver is a decision algorithm. The second one,
a MAX-2-SAT solver, applied several preprocessing inference rules. We
do not provide results with this solver because we got some non-optimal
solutions.1 The solvers were implemented in C++.

toolbar In CP-2003 [dGLMS03], de Givry et al. introduced a solver that en-
codes MAX-SAT as a weighted constraint network, which is solved with
an algorithm for weighted CSP. In such an algorithm, weighted CSP lo-
cal consistency is exploited [LS03, LS04, dGZHL05] (version 2 of solver
toolbar, named toolbar v2 in the experimentation). The most powerful
arc consistency is existential arc consistency.2 Later, Heras and Larrosa
added inference rules focused on MAX-SAT [LH05a, HL06b],3 adapting the
solver to deal with clauses (version 3 of solver toolbar, named toolbar v3

in the experimentation). There is no underestimation implemented. The
solver deals with MAX-SAT and weighted MAX-SAT instances. It uses
Jeroslow-Wang as variable selection heuristic. It was implemented in C.

1The performance of LB4 is similar to AMP.
2Many local consistency algorithms in weighted CSP can be seen as inference rules in

MAX-SAT, as was stated in [LH05a].
3The inference rules added in [LH05a] can be seen as extensions to weighted MAX-SAT

of ACC (named NRES in the article), CUC and MAX-SAT-FC. The inference rule DRES
in [HL06b] corresponds to the weighted version of Lemma 4.1. This rule was defined indepen-
dently of our work. The inference rule 2-RES is commented in Appendix A.

6.1. Solvers 111

MaxSolver In CP-2004, Zhang and Xing [XZ04, XZ05] introduced this solver
with a dynamic variable selection heuristic. Actually, MaxSolver is a set of
four solvers, solving MAX-2-SAT, MAX-3-SAT, weighted MAX-2-SAT and
weighted MAX-3-SAT. It uses a new lower bound computation based on
integer programming; and the following inference rules: pure literal rule,
upper bound rule, DUC rule and coefficient-determining inference rule.
Two variants of Jeroslow-Wang variable selection heuristic were used, one
for MAX-2-SAT and another one for MAX-3-SAT. The solver is limited to
instances with 1000 clauses. It was implemented in C.

Adding up, there are currently five exact MAX-SAT solvers to be compared
with: BF, AGN, toolbar and MaxSolver. The information is summarized in
Table 6.1.

Year of Year of
Solver Researchers issue last version Weighted
BF Borchers, Furman ’95 ’99 yes
AGN Alber, Gramm, Niedermeier ’99 ’00 no
LB4 Zhang, Sheng ’03 ’05 no
toolbar Givry, Larrosa, Meseguer, Schiex ’03 ’06 yes
MaxSolver Xing, Zhang ’04 ’05 yes

Table 6.1: MAX-SAT solvers from other research works.

6.1.2 Our contribution

During our research on MAX-SAT solving, we have designed and implemented
four solvers:

AMP In SAT-2003 [AMP03a], we introduced this solver, an improvement of
solver BF by incorporating lower bound inconsistency count and infer-
ence rules upper bound rule and DUC. We also introduced in CCIA-
2003 [AMP03b] a new variable selection heuristic, a variant of Jeroslow-
Wang (cf. Section 2.3.3). Likewise BF solver, these improvements were
also implemented in C.

Lazy In IBERAMIA-2004 [AMP04a, AMP04b], we introduced the first solver
we have implemented from scratch. The solver implements lower bound
star rule for the first time; and inference rules CUC, DUC, and ACC
as a preprocessing. It uses a static variable selection heuristic which sorts
variables mainly by occurrence. In this solver, we introduced a new variable
ordering (cf. Section 5.2.2). We implemented two versions, Lazy and
Lazy*, which have one and two pointers in the clauses, respectively. Lazy*
was chosen for the experimentation. It was implemented in C++.

112 Chapter 6. Empirical comparison of MAX-SAT and weighted MAX-SAT

UP In CP-2005 [LMP05], we introduced this solver, that incorporates for the
first time the lower bound UP. It uses a dynamic variable selection heuris-
tic, the same variant of JW used in AMP. It also implements inference
rules CUC, DUC and ACC. It was implemented in C++.

MaxSatz In AAAI-2006 [LMP06], we introduced this solver, created applying
lower bound UP∗

FL and inference rules defined in Chapter 4, using the
data structures in solver Satz [LA97a, LA97b]. It also applies the follow-
ing techniques: pure literal rule, upper bound rule, and DUC, and uses
two novel heuristics, one for variable selection and one for value selection,
defined below. Let U(ℓ) be the number of unit clauses containing literal
ℓ, B(ℓ) be the number of binary clauses containing literal ℓ, C(ℓ) be the
number of clauses with three or more literals containing literal ℓ. We
defined:

• A novel variable selection heuristic: We select the variable p such that
(U(¬p) + 4×B(¬p) + C(¬p))*(U(p) + 4×B(p) + C(p)) is the largest.

• And a novel value selection heuristic: Let p be the selected branching
variable. If U(¬p) + 4×B(¬p) + C(¬p) < U(p) + 4×B(p) + C(p), set
p to true. Otherwise, set p to false.

The solver was implemented in C.
The solvers we have developed are shown in Table 6.2. AMP has not been

modified since its creation, but Lazy, UP and MaxSatz have been improved since
then.

Solver Researchers Year of issue Weighted
AMP Alsinet, Manyà, Planes ’03 yes
Lazy Alsinet, Manyà, Planes ’04 yes
UP Li, Manyà, Planes ’05 no
MaxSatz Li, Manyà, Planes ’06 no

Table 6.2: MAX-SAT solvers we have implemented

6.2 Experimentation on MAX-SAT

We next report on the experimental investigation of the comparison of the several
MAX-SAT solvers. All the experiments were performed on a Linux Cluster with
2GHz AMD Opteron processors with 1Gb of RAM.

We provided the same initial upper bound to all the solvers, which was
computed with a GSAT algorithm (cf. Section 2.2.4) for MAX-SAT and weighted
MAX-SAT implemented by Borchers and Furman.

In the first experiment, Figure 6.1 and Figure 6.2, we compared the solvers
for random MAX-2-SAT instances. We observe that MaxSatz outperforms the

6.3. Experimentation on weighted MAX-SAT 113

rest of the solvers. In MAX-2-SAT with 50 and 100 variables, solver toolbar

becomes second, although when increasing the number of variables to 150, UP
is the second one. An important point to stress is the behavior of MaxSatz and
toolbar. MaxSatz is faster than toolbar, but both join at the more constrained
point. The intuition behind is that toolbar deals better with repeated clauses
than MaxSatz. toolbar joins repeated clauses into one and labels them with a
weight, so that toolbar solves a formula with quite fewer clauses than MaxSatz,
in the most constrained region. Observe also the difference between the two
versions of toolbar and the two solvers UP and MaxSatz, that confirms that the
more powerful the inference rule, the faster the algorithm (cf. Section 4.4).

In the second experiment, Figure 6.3, we compared the solvers able to solve
MAX-3-SAT (i.e., all previous solvers but AGN). We observe a similar behavior
to random MAX-2-SAT: solver MaxSatz is the best performing, toolbar has a
good performance for instances of 50 variables, and UP has for instances of 70
variables.

In the third experiment, Figure 6.4, we compared the solvers for random
MAX-CUT instances. We observe that solver MaxSatz outperforms the rest of
the solvers.

In the fourth experiment, Table 6.3, we compared the solvers on the bench-
marks used in the MAX-SAT Evaluation 2006. The first column contains the
name of the benchmark set, the second column the number of instances in the
set, and the following columns the average time spent by the solver on the solved
instances (number in brackets). The maximum time allowed to solve one instance
is 30 minutes. Benchmarks not applicable to the solver are marked with a dash.
We observe that solver MaxSatz outperforms the rest of the solvers.

Solver MaxSatz outperforms in all the experiments, and demonstrates to be
robust because which solver is in second and third position depends on the
problem: toolbar, MaxSolver, or UP.

6.3 Experimentation on weighted MAX-SAT

In this section, we describe the experimentation performed on the five solvers
which are able to deal with weighted MAX-SAT: i.e. BF, toolbar, MaxSolver,
AMP and Lazy. In the first experiment, Figure 6.5, we compared the solvers
which are able to solve weighted MAX-2-SAT. We observe that solver toolbar
is the best solver for 50 and 100 variables. MaxSolver can solve only instances
containing less than 1000 clauses.

In the second experiment, Figure 6.6, we compared the solvers able to solve
weighted MAX-3-SAT. We observe that Lazy is the best performing solver and
toolbar is the second one. We observe that the more constrained the problem,
the closer the solvers Lazy and toolbar are. As commented in the previous
section regarding the comparison between toolbar and MaxSatz, we think that
this happens because toolbar deals better with repeated clauses than Lazy.

In the third experiment, Figure 6.7, we compared the solvers able to solve the
graph 3-coloring problem. We observe that Lazy is the best performing solver

114 Chapter 6. Empirical comparison of MAX-SAT and weighted MAX-SAT

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 2000 3000 4000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 50 variables

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
toolbar v3
MaxSatz

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 600 900 1200 1500 1800

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 100 variables

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
toolbar v3
MaxSatz

Figure 6.1: Random MAX-2-SAT solver comparison

6.3. Experimentation on weighted MAX-SAT 115

S
e
t

N
a
m

e
#

In
st

a
n
c
e
s

B
F

A
M
P

T
o
o
l
b
a
r
v
3

L
a
z
y

M
a
x
S
o
l
v
e
r

U
P

M
a
x
S
a
t
z

M
A

X
C

U
T

b
ro

ck
1
1

(0
)

5
4
5
.8

1
(1

)
5
4
.6

5
(1

1
)

1
5
2
.6

7
(1

1
)

(0
)

5
0
8
.8

5
(8

)
1
2
.5

9
(
1
1
)

M
A

X
C

U
T

c
-f
a
t

7
6
.0

6
(1

)
1
.9

5
(3

)
2
1
.1

4
(5

)
1
3
2
.9

4
(5

)
4
1
.5

8
(3

)
7
.1

9
(5

)
0
.0

7
(
5
)

M
A

X
C

U
T

h
a
m

m
in

g
6

(0
)

6
3
6
.0

4
(1

)
5
5
7
.2

4
(3

)
3
5
.4

3
(2

)
(0

)
2
9
4
.8

9
(2

)
1
8
0
.2

7
(
3
)

M
A

X
C

U
T

jo
h
n
so

n
4

(0
)

3
9
4
.1

7
(2

)
1
4
5
.5

9
(3

)
4
9
4
.4

2
(3

)
1
.3

4
(1

)
2
9
.4

2
(2

)
4
5
.3

8
(
3
)

M
A

X
C

U
T

k
e
ll
e
r

2
(0

)
1
9
7
.1

5
(1

)
1
6
.9

7
(2

)
5
8
.9

6
(2

)
(0

)
6
1
5
.5

4
(2

)
6
.1

1
(
2
)

M
A

X
C

U
T

D
IM

A
C

S
p

h
a
t

1
2

6
0
5
.4

4
(2

)
1
0
7
.7

9
(8

)
6
0
.7

9
(1

2
)

1
5
7
.3

1
(1

2
)

1
4
.0

0
(8

)
1
4
0
.2

3
(9

)
1
5
.8

3
(
1
2
)

M
A

X
C

U
T

sa
n

1
1

(0
)

5
6
3
.1

9
(1

)
6
4
.1

6
(7

)
2
2
7
.2

6
(7

)
2
8
3
.3

4
(2

)
8
1
2
.4

7
(5

)
2
7
4
.8

8
(
1
1
)

M
A

X
C

U
T

sa
n
r

4
(0

)
4
2
8
.1

8
(1

)
2
7
2
.9

4
(4

)
4
4
3
.5

5
(4

)
1
3
8
.3

2
(1

)
5
3
8
.1

0
(3

)
7
2
.0

0
(
4
)

M
A

X
C

U
T

m
a
x

c
u
t

4
0

0
.0

1
(1

)
(0

)
3
4
.3

7
(4

0
)

7
9
1
.8

3
(2

7
)

(0
)

6
2
3
.0

3
(1

3
)

5
.5

8
(
4
0
)

M
A

X
C

U
T

S
P

IN
G

L
A

S
S

5
0
.2

1
(1

)
0
.1

3
(1

)
5
.6

3
(2

)
4
4
.0

3
(2

)
5
7
0
.6

8
(2

)
0
.8

6
(2

)
4
4
.9

6
(
3
)

M
A

X
O

N
E

4
5

0
.0

2
(2

1
)

0
.0

3
(4

5
)

2
9
.4

7
(4

5
)

8
0
.9

2
(4

0
)

0
.0

6
(4

5
)

0
.3

1
(4

5
)

0
.0

2
(
4
5
)

R
A

M
S
E

Y
ra

m
k

4
8

8
.5

3
(3

0
)

3
8
.4

4
(3

0
)

6
6
.9

9
(2

8
)

7
6
.3

8
(2

8
)

0
.2

0
(2

0
)

1
9
.6

5
(2

5
)

8
.9

8
(
3
4
)

M
A

X
2
S
A
T

1
0
0
V
A

R
S

5
0

0
.1

4
(1

0
)

1
4
3
.2

3
(1

1
)

1
9
.0

5
(5

0
)

2
2
8
.1

8
(3

1
)

5
3
2
.4

7
(1

6
)

1
9
2
.3

4
(4

8
)

1
.4

0
(
5
0
)

M
A

X
2
S
A
T

1
4
0
V
A

R
S

5
0

0
.0

8
(1

0
)

9
1
.9

3
(1

2
)

1
1
0
.8

1
(4

9
)

1
9
6
.7

6
(2

3
)

1
6
8
.4

2
(1

8
)

7
5
.5

7
(3

9
)

7
.0

2
(
5
0
)

M
A

X
2
S
A
T

6
0
V
A

R
S

5
0

1
.9

2
(3

)
5
1
4
.0

2
(4

4
)

0
.2

1
(5

0
)

3
.1

7
(5

0
)

8
1
.8

2
(5

0
)

0
.9

4
(5

0
)

0
.0

3
(
5
0
)

M
A

X
2
S
A
T

D
IS

C
A

R
D

E
D

1
8
0

3
5
7
.6

5
(2

8
)

4
3
9
.5

4
(7

6
)

9
5
.4

2
(1

7
4
)

1
3
5
.4

4
(1

0
7
)

3
0
8
.5

8
(7

3
)

1
6
6
.2

9
(1

4
9
)

1
6
.8

0
(
1
8
0
)

M
A

X
3
S
A
T

4
0
V
A

R
S

5
0

1
7
0
.4

9
(2

2
)

2
0
2
.1

8
(5

0
)

9
.2

6
(5

0
)

6
.8

9
(5

0
)

6
6
.3

4
(4

9
)

6
0
.5

0
(5

0
)

1
.5

0
(
5
0
)

M
A

X
3
S
A
T

6
0
V
A

R
S

5
0

4
.0

7
(1

6
)

1
6
8
.0

0
(2

5
)

3
1
7
.8

7
(5

0
)

2
6
1
.8

7
(4

3
)

1
3
9
.0

3
(2

2
)

1
6
6
.7

6
(3

7
)

2
3
.3

2
(
5
0
)

T
a
b
le

6.
3:

E
x
p
er

im
en

ta
l
re

su
lt

s
fo

r
al

l
th

e
u
n
w

ei
gh

te
d

b
en

ch
m

ar
k
s

in
th

e
M

A
X

-S
A

T
E

va
lu

at
io

n
20

06
.

116 Chapter 6. Empirical comparison of MAX-SAT and weighted MAX-SAT

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 300 400 500 600 700

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2SAT - 150 variables

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
toolbar v3
MaxSatz

Figure 6.2: Random MAX-2-SAT with 150 variables solver comparison

and MaxSolver is the second one. It finishes at 17 nodes due to its limitation of
1000 clauses.

In the fourth experiment, Figure 6.8, we compared the solvers able to solve
MAX-ONES. We observe that solver Lazy is the best performing solver for
MAX-2-SAT and toolbar is the best one for MAX-3-SAT. MaxSolver shows its
limitation of 1000 clauses (in this case, it cannot reach such a limit due to the
additional clauses).

In the last experiment, we compared the solvers with all the weighted MAX-
SAT benchmarks submitted to the Max-SAT Evaluation 2006. The results are
shown in Table 6.4.

We can see that Lazy does not outperform in all the experiments, but it does
in most of them. In particular, toolbar is better for MAX-2-SAT problems,
and it is expected to be as powerful as Lazy in more constrained MAX-3-SAT
problems.

6.4 Summary

We have observed that solver MaxSatz outperforms the rest of the solvers for the
MAX-SAT instances we have tested. MaxSatz is robust because its performance
does not depend on the parameters of the problem solved, compared with the
other solvers that become second depending on the parameters of the problem.

6.4. Summary 117

 0.1

 1

 10

 100

 1000

 10000

 600 800 1000 1200

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 50 variables

BF
AMP
Lazy

toolbar
MaxSolver

UP
toolbar v3
MaxSatz

 0.1

 1

 10

 100

 1000

 10000

 500 600 700 800 900 1000

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3SAT - 70 variables

BF
AMP
Lazy

toolbar
MaxSolver

UP
toolbar v3
MaxSatz

Figure 6.3: Random MAX-3-SAT solver comparison

118 Chapter 6. Empirical comparison of MAX-SAT and weighted MAX-SAT

S
e
t

N
a
m

e
#

In
sta

n
c
e
s

B
F

A
M
P

M
a
x
S
o
l
v
e
r

L
a
z
y

T
o
o
l
b
a
r
v
2

T
o
o
l
b
a
r
v
3

A
u
c
tio

n
(p

a
th

s)
3
0

4
1
6
.5

3
(9

)
2
4
4
.3

2
(9

)
9
2
6
.6

8
(6

)
8
5
.5

5
(1

9
)

3
1
2
.2

7
(1

7
)

2
5
8
.3

2
(
2
5
)

A
u
c
tio

n
(re

g
io

n
s)

3
0

1
.5

3
(1

)
0
.8

3
(1

)
-

2
.0

4
(
3
0
)

3
.2

7
(3

0
)

6
.0

7
(3

0
)

A
u
c
tio

n
(sch

e
d
u
llin

g
)

3
0

1
0
.7

4
(1

1
)

5
.8

5
(1

1
)

-
6
3
.3

6
(
3
0
)

1
3
3
.2

1
(2

9
)

1
5
1
.8

8
(3

0
)

M
a
x
-C

liq
u
e

(b
ro

ck
)

1
2

(0
)

(0
)

-
1
0
4
.8

3
(4

)
3
7
4
.3

1
(4

)
4
8
.0

9
(
8
)

M
a
x
-C

liq
u
e

(c
-fa

t)
7

(0
)

(0
)

-
1
7
.5

7
(7

)
6
.0

5
(7

)
1
0
.4

3
(
7
)

M
a
x
-C

liq
u
e

(h
a
m

m
in

g
)

6
0
.3

5
(2

)
0
.1

9
(2

)
0
.1

2
(1

)
1
9
5
.0

8
(5

)
9
0
.1

2
(5

)
1
1
2
.3

9
(
6
)

M
a
x
-C

liq
u
e

(jo
h
n
so

n
4

5
1
.7

9
(3

)
2
8
.4

9
(3

)
0
.2

1
(2

)
3
8
.6

6
(
3
)

7
5
.6

3
(3

)
5
6
.1

7
(3

)
M

a
x
-C

liq
u
e

(k
e
lle

r)
2

0
.0

0
(0

)
(0

)
-

4
3
.3

8
(1

)
1
0
5
.5

9
(1

)
3
4
.7

9
(
1
)

M
a
x
-C

liq
u
e

(M
A

N
N

a
)

4
3
.5

5
(1

)
2
.1

9
(1

)
0
.7

0
(1

)
0
.3

1
(1

)
2
.0

9
(2

)
5
1
.7

8
(
3
)

M
a
x
-C

liq
u
e

(p
h
a
t)

1
2

(0
)

(0
)

(0
)

2
1
6
.7

3
(8

)
5
5
5
.6

2
(4

)
2
4
1
.9

5
(
9
)

M
a
x
-C

liq
u
e

(sa
n
)

1
1

(0
)

(0
)

(0
)

6
7
.8

4
(2

)
3
7
6
.4

2
(1

)
1
9
.6

1
(
3
)

M
a
x
-C

liq
u
e

(sa
n
r)

4
(0

)
(0

)
(0

)
7
9
2
.0

1
(2

)
4
5
8
.9

0
(1

)
8
4
7
.2

4
(
3
)

W
e
ig

h
te

d
M

a
x
-C

u
t

(b
ro

ck
)

1
2

(0
)

9
9
8
.2

1
(2

)
1
1
5
7
.0

7
(5

)
1
8
.0

0
(
1
2
)

1
1
5
.2

7
(1

2
)

1
8
.5

7
(1

2
)

W
e
ig

h
te

d
M

a
x
-C

u
t

(c
-fa

t)
7

3
2
.8

9
(4

)
1
9
6
.6

3
(5

)
3
3
1
.2

5
(7

)
2
5
.9

5
(7

)
6
6
.2

5
(7

)
1
4
.4

8
(
7
)

W
e
ig

h
te

d
M

a
x
-C

u
t

(h
a
m

m
in

g
)

6
(0

)
3
0
1
.0

9
(1

)
1
4
5
7
.1

9
(5

)
8
9
.1

0
(
4
)

8
7
6
.1

8
(4

)
1
4
6
.0

2
(4

)
W

e
ig

h
te

d
M

a
x
-C

u
t

(jo
h
n
so

n
)

4
9
2
.4

6
(1

)
2
6
4
.5

3
(2

)
0
.5

4
(1

)
7
4
.4

4
(
3
)

7
.1

7
(2

)
1
1
2
.0

1
(3

)
W

e
ig

h
te

d
M

a
x
-C

u
t

(k
e
lle

r)
2

(0
)

2
9
3
.0

0
(1

)
-

1
7
.4

4
(
2
)

1
5
1
.8

5
(2

)
1
9
.9

7
(2

)
W

e
ig

h
te

d
M

a
x
-C

u
t

(M
A

N
N

a
)

4
(0

)
(0

)
-

1
0
1
6
.2

8
(
4
)

(0
)

1
4
7
3
.4

6
(1

)
W

e
ig

h
te

d
M

a
x
-C

u
t

(p
h
a
t)

1
2

5
2
8
.4

9
(3

)
1
4
6
.1

0
(8

)
9
.7

6
(8

)
1
0
.9

1
(
1
2
)

9
3
.6

6
(1

2
)

1
9
.9

2
(1

2
)

W
e
ig

h
te

d
M

a
x
-C

u
t

(sa
n
)

1
1

(0
)

7
4
2
.8

5
(2

)
1
2
3
8
.3

4
(6

)
5
7
.4

1
(
1
1
)

3
6
1
.1

0
(1

0
)

1
1
3
.0

2
(1

1
)

W
e
ig

h
te

d
M

a
x
-C

u
t

(sa
n
r)

4
(0

)
2
8
9
.5

2
(1

)
5
4
.2

9
(1

)
2
5
.9

2
(
4
)

2
2
3
.0

0
(4

)
7
8
.9

0
(4

)
W

e
ig

h
te

d
M

a
x
-C

u
t

(ra
n
d
o
m

)
4
0

(0
)

(0
)

-
2
4
7
.0

6
(4

0
)

5
4
4
.1

6
(3

8
)

1
7
.5

2
(
4
0
)

W
e
ig

h
te

d
M

a
x
-C

u
t

(sp
in

g
la

ss)
5

(0
)

(0
)

6
1
1
.5

5
(3

)
0
.2

6
(2

)
0
.4

1
(2

)
9
1
.8

5
(
3
)

M
a
x
-O

n
e

4
5

1
0
4
2
.2

1
(1

)
1
2
1
7
.1

2
(3

)
1
1
7
.8

8
(4

)
3
4
3
.5

8
(2

7
)

5
5
6
.2

1
(3

7
1
8
6
.1

5
(
4
4
)

Q
u
a
sig

ro
u
p

C
o
m

p
le

tio
n

2
5

2
.3

8
(1

0
)

1
.1

4
(1

0
)

-
9
4
.5

2
(6

)
1
8
3
.1

9
(6

)
3
6
.3

5
(
1
0
)

R
a
m

se
y

4
8

3
.6

5
(3

1
)

1
.9

4
(3

1
)

4
6
.5

3
(3

5
)

5
4
.8

7
(2

9
)

3
9
.1

9
(3

0
)

7
.1

6
(
3
5
)

W
e
ig

h
te

d
C

S
P

(D
E

N
S
E

L
O

O
S
E

)
4
0

9
8
.1

9
(3

9
)

5
7
.1

9
(3

9
)

5
4
.5

8
(1

6
)

5
2
7
.4

2
(3

2
)

1
4
5
.7

4
(2

2
)

2
3
8
.6

9
(
3
4
)

W
e
ig

h
te

d
C

S
P

(D
E

N
S
E

T
IG

H
T

)
6
0

(0
)

(0
)

1
6
1
9
.4

7
(1

0
)

(0
)

4
2
2
.8

4
(3

0
)

6
8
.6

1
(
3
0
)

W
e
ig

h
te

d
C

S
P

(S
P
A

R
S
E

L
O

O
S
E

)
4
0

5
7
.9

8
(4

0
)

3
2
.7

8
(4

0
)

2
.1

0
(1

1
)

3
9
3
.1

1
(2

7
)

1
2
4
.4

1
(2

7
)

1
5
6
.0

3
(
3
6
)

W
e
ig

h
te

d
C

S
P

(S
P
A

R
S
E

T
IG

H
T

)
4
0

(0
)

(0
)

-
(0

)
1
3
0
4
.6

4
(1

)
2
9
8
.5

7
(
2
0
)

W
e
ig

h
te

d
C

S
P

(sp
o
t)

4
2

1
5
3
.3

8
(4

)
7
3
.6

2
(4

)
-

1
4
.6

5
(6

)
1
5
0
.4

0
(1

3
)

7
8
.8

9
(
1
6
)

T
ab

le
6.4:

E
x
p
erim

en
tal

resu
lts

for
all

th
e

w
eigh

ted
b
en

ch
m

ark
s

in
th

e
M

A
X

-S
A

T
E

valu
ation

20
06

.

6.4. Summary 119

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of edges

Max-Cut - 50 nodes

BF
AMP
AGN
Lazy

toolbar
MaxSolver

UP
toolbar v3
MaxSatz

Figure 6.4: Random MAX-CUT solver comparison

Solver toolbar performs well when the clause to variable ratio becomes large,
and other solvers like UP perform better when such a ratio is small.

In the weighted MAX-SAT experimentation, solver Lazy has a good but lim-
ited performance. The designed lazy data structures make difficult to efficiently
implement more complex techniques like lower bound UP or weighted versions
of the inference rules defined in Chapter 4. On the other hand, toolbar incor-
porates powerful inference rules, that make the solver have a good performance
when the clause to variable ratio is large in random instances.

120 Chapter 6. Empirical comparison of MAX-SAT and weighted MAX-SAT

 0.01

 0.1

 1

 10

 100

 1000

 10000

 500 1000 1500 2000

tim
e

(lo
g

sc
al

e)

number of clauses

Weighted MAX-2SAT - 50 variables

BF
AMP

toolbar v2
MaxSolver

Lazy
toolbar v3

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 200 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of clauses

Weighted MAX-2-SAT - 100 variables

BF
AMP

toolbar v2
MaxSolver

Lazy
toolbar v3

Figure 6.5: Random weighted MAX-2-SAT solver comparison

6.4. Summary 121

 0.1

 1

 10

 100

 1000

 10000

 400 600 800 1000

tim
e

(lo
g

sc
al

e)

number of clauses

Weighted MAX-3SAT - 50 variables

BF
AMP

toolbar v2
MaxSolver

Lazy
toolbar v3

 0.1

 1

 10

 100

 1000

 10000

 100000

 400 500 600 700 800

tim
e

(lo
g

sc
al

e)

number of clauses

Weighted MAX-3SAT - 70 variables

BF
AMP

toolbar v2
MaxSolver

Lazy
toolbar v3

Figure 6.6: Random weighted MAX-3-SAT solver comparison

122 Chapter 6. Empirical comparison of MAX-SAT and weighted MAX-SAT

 0.1

 1

 10

 100

 1000

 10000

 100000

 8 10 12 14 16 18

tim
e

(lo
g

sc
al

e)

Number of edges

Graph 3 Coloring

BF
AMP

toolbar v2
MaxSolver

Lazy
toolbar v3

Figure 6.7: Graph coloring solver comparison

6.4. Summary 123

 0.1

 1

 10

 100

 1000

 10000

 100000

 800 1600 2400 3200

tim
e

(lo
g

sc
al

e)

number of clauses

MAX-ONES 2-SAT

BF
AMP

toolbar v2
MaxSolver

Lazy
toolbar v3

 0.1

 1

 10

 100

 1000

 10000

 400 600 800 1000

tim
e

(lo
g

sc
al

e)

number of clauses

MAX-ONES 3-SAT

BF
AMP

toolbar v2
MaxSolver

Lazy
toolbar v3

Figure 6.8: MAX-ONES solver comparison

Chapter 7

Conclusions

In recent years, research on MAX-SAT solving has reduced in many orders of
magnitude the required time to solve a large number of MAX-SAT instances.
In this dissertation, we have focused on two important features that have a
great impact on the solvers performance: the lower bound computation and the
inference rules. We have argued that unit propagation in MAX-SAT can be used
to compute a good lower bound that sustains the application of inference rules
that accelerate the search.

The main contributions of this research on those aspects can be summarized
as follows:

• Unit propagation, one of the most useful methods in SAT, is extensively
used in the computation of a good quality lower bound, that detects disjoint
inconsistent subsets of clauses. We improved such a lower bound with
choosing the appropriate heuristic for selecting unit clauses. The goal of
the better heuristic is to use the minimum number of initial unit clauses
to detect small inconsistent subsets.

• When there is no unit clause to apply the lower bound, or the existing unit
clauses do not lead to any conflict, an estimation can be made detecting
failed literals.

• Given an inconsistent subset of clauses detected by the lower bound in
the search tree, the same subset has probably to be detected again in
downward nodes. Transforming such a subset, using inference rules, into
an equivalent subset with an empty clause, makes the algorithm run faster,
because it avoids to detect the subset again, and the new added clauses
may help to detect more inconsistent subsets.

• The key point of the efficient application of the introduced inference rules
is the use of the implication graph created by the lower bound UP when
detecting empty clauses. This fact and the data structures used (from
solver Satz) bring the creation of an extremely competitive MAX-SAT

125

126 Chapter 7. Conclusions

solver, MaxSatz, that was the best performing solver in the MAX-SAT
Evaluation 2006.

• We have provided empirical evidence that the solver MaxSatz, that im-
plements the previous points, outperforms the rest of the solvers on the
MAX-SAT instances we have tested. MaxSatz is robust because its perfor-
mance does not depend on the parameters of the problem solved, compared
with the other solvers that become second depending on such parameters.

• We have defined a lazy data structure and a novel variable selection heuris-
tic in a weighted MAX-SAT solver, called Lazy. A lower bound and two
inference rules have been adapted from MAX-SAT to weighted MAX-SAT,
and their performance has been experimentally evaluated.

• In the weighted MAX-SAT experimentation, solver Lazy has a good but
limited performance. The designed lazy data structure makes difficult to
efficiently implement more complex rules, but it helps the algorithm to run
faster.

There are many extensions to the current work, but we consider that the
feasible points to be exploited in the near future are:

• Learning is used in SAT to solve structured problems faster [MMZ+01].
This is a topic not sufficiently exploited in MAX-SAT. We believe that it
is worth to continue exploring the work in [AM06b].

• The inference rules applied in MaxSatz were a subset of all the possible
rules, because we forced them not to add new literals to the formula. More
powerful inference rules, like the ones in Appendix A, could be applied
adapting the solver to the use of dynamic memory.

• We have demonstrated the good performance of lower bounds and inference
rules based on unit propagation in MAX-SAT. We think such results can
be transferred into weighted MAX-SAT to get also a powerful solver.

• Bistarelli and O’Sullivan [BO04, SBO07] pointed out a branch and bound
algorithm with symmetry breaking for soft CSP problems. These ideas
could be ported to the MAX-SAT branch and bound algorithm.

• The lower bound may detect the same unsatisfiable set of clauses again
and again. In order to save time, incremental lower bound computation
could be incorporated.

Appendix A

Additional inference rules

In this chapter we summarize inference rules that, we believe, could improve
the performance of MAX-SAT solvers and weighted MAX-SAT solvers. We did
not implemented them because the rules need the solver to be able to deal with
dynamic memory management. This set of rules increments the number of unit
clauses in the formula.

A.1 Unit clause creation rules

While static memory management is sufficient to implement the introduced rules
in previous chapters, the implementation of the following rules needs dynamic
memory management. In this case, the transformed formula is bigger than the
original one, compared with what happens in Chapter 4.

The inference rules that introduce a new empty clause in a CNF formula can
be transformed into rules that introduce unit clauses into the formula. These
rules can be applied once failed literal detection (cf. Section 3.4.2) has found a
contradiction for one of the literals and not for its complementary.

We present two rules. The transformation for Rule 4.4 is as follows:

Rule A.1 If φ1={ l̄1∨ l2, l̄2∨ l3, . . . , l̄k ∨ lk+1, l̄k+1}∪φ′, φ2={l̄1, l1∨ l̄2, l2∨
l̄3, . . . , lk ∨ l̄k+1} ∪ φ′, then φ1 and φ2 are equivalent.

Proof Adding the literal l1 to φ1 we can apply Rule 4.4, obtaining a formula
with an empty clause. Then, we can replace the empty clause by the comple-
mentary unit clauses {l1, l̄1}. Finally, if we remove l1 from both sides we obtain
φ2.

This is the application of Lemma 4.1 in a linear derivation, that was introduced
as Lemma 2 in [Yan94]. We also present the transformation for Rule 4.5:

Rule A.2 If φ1={l1∨l2, l1∨l3, l̄2∨l̄3}∪φ′ and φ2={l̄1, l̄1∨l̄2∨l̄3, l1∨l2∨l3}∪φ′,
then φ1 and φ2 are equivalent.

127

128 Appendix A. Additional inference rules

That rule transforms a MAX-2-SAT problem into a MAX-3-SAT problem with a
unit clause. This rule can be seen as an extension of Rule 4.1 (ACC), a useful rule
because it creates unit clauses from binary clauses. Although Rule A.1 increases
the size of the problem, the behavior of ACC makes us think it may speed up
the search due the the additional unit clause. Rule A.1 was originally stated for
weighted MAX-SAT in [HL06b], and named Hyper Resolution (cf. Section 4.1).

Rule 4.6 was introduced as an addition of a linear derivation in the left side
of literal lk+1 in Rule 4.5. A linear derivation in the right side of that literal can
also be introduced, as follows:

Rule A.3 If φ1={l1, l̄1∨l2, l̄2∨l3, . . . , l̄k∨lk+1, l̄k+1∨ l̄1}∪φ′ and φ2={�, l1∨
l̄2 ∨ l3, . . . , l1 ∨ l̄k ∨ lk+1, l̄1 ∨ l2 ∨ l̄3, . . . , l̄1 ∨ lk ∨ l̄k+1}∪φ′ then φ1 and φ2 are
equivalent.

Proof Taking literal l1, we have two possibilities:

• l1 is satisfied, then φ1 becomes {l2, l̄2 ∨ l3, . . . , l̄k ∨ lk+1, l̄k+1} ∪ φ′, and
applying Rule 4.2 becomes {�, l2 ∨ l̄3, . . . , lk ∨ l̄k+1} ∪ φ′.

• l1 is not satisfied, then φ1 becomes {�, l̄2 ∨ l3, . . . , l̄k ∨ lk+1} ∪ φ′.

Unifying both formulas, we obtain φ2.
We can also extend this rule to the creation of unit clauses:

Rule A.4 If φ1={l̄1 ∨ l2, l̄2 ∨ l3, . . . , l̄k ∨ lk+1, l̄k+1 ∨ l̄1}∪φ′ and φ2={l̄1, l1 ∨
l̄2 ∨ l3, . . . , l1 ∨ l̄k ∨ lk+1, l̄1 ∨ l2 ∨ l̄3, . . . , l̄1 ∨ lk ∨ l̄k+1}∪φ′ then φ1 and φ2 are
equivalent.

A corollary of this rule is applied in the SCC lower bound computation [SZ05].
The corollary is as follows:

Lemma A.1 If φ1={l̄1 ∨ l2, l̄2 ∨ l3, . . . , l̄k ∨ lk+1, l̄k+1 ∨ l̄1} ∪ φ′, then φ1 can
be underestimated by l̄1 ∪ φ′.

Bibliography

[ABLM07] Carlos Ansótegui, Maŕıa Luisa Bonet, Jordi Levy, and Felip
Manyà. The logic behind weighted CSP. In M. Veloso, editor,
Proceedings of the 20th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2007), Hyderabad, India, pages 32–37,
2007.

[ADM+06] Josep Argelich, Xavier Domingo, Felip Manyà, Jordi Planes, and
Chu Min Li. Towards solving many-valued MaxSAT. In T. Ue-
mura, editor, Proceedings of the 36th IEEE International Sympo-
sium on Multiple-Valued Logic (ISMVL 2006), Singapore, 2006.
IEEE Computer Society. Article 26.

[AGKS00] Dimitris Achlioptas, Carla Gomes, Henry Kautz, and Bart Sel-
man. Generating satisfiable problem instances. In Proceedings
of the 17th National Conference on Artificial Intelligence (AAAI
2000), Austin/TX, USA, pages 256–261. AAAI Press, 2000.

[AGN01] Jocher Alber, Jens Gramm, and Rolf Niedermeier. Faster exact
algorithms for hard problems: A parameterized point of view.
Discrete Mathematics, 229(1–3):3–27, 2001.

[AJ03] Derek E. Armstrong and Sheldon H. Jacobson. Studying the com-
plexity of global verification for NP-Hard discrete optimization
problems. Journal of Global Optimization, 27:83–96, 2003.

[ALMP08] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. The
first and second Max-SAT evaluations. Journal on Satisfiability,
Boolean Modeling and Computation, 4:251–278, 2008.

[AM03] Carlos Ansótegui and Felip Manyà. Una introducción a los algorit-
mos de satisfactibilidad. Inteligencia Artificial, Revista Iberoamer-
icana de Inteligencia Artificial, 20:43–56, 2003.

[AM06a] Josep Argelich and Felip Manyà. Exact Max-SAT solvers for
over-constrained problems. Journal of Heuristics, 12(4–5):375–
392, 2006.

129

130 Bibliography

[AM06b] Josep Argelich and Felip Manyà. Learning hard constraints in
Max-SAT. In Proceedings of the Annual ERCIM Workshop on
Constraint Solving and Constraint Logic Programming (CSCLP
2006), pages 5–12, Caparica, Portugal, 2006.

[AMP03a] Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved branch
and bound algorithms for Max-2-SAT and weighted Max-2-SAT.
In Proceedings of the 6th Catalan Conference on Artificial Intelli-
gence (CCIA 2003), volume 100 of Frontiers in Artificial Intelli-
gence and Applications, pages 435–442, P. Mallorca, Spain, 2003.
IOS Press.

[AMP03b] Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved branch
and bound algorithms for Max-SAT. In Proceedings of the 6th
International Conference on the Theory and Applications of Sat-
isfiability Testing (SAT 2003), pages 408–415, Portofino, Italy,
2003.

[AMP04a] Teresa Alsinet, Felip Manyà, and Jordi Planes. A Max-SAT solver
with lazy data structures. In Proceedings of the 9th Ibero-American
Conference on Artificial Intelligence (IBERAMIA 2004), volume
3315 of LNAI, pages 334–342, Puebla, México, 2004. Springer.

[AMP04b] Teresa Alsinet, Felip Manyà, and Jordi Planes. A Max-SAT solver
with lazy data structures. In L.T. Hoai An and P.D. Tao, editors,
Modelling, Computation and Optimization in Information Systems
and Management Sciences (MCO 2004), pages 491–498, Metz,
France, 2004. Hermes publishing.

[AMP05] Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved exact
solver for weighted Max-SAT. In E. Giunchiglia and A. Tacchella,
editors, Proceedings of the 8th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2005), volume 3569
of LNCS, pages 371–377, St. Andrews, Scotland, 2005. Springer.

[Anj05] Miguel F. Anjos. Semidefinite optimization approaches for satis-
fiability and maximu-satisfiability problems. Journal on Satisfia-
bility, Boolean Modeling and Computation, 1:1–47, 2005.

[ASM06] Fadi Aloul, Karem Sakallah, and Igor Markov. Efficient symmetry
breaking for Boolean satisfiability. IEEE Transactions on Com-
puters, 55(2):549–558, 2006.

[BF95] Brian Borchers and Judith Furman. A two-phase exact algorithm
for MAX-SAT and weighted MAX-SAT problems. Technical re-
port, Mathematics Department, New Mexico Institute of Mining
and Technology, October 1995.

Bibliography 131

[BF99] Brian Borchers and Judith Furman. A two-phase exact algorithm
for MAX-SAT and weighted MAX-SAT problems. Journal of
Combinatorial Optimization, 2:299–306, 1999.

[BGS99] Laure Brisoux, Éric Grégoire, and Lakhdar Säıs. Improving back-
track search for SAT by means of redundancy. In Proceedings of
Foundations of Intelligent Systems, 11th International Symposium
(ISMIS 1999), pages 301–309, Warsaw, Poland, 1999.

[BHZ06] Lucas Bordeaux, Youssef Hamadi, and Lintao Zhang. Proposi-
tional satisfiability and constraint programming: A comparative
survey. ACM Computing Surveys, 38(4), 2006. Art. 12.

[BKS04] Paul Beam, Henry Kautz, and Ashish Sabharwal. Towards under-
standing and harnessing the potential of clause learning. Journal
of Artificial Intelligence Research, 22:319–351, 2004.

[BLM06] Maŕıa Luisa Bonet, Jordi Levy, and Felip Manyà. A complete cal-
culus for Max-SAT. In A. Biere and C. Gomes, editors, Proceedings
of the 9th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2006), volume 4121 of LNCS, pages
240–251. Springer, 2006.

[BM00] Ramón Béjar and Felip Manyà. Solving the round robin prob-
lem using propositional logic. In Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI 2000), pages 262–266,
Austin/TX, USA, 2000. AAAI Press.

[bM05] Mohamed El bachir Menai. A two-phase backbone-based search
heuristic for partial MAX-SAT. In M. Ali and F. Esposito, ed-
itors, Proceedings of 18th International Conference on Industrial
and Engineering Applications of Artificial Intelligence and Expert
Systems (IEA/AIE 2005), volume 3533 of LNCS, pages 681–684,
Bari, Italy, 2005. Springer.

[BMS00] Lúıs Baptista and João Marques-Silva. Using randomization and
learning to solve hard real-world instances of satisfiability. In
R. Dechter, editor, Proceedings of the International Conference
on Principles and Practice of Constraint Programming (CP 2000),
volume 1894 of LNCS, pages 489–494. Springer, 2000.

[BMZ05] Alfredo Braunstein, Marc Mezard, and Riccardo Zecchina. Survey
propagation: an algorithm for satisfiability. Random Structures
and Algorithms, 27:201–226, 2005.

[BO04] Stefano Bistarelli and Barry O’Sullivan. Combining branch &
bound and SBDD to solve soft CSPs. In W. Harvey and Z. Kizil-
tan, editors, Proceedings of the 4th International Workshop on
Symmetry and Constraint Satisfaction Problems (SymCon 2004),
pages 9–17, Toronto, Canada, 2004.

132 Bibliography

[BR99] Nikhil Bansal and Venkatesh Raman. Upper bounds for MaxSat:
Further improved. In Proceedings of the 10th International Sym-
posium on Algorithms and Computation (ISAAC 1999), volume
1741 of LNCS, pages 247–260, Chennai, India, 1999. Springer.

[BS94] Belaid Benhamou and Lakhdar Säıs. Tractability through symme-
tries in propositional calculus. Journal of Automatic Reasoning,
12(1):89–102, 1994.

[BS97] Roberto J. Bayardo and Robert C. Schrag. Using CSP look-back
techniques to solve real-world SAT instances. In Proceedings of the
14th National Conference on Artificial Intelligence (AAAI 1997),
pages 203–208, Providence/RI, USA, 1997. AAAI Press.

[BS03] Daniel Le Berre and Laurent Simon. The essentials of the SAT’03
competition. In A. Tacchella and E. Giunchiglia, editors, Proceed-
ings of the 6th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2003), volume 2919 of LNCS,
pages 452–467. Springer, 2003.

[BS06] Daniel Le Berre and Laurent Simon, editors. Journal on Satis-
fiability, Boolean Modeling and Computation, volume 2, chapter
Special Volume on the SAT 2005 competitions and evaluations.
IOS Press, 2006.

[BS07] Belaid Benhamou and Mohamed Réda Säıdi. Local symmetry
breaking during search in CSPs. In F. Bacchus and M. L. Gins-
berg, editors, Proceedings of the 13th International Conference on
Principles and Practice of Constraint Programming (CP 2007),
volume 4741 of LNCS, pages 195–209, Providence/RI, USA, 2007.
Springer.

[CA93] James Crawford and Larry Auton. Experimental results on the
crossover point in satisfiability problems. In Proceedings of the
11th National Conference on Artificial Intelligence (AAAI 1993),
pages 21–27, Washington/DC, USA, 1993. AAAI Press.

[CA96] James Crawford and Larry Auton. Experimental results on the
crossover point in random 3-SAT. Artificial Intelligence, 81:31–57,
1996.

[CGLR96] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha
Roy. Symmetry-breaking predicates for search problems. In
Proceedings of the 5th International Conference on Principles
of Knowledge Representation and Reasoning (KR 1996), Cam-
bridge/MA, USA, 1996. Morgan Kaufmann.

[CIKM97] Byungki Cha, Kazuo Iwama, Yahiko Kambayashi, and Shuichi
Miyazaki. Local search algorithms for partial MAXSAT. In Pro-
ceedings of the 14th National Conference on Artificial Intelligence

Bibliography 133

(AAAI 1997), pages 263–268, Providence/RI, USA, 1997. AAAI
Press.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Cliff Stein. Introduction to Algorithms. MIT Press, second edition,
2001.

[CM97] Stephen Cook and David G. Mitchell. Finding hard instances
of the satisfiability problem: A survey. In D.Z. Du, J. Gu, and
P. Pardalos, editors, Satisfiability Problem: Theory and Applica-
tions, volume 35 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society,
1997.

[Coo71] Stephen Cook. The complexity of theorem-proving procedures.
In Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing (STOC 1971), pages 151–158. ACM, 1971.

[CS00] Philippe Chatalic and Laurent Simon. ZRes: The old Davis-
Putnam procedure meets ZBDD. In D. McAllester, editor,
Proceedings of 17th International Conference on Automated De-
duction (CADE 2000), volume 1831 of LNCS, pages 449–454.
Springer, 2000.

[DABC93] Olivier Dubois, Pascal André, Yacine Boufkhad, and Jaques Car-
lier. Can a very simple algorithm be efficient for solving SAT
problem? In Proceedings of the DIMACS Challenge II Workshop,
1993.

[DD01] Olivier Dubois and Gilles Dequen. A backbone-search heuristic
for efficient solving of hard 3-SAT formulae. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJ-
CAI 2001), pages 248–253, Seattle/WA, USA, 2001. Morgan Kauf-
mann.

[dGLMS03] Simon de Givry, Javier Larrosa, Pedro Meseguer, and Thomas
Schiex. Solving Max-SAT as weighted CSP. In 9th International
Conference on Principles and Practice of Constraint Programming
(CP 2003), Kinsale, Ireland, volume 2833 of LNCS, pages 363–
376. Springer, 2003.

[dGZHL05] Simon de Givry, Matthias Zytnicki, Federico Heras, and Javier
Larrosa. Existential arc consistency: Getting closer to full arc
consistency in weighted CSPs. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 2005), pages
84–89, Edinburgh, Scotland, 2005. Morgan Kaufmann.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A ma-
chine program for theorem-proving. Communications of the ACM,
5:394–397, 1962.

134 Bibliography

[DP60] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM, 7(3):201–215, 1960.

[FL05] Jin-Kao Hao Frédéric Lardeux, Frédéric Saubion. Three truth
values for the SAT and MAX-SAT problems. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJ-
CAI 2005), pages 187–192, Edinburgh, Scotland, 2005. Morgan
Kaufmann.

[FM06] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT
problem. In A. Biere and C. Gomes, editors, Proceedings of the
9th International Conference on the Theory and Applications of
Satisfiability Testing (SAT 2006), volume 4121 of LNCS, pages
252–265, Seattle/WA, USA, 2006. Springer.

[FP83] John Franco and Marvin Paull. Probabilistic analysis of the Davis
Putnam procedure for solving the satisfiability problem. Discrete
Applied Mathematics, 5:77–87, 1983.

[FR04] Hai Fang and Wheeler Ruml. Complete local search for proposi-
tional satisfiability. In Proceedings of the 19th National Conference
on Artificial Intelligence (AAAI 2004), pages 161–166, San Jose,
California, 2004. AAAI Press.

[Fre95] Jon William Freeman. Improvements to Propositional Satisfiability
Search Algorithms. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, 1995.

[GEI91] Malik Ghallab and Gonzalo Escalada-Imaz. A linear control algo-
rithm for a class of rule-based systems. Journal of Logic Program-
ming, 11:117–132, 1991.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. Freeman, San Francisco,
1979.

[GKSS07] Carla Gomes, Henry Kautz, Ashish Sabharwal, and Bart Sel-
man. Handbook of Knowledge Representation, chapter Satisfiabil-
ity Solvers. Foundations of Artificial Intelligence. Elsevier, 2007.

[GN00] Jens Gramm and Rolf Niedermeier. Faster exact solutions for
Max2Sat. In G. Bongiovanni, G. Gambosi, and R. Petreschi, edi-
tors, Proceedings of the 4th Italian Conference on Algorithms and
Complexity (CIAC 2000), volume 1767 of LNCS, pages 174–186.
Springer, 2000.

[GN01] Evgueni Goldberg and Yakov Novikov. BerkMin: A fast and ro-
bust SAT solver. In Proceedings of Design, Automation and Test in
Europe (DATE 2002), pages 142–149, Paris, France, 2001. IEEE
Computer Society.

Bibliography 135

[GPFW97] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah.
Algorithms for the satisfiability (SAT) problem: A survey. In D.Z.
Du, J. Gu, and P. Pardalos, editors, Satisfiability Problem: Theory
and Applications, volume 35 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 19–152. Ameri-
can Mathematical Society, 1997.

[Gra99] Jens Gramm. Exact algorithms for Max2Sat and their applica-
tions. Master’s thesis, Universität Tübingen, 1999.

[GSCK00] Carla Gomes, Bart Selman, Nuno Crato, and Henry Kautz.
Heavy-tailed phenomena in satisfiability and constraint satisfac-
tion problems. Journal of Automated Reasoning, 24(1/2):67–100,
2000.

[GSK98] Carla Gomes, Bart Selman, and Henry Kautz. Boosting combi-
natorial search through randomization. In Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI 1998), pages
431–437, Madison/WI, USA, 1998. AAAI Press.

[GvHL06] Carla Gomes, Willem-Jan van Hoeve, and Lucian Leahu. The
power of semidefinite programming relaxations for MAXSAT. In
C. Beck and B. Smith, editors, Proceedings of the Third Interna-
tional Conference on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems
(CPAIOR 2006), volume 3990 of LNCS, pages 104–118, Cork,
Ireland, 2006. Springer.

[GW93a] Ian Gent and Toby Walsh. Easy problems are sometimes hard.
Artificial Intelligence Research, 1:23–57, 1993.

[GW93b] Ian Gent and Toby Walsh. Towards an understanding of hill-
climbing procedures for SAT. In Proceedings of the 11th National
Conference on Artificial Intelligence (AAAI 1993), pages 28–33,
Washington/DC, USA, 1993. AAAI Press.

[GW95] Michael Goemans and David Williamson. Improved approxima-
tion algorithms for maximum cut and satisfiability problems using
semidefinite programming. Journal of the ACM, 42:1115–1145,
1995.

[HC97] Wen Qi Huang and Jin Ren Chao. Solar: A learning from human
algorithm for solving SAT. Science in China (Series E), 27(2):179–
186, 1997.

[HDvMvZ04] Marijn Heule, Mark Dufour, Hans van Maaren, and Joris van Zwi-
eten. March eq: Implementing efficiency and additional reasoning
into a lookahead SAT-solver. Journal on Satisfiability, Boolean
Modeling and Computation, pages 25–30, 2004.

136 Bibliography

[HJ90] Pierre Hansen and Brigitte Jaumard. Algorithms for the maximum
satisfiability problem. Computing, 44:279–303, 1990.

[HL06a] Federico Heras and Javier Larrosa. Intelligent variable orderings
and re-orderings in DAC-based solvers for WCSP. Journal of
Heuristics, 12(4–5):287–306, 2006.

[HL06b] Federico Heras and Javier Larrosa. New inference rules for efficient
Max-SAT solving. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI 2006), Boston/MA, USA, 2006.
AAAI Press.

[Hoo99] Holger Hoos. On the run-time behaviour of stochastic local search
algorithms for SAT. In Proceedings of the 16th National Confer-
ence on Artificial Intelligence (AAAI 1999), pages 661–666, Or-
lando/FL, USA, 1999. AAAI Press.

[HS04] Holger Hoos and Thomas Stützle. Stochastic Local Search. Foun-
dations and Applications. Morgan Kaufmann, 2004.

[HTH02] Frank Hutter, Dave Tompkins, and Holger Hoos. Scaling and
probabilistic smoothing: Efficient dynamic local search for SAT.
In Proceedings of the 8th International Conference on Principles
and Practice of Constraint Programming (CP 2002), volume 2470
of LNCS, pages 233–248. Springer, 2002.

[Hua07] Jinbo Huang. The effect of restarts on the efficiency of clause
learning. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI 2007), pages 2318–2323, 2007.

[HV95] John N. Hooker and V Vinay. Branching rules for satisfiability.
Journal of Automated Reasoning, 15:359–383, 1995.

[JMB97] Steve Joy, John E. Mitchell, and Brian Borchers. A branch and
cut algorithm for MAX-SAT and Weighted MAX-SAT. In Satisfi-
ability Problem: Theory and Applications, volume 35 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science,
pages 519–536. American Mathematical Society, 1997.

[JW90] Robert G. Jeroslow and Jinchang Wang. Solving propositional
satisfiability problems. Annals of Mathematics and Artificial In-
telligence, 1:167–187, 1990.

[Kau06] Henry Kautz. Deconstructing planning as satisfiability. In Pro-
ceedings of the 21st National Conference on Artificial Intelligence
(AAAI 2006), Boston/MA, USA, 2006. AAAI Press.

[KHR+02] Henry Kautz, Eric Horvitz, Yongshao Ruan, Carla Gomes, , and
Bart Selman. Dynamic restart policies. In Procedings of the 18th
National Conference on Artificial Intelligence (AAAI 2002), 2002.

Bibliography 137

[KRA+01] Henry Kautz, Yongshao Ruan, Dimitri Achlioptas, Carla Gomes,
Bart Selman, and Mark Stickel. Balance and filtering in struc-
tured satisfiable problems. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 2001), pages
351–358, Seattle/WA, USA, 2001. Morgan Kaufmann.

[Kre88] Mark Krentel. The complexity of optimization problems. Journal
of Computer and Systems Sciences, 36:490–509, 1988.

[Kri85] Balakrishnan Krishnamurthy. Short proofs for tricky formulas.
Acta Informatica, 22(3):253–275, 1985.

[KS96] Henry Kautz and Bart Selman. Pushing the envelope: Planning,
propositional logic, and stochastic search. In Proceedings of the
14th National Conference on Artificial Intelligence (AAAI 1996),
pages 1194–1201, Portland/OR, USA, 1996. AAAI Press.

[KSTW05] Philip Kilby, John K. Slaney, Sylvie Thiébaux, and Toby Walsh.
Backbones and backdoors in satisfiability. In Proceedings of the
20th National Conference in Artificial Intelligence (AAAI 2005),
pages 1368–1373, Pittsburgh/PA, USA, 2005. AAAI Press.

[LA97a] Chu Min Li and Anbulagan. Heuristics based on unit propaga-
tion for satisfiability problems. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 1997), pages
366–371, Nagoya, Japan, 1997. Morgan Kaufmann.

[LA97b] Chu Min Li and Anbulagan. Look-ahead versus look-back for satis-
fiability problems. In Proceedings of the 3rd International Confer-
ence on Principles of Constraint Programming (CP 1997), volume
1330 of LNCS, pages 341–355, Linz, Austria, 1997. Springer.

[LAS05] Mark Liffiton, Zaher Andraus, and Karem Sakallah. From Max-
SAT to Min-UNSAT: Insights and applications. Technical Report
CSE-TR-506-05, University of Michigan, 2005.

[LD60] A. H. Land and A. G. Doig. An automatic method of solving
discrete programming problems. Econometrica, 28:497–520, 1960.

[LH05a] Javier Larrosa and Federico Heras. Resolution in Max-SAT and its
relation to local consistency in weighted CSPs. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJ-
CAI 2005), pages 193–198, Edinburgh, Scotland, 2005. Morgan
Kaufmann.

[LH05b] Chu Min Li and Wen Qi Huang. Diversification and determin-
ism in local search for satisfiability. In Proceedings of the 8th
International Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2005), volume 3569 of LNCS, pages 158–172,
St. Andrews, Scotland, 2005. Springer.

138 Bibliography

[Li03] Chu Min Li. Equivalent literal propagation in the DLL procedure.
Discrete Applied Mathematics, 130:251–276, 2003.

[LLZ02] Michael Lewin, Dror Livnat, and Uri Zwick. Improved round-
ing techniques for the MAX 2-SAT and MAX DI-CUT problems.
In Ninth Conference on Integer Programming and Combinatorial
Optimization (IPCO 2002), volume 2337 of LNCS, pages 67–82,
Cambridge/MA, USA, 2002. Springer.

[LM02] Javier Larrosa and Pedro Meseguer. Partition-based lower bound
for Max-CSP. Constraints, 7(3–4):407–419, 2002.

[LMP05] Chu Min Li, Felip Manyà, and Jordi Planes. Exploiting unit prop-
agation to compute lower bounds in branch and bound Max-SAT
solvers. In P. van Beek, editor, Proceedings of the 11th Interna-
tional Conference on Principles and Practice of Constraint Pro-
gramming (CP 2005), volume 3709 of LNCS, pages 403–414, Sit-
ges, Spain, 2005. Springer.

[LMP06] Chu Min Li, Felip Manyà, and Jordi Planes. Detecting disjoint
inconsistent subformulas for computing lower bounds for Max-
SAT. In Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI 2006), pages 86–91, Boston/MA, USA, 2006.
AAAI Press.

[LMS99] Javier Larrosa, Pedro Meseguer, and Thomas Schiex. Maintaining
reversible DAC for Max-CSP. Artificial Intelligence, 107(1):149–
163, 1999.

[LMS01] Inês Lynce and João Marques-Silva. Integrating simplification
techniques in SAT algorithms. In Proceedings of the IEEE Sym-
posium on Logic in Computer Science, Boston/MA, USA, 2001.
Short paper session.

[LMS02] Inês Lynce and João Marques-Silva. Efficient data structures for
backtrack search SAT solvers. In Proceedings of the 5th Interna-
tional Symposium on the Theory and Applications of Satisfiability
Testing (SAT 2002), pages 308–315, Cincinnati, USA, 2002.

[LMS05] Inês Lynce and João Marques-Silva. Efficient data structures for
backtrack search SAT solvers. Annals of Mathematics and Artifi-
cial Intelligence, 47(1):137–152, 2005.

[LMSK63] J. Little, G. Murty, W. Sweeney, and C. Karel. An algorithm for
the travelling salesman problem. Operations Research, 11:972–989,
1963.

Bibliography 139

[LS03] Javier Larrosa and Thomas Schiex. In the quest of the best form
of local consistency for weighted CSP. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2003),
pages 239–244, Acapulco, Mexico, 2003. Morgan Kaufmann.

[LS04] Javier Larrosa and Thomas Schiex. Solving weighted CSP by
maintaining arc consistency. Artificial Intelligence, 159(1–2):1–26,
2004.

[LW66] Eugene Lawler and D. Wood. Branch-and-bound methods: A
survey. Operations Research, 14(4):699–719, 1966.

[Lyn04] Inês Lynce. Propositional Satisfiability: Techniques, Algorithms
and Applications. PhD thesis, Instituto Superior Técnico. Univer-
sidade Técnica de Lisboa, October 2004.

[Mal05] Amol Dattatraya Mali. On quantified weighted MAX-SAT. Deci-
sion Support Systems, 40:257–268, 2005.

[McG79] James J. McGregor. Relational consistency algorithms and their
application in finding subgraph and graph isomorphisms. Infor-
martion Sciences, 19:229–250, 1979.

[MFM04] Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. Zchaff2004:
An efficient SAT solver. In H. Hoos and D. Mitchell, editors,
Proceedings of the 7th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004), volume 3542 of
LNCS, pages 360–375, Vancouver, Canada, 2004. Springer. (Se-
lected papers).

[MG04] Monaldo Mastrolilli and Luca Maria Gambardella. MAX-2-SAT:
How good is tabu search in the worst-case? In Proceedings of the
19th National Conference on Artificial Intelligence (AAAI 2004),
pages 173–178. AAAI Press, 2004.

[MG05] Monaldo Mastrolilli and Luca Maria Gambardella. Maximum sat-
isfiability: How good are tabu search and plateau moves in the
worst-case? European Journal of Operational Research, 166:63–
76, 2005.

[MIK96] Shuichi Miyazaki, Kazuo Iwama, and Yahiko Kambayashi.
Database queries as combinatorial optimization problems. In Pro-
ceedings of International Symposium on Cooperative Database Sys-
tems for Advanced Applications, pages 477–483, 1996.

[Mit05] David Mitchell. A SAT solver primer. European Association
for Theoretical Computer Science (EATCS) Bulletin, 85:112–133,
2005.

140 Bibliography

[MMZ+01] Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference (DAC
2001), pages 530–535, Las Vegas/NV, USA, 2001.

[MRS06] Pedro Meseguer, Francesca Rossi, and Thomas Schiex. Soft con-
straints. In F. Rossi, P. Van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, Foundations of Artificial Intelligence,
chapter 9. Elsevier, 2006.

[MS99] João Marques-Silva. The impact of branching heuristics in propo-
sitional satisfiability algorithms. In P. Barahona and J.J. Alferes,
editors, Proceedings of the 9th Portuguese Conference on Artificial
Intelligence: Progress in Artificial Intelligence (EPIA 1999), vol-
ume 1695 of LNCS, pages 62–74, Évora, Portugal, 1999. Springer.

[MSG97] Bertrand Mazure, Lakhdar Säıs, and Éric Grégoire. Tabu search
for SAT. In Proceedings of the 14th National Conference on Ar-
tificial Intelligence (AAAI 1997), pages 281–285, Providence/RI,
USA, 1997. AAAI Press.

[MSG99] João Marques-Silva and Lúıs Guerra. Algorithms for satisfiability
in combinational circuits based on backtrack search and recur-
sive learning. In Proceedings of the 12th Symposium on Integrated
Circuits and Systems Design (SBCCI 1999), 1999.

[MSK97] David McAllester, Bart Selman, and Henry Kautz. Evidence for
invariants in local search. In Proceedings of the 14th National
Conference on Artificial Intelligence (AAAI 1997), pages 321–326,
Providence/RI, USA, 1997. AAAI Press.

[MSS96a] João Marques-Silva and Karem Sakallah. Conflict analysis in
search algorithms for satisfiability. In Proceedings of 8th Inter-
national Conference on Tools with Artificial Intelligence (ICTAI
1996), pages 467–469, Toulouse, France, 1996.

[MSS96b] João Marques-Silva and Karem Sakallah. GRASP – a new search
algorithm for satisfiability. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD 1996), pages 220–
227, San Jose/CA, USA, 1996. IEEE Computer Society.

[MSS99] João Marques-Silva and Karem Sakallah. GRASP: A search algo-
rithm for propositional satisfiability. IEEE Transactions on Com-
puters, 48(5):506–521, 1999.

[NE03] Niklas Sörensson Niklas Eén. An extensible SAT-solver. In
E. Giunchiglia and A. Tacchella, editors, Proceedings of the 6th
International Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2003), pages 502–518, Santa Margherita Lig-
ure – Portofino, Italy, 2003.

Bibliography 141

[NLBH+04] Eugene Nudelman, Kevin Leyton-Brown, Holger Hoos, Alex De-
vkar, and Yoav Shoham. Understanding Random SAT: Beyond
the Clauses-to-Variables Ratio. In M. Wallace, editor, Principles
and Practice of Constraint Programming (CP 2004), volume 3258
of LNCS, pages 438–452, Toronto, Canada, 2004. Springer.

[NR00] Rolf Niedermeier and Peter Rossmanith. New upper bounds for
maximum satisfiability. Journal of Algorithms, 36:63–88, 2000.

[PL06] Steven Prestwitch and Inês Lynce. Local search for unsatisfiabil-
ity. In A. Biere and C. Gomes, editors, Proceedings of the 9th
International Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2006), volume 4121 of LNCS, pages 283–296,
Seattle/WA, USA, 2006. Springer.

[PR02] Panos M. Pardalos and Mauricio G. C. Resende, editors. Hand-
book of Applied Optimization, chapter 3.3, pages 65–77. Oxford
University Press, 2002. Chapter writen by John E. Mitchell.

[Pre93] Daniele Pretolani. Efficiency and stability of hypergraph SAT al-
gorithms. In Proceedings of the DIMACS Challenge II Workshop,
1993.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the Association for Computing Machinery,
12(1):23–41, 1965.

[Rya04] Lawrence Ryan. Efficient algorithms for clause learning SAT
solvers. Master’s thesis, Simon Fraser University, 2004.

[SB04] Laurent Simon and Daniel Le Berre. The SAT 2004 competition.
In H. Hoos and D. Mitchell, editors, Proceedings of the 7th Inter-
national Conference on Theory and Applications of Satisfiability
Testing (SAT 2004), volume 3542 of LNCS, pages 321–344, Van-
couver, Canada, 2004. Springer. (Selected papers).

[SBH05] Laurent Simon, Daniel Le Berre, and Edward A. Hirsch. The SAT
2002 competition. Annals of Mathematics and Artificial Intelli-
gence, 43(1):307–342, 2005.

[SBO07] Barbara Smith, Stefano Bistarelli, and Barry O’Sullivan. Break-
ing soft conditional symmetry. In Proceedings of the First Inter-
national Symmetry Conference, Edinburgh, Scotland, 2007.

[Sch89] Uwe Schöning. Logic for Computer Scientists, volume 8 of Progress
in Computer Science and Applied Logic. Birkhäuser, 1989.

[SHR01] Thomas Stützle, Holger Hoos, and Andrea Roli. A review of the
literature on local search algorithms for MAX-SAT. Technical Re-
port AIDA-01-02, FG Intellektik, FB Informatik, TU Darmstadt,
Germany, 2001.

142 Bibliography

[SHS03] Kevin Smyth, Holger Hoos, and Thomas Stützle. Iterated robust
tabu search for MAX-SAT. In Y. Xiand and B. Chaib-draa, ed-
itors, Proceedings for the 16th Canadian Conference on Artificial
Intelligence (AI 2003), volume 2671 of LNCS, pages 129–144, Hal-
ifax, Nova Scotia, Canada., 2003. Springer.

[SK93] Bart Selman and Henry Kautz. Domain-independent extensions
of GSAT: Solving large structured satisfiability problems. In Pro-
ceedings of the International Joint Conference on Artificial Intel-
ligence (IJCAI 1993), pages 290–295, Chambery, France, 1993.
Morgan Kaufmann.

[SKC94] Bart Selman, Henry Kautz, and Bram Cohen. Noise strategies
for improving local search. In Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI 1994), pages 337–343,
Seattle/WA, USA, 1994. AAAI Press.

[SLM92] Bart Selman, Hector Levesque, and David Mitchell. A new method
for solving hard satisfiability problems. In Proceedings of the 10th
National Conference on Artificial Intelligence (AAAI 1992), pages
440–446, San Jose/CA, USA, 1992. AAAI Press.

[SW02] John Slaney and Toby Walsh. Phase transition behaviour: from
decision to optimization. In Proceedings of 5th International Sym-
posium on the Theory and Applications of Satisfiability Testing
(SAT 2002), 2002.

[SZ04] Haiou Shen and Hantao Zhang. Study of lower bound functions
for MAX-2-SAT. In Proceedings of the National Conference on
Artificial Intelligence (AAAI 2004), pages 185–190, San Jose, Cal-
ifornia, 2004. AAAI Press / MIT Press.

[SZ05] Haiou Shen and Hantao Zhang. Improving exact algorithms for
MAX-2-SAT. Annals of Mathematics and Artificial Intelligence,
44:419–436, 2005.

[TH04] Dave Tompkins and Holger Hoos. UBCSAT: An implementation
and experimentation environment for SLS algorithms for SAT and
MAX-SAT. In International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2004), pages 306–320, 2004.

[TS02] Orestis Telelis and Panagiotis Stamatopoulos. Heuristic backbone
sampling for maximum satisfiability. In Proceedings of the 2nd
Hellenic Conference on Artificial Intelligence (SETN 2002), pages
129–139, Thessaloniki, Greece, 2002.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the
ACM, 34(1):209–219, 1987.

Bibliography 143

[VB03] Miroslav N. Velev and Randal E. Bryant. Effective use of Boolean
satisfiability procedures in the formal verification of superscalar
and VLIW microprocessors. Journal of Symbolic Computation,
35(2):73–106, 2003.

[Vel89] André Vellino. The Complexity of Automated Reasoning. PhD
thesis, University of Toronto, 1989.

[vMvN05] Hans van Maaren and Linda van Norden. Sums of squares, satis-
fiability and maximum satisfiability. In F. Bachus and T. Walsh,
editors, International Conference on Theory and Applications of
Satisfiability Testing (SAT 2005), volume 3569 of LNCS, pages
294–308, St. Andrews, Scotland, 2005. Springer.

[WF96] Richard J. Wallace and Eugene Freuder. Comparative studies
of constraint satisfaction and Davis-Putnam algorithms for maxi-
mum satisfiability problems. In D. Johnson and M. Trick, editors,
Cliques, Coloring and Satisfiability, volume 26, pages 587–615.
American Mathematical Society, 1996.

[WvM98] Joost P. Warners and Hans van Maaren. A two-phase algorithm for
solving a class of hard satisfiability problems. Operations Research
Letters, 23:81–88, 1998.

[XZ04] Zhao Xing and Weixiong Zhang. Efficient strategies for (weighted)
maximum satisfiability. In Proceedings of International conference
on principles and practice of constraint programming (CP 2004),
volume 3258 of LNCS, pages 690–705, Toronto, Canada, 2004.
Springer.

[XZ05] Zhao Xing and Weixiong Zhang. An efficient exact algorithm
for (weighted) maximum satisfiability. Artificial Intelligence,
164(2):47–80, 2005.

[Yan94] Mihalis Yannakakis. On the approximation of maximum satisfia-
bility. Journal of Algorithms, 17:475–502, 1994.

[Zha97] Hantao Zhang. SATO: An efficient propositional prover. In
Proceedings of the Conference on Automated Deduction (CADE
1997), volume 1249 of LNCS, pages 272–275, Townsville, North
Queensland, Australia, 1997. Springer.

[Zha03] Lintao Zhang. Searching for truth: techniques for satisfiability of
boolean formulas. PhD thesis, Department of Electrical Engineer-
ing. Princeton University, June 2003.

[ZM88] Ramin Zabih and David A. McAllester. A rearrangement search
strategy for determining propositional satisfiability. In Proceedings
of the 7th National Conference on Artificial Intelligence (AAAI
1988), pages 155–160, Saint Paul/MN, USA, 1988.

144 Bibliography

[ZM02] Lintao Zhang and Sharad Malik. The quest for efficient Boolean
satisfiability solvers. In Proceedings of the 18th International Con-
ference on Automated Deduction (CADE 2002), volume 2392 of
LNCS, pages 295–313, Copenhagen, Denmark, 2002. Springer.

[ZRL03] Weixiong Zhang, Ananda Rangan, and Moshe Looks. Backbone
guided local search for maximum satisfiability. In G. Gottlob and
T. Walsh, editors, Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI 2003), pages 1179–1186,
Acapulto (Mexico), August 2003. Morgan Kaufmann.

[ZS96] Hantao Zhang and Mark E. Stickel. An efficient algorithm for unit
propagation. In M. Golumbic, editor, Proceedings of the Fourth In-
ternational Symposium on Artificial Intelligence and Mathematics
(AI-MATH 1996), Fort Lauderdale/FL, USA, 1996.

[ZSM03a] Hantao Zhang, Haiou Shen, and Felip Manyà. Exact algorithms
for MAX-SAT. Electronic Notes in Theoretical Computer Science,
86(1):190–203, 2003.

[ZSM03b] Hantao Zhang, Haiou Shen, and Felip Manyà. Exact algorithms
for MAX-SAT. In Proceedings of the 4th International Workshop
on First order Theorem Proving (FTP 2003), pages 133–146, Va-
lencia, Spain, June 2003.

Monografies de l’Institut d’Investigació en
Intel·ligència Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based Sys-
tems

Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in
Knowledge–Based Systems

Num. 4 M. Domingo, An Expert System Architecture for Identification
in Biology

Num. 5 E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving

Num. 6 J. Ll. Arcos, The Noos Representation Language
Num. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial Con-

straint Satisfaction
Num. 8 P. Noriega, Agent Mediated Auctions: The Fishmarket

Metaphor
Num. 9 F. Manyà, Proof Procedures for Multiple-Valued Propositional

Logics
Num. 10 W. M. Schorlemmer, On Specifying and Reasoning with Special

Relations
Num. 11 M. López-Sánchez, Approaches to Map Generation by means of

Collaborative Autonomous Robots
Num. 12 D. Robertson, Pragmatics in the Synthesis of Logic Programs
Num. 13 P. Faratin, Automated Service Negotiation between Autonomous

Computational Agents
Num. 14 J. A. Rodŕıguez, On the Design and Construction of Agent-

mediated Electronic Institutions
Num. 15 T. Alsinet, Logic Programming with Fuzzy Unification and Im-

precise Constants: Possibilistic Semantics and Automated De-
duction

Num. 16 A. Zapico, On Axiomatic Foundations for Qualitative Decision
Theory A Posibilistic Approach

Num. 17 A. Valls, ClusDM: A multiple criteria decision method for het-
erogeneous data sets

Num. 18 D. Busquets, A Multiagent Approach to Qualitative Navigation
in Robotics

Num. 19 M. Esteva, Electronic Institutions: from specification to devel-
opment

Num. 20 J. Sabater, Trust and reputation for agent societies

Num. 21 J. Cerquides, Improving Algorithms for Learning Bayesian Net-
work Classifiers

Num. 22 M. Villaret, On Some Variants of Second-Order Unification
Num. 23 M. Gómez, Open, Reusable and Configurable Multi-Agent Sys-

tems: A Knowledge Modelling Approach
Num. 24 S. Ramchurn, Multi-Agent Negotiation Using Trust and Persua-

sion
Num. 25 S. Ontañón, Ensemble Case-Based Learning for Multi-Agent

Systems
Num. 26 M. Sánchez, Contributions to Search and Inference Algorithms

for CSP and Weighted CSP
Num. 27 C. Noguera, Algebraic Study of Axiomatic Extensions of Trian-

gular Norm Based Fuzzy Logics
Num. 28 E. Marchioni, Functional Definability Issues in Logics Based on

Triangular Norms
Num. 29 M. Grachten, Expressivity-Aware Tempo Transformations of

Music Performances Using Case Based Reasoning
Num. 30 I. Brito, Distributed Constraint Satisfaction
Num. 31 E. Altamirano, On Non-clausal Horn-like Satisfiability Problems
Num. 32 A. Giovannucci, Computationally Manageable Combinatorial

Auctions for Supply Chain Automation
Num. 33 R. Ros, Action Selection in Cooperative Robot Soccer using Case-

Based Reasoning
Num. 34 A. Garćıa Cerdaña, On some Implication-free Fragments of Sub-

structural and Fuzzy Logics
Num. 35 A. Garćıa Camino, Normative Regulation of Open Multi-agent

Systems
Num. 36 A. Robles, Enabling Intelligent Organizations: An Electronic

Institutions Approach for Building Agent Oriented Information
Systems

Num. 37 I. Drummond, Imprecise Classification Based on Fuzzy Logic and
Possibility Theory

Num. 38 J. Planes, Design and Implementation of Exact MAX-SAT
Solvers

E
x
p
l
o

it
in

g
 t

h
E
 S

t
r

u
c

t
u

r
E
 o

f
 D

iS
t
r

ib
u

t
E
D
 c

o
n

S
t
r

a
in

t
 o

p
t
im

iz
a

t
io

n

p

r
o

b
l
E
m

S
 t

o
 a

S
S
E
S
S
 a

n
D
 b

o
u

n
D
 c

o
o

r
D

in
a

t
io

n
 a

c
t
io

n
S
 i

n
 m

a
S

4644447

M
e
ri

tx
e
ll
 V

in
ya

ls
 S

a
lg

a
d

o

CSIC

	Foreword
	Abstract
	Acknowledgments
	1. Introduction
	1.1 Context
	1.2 Objectives
	1.3 Contributions
	1.4 Publications
	1.5 Overview

	2. Algorithms for SAT and MAX-SAT
	2.1 Definitions
	2.2 SAT algorithms
	2.3 MAX-SAT algorithms
	2.4 Summary

	3. Lower Bounds
	3.1 Related work
	3.2 Star rule
	3.3 Lower Bound UP
	3.4 UP improved: Choosing the best unit clause
	3.5 Empirical evaluation
	3.6 Summary

	4. Inference rules
	4.1 Related work
	4.2 UP based inference rules
	4.3 On implementing the inference rules
	4.4 Experimental results
	4.5 Summary

	5. Implementing a weighted MAX-SAT solver
	5.1 Basic equivalences for weighted MAX-SAT
	5.2 Lazy solver
	5.3 Empirical evaluation
	5.4 Summary

	6. Empirical comparison of MAX-SAT and weighted MAX-SAT solvers
	6.1 Solvers
	6.2 Experimentation on MAX-SAT
	6.3 Experimentation on weighted MAX-SAT
	6.4 Summary

	7. Conclusions
	Appendix A. Additional inference rules
	Bibliography

