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Foreword

This book is about reidentification methods, and, more especifically, about
record linkage. This study is motivated on the need to assess in an accurate
way the risk of disclosure within the fields of privacy preserving data mining
(PPDM) and statistical disclosure control (SDC).

Data protection methods are constructed so that disclosure is avoided when
data is published. Nevertheless, before data publication, risk should be assessed
as accurately as possible. Record linkage is one of the approaches to compute
this risk. It is, in fact, a computational approach for risk assessment based on
some assumptions about the information an intruder has.

An important characteristic of record linkage methods is that they are flexible
enough to be used in a large number of different scenarios. For example, they
can be either used for assessing risk of data protected adding some noise, or used
for assessing risk when data has been generated synthetically.

In this book, record linkage methods are discussed, and new approaches
are described. Specific methods are proposed. They are methods that take
advantage of the available information on the protection methods. The author
later shows their effectiveness in comparison to standard ones.

The book also shows how the analysis of the results of risk assessment via
record linkage can be used to develop new methods for data protection. In
short, new data protection methods are resiliant to some of the attacks of record
linkage.

Bellaterra, March 2009

Vicenç Torra
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aquest camı́ acompanyat d’una gran quantitat de persones que m’han ajudat en
molts aspectes fent aquesta travessia molt més senzilla.
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Abstract

Every day, a large amount of data is collected by statistical agencies. This fact
combined with the growth that the Internet has experimented during the recent
years makes one wonders whether its confidential data is stored and distributed
in a secure way.

In this framework, data protection methods have a great importance, becom-
ing crucial to anonymize confidential attributes before releasing them in a private
and secure manner. When a protection method is applied, a new and challenging
problem arises. This problem is the evaluation of the privacy provided by such
method. Re-identification techniques, as record linkage methods, are one of the
most common techniques for evaluating the security of a protection method.

This thesis applies record linkage techniques to the calculation of the disclo-
sure risk of a protection method. The aim of this application is to evaluate the
security of a protection method in a real and fair way. The main contributions
are:

• The definition of three specific record linkage techniques for evaluating two
of the most common protection methods: rank swapping and microaggre-
gation.

• The definition of an empirical disclosure risk measure for microaggregation.

• The development of new variants of rank swapping and microaggregation
resistant to record linkage methods and disclosure risk measures defined
in this thesis.

• The study of new disclosure risk scenarios. In particular, we have de-
veloped a record linkage method which applies aggregation functions to
re-identify individuals when the intruder has no access to any of the origi-
nal attributes of the protected data. We have also developed a framework
for the evaluation of protection methods when they are applied to time
series data.
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Chapter 1

Introduction

1.1 Motivations

Statistical Disclosure Control (SDC) is the discipline concerned with the
anonymization of the statistical data containing confidential information about
individual entities such as persons or enterprises. Normally, data anonymization
is achieved by modifying data values. The aim of SDC is to prevent third par-
ties working from this data to recognize individuals and disclosing confidential
information about them. Here, we understand third parties as the data users
outside the statistical agencies (e.g. policy makers, academic researchers and
general public).

Typically, data published by statistical agencies can be classified as tabular
data and microdata files. Tabular data contains aggregated values and their
utility is limited. In contrast, microdata files (i.e. records which contain infor-
mation about individuals) have much more utility due to their flexibility to allow
the user to perform a wide range of data analysis (i.e. regressions). For this rea-
son, third parties have increased their demand for statistical data according to
this latter form. This issue motivates statistical agencies to increase the release
of microdata files.

In both scenarios, statistical agencies have to be careful when releasing statis-
tical data since they have an important responsibility towards the respondents.
Moreover, international and local law seek to ensure that confidential data is
managed in a correct (and private) manner. They have to make (almost) impos-
sible for third parties to acquire sensitive information about respondents from
the released microdata file.

A closely related research line where privacy is involved is Privacy Preserving
Data Mining (PPDM). PPDM tackles the problem of developing data mining
techniques where the privacy of the individuals is preserved. In a very similar
way to SDC, PPDM modifies individual data records in such a way that the
results of a mining process are (almost) the same as those obtained when using
the real data.

5
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6 Chapter 1. Introduction

In both cases (SDC and PPDM) the privacy of the individuals through data
protection methods should be ensured. These methods modify the original mi-
crodata file or data set1, adding some noise in the original data. Of course, the
aim of such methods is to preserve the statistical utility of the protected data
as much as possible. This is equivalent to modify the information as little as
possible. However, protected data have to be altered enough to obfuscate the
identity of the respondents.

Protection methods solve in some way the problem of the privacy of the
respondents. Nevertheless, an important and challenging problem arises: the
evaluation of such methods. This evaluation has two clear components. On the
one hand, the loss of statistical utility of the protected data (information loss)
and on the other hand, the risk that third parties discover the identity of certain
respondents (disclosure risk).

Information loss measures can be general or specific. General information loss
measures roughly reflect the amount of information loss for a reasonable range
of data uses. On the other hand, specific information loss measures evaluate the
loss of statistical utility for a particular data analysis. Normally, the first kind
of measures are used to compare protection methods and the second ones are
used to evaluate in an accurate way the real effect of a protection method for a
concrete statistical analysis.

Disclosure risk, the main topic of this thesis, evaluates the privacy of the
respondents against possible malicious uses that third parties (sometimes called
intruders) could do with the information released. Disclosure risk measures eval-
uate the number of respondents whose identity is revealed. Normally, these mea-
sures are computed in several scenarios where the intruder has partial knowledge
of the original data. In order to compute the disclosure risk, general methods for
re-identification are used. These methods find relationships (i.e. links) between
the protected data and the partial knowledge which the intruder is assumed to
have.

In the real world, the disclosure risk is bounded by the best re-identification
method that an intruder is able to conceive. Finding this method is a challenging
task as the intruder can exploit any weakness of the protection method or any
extra information about the original data. Therefore, the computation of the
real disclosure risk is a very hard issue since lots of considerations must be taken
into account. This thesis is focused on this matter. The aim of this work is to
provide a set of techniques for statistical agencies and data providers in general
to determine the disclosure risk in the most accurate way.

1.2 Contributions

The research done in this thesis contributes in three different aspects.
Firstly, it contributes to the area of disclosure risk evaluation. We introduce

several re-identification methods to compute the disclosure risk of different data

1Microdata file is the term used in SDC to refer to the raw data, and data set is usually

the term used in PPDM to refer to the same concept. In this thesis we will use both terms.
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protection methods. The new re-identification methods show that up to now
the real disclosure risk of such protection methods was underestimated. These
methods demonstrate that an intruder can increase the amount of correctly
re-identified respondents by considering the protection method applied in the
anonymization process. Therefore, the disclosure risk of these methods rises
accordingly. We also define a different disclosure risk scenario where the intruder
has no access to the original data. However, under some assumptions, we prove
that it is still possible for the intruder to re-identify some of the respondents of
such protected data set.

The second contribution is included in the area of data protection methods.
We introduce several protection methods which solve the drawbacks presented
in the disclosure risk evaluation. These new methods improve the privacy of
the respondents. The methods showed in this thesis avoid that an intruder may
exploit the knowledge of the protection method used. We also define a new
measure to evaluate, in an empirical way, the anonymity level achieved using
a specific configuration of a protection method and assuming that the intruder
has access to the original values of a subset of the protected attributes.

Finally, we present a suite of techniques for time series anonymization and
re-identification. The idea underlaying this approach is that data accumulation
through consecutive statistical surveys enables to perform temporal analysis over
such data (e.g. forecasting). However, this temporal information can be also
used by the intruder to increase the disclosure risk of this new accumulated
survey. Under this scenario, we also define new information loss measures which
consider temporal analysis that third parties can perform in the accumulated
data set.

1.3 Structure of the Document

This document is organized in three parts with five chapters: preliminaries and
related work (Chapter 2), our contributions (Chapters 3 to 6) and, finally, con-
clusions and future directions (Chapter 7).

• Chapter 2. We explain some preliminaries needed later on. These pre-
liminaries are divided in six sections:

– Aggregation functions. We begin the preliminaries explaining
some basic concepts about aggregation functions. Such description
includes the definition of the OWA (Ordered Weighted Averaging)
operator and some fuzzy integrals, in particular, the Choquet, Sugeno
and twofold integrals.

– Time series. We introduce some notions about time series as, for
instance several time series distances and forecasting models.

– Re-identification methods. We give a brief introduction of classi-
cal re-identification methods and explain in more detail record linkage
(RL) methods. RL methods are specific cases of the re-identification
methods.
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8 Chapter 1. Introduction

– Microdata protection methods. We show the general problem of
data privacy, the re-identification scenario and we give two classifi-
cations of protection methods. We also explain in detail two specific
data protection methods: rank swapping and microaggregation.

– Information loss and disclosure risk. We present some informa-
tion loss and disclosure risk measures and a framework for evaluating
a data protection method.

– Data sets description. We give an exhaustive description of the
data sets used in the experiments performed in this thesis.

• Chapter 3. We explain some contributions about specific microaggre-
gation disclosure risk measures. We also present two new variants of the
generic microaggregation algorithm.

• Chapter 4. Three ad-hoc record linkage methods are presented. These
methods consider the protection method applied on the original data, and
due to this, they achieve a larger number of re-identifications than generic
record linkage methods.

• Chapter 5. We study an alternative scenario for record linkage methods
where attributes in the original and the protected data set are not the
same.

• Chapter 6. We present some results about time series protection and
re-identification. We also present some information loss measures for the
evaluation of time series protection methods.

• Chapter 7. This thesis concludes with some conclusions and a description
of future work.
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Chapter 2

Preliminaries

In this chapter, we begin explaining some basics about aggregation functions
including a description of OWA operators. Then, we introduce certain concepts
about time series as the notation used in this dissertation, some distances and
several time series forecasting models. Afterwards, we review re-identification
methods and the two main existing approaches for standard record linkage:
probabilistic and distance based record linkage. Then, we give a brief general
description about microdata protection methods, which reviews the two protec-
tion methods studied in this work, rank swapping and microaggregation. Such
methods are illustrated with a toy example. Finally, we present the standard
way of computing the score of a protection method by combining its information
loss and its disclosure risk.

2.1 Aggregation Functions

Aggregation functions [70] are numerical functions used for information fusion
that combine N numerical values into a single one. These operators formally
described below, typically satisfy unanimity (idempotency) and monotonicity.

Definition 1 Let X := {x1, . . . , xN} be a set of information sources, and let
f(xi) be a function that models the value supplied by the i-th information source
xi (for the sake of simplicity we often denote f(xi) by ai), then a function
C : RN → R is said to be an aggregation function if it satisfies:

1. C(a, . . . , a) = a (unanimity, also known as idempotency)

2. C(a1, . . . , aN ) ≤ C(a′
1, . . . , a

′
N) if ai < a′

i (monotonicity)

At present, several aggregation functions exist in the literature (see e.g. [12,
70] for a review). Among them, the most well-known aggregation functions are
the arithmetic mean and the weighted mean. They correspond, respectively, to
the following functions:

9
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10 Chapter 2. Preliminaries

1. C(a1, . . . , aN ) =
PN

i
ai

N

2. C(a1, . . . , aN ) =
∑N

i wiai

In the second definition, w = (w1 . . . wN ) stands for a weighting vector. That
is, wi are weights for sources xi so that wi ≥ 0 and

∑
i wi = 1. These values

correspond to prior knowledge on the reliability of the sources. For example,
when source xi is twice as reliable as source xj then we have that wi = 2wj .

Yager defined in [77] the so-called Ordered Weighted Averaging (OWA) op-
erator that corresponds to a weighted linear combination of order statistics. At
present there are different definitions for this operator based on the way the
weights are defined. We recall a definition based on a non-decreasing function,
as this is the most useful definition in our context.

Definition 2 Let Q be a non-decreasing function in [0, 1] so that Q(0) = 0 and
Q(1) = 1, then the mapping OWAQ : RN → R defined as follows is an OWA
operator:

OWAQ(a1, . . . , aN) =
N∑

i=1

(
Q(i/N) − Q((i − 1)/N)

)
aσ(i)

where σ is a permutation of the values ai such that aσ(i) ≥ aσ(i+1).

This operator has several properties. We underline the following ones:

i) For all Q, it holds that:

min
i

ai ≤ OWAQ(a1, . . . , aN ) ≤ max
i

ai.

ii) The function Q permits to modulate the output. For example, when we
consider the family of functions Qα(x) = xα, we have that large positive
values of α lead to an OWA near to the minimum and, on the contrary,
values of α near to zero lead to an OWA near to the maximum. Also, when
ai is fixed, OWAQα

is non-decreasing with respect to α. These conditions
are formalized as:

• limα→∞ OWAQα
(a1, . . . , aN ) = aα(N) = min ai

• limα→0 OWAQα
(a1, . . . , aN) = aα(1) = max ai

• if α1 > α2 then OWAα1(a1, . . . , aN ) < OWAα2 (a1, . . . , aN)

iii) The OWA operator is symmetric for all Q. That is, the order of the pa-
rameters is not relevant for the computation of the output. This can be
formalized as follows:

OWAQ(a1, . . . , aN ) = OWAQ(aπ(1), . . . , aπ(N))

for any permutation π.
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2.1. Aggregation Functions 11

Another relevant property of OWA operators is that they are equivalent to
the so-called Choquet integrals [14] with respect to symmetric fuzzy measures.
Choquet integrals are one family of the so-called fuzzy integrals [35], a set of
functionals that can be used for information fusion. In short, given the function
f that represents the information supplied by the sources in X , the fuzzy integral
of f with respect to a fuzzy measure represents an aggregated value of those
values in f . In such integrals, fuzzy measures play the role of weights in the
weighted mean (i.e., some prior knowledge on the reliability of the sources).
The main difference between a fuzzy integral and a weighted mean is that in the
weighted mean independence is assumed between the information sources. On
the other hand, such independence is not formally required for fuzzy integrals,
as fuzzy measures can accommodate dependencies between the sources.

Formally speaking, a fuzzy measure µ is a set function over X (i.e., µ : 2X →
[0, 1]) that satisfies the following constraints:

• µ(∅) = 0, µ(X) = 1 (boundary conditions).

• if A ⊆ B then µ(A) ≤ µ(B) (monotonicity conditions).

The OWA operator of f with respect to Q is equivalent to the Choquet
integral of f with respect to the fuzzy measure µ defined as: µ(A) = Q(|A|/N)
where | · | stands for the cardinality of a set. This equivalence establishes that
the fuzzy measure associated with the OWA for a set A does not depend on
the particular elements in A but only on its cardinality. That is, given two sets
A 6= B (A, B ⊆ X) such that |A| = |B| then µ(A) = µ(B). For this reason, the
measure is said to be symmetric and, consequently, any Choquet integral with
respect to a measure of this form is also symmetric as this corresponds to the
OWA operator.

Formally, the Choquet integral is defined as follows:

Definition 3 Let µ be a fuzzy measure on X; then, the Choquet integral of a
function f : X → R+ with respect to the fuzzy measure µ is defined by

(C)

∫
fdµ =

N∑

i=1

[f(xσ(i)) − f(xσ(i−1))]µ(Aσ(i))

where f(xσ(i)) indicates that the indices have been permuted so that 0 ≤
f(xσ(1)) ≤ · · · ≤ f(xσ(N)) ≤ 1, and where f(xσ(0)) = 0 and Aσ(i) =
{xσ(i), . . . , xσ(N)}.

The property that a Choquet integral with respect to a symmetric fuzzy
measure is symmetric also holds for other fuzzy integrals. In particular, it also
holds for the Sugeno integral [59]. Formally, the Sugeno integral is defined as
follows:

Definition 4 Let µ be a fuzzy measure on X; then, the Sugeno integral of a
function f : X → [0, 1] with respect to the fuzzy measure µ is defined by
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12 Chapter 2. Preliminaries

(S)

∫
fdµ =

N∨

i=1

(f(xσ(i)) ∧ µ(Aσ(i)))

where ∨ stands for maximum, ∧ stands for minimum, f(xσ(i)) indicates that
the indices have been permuted so that 0 ≤ f(xσ(1)) ≤ · · · ≤ f(xσ(N)) ≤ 1, and
where f(xσ(0)) = 0 and Aσ(i) = {xσ(i), . . . , xσ(N)}.

We give below the definition of the Sugeno integral with respect to a sym-
metric fuzzy measure representable, as above, in terms of a function Q. This
expression is equivalent to the OWMax defined by Yager in [78].

Definition 5 Let Q be a non-decreasing function in [0, 1] such that Q(0) = 0
and Q(1) = 1, then the mapping SIQ : RN → R defined as follows is a Sugeno
integral with respect to the fuzzy measure µ(A) = Q(|A|/N):

SIQ(ai) =
N∨

i=1

(Q(i/N) ∧ aσ(i))

where σ is a permutation such that aσ(i) ≥ aσ(i+1).

As stated above, this function is symmetric for all Q. Besides that, the
function is an aggregation function (in the sense of Definition 1) and the output
of the integral is modulated through the function Q.

The twofold integral [48, 65] is a generalization for both Choquet and Sugeno
integrals. The twofold integral is a fuzzy integral that aggregates a function with
respect to two fuzzy measures. The rationale of this generalization is that the
semantics of both measures are different. In particular, the measure in the
Choquet integral is seen as a ’probabilistic flavor’ measure, and the measure
used in the Sugeno integral is seen as a ’fuzzy flavor’ measure. We use µC to
denote the measure that corresponds to the one in the Choquet integral, and µS

for the one in the Sugeno integral.

Definition 6 Let µC and µS be two fuzzy measures on X, then the twofold
integral of a function f : X → [0, 1] with respect to the fuzzy measures µS and
µC is defined by:

TIµS ,µC
(f) =

n∑

i=1

(( i∨

j=1

f(xs(j)) ∧ µS(As(j))
)(

µC(As(i)) − µC(As(i+1))
))

where s in f(xs(i)) indicates that the indices have been permuted so that 0 ≤
f(xs(1)) ≤ · · · ≤ f(xs(n)) ≤ 1, As(i) = {xs(i), · · · , xs(n)}, As(n+1) = ∅.
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2.2. Time Series 13

2.2 Time Series

Numerical time series are defined by pairs {(xi, ti)} for i = 1, . . . , n where ti cor-
responds to the temporal variable and xi is the numerical variable that depends
on time (dependent variable). Consequently, ti+1 > ti. Income, stock prices and
sport statistics are examples of time series, as they depend on time.

We can define in the same way ordinal or categorical time series replacing xt

by a categorical or ordinal variable. Weather forecast (e.g. sunny, cloudy, rain-
ing) and restaurant category (e.g. one Michelin star, two Michelin stars, three
Michelin stars) are examples of categorical and ordinal time series respectively.
In this thesis we will only consider numerical time series.

In this work, we will adopt the following assumptions: time series are discrete,
the observations are made at fixed time intervals and all time series have the same
initial time t0. Under these assumptions, it is possible to simplify the notation
disregarding the temporal variable. Therefore, from now on, our notation for a
time series will be (x1, . . . , xn).

Certain time series statistics have been defined. In this work we will use the
two most common ones: the time series mean and the autocorrelation function.
The reason for this selection is that both statistics are involved in the ARMA
and ARIMA processes [9], two well-known processes for time series modeling.
Both statistics are defined as follows [11]:

• Time series mean. It is defined by

µ =
1

n

n∑

i=0

xi

where n corresponds to the number of elements of the time series.

• Autocorrelation function (ACF). It describes the correlation between
the process at different times. It is defined by

R(j) =
(xi − µ)(xi+j − µ)

n

where n corresponds to the number of elements of the time series and i
and i + j are the initial elements for computing the correlation. It is usual
to use i = 0 with j being a given shift.

2.2.1 Time Series Distances

In the literature we can find a large number of distances for time series. See [15,
44, 41] for more details.

Here we only describe the distances used in this thesis for computing the
disclosure risk of univariate microaggregation in Chapter 4 and for the definition
of time series microaggregation in Chapter 6.
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14 Chapter 2. Preliminaries

• Euclidean distance (EU). It is defined as

dEU (x, v) = 2

√√√√
n∑

k=1

(xk − vk)2

• Short time series distance (STS). It was defined in [44] as the square
root of the sum of the slope squared differences. Formally, it is defined as
follows:

dSTS(x, v) = 2

√√√√
n∑

k=1

(
vk+1 − vk

tk+1 − tk
−

xk+1 − xk

tk+1 − tk

)2

• Dynamic Time Wrapping (DTW). Any two time series can be com-
pared elementwise with the Euclidean distance. Nevertheless, this often
leads to a large distance between two time series which are very similar but
with some stretch along the dimension (e.g. shift on the time dimension).
The key idea of the DTW distance [13, 47] is that any point of a time
series can be (forward and/or backward) aligned with multiple points of
the other time series that lie in a different dimensional position. This com-
pensates possible stretches in both time series and therefore the distance
is in some way more appropriate when we are interested in comparing the
shapes of the time series.

In the rest of this section we will present the DTW distance with some
detail. We start with the notation. Let us consider two numerical time
series x = (x1, . . . , xn) and v = (v1, . . . , vm), of length n and m respec-
tively. Then, for aligning these two time series using the DTW distance,
we proceed as follows.

Firstly, we construct a bi-dimensional n × m matrix where the element
(ith,jth) contains the distance between the two points xi and vj . To com-
pute the distance between these two points, the squared Euclidean distance
is often used (i.e., d(xi ,vj)=((xi − vj)

2)). In this way, each matrix ele-
ment (i,j) corresponds to the distance of the possible alignment between
the points xi and vj .

A warping path w = (w1, . . . , wL), that represents a relation between x
and v, is a route from element (1, 1) to element (n,m) formed by contiguous
cells with some particular constraints. Formally, the following constraints
are considered:

– Boundary conditions. w1=(1, 1) and wL=(n,m). A warping path
requires starting and finishing in opposite diagonal corners of the
matrix.

– Continuity. Given a wl such that wl=(i,j) for i′−i ≤ 1 and j′−j ≤ 1;
then, wl+1=(i′,j′). This restricts the allowable steps to adjacent cells
including diagonally adjacent cells.
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– Monotonicity. Given wl=(i,j) then wl+1=(i′,j′), where i′ − i ≥ 0
and j′ − j ≥ 0, with at least one strict inequality. This forces W to
progress over dimension and avoids cycles in the warping path.

There are many warping paths that satisfy the above restrictions and the
number of warping paths grow exponentially with respect to their length.
In our case, we are interested only in the optimal path wopt, the one which
minimizes the following warping cost

wopt = min




∑

xi,vj∈W

d[xi, vj ]





where d is the distance between the two points xi and vj and W is the set
of all possible paths.

Dynamic programming can be used to solve this problem because efficient
algorithms exist. Its main drawback is its large computational cost. To
decrease this cost, horizontal and/or vertical stretches are often restricted
to have a maximum length. However, [53] shows that this limitation has
a limited influence in the outcome of the method.

2.2.2 Time Series Forecasting

Forecasting is a process that uses a set of historical values to predict an outcome.
It is commonly used in time series to predict future values of a given time series.
Good surveys on forecasting are [5, 54]. We explain herein five well-known
forecasting models widely used in real applications.

All forecasting models estimate future values using the previous elements of
time series. For instance, given a time series (x1, . . . , xn), we can estimate the
value xn+1. In this case, (x1, . . . , xn) are independent values of the forecasting
model, whereas xn+1 is the dependent one. This process can be repeated us-
ing xn+2 as the dependent value and adding the estimated xn+1 value to the
independent ones.

Simple Exponential Smoothing Forecasting Model

This is a very popular model used to produce smoothed time series. Simple
exponential smoothing (SESF ) assigns exponentially decreasing weights as the
observations get older. In other words, recent observations are given relatively
more weight in forecasting than the older ones.

Double Exponential Smoothing Forecasting Model

The double exponential smoothing (DESF ), also known as Holt exponential
smoothing, is a refinement of the previous one adding a component to include any
trend in the data. Simple exponential smoothing models work better with data

Copia gratuita. Personal free copy     http://libros.csic.es 
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with no trend or seasonality components. For this reason, when the data exhibits
either an increasing or decreasing trend over time, simple exponential smoothing
forecasts tend to fall behind observations. Double exponential smoothing is
designed to address this type of time series by considering the trends existing in
the data.

Linear Regression Forecasting Model

This is a regression model (RM) where a dependent variable y is expressed in
terms of an independent variable x and a random term ǫ as follow

y = β0 + β1x + ε

where β0 is the intercept (’constant’ term) and β1 is the parameter of the
independent variable. This model can be used for forecasting, using x as previous
values of the variable and y the ones to be forecasted.

Multiple Linear Regression Forecasting Model

This is an extension of the linear regression model. In this case, there is a
dependent variable y and several independent variables xi, i = 1, ..., p, and a
random term ǫ. The model (MLRF ) is as follows:

y = β0 + β1x1 + β2x2 + · · · + βpxp + ε

where β0 is the intercept (’constant’ term), the βi are the respective parame-
ters of independent variables, and p is the number of parameters to be estimated
in the linear regression.

Polynomial Regression Forecasting Model

The lineal regression forecasting model (a first-order polynomial) can be ex-
tended to higher orders. The polynomial regression model (PRM) yi =
α0 + α1xi + α2x

2
i + · · · + αmxm

i + εi (i = 1, 2, . . . , n) is a system of polyno-
mial equations of order m with coefficients {α0, . . . , αm}. This model can be
expressed using a data matrix X , a target vector ~y and a parameter vector ~α.
The i-th rows of X and ~y contain the x and y values for the i-th data sample.
In this way, the model can be written as a system of linear equations:





y1

y2

...
yn




=





1 x1 x2
1 . . . xm

1

1 x2 x2
2 . . . xm

2
...

...
...

...
1 xn x2

n . . . xm
n









α0

α1

α2

...
αm




+





ε1

ε2

...
εn





which, when using pure matrix notation is, as aforementioned,

Y = X~α + ε
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2.3. Re-identification Methods 17

Given X and Y , the vector of polynomial coefficients is determined using the
following expression.

~̂α = (XT X)−1 XT Y

2.3 Re-identification Methods

Re-identification methods are a specific class of data base techniques. These
methods are designed to establish relationships among different entities or at-
tributes stored in different data sources. Obtaining the relationships among
entities or attributes makes sense at least in the following scenarios:

• Schema matching [51]. It is a basic problem in many data applications.
These methods take two schemas as input and produce a mapping between
elements (attributes) of the two schemas that semantically correspond to
each other.

• Data integration [16]. It refers to the creation of an integrated view of
several data sources apparently incompatible. The incompatibility arises
due to different perceptions and requirements which often lead us to express
similar information in dissimilar forms.

• Data cleaning [52]. It deals with detecting and removing errors and
inconsistencies from data in order to improve their quality. Data quality
problems presented in a single data set could be due to misspellings during
data entry, missing information or other invalid data.

• Object integration. It refers to certain kind of applications whose aim
is to establish relationships among objects, having similar properties or
behaviors. A good example of this kind of application is ontology match-
ing [6].

Record Linkage is one of the existing re-identification techniques. It is widely
used for data cleaning [75] and integration of distributed and non-homogeneous
data sets [69]. Typically, such data sets contain information about common
individuals described using the same variables, that, frequently, do not match
due to errors on the data. These errors can be accidently produced (e.g. typos
or misspelling errors) or intentionally provoked (e.g, data protection). All the
research done in this work is focused on this latter case.

We consider that the record linkage process is formed by different phases, as
shown in Figure 2.1. To start the record linkage process, data sources are pre-
processed in such a way that the attributes in the data sets are normalized [8, 74]
separately to allow a simpler comparison among them in the following steps.

Once the pre-processing is done, record linkage should compare, in principle,
all the records in the data sets under analysis in order to decide which records
belong to the same individual. In practice, since the size of the data sets is
usually very large, the comparison of all records becomes unfeasible. To avoid
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Figure 2.1: Record Linkage Schema.

this comparison, record linkage resorts to blocking methods [37, 39] that try
to gather all records that present a potential resemblance. Typically, blocking
methods are based on a common attribute without errors, but recently, more
sophisticated methods have been developed [40].

Then, we proceed with the record linkage matching phase. During this step,
only the records belonging to the same block are compared. There are several
strategies to compare records. The most common ones are based on computing
some conditional probabilities or distances. This is explained in Section 2.3.1
and 2.3.2.

Once the matching process delivers the result, it is necessary to analyze the
list of matching pairs. This last step usually requires human intervention by
means of expert individuals. As in our experiments the correct linkages are
known in advance, we omit this last step.

2.3.1 Distance Based Record Linkage

Distance based record linkage consists of computing the distances between all the
original and protected records. Then, the pair of records at minimum distance
are considered as linked pairs (LP), whereas the remaining pairs are considered
as not linked pairs (NP). In the context of data privacy the first use was [50]
where it was applied to a microaggregation protection method based on the
Euclidean distance.

Let d(a, b) be a distance between a record in the original data set X and a
record in the protected data set X ′. Then, the distance based record linkage
algorithm can be defined as in Algorithm 1.

Obviously, the application of this algorithm is only possible if such distance
function can be calculated. Normally, this distance is defined in terms of a
distance dattri

for each attribute attri as follows:
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Algorithm 1: DB-RL

Data: X: original data set, X’: protected data set
Result: LP: linked pairs
begin1

foreach a ∈ X do2

b′ = arg minb∈X′d(a, b)3

LP = LP ∪ (a, b′)4

foreach a ∈ X do5

NP = NP ∪ (a, b)6

end7

d(a, b) =
n∑

i=1

dattri
(attrA

i (a), attrB
i (b))

The specific dattri
allows us tuning the method to obtain as many correct links

as possible. A very common tuning approach is to weight different attributes
in a different way depending on their importance. Nevertheless, in the original
proposal presented in [50], all attributes have the same weight.

2.3.2 Probabilistic Record Linkage

The probabilistic record linkage method was originally described in [30]. Later
in [39], this method was tested over the 1985 census of Tampa, Florida. In
that work, the matching algorithm was defined using the linear sum assign-
ment model in order to define the linked pairs between the original and the
protected data set. Afterwards, in [74] a new mathematical model based on the
Expectation-Maximization (EM) algorithm was presented to compute the linked
pairs. Formally, probabilistic record linkage is defined as follows.

For each pair of records (a, b) where a is an original record of the original
data set X and b is a protected record of the protected data set X ′, we define a
coincidence vector γ(a, b) = (γ1(a, b) . . . γn(a, b)), where γi(a, b) is defined as 1 if
attri(a) = attri(b) and as 0 if attri(a) 6= attri(b). Note that, attri values are the
standardized values of the original and the protected data sets. Then an index
is computed over this coincidence vector. Afterwards, by using such index, pairs
are classified as either a linked pair (LP) or a non-linked pair (NP).

In this framework, indices are computed using conditional probabilities. Such
probabilities are estimated using the EM algorithm. Then, the thresholds are
computed from: (i) the probability of linking a pair that is an unmatched pair (a
false positive or false linkage: P (LP |U)) and (ii) the probability of not linking
a pair that is a match pair (a false negative or false unlinkage: P (NP |M)).

Although, from a computational point of view, probabilistic record linkage
is a much more complex method compared to the distance based record linkage
method, this approach is very interesting because the user has to provide only
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two probabilities as input: an upper bound of the probability of a false match
and an upper bound of the probability of a false non-match. This is a clear
advantage against the distance based record linkage.

2.4 Microdata Protection Methods

A data set X can be seen as a matrix with n rows (records) and k columns
(attributes). Each row contains the values of the attributes for an individual.
The attributes in a data set can be classified in three non-disjoint categories:

• Identifiers. They are attributes which unambiguously identify the indi-
vidual, for example, the passport number.

• Quasi-identifiers. They are attributes which can identify the individual
when some of those attributes are combined. For example, age, postal code
or job cannot identify an individual, but the set of individuals working at
the IIIA-CSIC, living in Tiana and being born in 1979, contains a single
individual.

• Confidential. They are attributes which contain sensitive information
about the individual. For example, salary.

When considering this classification, a data set X is defined as X =
id||Xnc||Xc, where id are the identifiers, Xnc are the non-confidential quasi-
identifier attributes, and Xc are the confidential attributes. Normally, before
releasing a data set X with confidential attributes, a protection method ρ is ap-
plied, leading to a protected data set X ′. Indeed, we will assume the following
typical scenario: (i) identifier attributes in X are either removed or encrypted,
therefore we will write X = Xnc||Xc; (ii) confidential attributes Xc are not
modified, and so we have X ′

c = Xc; (iii) the protection method itself is applied
to non-confidential quasi-identifier attributes, in order to preserve the privacy
of the individuals whose confidential data is being released. Therefore, we have
X ′

nc = ρ(Xnc). This scenario allows third parties to have precise information on
confidential data without revealing to whom the confidential data belongs to.
Figure 2.2 depicts the process of protection and release of a microdata file, as
formerly explained.

In this scenario, as shown in Figure 2.3, an intruder might try to re-identify
individuals by obtaining the non-confidential quasi-identifier data (Xnc) together
with identifiers (Id) from other data sources. By applying record linkage between
the protected attributes (X ′

nc) and the same attributes obtained from other data
sources (Xnc), the intruder might be able to re-identify a percentage of the
protected individuals together with their confidential data (Xc). This is what
protection methods try to prevent. This scenario is similar to the scenario used
in [73, 68].

Protection methods can be classified depending on their effect on original
data into three different categories:
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Figure 2.2: Data set protection and release process.

• Perturbative. The data set is distorted adding noise. In this way, in the
original data set, the combinations of values which unambiguously iden-
tify an individual (or respondent) disappear and then, new combinations
appear in the protected data set. This obfuscation makes difficult for an
intruder to obtain the values of the original data set. A perturbative pro-
tection method has to ensure that the statistical information in the original
data set is preserved on the protected one. The protection methods used
in this thesis, Rank Swapping [45] and Microaggregation [19], are included
in this category.

• Non-perturbative. Non-perturbative methods do not distort the original
data set. They do partial suppressions or detail reductions on the original
data set. These protection methods convert the combinations of values
which unambiguously identify an individual into more general ones. Thus,
the re-identification process is more difficult.

• Synthetic Data Generators. Synthetic data generators build a data
model from the original data set and subsequently, a new (protected)
data set is randomly generated constrained by the model computed. This
approach is very promising for the statistical disclosure, although recent
works as [68] show that it is possible to link synthetic data with the original
data set.

Another dimension to classify protection methods is to consider the different
type of data that protection methods can be used:

• Numerical. An attribute is considered numerical if arithmetic operations
can be performed with it (e.g. age or income). Note that a numerical
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Figure 2.3: Disclosure Risk Scenario.

attribute does not necessarily have an infinite range, as in the case of age.
When we are designing methods to protect numerical data, one has the
advantage that arithmetic operations are possible, and the drawback that
every combination of numerical values in the original data set is likely to be
unique, which leads to disclosure if no action is taken. This thesis focuses
on protection methods for numerical data, even though rank swapping and
microaggregation have been also defined for categorical data [45, 66] and
some of the results presented herein can also be applied in that setting.

• Categorical. An attribute is considered categorical when it takes values
over a finite set and standard arithmetic operations do not make sense. Or-
dinal and nominal scales can be distinguished among categorical attributes.
In ordinal scales the order between values is relevant (e.g. academic de-
gree), whereas in nominal scales it is not (e.g. hair color). In the former
case, max and min operations are meaningful while in the latter case only
pairwise comparison is possible. When we are designing methods to pro-
tect this kind of data, the inability to perform arithmetic operations is an
inconvenient, but the finiteness of the value range is an interesting property
that can be successfully exploited.

During the past few years, special efforts have been made to develop a wide
range of protection methods. Good surveys about data protection methods
can be found in the literature [1, 21]. Among all the proposed data protection
methods, rank swapping and microaggregation are ones of the most used by the
statistical agencies [31]. This wide application is due to they are very simple
and have a low computational cost. This thesis is focused on the study of the
disclosure risk of these methods. We also use the performance results of rank
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swapping and microaggregation as a baseline for the study of new protection
methods developed herein. Now, we describe rank swapping and microaggrega-
tion in detail.

2.4.1 Rank Swapping

Rank swapping is a widely used microdata protection method, which was origi-
nally described only for ordinal attributes in [45]. However, in the comparisons
made in [21], rank swapping was ranked among the best microdata protection
methods for numerical attributes.

Rank swapping with parameter p and with respect to an attribute attrj (i.e.,
the j-th column of the original data set X) can be defined as follows: firstly, the
records of X are sorted in increasing order of the values xij of the considered
attribute attrj . For simplicity, we assume that the records are already sorted,
that is xij ≤ xℓj for all 1 ≤ i < ℓ ≤ n. Then, each value xij is swapped
with another value xℓj , randomly and uniformly chosen from the limited range
i < ℓ ≤ i + p. Finally, the sorting step is undone.

Generaly, rank swapping of a data set consists in running the algorithm
explained above for each attribute to be protected, in a sequential way.

The parameter p is used to control the swap range. Normally, p is defined
as a percent of the total number of records in X . Therefore, when p increases
the difference between xij and xℓj may increase accordingly. This fact makes
re-identification more difficult, but of course the differences between the original
and the protected data set are higher, decreasing in this way its statistical utility.

Original Data Set X Protected Data Set X ′

attr1 attr2 attr3 attr4 attr′1 attr′2 attr′3 attr′4
8 9 1 3 10 10 3 5
6 7 10 2 5 5 8 1
10 3 4 1 8 4 2 2
7 1 2 6 9 2 4 4
9 4 6 4 7 3 5 6
2 2 8 8 4 1 10 10
1 10 3 9 3 9 1 7
4 8 7 10 2 6 9 8
5 5 5 5 6 7 6 3
3 6 9 7 1 8 7 9

Table 2.1: Rank swapping example.

Example 2.1 Let us consider the data set shown in the left side of Table 2.1.
Then we protect this data set using rank swapping with p = 2. The protected
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data set is shown in the right side of the same table. For the sake of simplicity,
in the example original and protected files are identically sorted.

2.4.2 Microaggregation

Recently, microaggregation [17] has emerged as one of the most promising pro-
tection methods. For example, [31] shows that microaggregation is used by many
statistical agencies for data anonymization.

The basic implementation of microaggregation works as follows: given a data
set of a attributes, microaggregation builds small clusters of at least k elements
and replaces the original values by the centroid of the cluster to which the record
belongs to. A certain level of privacy is ensured because k records have an
identical protected value (k-anonymity [57, 61, 60]). Note that there are other
ways to achieve k-anonymity; in some of them (just as it happens with basic
microaggregation), the released data set enjoys k-anonymity as a whole (see [3],
for example). In other solutions, the data holder chooses different subsets of
attributes, and k-anonymity is ensured, independently, for each of these subsets
of attributes (see [34]).

When the number of attributes is large, the basic microaggregation tech-
nique suffers from a low statistical utility (see for example [2]), especially if the
attributes are not much correlated. This is so because in this case the distances
between original records in the data set and the centroids are quite large. There-
fore, much information on the original data is lost and is not included in the
released (protected) data set.

To solve this drawback, the following natural strategy is applied by statistical
agencies: the data set is split into smaller blocks of attributes, and microaggre-
gation is applied separately to each block. In this way, the information loss is
lower but at the cost of a loss in the achieved level of privacy. Indeed, the prop-
erty of k-anonymity is not ensured now. For example, the k records which fall
in the same cluster for the first block of attributes, can fall in different clusters
for all the other blocks of attributes. So, the resulting protected records will
not be equal and no k-anonymity is ensured. The simplest approach for mi-
croaggregation is when the size of the attribute blocks is equal to one, in other
words, each attribute is protected independently. This corresponds to Univariate
Microaggregation or Individual Ranking Microaggregation.

The goal of microaggregation methods is to minimize the total sum of dis-
tances between all the elements to be protected and the centroid of the cluster
where an element belongs to, i.e minimize the total Sum of Square Errors (SSE).
The rational of this process is to make the protected data as similar as possible
to the original one. In any case, the methods should provide clusters with at
least k elements. The optimal multivariate microaggregation has been proven as
NP-Hard [49]. For this reason, heuristic methods can be found in the literature.
On the other hand, several polynomial approaches for the optimal univariate
microaggregation as [36] can be found in the literature.

In this section we will explain several different algorithms that have been
proposed (in more or less detail) for microaggregation. Firstly we will explain a
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deterministic and optimal algorithm for univariate microaggregation; it will also
be used later on when we will explain two methods for projection based multi-
variate microaggregation: PCP microaggregation and Zscores microaggregation.
Finally, we will describe one of the most used methods for heuristic microaggre-
gation (specially for the multivariate case, although it can be applied to the
univariate case as well): the MDAV (Maximum Distance to Average Vector)
algorithm.

Optimal Univariate Microaggregation

In [36] optimal univariate microaggregation is defined as the univariate microag-
gregation which minimizes the Sum of Square Errors (SSE):

SSE =

C∑

i=1

∑

xij∈ci

(xij − x̄i)
T (xij − x̄i) (2.1)

where C is the total number of clusters, ci is the i-th cluster and x̄i is the
centroid of ci. The restriction is |ci| ≥ k, for all i = 1, . . . , C.

In [19], the authors present two results for the optimal univariate microag-
gregation:

• Result 1. When elements are sorted according to an attribute, for any
optimal partition, elements in each cluster are contiguous (non overlapping
clusters exist)

• Result 2. All clusters of any optimal partition have between k and 2k−1
elements.

This method for optimal univariate microaggregation is as follows:
Let A = (a1 . . . an) be a vector of size n containing all the values for the

attribute being protected. The values are sorted in ascending order so that if
i < j then ai ≤ aj . Obviously, a1 is the smallest element in A and an is the
largest element in A. Let k be an integer such that 1 ≤ k < n (k is directly
obtained from the microaggregation configuration).

Given A and k, a graph Gk,n is defined as follows. Firstly, we define the
nodes of G as the elements ai in A plus one additional node g0 (this node is
later needed to apply the Dijkstra algorithm). Then, for each node gi, we add
to the graph the directed edges (gi, gj) for all j such that i+k ≤ j < i+2k. The
edge (gi, gj) means that the values (ai, . . . , aj) might define one of the possible
clusters. Then, the cost of the edge (gi, gj) is defined as the within-group sum

of squared error for such cluster. That is, SSE = Σj
l=i(al − ā)2, where ā is the

average record of the cluster.
Given this graph, the optimal univariate microaggregation is defined by the

shortest path algorithm between the nodes g0 and gn. This shortest path can
be computed using the Dijkstra algorithm.
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Original Data Set X Protected Data Set X ′

attr1 attr2 attr′1 attr′2
1 4 2 5
2 15 2 15.5
3 5 2 5
6 17 6.5 17.5
7 6 6.5 5
8 18 8.5 17.5
9 16 8.5 15.5

Table 2.2: Optimal univariate microaggregation example.

Example 2.2 Let us consider the data set shown in the left side of Table 2.2.
Then, we protect this data set using the optimal microaggregation protection
method with k = 2. The protected data set is shown in the right side of the same
table. In this example the SSE value is equal to 0.14. Note that here k-anonymity
is only preserved in records 1 and 3.

Projection Based Microaggregation

The basic idea of two of the microaggregation methods that we analyze herein is
to project a > 1 attributes (corresponding to some attributes of the records) into
a single one. In this way we reduce the multivariate microaggregation problem
into the univariate one. The employed projection should maintain as much as
possible the global statistical properties of the initial (non-projected) values.
With this goal in mind, two projection methods seem particularly appealing; we
explain them now.

Principal Component Projection

Formally Principal Component Projection (PCP in short) works as follows: let
us assume that values of a attributes for n individuals are stored in a matrix X of
dimension n×a, where columns contain attributes and rows contain individuals.
For the sake of simplicity, we will assume here that data is standardized (i.e.,
the data has µ = 0 and σ = 1, and so the covariance matrix is S = 1/nXTX).

The first principal component is defined as the linear combination of the
attributes which has the maximum variance. Therefore, this first principal com-
ponent will be represented using a vector z1 = Xa1, for some vector a1 with a
components, to be found. Since the original values have µ = 0, we have that z1

also has µ = 0, and its variance is

1

n
zT
1 z1 =

1

n
aT
1 XT Xa1 = aT

1 Sa1 (2.2)

Since S is positive-definite, the variance increases when the module of the
vector a1 does. For this reason, to find a concrete solution for the maximization
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of Expression (2.2), some constraint on the module of a1 is needed; in this case,
the search is limited to vectors a1 with module 1 (i.e. aT

1 a1 = 1). This is
equivalent to maximize the following expression, where a Lagrange multiplier
has been added to the variance:

M = aT Sa1 − λ(aT
1 a1 − 1) (2.3)

To maximize Expression (2.3), the derivative with respect to the a1 compo-
nents must be made equal to 0.

∂M

∂a1
= 2Sa1 − 2λa1 = 0 (2.4)

The solution for such equation is Sa1 = λa1, which implies that a1 is an
eigenvector of the matrix S, and λ is its corresponding eigenvalue. To determine
which eigenvalue of S is the right solution, Equation (2.4) is left-multiplied with
aT
1 , leading to

aT
1 Sa1 = λaT

1 a1 = λ.

Summing up, λ is the variance of z1. Since the goal is to maximize the
variance, λ is the largest eigenvalue of the matrix S, and its associate eigenvector
a1 defines the coefficients of the projection (PCP). Therefore, the final projected
value is

PCP =
a∑

i=1

aixi.

Zscores Projection

As in the previous section, we assume that values of the a attributes for the
n individuals are stored in a matrix X of dimension n × a. Given a record (a
row) (x1, x2, . . . , xa) in X , the sum of Zscores Projection is defined as the single
element

Z =
a∑

i=1

xi − µi

σi

where µi is the average and σi is the variance of the i-th attribute, computed
by taking into consideration all the records in X .

Algorithm for Projected Microaggregation

The main problem when one tries to extend the optimal univariate solution to
the case of multivariate microaggregation is how to sort multivariate data. One
possibility, as we will see later, is to order the points with respect to their distance
to the global centroid of the data. MDAV is an heuristic microaggregation
method that takes this information into account.
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Algorithm 2: Projected Microaggregation

Data: X: original data set, k: integer
Result: X’: protected data set
begin1

Split the data set X into r sub-data sets {Xi}1≤i≤r, each one with2

ai attributes of the n records, such that
r∑

i=1

ai = A

foreach (Xi ∈ X) do3

Apply a projection algorithm to the attributes in Xi, which4

results in an univariate vector zi with n components (one for
each record)
Sort the components of zi in increasing order5

Apply to the sorted vector zi the following variant of the6

univariate optimal microaggregation method explained in
Section 2.4.2: use the algorithm defining the cost of the edges
〈zi,s, zi,t〉, with s < t, as the within-group sum of square error
for the ai-dimensional cluster in Xi which contains the original
attributes of the records whose projected values are in the set
{zi,s, zi,s+1, . . . , zi,t}
For each cluster resulting from the previous step, compute the7

vi-dimensional centroid and replace all the records in the
cluster by the centroid

end8

A different possibility is to reduce the dimensionality of the problem, from
more than one attribute to 1 attribute, by applying some projection method. In
more detail, projected multivariate microaggregation is described in Algorithm 2,
when applied to a data set X with n records and A attributes.

Depending on the projection method which is applied to the attributes, we
will obtain different methods of multivariate microaggregation. Due to the fact
that they should preserve as much statistical properties of the data as possible
(desirable in the scenario of statistical data protection), the PCP and Zscores
projection methods seem to be the best choice. We call the resulting microag-
gregation algorithms PCP microaggregation and Zscores microaggregation.

Example 2.3 Let us consider the same data set used in Example 2.2, the orig-
inal data set shown in the left side of Table 2.3. Then, we protect this data set
using the PCP and Zscores microaggregation with k = 2. The protected data
sets are shown in the middle and right side of the same table. In this exam-
ple, SSE value is equal to 1.02 and 0.65 for PCP and Zscores microaggregation
respectively.
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Original Data Set X PCP Prot. Data Set X ′ Zscores Prot. Data Set X ′

attr1 attr2 attr′1 attr′2 attr′1 attr′2
1 4 3.67 5.0 2.0 4.5
2 15 4.0 16.0 4.5 10.5
3 5 3.67 5.0 2.0 4.5
6 17 4.0 16.0 7.67 17.0
7 6 3.67 5.0 4.5 10.5
8 18 8.5 17.0 7.67 17.0
9 16 8.5 17.0 7.67 17.0

Table 2.3: Projection based microaggregation example.

MDAV Microaggregation

The MDAV (Maximum Distance to Average Vector) algorithm [19, 42] is an
heuristic algorithm for clustering records in a data set X so that each cluster is
constrained to have at least k records. This algorithm can be used for univariate
microaggregation and multivariate microaggregation. The MDAV algorithm is
described in Algotihm 3.

MDAV generic algorithm can be instantiated for different data types, using
appropriate definitions for distance and average. Normally, the most distant
record and the closest records are computed using the Euclidean distance, and
the average record is defined as the arithmetic mean of the records. This same
mean record is used to replace the original records when building the protected
data set.

Example 2.4 Let us consider the same data set used in Example 2.2 and 2.3,
the original data set is shown in the left side of Table 2.4. Then, we protect this
data set using the MDAV microaggregation protection method with k = 2. The
protected data set is shown in the right side of the same table. In this example,
SSE value is equal to 0.49.

2.5 Information Loss and Disclosure Risk

The main objective of rank swapping and microaggregation, and in general of all
protection methods, is to minimize both disclosure risk (DR) and information
loss (IL) of the protected released data set. Disclosure risk measures the capacity
of an intruder to obtain some information about the original data set from the
protected one, and information loss measures the reduction of the statistical
utility of the protected data set with respect to the original one.

However, when one of these parameters decreases the other one increases;
finding the optimal combination of these two measures becomes a difficult and
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Algorithm 3: MDAV

Data: X: original data set, k: integer
Result: X’: protected data set
begin1

while (|X | > k) do2

Compute the average record x̄ of all records in X3

Consider the most distant record xr to the average record x̄4

Form a cluster around xr. The cluster contains xr together5

with the k − 1 closest records to xr

Remove these records from data set X6

if (|X | > k) then7

Find the most distant record xs from record xr8

Form a cluster around xs. The cluster contains xs together9

with the k − 1 closest records to xs

Remove these records from data set X10

Form a cluster with the remaining records11

end12

Original Data Set X Protected Data Set X ′

attr1 attr2 attr′1 attr′2
1 4 1.5 4.5
2 15 1.5 12.33
3 5 5.33 4.5
6 17 5.33 17.5
7 6 5.33 12.33
8 18 8.5 17.5
9 16 8.5 12.33

Table 2.4: MDAV microaggregation example.

challenging task. Moreover, in some situations, an organization could be inter-
ested in releasing the data by fixing a desirable level for one of the parameters.
For these two reasons, it becomes necessary to compute both measures in a very
accurate manner before releasing the protected data set, ensuring an enough
protection level and statistical utility.

Some approaches are used to calculate the information loss. In [20] the
authors calculate the average difference between some statistics computed on
both the original and the protected microdata. A probabilistic variation of
these measures was presented in [43] to ensure that the information loss value is
always within the interval [0,1]. A different approach was presented in [7], where
some measures (accuracy, completeness and consistency) are calculated over the
protected data to evaluate the information loss.

In order to compute the disclosure risk, many works as e.g. [20, 58, 79] use
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the record linkage methods [20, 75, 76] explained before. Alternatively, other
methods can be considered for evaluating the disclosure risk. For example,
in [73], the authors define a framework for privacy protection where the intruder
can only query the database by using propositional sentences. If the database
answers these queries with enough level of generalization, it is difficult for the
intruder to infer any confidential information about a specific individual. The
measure of disclosure risk in this scenario is the percentage of individuals for
which an intruder is able to discover the value of a confidential attribute.

Normally, information loss and disclosure risk are combined to obtain an over-
all value about a specific protection method, this value weighs the relationship
between the information loss and disclosure risk. The best protection method
is the one that optimizes the trade-off between both magnitudes. Consider the
following extreme cases as examples of this trade-off:

• If masking consists of encrypting the original data, no disclosure is possible,
but no information at all is released (maximum information loss, minimum
disclosure risk).

• If no masking is performed and the original data are released, users can
perform fully accurate computations, but disclosure of individual respon-
dent data is complete (minimum information loss, maximum disclosure
risk).

In order to compute this trade-off, one approach was presented in [20], where
the authors combine both IL and DR in a Score using an arithmetic mean.
Another approach is the R-U (risk-utility) maps [26, 27, 28], that show in a
graphical way the relationship between a numerical measure of statistical dis-
closure risk (R) and a numerical measure of data utility (U). Both measures, R
and U, can be general or specific for a certain protection method.

Among all of these possibilities, we have selected the measures presented
in [20]. The selection is based on the following reasons:

• These measures use the record linkage methods to compute the disclosure
risk.

• A lot of protection methods have been evaluated using this score and there-
fore we can compare our results with many other works easily.

• These measures allow modifications in the IL and DR computation.

In the remaining of this section, we describe the five information loss measures
used to calculate the overall information loss value and the three disclosure risk
measures used to compute the overall disclosure risk value of the final score.

2.5.1 Information Loss Measures

Let n be the number of records in the original data set and n′ the number of
records in the masked data set. Let a be the number of attributes (assumed
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to be the same in both data sets). Then, we define X and X ′ as a n × a
matrices representing the original and the masked data set: columns correspond
to attributes and rows correspond to records.

• IL1. We define the mean absolute error of a matrix X vs another matrix
X ′ as the average of the absolute values of differences of corresponding
components (records) in both matrices. We understand ’corresponding’
as the map of each record (component) in X with the nearest record in
X ′ using a a-dimensional Euclidean distance. Then, we define the mean
variation of X vs X ′ as

IL1 = X − X ′ =

∑a
j=1

∑n
i=1

|xij−x′
ij|

|xij|

na

• IL2. Let X̄ and X̄ ′ be the vectors of averages of attributes (rows) in X
and X ′, we define the mean variation of these two vectors as

IL2 = X̄ − X̄ ′ =

∑a
j=1

|x̄j−x̄′
j |

|x̄j|

a

• IL3. Let V and V ′ be the covariance matrices of X and X ′, we compute
the mean variation of these two matrices as

IL3 = V − V ′ =

∑a
j=1

∑
1≤i≤j

|vij−v′
ij |

|vij |

(a+1)a
2

• IL4. Let S and S′ be the vectors of variances of attributes (rows) in X and
X ′, these vectors are the diagonal of V and V ′ respectively; we compute
the mean variation of these two vectors as

IL4 = S − S′ =

∑a
j=1

|vjj−v′
jj |

|vjj |

a

• IL5. Let R and R′ be the correlation matrices of X and X ′, we compute
the mean variation of these two matrices as

IL5 = R − R′ =

∑a
j=1

∑
1≤i≤j |rij − r′ij |
(a−1)a

2

The overall IL is computed using 100 times the average of the mean variations
of all the measures explained before. That is,

IL = 100
(
0.2 IL1 + 0.2 IL2 + 0.2 IL3 + 0.2 IL4 + 0.2 IL5

)
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2.5.2 Disclosure Risk Measures.

Two types of disclosure risk measures are considered depending on the intention
of the intruder.

Firstly, we suppose that an intruder has the protected information and knows
some original attributes obtained from an external data source, this scenario is
defined in Section 2.4. Here, the intruder is interested in linking the original and
the protected data set (i.e. discover the values of some other attributes). This
risk can be measured using record linkage. Two record linkage methods defined
in Section 2.3 are used for this purpose:

• Distance-based Linkage Disclosure (DLD). This measure is com-
puted over the number of attributes that the intruder is assumed to know
that, for instance, from one to half of the attributes. The final value is
calculated as the average percentage of linked records using distance based
record linkage in each case.

• Probabilistic Linkage Disclosure (PLD). This measure is identical
to DLD, but using the probabilistic record linkage instead of the distance
based record linkage.

Secondly, we suppose that the intruder is not interested in knowing the exact
original values or that he cannot obtain them. Alternatively, the intruder tries
to get an approximation of the original values. Interval Disclosure (ID) is one of
the approaches to model this scenario. The ID risk is computed as 100 times the
average percentage of original values falling into an interval defined around the
corresponding masked value. The interval is defined as a percentage, between 1
per cent and 10 per cent, of the values.

DR = 0.5
DLD + PLD

2
+ 0.5 ID

2.5.3 Score Computation

The score combining information loss measures with disclosure risk measures is
then defined as follows:

score = 0.5 IL + 0.5 DR

2.6 Data Sets Description

In this section, we describe in detail the data sets used in the experiments per-
formed in this thesis. We have considered seven data sets from the UCI repos-
itory [46] and the two reference data sets proposed in the European CASC
project. Both groups of data sets have been widely used in many other works.
For example, the CASC reference data sets have been used in the following
works: [21, 68, 74], whereas some of the UCI data sets have been used in these
other works: [62, 67]
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2.6.1 CASC Data Sets

Here, we describe the two reference data sets proposed in the European CASC
(Computational Aspects of Statistical Confidentiality) project [10].

The Census Data Set

The first data set, called Census, contains 1080 records consisting of 13 numerical
attributes. It was extracted using the Data Extraction System of the U.S. Census
Bureau [71]. A complete description about the details of the construction of this
data set can be found in [25].

The data used to create this data set was extracted from the file-group ’March
Questionnaire Supplement - Person Data Files’ of the data source ’Current Pop-
ulation Survey of the year 1995’. Not all the records of this survey were selected.
Records with zero or missing values for at least one of the 13 attributes were
discarded to obtain the final 1080 records. Note that, 1080 is the largest integer
less than 1200 which is a multiple of 2, 5, 8 and 9. Thus, the data set can be
split or microaggregated into several groups of small size.

The attributes selected to build the Census data set are described in Ta-
ble 2.5.

id Name Description
a1 AFNLWGT Final weight (2 implied decimal places)
a2 AGI Adjusted gross income
a3 EMCONTRB Employer contribution for health insurance
a4 ERNVAL Business or farm net earnings in 19
a5 FEDTAX Federal income tax liability
a6 FICA Social security retirement payroll deduction
a7 INTVAL Amount of interest income
a8 PEARNVAL Total person earnings
a9 POTHVAL Total other persons income
a10 PTOTVAL Total person income
a11 STATETAX State income tax liability
a12 TAXINC Taxable income amount
a13 WSALVAL Amount: Total wage & salary

Table 2.5: Attributes of the Census data set. In the first column, id stands for
the attribute identifier used in this thesis, in the second column, Name stands
for the identifier used in the source of the data set and in the third column a
brief description of the attribute is given.

The EIA Data Set

The second data set, called EIA, was obtained from the U.S. Energy Information
Authority [72]. It contains 4092 records consisting of 15 attributes, but only 10
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attributes are numerical. As we are only interested in numerical attributes, we
have discarded the 5 non numerical attributes. In Table 2.6 we present the
description of the EIA attributes.

id Name Description
a1 RESREVENUE Revenue from sales to residential consumers
a2 RESSALES Sales to residential consumers
a3 COMREVENUE Revenue from sales to commercial consumers
a4 COMSALES Sales to commercial consumers
a5 INDREVENUE Revenue from sales to industrial consumers
a6 INDSALES Sales to industrial consumers
a7 OTHREVENUE Revenue from sales to other consumers
a8 OTHRSALES Sales to other consumers
a9 TOTREVENUE Revenue from sales to all consumers
a10 TOTSALES Sales to all consumers

Table 2.6: Attributes of the EIA data set. In the first column, id stands for the
attribute identifier used in this thesis, in the second column, Name stands for
the identifier used in the source of the data set and in the third column a brief
description of the attribute is given.

2.6.2 UCI Data Sets

Now, we describe the seven data sets extracted from the UCI (University of
California - Irvine) Machine Learning Repository [46]. As in this thesis we are
only interested in numerical data, we have selected data sets from UCI repository
described in terms of numerical attributes. Non-numerical attributes, if any,
were discarded.

The Abalone Data Set

The Abalone data set was obtained from the Marine Research Laboratories of
Taroona. Firstly, it was used to predict the age of abalones (a kind of mollusks)
from physical measurements. It contains 4177 records consisting of 8 numerical
attributes. In Table 2.7 we present the description of the Abalone attributes.

The Dermatology Data Set

The Dermatology data set was obtained from the School of Medicine of Gazi Uni-
versity (Turkey). The aim of this data set is to determine the type of Eryhemato-
Squamous Disease. It contains 366 records consisting of 34 numerical attributes.
In this thesis, we have only used 16 attributes. Attribute selection was done on
the basis of the correlation coefficients. In particular, attributes with a low cor-
relation coefficient (less than 0.7) with all the other attributes were discarded.
In Table 2.8 we present the description of the Dermatology attributes.
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id Name Description
a1 SEX Male (1.0), female (2.0) and infant (3.0)
a2 LENGHT Longest shell measurement
a3 DIAMETER Diameter perpendicular to length
a4 HEIGHT Height with meat in shell
a5 WHOLEWEIGHT Weight of the whole abalone
a6 SUCKEDWEIGHT Weight of meat
a7 VISCERAWEIGHT Gut weight (after bleeding)
a8 SHELLWEIGHT Weight after being dried
a9 RINGS Number of rings (+1.5 gives the age in years)

Table 2.7: Attributes of the Abalone data set. In the first column, id stands for
the attribute identifier used in this thesis, in the second column, Name stands
for the identifier used in the source of the data set and in the third column a
brief description of the attribute is given.

id Name Description
a1 POLPAP Polygonal papules
a2 FOLPAP Follicular papules
a3 ORAL Oral mucosal involvement
a4 KNEEINVOL Knee and elbow involvement
a5 SCALP Scalp involvement
a6 MELANIN Melanin incontinence
a7 EXO Exocytosis
a8 FOCAL Focal hypergranulosis
a9 FOLHORN Follicular horn plug
a10 CLUBBING Clubbing of the rete ridges
a11 ELONGATION Elongation of the rete ridges
a12 THIN Thinning of the suprapapillary epidermis
a13 VACUOL Vacuolisation and damage of basal layer
a14 TOOTH Saw-tooth appearance of retes
a15 PERI Perifollicular parakeratosis
a16 INFILTRAT Band-like infiltrat

Table 2.8: Attributes of the Dermatology data set. In the first column, id stands
for the attribute identifier used in this thesis, in the second column, Name stands
for the identifier used in the source of the data set and in the third column a
brief description of the attribute is given.

The Housing Data Set

The Housing data set was taken from the StatLib library which is maintained
at Carnegie Mellon University. This data set concerns about housing values in
suburbs of Boston. It contains 506 records consisting of 7 numerical attributes.
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In this thesis, we have only used 16 attributes. Attribute selection was done
using the same criteria than in the Dermatology data set. In Table 2.9 we
present the description of the Housing attributes.

id Name Description
a1 INDUS Proportion of non-retail business acres per town
a2 RM Average number of rooms per dwelling
a3 AGE Proportion of owner-occupied units built prior to 1940
a4 RAD Index of accessibility to radial highways
a5 NOX Nitric oxides concentration (parts per 10 million)
a6 TAX Full-value property-tax rate per $10,000
a7 MEDV Median value of owner-occupied homes in $1000’s

Table 2.9: Attributes of the Housing data set. In the first column, id stands for
the attribute identifier used in this thesis, in the second column, Name stands
for the identifier used in the source of the data set and in the third column a
brief description of the attribute is given.

The Ionosphere Data Set

The Ionosphere data set was taken from Johns Hopkins University. This data
set was used to obtain a classification of radar returns from the ionosphere using
neural networks. It contains 351 records consisting of 35 numerical attributes.
In this thesis, we have only used 12 attributes. In Table 2.10 we present the
identifier of the Ionosphere attributes, no description about the attributes was
given in the UCI database.

id
a1, a2, a3, a4, a5, a6

a7, a8, a9, a10, a11, a12

name
V5, V7, V9, V11, V13, V20

V15, V17, V19, V21, V23, V30

Table 2.10: Attributes of the Ionosphere data set.

The Iris Data Set

The Iris plant data set was collected in 1935 by E. Anderson in [4]. This is
perhaps one of the best known data set to be found in the pattern recognition
literature, it has been used in more than 100 articles, it was first time used in [32].
It contains 150 records consisting of 4 numerical attributes. In Table 2.11 we
present the description of the Iris attributes.
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id Name Description
a1 SEPLEN Sepal length in cm
a2 PETLEN Petal length in cm
a3 SEPWID Sepal width in cm
a4 PETWID Petal width in cm

Table 2.11: Attributes of the Iris data set. In the first column, id stands for the
attribute identifier used in this thesis, in the second column, Name stands for
the identifier used in the source of the data set and in the third column a brief
description of the attribute is given.

The Water Treatment Data Set

The Water Treatment data set was extracted from the Unitat d’Enginyeria
Qúımica of the Universitat Autònoma de Barcelona. This data set concerns
about faults in a urban waste water treatment plant. It contains 527 records con-
sisting of 38 numerical attributes. In this thesis, we have only used 12 attributes.
In Table 2.12 we present the description of the Water Treatment attributes.

The WDBC Data Set

The WDBC (Wisconsin Diagnostic Breast Cancer) data set was extracted from
the General Surgery Department of the University of Wisconsin. This data set
describes a digitized image of a fine needle aspirate (FNA) of a breast mass. Data
describes characteristics of the cell nuclei present in the image. It contains 569
records consisting of 32 numerical attributes. In this thesis, we have only used
22 attributes. In Table 2.13 we present the identifier of the WDBC attributes,
no description about the attributes was given in the UCI database.
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id Name Description
a1 PH-E Input pH to plant
a2 DBO-E Input biological demand of oxygen to plant
a3 SS-E Input suspended solids to plant
a4 SSV-E Input volatile supended solids to plant
a5 SED-E Input sediments to plant
a6 COND-E Input conductivity to plant
a7 DBO-D Input biological demand of oxygen to secondary settler
a8 SSV-D Input volatile supended solids to secondary settler
a19 DBO-S Output biological demand of oxygen
a10 RD-DBO-S Performance input biological demand of oxygen to sec. settler
a11 RD-DQO-S Performance input chemical demand of oxygen to sec. settler
a12 PH-P Input pH to primary settler
a13 DBO-P Input biological demand of oxygen to primary settler
a14 SS-P Input suspended solids to primary settler
a15 SSV-P Input volatile supended solids to primary settler
a16 SED-P Input sediments to primary settler
a17 COND-P Input conductivity to primary settler
a18 PH-D Input pH to secondary settler
a19 DQO-D Input chemical demand of oxygen to secondary settler
a20 COND-D Input conductivity to secondary settler
a21 SS-S Output suspended solids
a22 SED-S Output sediments
a23 COND-S Input conductivity to secondary settler
a24 RD-DBO-G Global performance input biological demand of oxygen
a25 RD-DQO-G Global performance input chemical demand of oxygen

Table 2.12: Attributes of the Water Treatment data set.

id
a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12
a13, a14, a15, a16, a17, a18, a19, a20, a21, a22

name
V2, V4, V6, V8, V10, V12, V13, V18, V20, V26, V29, V32

V5, V9, V15, V16, V19, V22, V25, V27, V28, V30

Table 2.13: Attributes of the WDBC data set.
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Chapter 3

Microaggregation Analysis

This chapter is divided into three different parts. Firstly, we present some re-
sults about attribute selection in multivariate microaggregation. Secondly, we
describe the application of aggregation functions to projected microaggregation.
We show that our new microaggregation technique achieves a lower disclosure
risk than classical projected microaggregation. Finally, we present a new mi-
croaggregation method to reduce the disclosure risk of multivariate microaggre-
gation.

3.1 Attribute Selection in Multivariate Microag-

gregation

As we have said in the preliminaries, microaggregation is one of the most popular
studied and used microdata protection methods. There are many factors studied
in detail which influence the final result of applying microaggregation to a data
set: the value of the parameter k, the specific microaggregation method, the
number of blocks into which the data set is split (and the number of attributes
in each block). In addition to these ones, there is another factor which should be
considered and that, up to our knowledge, has not been carefully studied before:
how to select which attributes will form each block.

In this section we study this issue in detail and show that the result (statisti-
cal utility and privacy/anonymity levels) of applying microaggregation to a data
set can significantly vary according to the grouping strategy. We concentrate on
two grouping strategies. The first one, widely accepted by statistical agencies,
is focused on the maximization of the statistical utility. That is, (highly) corre-
lated attributes are grouped in the same block(s) so that the distance between
the original elements and the protected ones is small. The second strategy, which
we propose here for the first time, consists of scattering the groups of correlated
attributes into different blocks. This strategy is defined with the goal of obtain-
ing correlated blocks so that a higher level of anonymity can be maintained. For
example, when two records are in the same cluster for one block, and the blocks

41
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of attributes (as a whole) are correlated to each other, then these two records
are likely to fall in the same cluster for all the other blocks. This would lead to
two identical protected records. In other words, the idea of this new strategy is
to enjoy some anonymity (higher privacy) even in the case in which attributes
are microaggregated by blocks (higher data utility).

We have tested these two strategies with real data sets. In order to see
the differences between the two strategies more clearly, we have chosen data
sets with strong correlations between some of the attributes. The results of the
experiments support our intuitions: the first strategy leads to a lower information
loss, but it is more vulnerable to privacy attacks; the second strategy suffers from
a higher information loss, but it maintains a higher level of anonymity, and so
the disclosure risk is lower. The consequence is that one strategy or the other
can be followed, depending on the scenario and on the importance given to data
utility and privacy.

3.1.1 Specific Measures for Microaggregation

Some microdata protection methods admit specific measures to evaluate their
quality. This is the case of microaggregation, whose goal is to minimize the total
Sum of Square Error SSE (defined in Equation 2.1 in Section 2.4.2). Since there
are no optimal solutions in polynomial time to multivariate microaggregation and
the methods used are heuristic, the actual value of SSE for a given method is a
measure of its quality.

Regarding privacy, microaggregation provides, by definition, some level of
anonymity. If the method is applied to all the attributes (a single block), then
the initial parameter k indicates the achieved anonymity: for each protected
record, there are at least k possible original records which can correspond to it.
However, if the original data set is split into r blocks and the microaggregation
method is applied to each block separately, then the final level of anonymity
obviously decreases: two records which are in the same cluster for one block
of attributes may be in different clusters for other blocks, which results in two
different protected records.

A possible way of computing the real level of anonymity achieved by a mi-
croaggregation method is to consider the ratio between the total number n of
records and the number of protected records which are different. This gives the
average size of each ’global cluster’ in the protected data set. We denote as k′

this real anonymity measure

k′ =
n

|{x′|x′ ∈ X ′}|

In the (unrealistic) case where all the entries of the data set X are random
and independent, counting the expected number of different protected records
is equivalent to counting the expected number s(m, n) of distinct elements in a
sample of n elements extracted, with replacement, from a universe of m elements.
In our case, the universe of m elements contains the m =

⌈
n
k

⌉r
different possible

© CSIC  © del autor o autores / Todos los derechos reservados



3.1. Attribute Selection in Multivariate Microaggregation 43

configurations for a protected record, where k is the initial anonymity parameter,
and r is the number of blocks. The exact value of s(m, n) is

s(m, n) =
1

mn

n∑

ℓ=1

(
m

ℓ

)
ℓ! ℓ

∑

i1 + . . . + iℓ = n − ℓ
ij ≥ 0

ℓ∏

j=1

jij

This value is quite hard to compute when m and n are large. Anyway, there
are some tight bounds for s(m, n) (see page 10 of [55], for example):

m(1 − e−m/n) + 0.1839 ≤ s(m, n) ≤ m(1 − e−m/n) + 0.3678. (3.1)

The final value of k′, in this unrealistic case of totally random entries, would
be computed as k′ = n/s(m, n), taking m =

⌈
n
k

⌉r
.

3.1.2 Strategies to Group Attributes in Microaggregation

To apply microaggregation to a data set X , we need to settle the method itself
(i.e., which variation we will apply), the parameter k, and the number of blocks
the data set X is split into. However, these are not the only parameters to be
considered when the number r of blocks is larger than 1. In this case, the way
in which the attributes are grouped into blocks affects in an important way the
results and the quality of the microaggregation.

It is standard practice to select the attributes on the basis of statistical
utility. It is clear that if highly correlated attributes are considered, records
similar with respect to one attribute will be similar with respect to another
one. Due to this, if microaggregation is applied to correlated attributes, clusters
will contain records that are similar with respect to all the attributes included
in the cluster. Therefore, this approach results in microaggregation with low
information loss.

Nevertheless, as usual, statistical utility and privacy are inversely related
terms. Experiments in Section 3.1.4 show that, as expected, the disclosure risk
of microaggregation in this case is higher than when correlated attributes are
put into different blocks.

More specifically, we also study in Section 3.1.4 a different approach. Blocks
are formed in such a way that the first attributes of all blocks are (highly)
correlated, the second attributes of all blocks are (highly) correlated, and so on.
In some way, we construct ’correlated blocks’, instead of constructing blocks with
correlated attributes. The goal of this new approach is to try to increase the
resulting real anonymity k′. If two records A and B are in the same cluster for
some blocks, this means that the first attribute values of these records are more
or less close to each other, and the same for the second attribute of the block, etc.
Then, when we consider another block, if the j-th attribute of this new block
is (highly) correlated with the j-th attribute of the firstly considered block,
records A and B will likely be close to each other as well, with respect to the
attributes in the second block. Therefore, with some non-negligible probability,
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A and B will fall in the same cluster, again. Ideally, some records will fall
inside the same clusters, for each block of attributes, and so the number of
protected records which will be exactly equal will be higher, increasing in this
way the real anonymity and the privacy level of the released data set. Of course,
the probability of maintaining a good level of anonymity decreases very quickly
when the number r of blocks is high (remember the unrealistic but orientating
formula for the expected size of the global clusters, stated in the example at
the end of previous Section 3.1.1). But for small values of r, say r = 2, 3, the
difference between the two types of grouping strategies, in terms of the achieved
real anonymity k′, is appreciable, as we will see in our experiments in Section
3.1.4.

Before moving to these experiments involving real data sets, we want to
illustrate the arguments explained above with two simple examples, where the
two grouping strategies are easy to distinguish and lead to different results. In
general, this will not be the case with real data sets, where it is not always easy
to find enough (high) correlations between attributes, and so the differences
between applying one grouping strategy or another may be slight.

3.1.3 Motivating Examples

We explain two unrealistic but illustrative ways to find examples of data sets
for which the two grouping strategies are very different. In particular, the most
popular strategy (first one) of grouping correlated attributes behaves worse than
the second strategy (correlated blocks).

In the first example, the data set contains two different attributes, which are
repeated (i.e., we have four attributes in total), and so that the correlation be-
tween the two original attributes is zero. A simple way to artificially generate two
completely uncorrelated attributes is to generate a random point (x, y) with two
attributes, and then to include the four points (x, y), (x,−y), (−x, y), (−x,−y)
to the data set. Therefore, the total number of points will be a multiple of
four. In our example, we have taken points (x, y) which are in the same cir-
cumference of radius 1; specifically, we have taken (x, y) = (cos θ, sin θ), for
θ = π/20, 3π/20, 5π/20, 7π/20, 9π/20. The resulting 20 points, which are repre-
sented in Figure 3.1(a), form the two first attributes of the data set, which are
then repeated to have four attributes a1, a2, a3, a4, such that a1 = a3, a2 = a4
and the correlation between a1 and a2 is zero. In this case, if we want to inde-
pendently microaggregate two blocks of two attributes each, the two grouping
strategies are clearly distinguishable.

In the first one (correlated attributes), we group a1, a3 on the one hand, and
a2, a4 on the other hand. We have applied the MDAV algorithm with k = 2.
In this case, we have obtained no information loss, i.e. IL=0. However, the
protected data set has real anonymity k′ equal to 1. For this reason, the pro-
tected data set obtained using this attribute selection has a very high disclosure
risk; for example the interval disclosure risk is maximum, ID=100, and the dis-
tance based linkage disclosure risk is DLD=75.00. If we compute the score, the
measure explained in Section 2.5, we obtain Score=43.75.
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Figure 3.1: Points which have been artificially generated to obtain databases
with non-correlated attributes, in 2 dimensions (a), and 3 dimensions (b).

Following the second strategy (correlated blocks), we group a1, a2 on the one
hand, and a3, a4 on the other hand. We have applied the same microaggregation
algorithm with the same parameterization than in the former case (MDAV with
k = 2). Now, the information loss is equal to 26.38, quite higher than in the
previous case. However, the disclosure risk is lower than in the case of correlated
selection; for example, DLD=35.00 and ID=39.23. Summing up, the final score
is 32.37, lower than in the correlated case. In other words, the trade-off between
IL and DR is more in favour of the non-correlated case than of the correlated
one.

The second example is in some way a generalization of the first one. Now
the data set will contain three attributes which are repeated twice (nine at-
tributes in total), such that the correlation between any two of the three ini-
tial attributes is zero. The way to generate three attributes with this prop-
erty is the same as before: take a random point (x, y, z) and add to the
data set the eight points (x, y, z), (x, y,−z), (x,−y, z), (x,−y,−z), (−x, y, z),
(−x,−y, z), (−x, y,−z), (−x,−y,−z). Again, we have decided to take points
which are in the same sphere of radius 1; we have generated them as (x, y, z) =
(cos ϕ cos θ, cosϕ sin θ, sin ϕ), for θ, ϕ = π/20, 3π/20, 5π/20, 7π/20, 9π/20. This
gives us 25 initial points (x, y, z) and so 200 = 8·25 points in total, represented
in Figure 3.1(b), which form the three first attributes of the data set. By re-
peating twice these three attributes, we obtain a data set with 200 records and
nine attributes a1, . . . , a9 such that a1 = a4 = a7, a2 = a5 = a8, a3 = a6 = a9,
and such that the correlations between a1 and a2, between a1 and a3, and be-
tween a2 and a3, are zero. Suppose we want to microaggregate three blocks of
three attributes each, with k = 4. Again, the two strategies lead to different
results, which are very similar to the results obtained in the first example (two
dimensions).

With the first strategy (correlated attributes), we group (a1, a4, a7),
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(a2, a5, a7) and (a3, a6, a9). After applying the MDAV algorithm with k = 4,
we obtain that the information loss is 0, but the disclosure risk is quite high; for
example, the distance based linkage disclosure risk is DLD=55, and the interval
disclosure risk is maximum, ID=100. The final value of the score in this case is
38.75.

The second strategy (correlated blocks) recommends to group (a1, a2, a3),
(a4, a5, a6) and (a7, a8, a9). We apply the same algorithm (MDAV) with k = 4,
and now we obtain a non-negligible information loss, IL=31.52. However, the
disclosure risk is lower, for example DLD=10 and ID=70.66, and the final score,
35.925, is better than the one obtained with the first strategy.

3.1.4 Experiments with Real Data Sets

id Name Description
a1 PH-E Input pH to plant
a2 PH-P Input pH to primary settler
a3 PH-D Input pH to secondary settler
a4 DQO-E Input chemical demand of oxygen to plant
a5 COND-P Input conductivity to primary settler
a6 COND-D Input conductivity to secondary settler
a7 DBO-S Output biological demand of oxygen
a8 SS-S Output suspended solids
a9 SED-S Output sediments

Table 3.1: Attribute selection of the Water Treatment data set.

id Name Description
a1 UTILITYID Unique utility identification number
a2 UTILNAME Utility name
a3 YEAR Reporting year for the data
a4 RESSALES Sales to residential consumers
a5 COMREVENUE Revenue from sales to commercial consumers
a6 COMSALES Sales to commercial consumers
a7 MONTH Reporting month for the data
a8 RESREVENUE Revenue from sales to residential consumers
a9 INDREVENUE Revenue from sales to industrial consumers

Table 3.2: Attribute selection of the EIA data set.

We have tested the two different strategies for attribute grouping with two
real data set. The first one, denoted as Water Treatment data set, was extracted
from the UCI repository [46], the second data set, called EIA, from the U.S.
Energy Information Authority [72]. Both data sets are described in Section 2.6.
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k IL DLD PLD ID Score
M

ic
.M

D
A
V

-k 5 14.14 73.03 67.24 72.73 42.79
10 18.78 61.97 55.66 63.56 39.98
15 17.34 49.74 43.95 56.99 34.63
20 18.28 39.34 35.53 51.18 31.29
25 21.68 32.37 29.08 48.59 30.67

M
ic

.P
C

P
-k

0 18.36 40.39 30.39 60.82 33.23
10 18.11 30.00 21.58 53.66 28.92
15 21.67 23.82 20.39 50.54 29.00
20 25.17 21.45 16.05 47.21 29.08
25 23.25 19.08 13.68 49.34 28.05

M
ic

.Z
sc

o
re

s-
k 5 17.62 76.05 62.50 68.65 43.29

10 20.62 63.82 54.87 61.53 40.53
15 20.99 54.08 47.76 56.42 37.33
20 20.74 47.76 40.79 53.48 34.81
25 24.30 43.95 34.47 54.04 35.46

Correlated attributes

k IL DLD PLD ID Score

M
ic

.M
D

A
V

-k 5 31.75 8.16 39.87 45.79 33.32
10 28.28 5.26 28.95 43.00 29.16
15 35.60 2.50 18.82 41.89 30.94
20 32.44 2.63 14.21 39.34 28.16
25 36.74 1.71 12.89 30.85 27.91

M
ic

.P
C

P
-k

5 50.41 8.95 2.11 36.63 35.74
10 53.51 5.00 0.79 30.96 35.22
15 56.28 4.21 1.32 30.37 36.42
20 61.02 4.74 1.05 26.30 37.81
25 62.48 3.82 0.26 25.61 38.15

M
ic

.Z
sc

o
re

s-
k 5 98.33 10.13 3.16 42.96 61.57

10 108.75 6.05 2.24 40.61 65.57
15 113.74 5.39 1.71 40.18 67.80
20 114.78 3.03 1.45 39.98 67.94
25 113.71 3.29 1.05 37.60 66.80

Non-correlated attributes

Table 3.3: Scores of different microaggregation methods and parameterizations
using the Water Treatment data set. Mic.Method-k corresponds to microaggre-
gation using method Method (MDAV, PCP or Zscore) with initial anonymity
value k.

We have reduced both data sets to have only 9 attributes in order to form 3
blocks of 3 attributes each. In this scenario, it is easier to apply and compare the
two attribute grouping strategies. Namely, if attributes a1, a2, a3 are highly cor-
related with each other, and the same happens for a4, a5, a6 on the one hand, and
a7, a8, a9 on the other hand, the first strategy (correlated attributes) will lead
to blocks (a1, a2, a3), (a4, a5, a6) and (a7, a8, a9), whereas the second strategy
(correlated blocks) will lead to blocks (a1, a4, a7), (a2, a5, a8) and (a3, a6, a9).

In the case of the Water Treatment data set, there are many attributes (and
possible groups) of highly correlated attributes. We have chosen the attributes
presented in Table 3.1. In the case of the EIA data set we have chosen the
attributes presented in Table 3.2

Tables 3.3 to 3.6 summarize the results of the experiments. We have applied
to each data set the three microaggregation methods described in Section 2.4.2:
MDAV, PCP and Zscores microaggregation. For each data set and method, we
have tested five different parameterizations according to the initial value of k
(k = 5, 10, 15, 20, 25 for the Water Treatment data set, and k = 5, 25, 50, 75, 100
for the EIA data set). Finally, we have run all these experiments for the two
considered attribute grouping strategies: correlated attributes, where blocks are
(a1, a2, a3), (a4, a5, a6) and (a7, a8, a9), and non-correlated attributes (which
corresponds to ’correlated blocks’), where blocks are (a1, a4, a7), (a2, a5, a8)
and (a3, a6, a9).
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k IL DLD PLD ID Score
M

ic
.M

D
A
V

-k 5 6.68 1.78 2.87 87.60 25.82
25 11.83 0.78 0.68 79.55 25.99
50 13.23 0.60 0.56 72.37 24.85
75 15.56 0.53 0.55 72.16 25.95

100 17.63 0.39 0.49 67.52 25.81

M
ic

.P
C

P
-k

5 16.61 1.78 2.87 65.29 25.21
25 18.33 0.78 0.68 61.62 24.76
50 19.77 0.60 0.56 59.71 24.96
75 21.16 0.53 0.55 59.67 25.63

100 22.26 0.39 0.49 57.87 25.71

M
ic

.Z
sc

o
re

s-
k 5 12.58 6.17 8.36 75.09 26.88

25 16.04 5.03 5.98 70.88 27.12
50 16.84 4.92 5.60 69.36 27.07
75 18.69 3.91 5.30 69.71 27.92

100 18.86 3.48 4.63 67.78 27.39

Correlated attributes

k IL DLD PLD ID Score

M
ic

.M
D

A
V

-k 5 10.05 1.61 2.43 83.30 26.36
10 16.58 0.81 0.56 72.27 26.53
15 21.86 0.62 0.49 67.16 27.86
20 20.26 0.68 0.60 64.61 26.44
25 25.14 0.60 0.48 61.29 28.02

M
ic

.P
C

P
-k

5 19.37 0.62 0.54 57.35 24.17
10 22.07 0.63 0.48 53.45 24.54
15 22.25 0.64 0.48 52.41 24.37
20 22.70 0.64 0.49 52.11 24.52
25 23.07 0.66 0.50 50.93 24.42

M
ic

.Z
sc

o
re

s-
k 5 16.81 2.58 3.82 75.75 28.14

10 17.06 1.92 2.55 75.21 27.89
15 17.25 1.44 2.22 73.88 27.55
20 17.83 1.25 2.14 73.71 27.77
25 17.80 1.16 1.88 70.95 27.02

Non-correlated attributes

Table 3.4: Scores of different microaggregation methods and parameterizations
using the EIA data set. Mic.Method-k corresponds to microaggregation using
method Method (MDAV, PCP or Zscore) with initial anonymity value k.

Firstly, we concentrate on the generic measures for the information loss and
the disclosure risk (and so, the score). Table 3.3 shows the results obtained in the
case of the Water Treatment data set. The differences between the two strategies
are very evident, since the first one leads to much lower values of the information
loss, whereas the second one leads to much lower values of the disclosure risk.
For instance, by comparing the information loss of the Zscores microaggrega-
tion, correlated attributes selection obtains IL values between 17.62 and 24.30,
whereas the non-correlated selection obtains values between 98.33 and 113.71.
Regarding the three employed methods, MDAV has the best scores in the non-
correlated scenario (27.91 is the best one, PCP and Zscores microaggregation
always obtain scores over 35.00), whereas PCP microaggregation has the best
scores in the correlated case (28.05 is the best one). The behaviour of Zscores
microaggregation is quite surprising: it has quite good scores in the correlated
case, but very bad scores (in particular, very high information loss) in the case
of ’correlated blocks’.

Similar results are presented in Table 3.4, where the measures are com-
puted for the EIA data set. Here, the comparison between correlated and non-
correlated results is not as different as in the Water Treatment data set. In our
opinion, this is so because the correlations among attributes are not so high.
However, if one observes the information loss values presented in this table, it is
easy to see that IL values are lower in the correlated case. See, for instance, the
IL values in the MDAV microaggregation for the correlated selection. They are
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k SSE k′

r 1G 2G 3G

M
ic

.M
D

A
V

-k 5 28.18 5.28 1.02 1.00
10 46.14 10.00 1.15 1.01
15 72.03 15.20 1.38 1.01
20 94.24 20.00 1.64 1.03
25 114.56 25.33 2.11 1.09

M
ic

.P
C

P
-k

5 28.59 5.35 1.04 1.00
10 49.61 10.00 1.11 1.00
15 71.99 15.20 1.30 1.01
20 91.96 20.00 1.66 1.03
25 110.91 25.33 2.09 1.04

M
ic

.Z
sc

o
re

s-
k 5 23.78 5.43 1.03 1.00

10 49.05 10.00 1.16 1.01
15 72.23 15.20 1.33 1.02
20 93.10 20.00 1.62 1.03
25 111.69 25.33 2.15 1.07

Correlated attributes

k SSE k′

r 1G 2G 3G

M
ic

.M
D

A
V

-k 5 69.51 5.00 1.16 1.01
10 126.21 10.00 1.84 1.13
15 173.96 15.20 2.66 1.38
20 259.07 20.00 3.76 1.50
25 247.58 25.33 4.87 1.87

M
ic

.P
C

P
-k

5 93.67 5.07 1.04 1.00
10 133.83 10.00 1.18 1.01
15 170.12 15.20 1.41 1.02
20 206.74 20.00 1.78 1.06
25 229.50 25.33 2.16 1.12

M
ic

.Z
sc

o
re

s-
k 5 73.52 5.00 1.06 1.01

10 115.77 10.00 1.35 1.05
15 160.30 15.20 1.84 1.10
20 197.20 20.00 2.59 1.26
25 231.81 25.33 3.62 1.43

Non-correlated attributes

Table 3.5: SSE and real k′ values of different microaggregation methods and
parameterizations for different number of groups known by the intruder using
the Water-treatment data set. Mic.Methodk corresponds to microaggregation
using method Method (MDAV, PCP or Zscore) with initial anonymity value k.

between 6.68 and 17.63. In contrast, for the non-correlated ones, IL values are
between 10.05 and 25.14.

Regarding disclosure risk, we observe that non-correlated selection presents
lower disclosure risk than correlated one. For instance, if one observes the values
for the distance based and probabilistic record linkage (DLD and PLD) and
interval disclosure (ID) for the Mic.PCP-5 configuration in the Water Treatment
data set, it is clear that correlated selection has higher disclosure risk than non-
correlated selection. In particular, DLD, PLD and ID values for the correlated
case are 40.39, 30.39 and 60.82 respectively, whereas in the non-correlated case
DLD, PLD and ID values are 8.95, 2.11 and 36.63.

Now, we consider the performance measures for microaggregation: the values
of SSE and the real anonymity k′. We consider different situations where an
intruder can have access to one (the first one), two (the first two ones) or the
three blocks of protected data. 3.5 and 3.6 show the results for SSE and real
anonymity k′.

Of course, if the intruder has access only to one block, then the real
anonymity k′ roughly coincides with the initial value of k. In fact, it is larger
because for microaggregation with initial parameter k the number of records
in a cluster is in the interval [k, 2k). In the general case, the tables show that
k′ decreases rapidly with regards to the number of blocks considered. Also, as
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k SSE k′

r 1G 2G 3G
M

ic
.M

D
A
V

-k 5 28.74 5.12 1.10 1.03
25 145.36 25.42 1.83 1.26
50 219.45 50.52 3.20 1.57
75 313.31 75.78 4.95 1.92

100 397.48 102.30 7.54 2.57

M
ic

.P
C

P
-k

5 141.29 5.27 1.02 1.00
25 203.81 25.42 1.27 1.04
50 330.19 50.52 1.91 1.15
75 469.74 75.78 2.87 1.30

200 649.49 102.30 4.28 1.53

M
ic

.Z
sc

o
re

s-
k 5 50.65 5.18 1.02 1.01

25 140.70 25.26 1.44 1.06
50 184.19 50.52 2.59 1.28
75 287.95 75.78 4.45 1.58

100 378.51 102.30 6.90 2.02

Correlated attributes

k SSE k′

r 1G 2G 3G

M
ic

.M
D

A
V

-k 5 45.18 5.01 1.15 1.06
25 212.44 25.10 2.06 1.28
50 361.38 50.52 4.43 1.81
75 468.30 75.78 7.08 2.30

100 569.66 102.30 10.94 3.17

M
ic

.P
C

P
-k

5 124.83 5.14 1.02 1.01
25 251.99 25.10 1.33 1.06
50 369.73 50.52 2.16 1.20
75 482.05 75.78 3.39 1.40

100 608.82 102.30 5.00 1.73

M
ic

.Z
sc

o
re

s-
k 5 111.97 5.08 1.03 1.01

25 212.47 25.10 1.65 1.12
50 336.68 50.52 3.45 1.52
75 439.99 75.78 6.13 2.18

100 553.89 102.30 9.79 3.16

Non-correlated attributes

Table 3.6: SSE and real k′ values of different microaggregation methods and
parameterizations for different number of groups known by the intruder using
the EIA data set. Mic.Methodk corresponds to microaggregation using method
Method (MDAV, PCP or Zscore) with initial anonymity value k.

expected, k′ is always larger when we consider correlated blocks. Note that
the differences between the k′ values of the two strategies are noticeable, spe-
cially, when only two blocks of attributes are considered, and when the initial
anonymity value k is quite large. Furthermore, both strategies lead to higher
values of k′ than those which would be obtained in the ’unrealistic’ totally ran-
dom case introduced in the example in Section 3.1.3, as one should expect. For
example, if we consider the Water Treatment data set (see Table 3.5) with two
(r = 2) groups of attributes and k = 25, then the unrealistic case would lead
to a real anonymity k′ between 1.915 and 1.918 (using the bounds for s(m, n)
given in Equation (3.1)), but the two realistic strategies lead to values around
k′ = 2.1 (for the first strategy) and values between 2.16 and 4.87 (for the second
strategy).

SSE behaves more or less as the information loss: it is lower when the initial
value of k is small, and it is lower in the correlated case than in the non-correlated
case. The three microaggregation methods obtain very similar results for the
SSE in both the correlated and non-correlated scenarios, so we cannot deduce
from this experiment that any of them provides a better solution to the original
microaggregation problem.
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3.1.5 Attribute Selection Consequences

From the results obtained in the experiments, we can extract some consequences
which are valid either for the microaggregation technique in general or for the
specific strategies to group attributes in blocks.

The first of them is that the real anonymity that microaggregation provides,
when the data set is split into blocks of attributes, decreases very quickly when
the number of blocks increases, independently of the strategies for grouping
attributes. For example, for standard values of the initial parameter k, less
than 25, we observe that real anonymity is almost non-existent if the number of
blocks is r = 3 (or more). Therefore, if k′-anonymity was the main motivation
to choose microaggregation as a data protection method, one should either start
with a large value for the initial k, or split the data set into only one or two
blocks of attributes.

With respect to this, note, however, that microaggregation ranks among the
best methods for data protection in [21] with respect to the trade-off between
privacy and data utility. This is so, because even in the case that k-anonymity
is not achieved, the perturbation added to the data might make re-identification
difficult.

If we focus on the overall evaluation of the method taking into account all
measures for information loss, disclosure risk, SSE and real anonymity, obtained
by the two strategies, it is very difficult to conclude that one of them is better
than the other. As expected, when blocks are formed by correlated attributes, we
obtain better results in terms of the information loss and SSE. On the contrary,
for ’correlated blocks’, we obtain better results in real anonymity, and also in
the disclosure risk. These aspects are more or less compensated when computing
the final score for each case: the scores obtained by the two strategies are very
similar.

The clear consequence of this analysis is that the strategy for grouping at-
tributes is another degree of freedom for microaggregation that has to be consid-
ered with care. As shown in the simple (unrealistic) examples of Section 3.1.3,
it might be even possible to have much better results if we use blocks with
uncorrelated attributes.

Then, with real data, when choosing the value for k, one can take a small
k if data utility is the main goal (at the cost of a lower level of privacy), and a
larger k if privacy is the main concern. Analogously, one can microaggregate the
whole data set as a single block, if privacy is considered to be more important
than data utility; or one can form a higher number of blocks, if data utility is
the most desired property of the protection. In the case of the grouping strategy
selection, giving priority to data utility corresponds to choosing the first strategy,
correlated attributes in the same block(s). This can be the case if the protected
data is going to be released to a more or less reliable (or restricted) network.
However, if the protected data is going to be widely released, for example in the
Internet, then maybe privacy is considered to be the main concern; in this case,
the second strategy, ’correlated blocks’, should be chosen, because it enjoys a
higher anonymity level and a lower disclosure risk.
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3.2 Modeling Projections in Microaggregation

As we have explained in the preliminaries, the main problem for extending op-
timal univariate microaggregation to the multivariate case is the sorting of mul-
tivariate data. One approach is to reduce the dimensionality of the problem.
That is, to move from the case of several attributes into one attribute.

Projected microaggregation simplifies the multivariate microaggregation
problem translating it into the univariate case. To do this, A attributes are
summarized/represented into a single value in a projected axis. Normally, this
summarization is done using the Principal Component Analysis or the sum of
Zscores (both methods are described in the preliminaries). The aim of both
methods is to establish an order among records to apply an optimal univariate
microaggregation algorithm.

In order to summarize several attributes into a single value, aggregation
functions can be used. In this section, we propose replacing the use of projec-
tion methods in microaggregation by the use of methods based on aggregation
functions. We show that the trade-off between privacy and statistical utility
achieved by microaggregation using the Sugeno integral (defined in Section 2.1)
to summarize the attributes is equal, better in many cases, than the traditional
projected microaggregation methods.

3.2.1 Algorithm Description

As we have explained before, projected microaggregation defines a sorting crite-
rion over the multivariate data. Traditional projected microaggregation methods
build a projected axis to establish an order among records. Here, we propose
to do that using aggregation functions instead of building a projected axis. We
propose to use aggregation functions over the records to be protected in order
to compute a representative summarized value, and then, using such value, to
sort the records in the data set. Naturally, at that time, optimal univariate mi-
croaggregation methods can be applied. That is, we propose to use aggregation
functions over the records to be protected in order to compute a representative
summarized value and then using such value, to sort the records in the data set.
Obviously, at that time, optimal univariate microaggregation methods can be
applied.

This new approach has several advantages with regards to the traditional
projected approach. We underline the following ones.

• In projected methods, we need to compute some parameters. For instance,
the sum of Zscores calculates the average and the variance of all the at-
tributes, PCP needs to solve an optimization problem. This is unnecessary
using aggregation functions. Therefore, our new approach save execution
time.

• Projected methods are not configurable. By using aggregation functions,
one can define how data is sorted and, in some sense, protected.
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Algorithm 4: Modeling Projection Microaggregation

Data: X: original data set, k: integer
Result: X’: protected data set
begin1

Split the data set X into r sub-data sets {Xi}1≤i≤r, each one with2

ai attributes of the n records and according to a partition {Ai}i of
the attributes A
foreach sub-data set Xi ∈ X do3

Compute an aggregation function with the attributes Ai in Xi,4

which results in an univariate summarized vector pi with n
components (one for each record)
Sort the components of pi in increasing order5

Apply to the sorted vector pi the univariate optimal6

microaggregation
For each cluster resulting from the previous step, compute the7

vi-dimensional centroid and replace all the records in the
cluster by the centroid

end8

• It is often the case that the projected values returned by a projection
method are difficult to understand. Using aggregation functions one is
able to understand the final summarized value for a concrete record.

Formally, the projected microaggregation is defined in Algorithm 4. De-
pending on the aggregation function used in this algorithm, we obtain different
methods of modeling projection microaggregation. In this thesis, we use the
Sugeno microaggregation. Such microaggregation uses the Sugeno integral with
regards to the measure µ(A) = Q(|A|/N) for A ⊆ X where Q(x) = x. A graphic
representation of this measure is presented in Figure 3.2.

0.1 0,1 0,99

0.2 0,2 0,91

0.3 0,3 0,86

0.4 0,4 0,65

0.5 0,5 0,5

0.6 0,6 0,3

0.7 0,7 0,25

0.8 0,8 0,2
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1 1 0,05
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Figure 3.2: Quantifier Q(A) = Q(|A|/N) where Q(x) = x and a represents the
values of one record of the data set.
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Figure 3.3: Graphical representation of the DR (a) and Score (b) of (PCP,
Zscores and Sugeno) microaggregation using a = 4 and k = 5, 15, 25.

3.2.2 Experiments

We have protected two different data sets (Census and EIA data sets) with dif-
ferent instances of PCP, Zscores and Sugeno microaggregation methods. These
data sets were proposed in the CASC project [10] as the reference data sets for
comparing protection methods. Both data sets are described in Section 2.6.

Each of the three microaggregation methods has been applied with the follow-
ing 9 parameterizations of the pairs (k,a): k = 5, 15, 25 for the minimal number
of elements in the resulting clusters, and a = 2, 3, 4 for the number of attributes
contained in each block of attributes to which microaggregation is applied. For
example, Mic2.Zscores.15 refers to the Zscores microaggregation method applied
to blocks of a = 2 attributes, with the constraint that resulting clusters must
contain at least k = 15 records. When the total number of attributes is not a
multiple of a (for example, this always happens with Census data set, since 13 is
prime), the last non used attributes are non microaggregated and removed from
the beginning.

For DLD, PLD and ID computation we have considered different cases, ac-
cording to the number of groups of attributes of the original record(s) to be
linked, that the intruder knows. This number varies from 2 to the total num-
ber of attributes of each data set. The values in the table are the average of
the obtained correct links for all these cases, for each parameterization of each
microaggregation method. Figure 3.3.(a) and 3.3.(b) present in a graphical way
disclosure risk (DR) and score for the microaggregation of the Census data set
with a = 4 (the most protected configuration). We can observe that the Sugeno
microaggregation algorithm obtains always the lowest DR and the best scores
for k = 15, 25.

In Table 3.7 we present the scores as well as the unaggregated components.
It can be seen that for some cases, Sugeno microaggregation leads to the lowest
score (and the same for its components). For example, the score obtained by
Sugeno microaggregation method is 49.39 in the Census data set with a = 4
and k = 25, while using PCP and Zscores microaggregation, the values are
around 56. It is similar for the IL and DR components (IL, DLD, PLD and
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a k IL DLD PLD ID Score

M
ic

.a
.P

C
P

-k
2 5 13.90 2.94 6.91 70.04 25.69
2 15 17.24 1.72 2.37 67.67 26.05
2 25 19.98 1.42 1.58 67.21 27.17
3 5 16.08 2.47 2.69 62.79 24.38
3 15 17.76 1.49 1.21 59.41 24.07
3 25 18.49 1.31 0.90 58.49 24.14
4 5 18.25 4.23 4.81 73.22 28.56
4 15 16.39 1.96 2.13 70.48 26.33
4 25 17.27 1.93 1.91 69.66 26.53

M
ic

.a
.Z

sc
o
re

s-
k

2 5 4.27 25.36 36.08 89.26 32.13
2 15 5.08 21.92 34.37 87.85 31.54
2 25 5.52 21.05 35.06 87.33 31.61
3 5 13.24 6.40 9.26 72.31 26.66
3 15 15.30 3.79 5.50 69.35 26.15
3 25 15.73 3.21 5.02 68.65 26.06
4 5 13.91 5.21 8.50 78.73 28.35
4 15 21.79 2.71 4.40 77.41 31.14
4 25 21.66 2.35 3.89 76.76 30.80

M
ic

.a
.S

u
g
en

o
-k

2 5 5.25 17.79 23.90 86.65 29.50
2 15 6.24 14.14 19.11 85.08 28.55
2 25 6.49 12.81 18.29 84.51 28.26
3 5 17.22 3.78 6.89 65.52 26.32
3 15 21.31 1.74 3.21 61.22 26.58
3 25 20.08 1.47 2.65 60.83 25.76
4 5 28.78 2.20 3.30 73.48 33.45
4 15 35.97 0.71 1.03 70.86 35.92
4 25 45.27 0.42 0.71 70.31 40.35

EIA data set

a k IL DLD PLD ID Score

M
ic

.a
.P

C
P

-k

2 5 80.96 12.93 5.70 42.60 53.46
2 15 92.94 8.46 2.94 35.64 56.81
2 25 84.77 6.61 1.94 32.93 51.69
3 5 57.72 10.15 5.71 43.48 41.71
3 15 71.28 4.35 3.49 37.36 45.96
3 25 72.49 4.07 2.65 35.51 45.96
4 5 72.23 6.48 3.06 45.12 48.59
4 15 91.74 3.43 2.04 40.73 56.74
4 25 92.17 2.92 1.71 39.72 56.59

M
ic

.a
.Z

sc
o
re

s-
k

2 5 81.57 16.78 7.85 48.27 55.93
2 15 98.05 12.96 6.19 44.33 62.50
2 25 100.92 12.85 4.83 42.90 63.40
3 5 60.98 14.44 13.67 50.63 46.66
3 15 75.21 9.38 10.46 45.71 51.51
3 25 79.38 7.47 9.04 44.20 52.80
4 5 62.04 11.71 7.04 40.50 43.49
4 15 86.47 5.60 4.21 43.77 55.40
4 25 89.20 4.40 3.38 42.86 56.29

M
ic

.a
.S

u
g
en

o
-k

2 5 73.44 9.63 6.00 40.75 48.86
2 15 79.39 4.85 4.63 34.02 49.39
2 25 73.43 3.72 4.76 32.96 46.02
3 5 83.93 7.47 7.25 44.50 54.93
3 15 122.52 3.55 5.52 39.47 72.26
3 25 129.37 3.30 4.57 39.08 75.44
4 5 82.43 3.15 0.51 36.51 50.80
4 15 86.64 0.83 0.28 32.19 51.51
4 25 83.08 0.60 0.37 30.90 49.39

Census data set

Table 3.7: Score of different microaggregation methods and parameterizations.
Mic.i.var.j corresponds to microaggregation using variation var (either PCP,
Zscores or Sugeno) with a = i and k = j.

ID values). The values for Sugeno microaggregation are 83.08, 0.60, 0.37 and
30.90, respectively better than for PCP and Zscores microaggregation (89.02,
4.40, 3.38 and 42.86 for Zscores microaggregation; 92.17, 2.92, 1.71, 39.72 and
39.72 for PCP microaggregation).

Another interesting result can be observed analyzing Table 3.7: our approach
never obtains the worst results (neither score values nor its components) in
any case. This fact indicates that the results of our new approach are more
independent of the data set than projected microaggregation methods.
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3.3 Improving Microaggregation for Complex

Record Anonymization

As we have explained before, when records are complex, i.e., the number of
attributes of the data set is large, data sets are usually split into smaller blocks
of attributes and microaggregation is applied to each block, successively and
separately. In this way, information loss when collapsing several values to the
centroid of their group is reduced, at the cost of losing the k-anonymity property
when at least two attributes of different blocks are known by the intruder.

In this section, we present a new microaggregation method called one dimen-
sion microaggregation (Mic1D-κ, for short). This method gathers all the values
of the data set into a single sorted vector, independently of the attribute they
belong to. Then, it microaggregates all the mixed values together. The exper-
iments presented here show that, by using real data sets, our proposal obtains
lower disclosure risk than previous approaches whereas the information loss is
preserved.

3.3.1 One Dimension Microaggregation

As shown in Figure 3.4, the pre-processing data block of Mic1D-κ can be decom-
posed in several steps. Namely, vectorization, sorting, partitioning and normal-
ization. Sorting, partitioning and normalization steps are repeated once. Then,
we go into further details about these steps. We also illustrate this process by
means of an illustrative example.

Mean value

computation

De-

normalization

{pm,n} {pm,n}
Vectorization Partitioning NormalizationSorting

D

V VS {Pm} {Pm}

Data 

Pre-processing

Data Set 

Protection

N = R · a

R

a

P

k

r

Figure 3.4: Mic1D-κ schema.

Vectorization

The vectorization step gathers all the values from the data set in a single vector,
independently on the attribute they belong to. Thereby, we ignore the attribute
semantics and therefore the possible correlation between two different attributes
in the data set. In other words, we desemantize the microdata file. This process
plays a central role in later discussion about the results achieved by Mic1D-κ.

Formally speaking, let D be the original data set to be protected. We denote
by R the number of records in D. Each record consists of a numerical attributes.
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We assume that none of the records contains missing values. We denote by N
the total number of values in D. As a consequence, N = R · a.

Let V be a vector of size N containing all the values in the data set. Mic1D-κ
treats values in the data set as if they were completely independent. In other
words, the concept of record and attribute is ignored and the N values in the
data set are placed in V .

The effect of this step on a certain data set is depicted in the upper half of
Figure 3.4.

Original data set D
Age Height (cm) Weight (kg) Income (¤)
23 159 52 12000
23 177 75 7000
55 173 79 50000
80 155 55 5000
30 180 70 30000

Table 3.8: Example of a microdata file used to illustrate the preprocessing block.

Example 3.1 Let us consider the data set D shown in Table 3.8. According
to the notation introduced we have a = 4, R = 5, and N = 20. The result of
applying vectorization would be:

V = [ 23 23 55 80 30 159 177 173 155 180 52 75 79 55 70 12000 7000 50000 5000 30000 ]

Sorting

Since the values in the vectorized data set belong to different source attributes,
they present a pseudo-random aspect and it becomes very difficult to find the
optimal partitions, i.e. partitions with SSE value as low as possible. In order
to simplify this search, the whole vector is sorted. This way, by the result 1 of
univariate microaggregation presented in Section 2.4.2, optimal partitions are
contiguous and, therefore, the partitioning process in this new vector can be
done easily, as we will see later.

Formally, V is sorted increasingly. Let us call Vs the sorted vector of size N
containing the sorted data and vi the ith element of Vs, where 0 ≤ i < N .

Example 3.2 Let us continue the process presented in Example 3.1, where we
illustrate the pre-processing block applied to the data set shown in Table 3.8. The
result of the sorting process applied to vector V would be:

Vs = [ 23 23 30 52 55 55 70 75 79 80 155 159 173 177 180 5000 7000 12000 30000 50000 ]
v0 v1 v2 . . . v17 v18 v19
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Partitioning

Similarly to general microaggregation, in order to ensure a certain level of privacy
(k-anonymity), Mic1D-κ splits the vectorized data set in several κ-partitions and
it calculates the average value for each partition. By modifying the value of κ,
Mic1D-κ allows us to adjust the trade-off between information loss (SSE) and
disclosure risk. Note that if the vectorized data set was not sorted (previous
step), κ would not have this property.

Formally, Vs is divided into smaller sub-vectors or partitions. We define κ
where 1 < κ ≤ N as the number of values per partition. Note that if κ is not a
divisor of N , the last partition will contain a smaller number of values. Let P
be the number of partitions containing κ values. We call r the number of values
in the last partition where 0 ≤ r < κ. Therefore, N = κP + r. We will suppose
that r > 0, so we have P + 1 partitions (note that r > 0 if and only if κ does
not divide N). We denote by Pm the mth partition.

Let vm,n be defined as the nth element of Pm:

{
vm,n := vmκ+n n = 0 . . . κ − 1 m = 0 . . . P − 1
vP,n := vPκ+n n = 0 . . . r − 1

The upper half of Figure 3.4 shows the effect of this step on a certain data set.

Example 3.3 The result of the partitioning process applied to vector Vs of Ex-
ample 3.2 is presented below. We use κ = 8 (arbitrarily chosen) and thus,
according to the notation introduced, the number of partitions containing 8 val-
ues is P = 2. Since κ = 8 does not divide N = 20, there are r = 4 values in the
last partition.

P0 = [ 23 23 30 52 55 55 70 75 ]
v0,0 v0,1 . . . v0,6 v0,7

P1 = [ 79 80 155 159 173 177 180 5000 ]
v1,0 v1,1 . . . v1,6 v1,7

P2 = [ 7000 12000 30000 50000 ]
v2,0 v2,1 v2,2 v2,3

Normalization

Since the range of the values in the different attributes could differ significantly
among them, it is necessary to normalize the data to a certain predefined range
of values (see P1 in Example 3.3).

There are many ways to normalize a data set. A possible solution would be
to normalize each attribute independently before the application of the vector-
ization step. However, this normalization method could present problems with
skewed attributes and therefore the attributes could not be merged in the sorting
step. For this reason, we propose to normalize the data stored in each partition
separately. Thereby, similar values are assign to the same partition and therefore
the chances of avoiding the effect of skewness in the data are higher.
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Formally, we denote the normalized values as v̄m,n and the normalized par-
titions as P̄m. Let maxm and minm be the maximum and the minimum values
in the mth partition:

maxm := max
0≤i<k

{vm,i} minm := min
0≤i<k

{vm,i}

The normalized values are then defined as:

{
v̄m,n :=

vm,n−minm

maxm −minm
if maxm 6= minm

v̄m,n := 0.5 if maxm = minm

where 0 ≤ m < P (or 0 ≤ m ≤ P if κ does not divide N ,) and 0 ≤ n < κ. Note
that maxm = minm means that all the values in the partition are the same. In
this case, the normalized value is centered in the normalization range.

Example 3.4 Below we present the result of normalizing the partitioned data
set of Example 3.3.

P̄0 = [ 0 0 0.13 0.56 0.62 0.62 0.90 1 ]
v̄0,0 v̄0,1 . . . v̄0,6 v̄0,7

P̄1 = [ 0 0.0002 0.015 0.016 0.019 0.020 0.020 1 ]
v̄1,0 v̄1,1 . . . v̄1,6 v̄1,7

P̄2 = [ 0 0.12 0.53 1 ]
v̄2,0 v̄2,1 v̄2,2 v̄2,3

Re-sorting and Re-normalization

One of the goals of the sorting process, apart from reducing the SSE value, is to
desemantize the data set, i.e., to merge values from different attributes in order
to break completely the semantic and therefore make the re-identification process
more difficult. If the range of values of a certain attribute differs significantly
from the others, it is likely that it is not merged in previous steps. For instance,
in Table 3.8, values referring to the income are not likely to be merged with
other attributes.

In order to illustrate this problem, let us recall the expression of the sorted
vector of data (Vs) of Example 3.2:

Vs = [ 23 23 30 52 55 55 70 75 79 80 155 159 173 177 180 5000 7000 12000 30000 50000 ]
v0 v1 v2 . . . v17 v18 v19

Values referring to the income are underlined, and we can therefore verify that
they are not merged with other attributes.

In order to appropriately mingle all attributes, once data has been sorted
and normalized, we repeat these two steps (sorting and normalization). Since
the range of values have been homogenized by normalization, attributes are
conveniently mixed in the second sorting step and thus the data set is correctly
preprocessed.
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Mean Value Computation

Once data is preprocessed, for each partition P̄m, the mean value of its compo-
nents is computed:

µm =
κ−1∑

n=0

v̄m,n

κ
m = 0 . . . P − 1 µP =

r−1∑

n=0

v̄P,n

r

where the latter expression is applied to the last partition if r > 0, i.e., if κ does
not divide the total number of values in the data set.

The protected value p̄m,n for v̄m,n is then:

{
p̄m,n = µm n = 0 . . . k − 1 m = 0 . . . P − 1
p̄P,n = µP n = 0 . . . r − 1

Finally, Mic1D-κ denormalizes the data into the original range, according to
the normalization and re-normalization steps in the previous block. Then, the
protected values are placed in the protected data set in the same place occupied
by the corresponding vm,n in the original data set. In this way, we are undoing
the sorting and vectorization steps.

3.3.2 Experimental Results

We have tested Mic1D-κ and compared our results with those obtained by the
projected microaggregation (PCP, Zscores and Sugeno) and MDAV microag-
gregation, using the EIA and Water Treatment data sets (both described in
Section 2.6). As shown in Section 3.1, when protecting a data set using mul-
tivariate microaggregation, the way in which the data is split to form blocks is
highly relevant with regard to the degree of privacy achieved (k′ value). As in
Section 3.1, we have reduced both data sets to have 9 attributes, which we detail
in Tables 3.1 and 3.2.

As before, in both data sets, attributes a1, a2 and a3 are highly correlated as
well as attributes a4, a5 and a6 and attributes a7, a8 and a9. On the contrary,
attributes of different blocks are non-correlated. For our experiments, when
protecting data, we assume attributes to be split into three blocks of three
attributes each. Also, we consider two situations when protecting the data sets:
blocking correlated attributes and thus non-correlated blocks, i.e., (a1, a2, a3),
(a4, a5, a6) and (a7, a8, a9); or blocking non-correlated attributes but correlated
blocks, i.e., (a1, a4, a7), (a2, a5, a8) and (a3, a6, a9). Testing these two cases we
study the impact of the choice of attributes for the microaggregation groups,
based on their correlations, as we have done before in Section 3.1.

For each data set and attribute selection method, we apply all microaggre-
gation methods using different configurations (i.e. different values of k). The
selection of these values aims at covering a wide range of SSE values and, thus,
studying scenarios with different information loss values. Namely, we protect
the data sets with parameter k = 5, 25, 50, 75, 100 for the EIA data set, and k
= 5, 10, 15, 20, 25 for the Water Treatment data set.
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C
o
rr

el
a
te

d 1G (a1, a2, a3), (a4, a5, a6), (a7, a8, a9)

2G
(a1, a2, a5), (a1, a3, a7), (a2, a3, a6), (a1, a4, a5), (a2, a4, a6)

(a5, a6, a9), (a6, a7, a8), (a1, a8, a9), (a2, a7, a9)

3G
(a1, a4, a7), (a1, a5, a8), (a1, a6, a9), (a2, a4, a7), (a2, a5, a8)

(a2, a6, a9), (a3, a4, a7), (a3, a5, a8), (a3, a6, a9)

N
o
n
-c

o
rr

el
a
te

d

1G (a1, a4, a7), (a2, a5, a8), (a3, a6, a9)

2G
(a1, a4, a5), (a1, a3, a7), (a4, a7, a8), (a1, a2, a5), (a2, a4, a8)

(a5, a8, a9), (a3, a6, a8), (a1, a6, a9), (a3, a4, a9)

3G
(a1, a2, a3), (a1, a5, a6), (a1, a8, a9), (a2, a3, a4), (a4, a5, a6)

(a4, a8, a9), (a2, a3, a7), (a5, a6, a7), (a7, a8, a9)

Table 3.9: Different groups of attributes known by the intruder.

For Mic1D-κ, we use κ = 5000, 5500, 6000, 6500, 7000 for the EIA data
set and κ = 300, 500, 800, 850, 900 for the Water Treatment data set. Note
that, since Mic1D-κ desemantizes the data set, there is no point in considering
different situations related to the correlation of the attributes and, therefore, we
protect the data set just once for each parametrization. In order to make a fair
comparison, we have chosen the values of κ in Mic1D-κ to obtain similar SSE
values to those obtained by MDAV after protecting the data sets.

In order to compare the disclosure risk of microaggregation methods, we have
performed two different kinds of measures, the k′ measure and the DLD PLD
measures. For the k′ measure, we consider that a possible intruder knows the
values of three random attributes of the original data set. Different tests are
performed assuming that the intruder knows different sets of three attributes.
Depending on these attributes, by using multivariate microaggregation, the in-
truder will have information coming from one or more groups. Table 3.9 shows
all the considered possibilities.

Firstly, we suppose that the three known attributes belong to the same mi-
croaggregated block (e.g. (a1, a2, a3) in the correlated scenario or (a1, a4, a7)
in the non-correlated). Since the size of the three microagreggation blocks is 3,
there are only three options to consider. We denote this case by 1G. Since the
intruder only has access to data from one group, multivariate microaggregation
ensures the k-anonymity property (this is the best possible scenario for mul-
tivariate microaggregation). However, note that, usually, the intruder cannot
choose the attributes obtained from external sources and it might be difficult
to obtain all the attributes for the same group. Secondly, we assume that the
known attributes belong to two different microaggregated groups. There are
many possible combinations of three attributes under this assumption, so nine
of them were chosen randomly. We refer to this case as 2G. Finally, case 3G
is defined analogously to 2G, and also nine possibilities of known attributes are
considered. Note that, in both scenarios 2G and 3G, k-anonymity is not ensured
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k/κ SSE k′

1G 2G 3G

M
ic

.M
D

A
V

-k 5 28.74 5.05 1.98 1.03
25 145.36 25.21 7.06 1.27
50 219.44 50.52 13.86 1.57
75 313.31 75.78 20.97 1.92

100 397.48 102.30 29.05 2.57

M
ic

.P
C

P
-k

5 141.28 5.18 1.95 1.00
25 203.81 25.21 6.57 1.04
50 330.19 50.52 12.74 1.15
75 469.74 75.78 19.15 1.30

100 649.49 102.30 26.14 1.53

M
ic

.Z
sc

o
re

s-
k 5 50.65 5.11 1.92 1.01

25 140.70 25.16 6.64 1.06
50 184.18 50.52 13.05 1.28
75 287.95 75.78 19.88 1.58

100 378.51 102.30 27.46 2.02

M
ic

.S
u
g
en

o
-k 5 99.32 5.14 1.96 1.00

25 181.07 25.10 6.64 1.04
50 249.00 50.52 12.83 1.16
75 358.39 75.78 19.46 1.36

100 502.32 102.30 26.76 1.62

M
ic

1
D

-κ

5000 36.49 3.04 4.57 2.68
5500 472.69 4.48 6.79 3.90
6000 135.21 5.37 8.18 4.52
6500 556.24 7.89 11.69 6.56
7000 56.84 8.96 13.51 7.08

Correlated attributes

k/κ SSE k′

1G 2G 3G

M
ic

.M
D

A
V

-k 5 45.18 5.01 2.03 1.06
25 212.44 25.10 7.26 1.28
50 361.38 50.52 14.59 1.81
75 468.30 75.78 22.06 2.30

100 569.66 102.30 30.67 3.17

M
ic

.P
C

P
-k

5 124.83 5.15 1.94 1.01
25 251.99 25.10 6.63 1.06
50 369.73 50.52 12.96 1.20
75 482.05 75.78 19.56 1.40

100 608.82 102.30 26.74 1.73

M
ic

.Z
sc

o
re

s-
k 5 111.97 5.07 1.93 1.01

25 212.47 25.10 6.92 1.12
50 336.68 50.52 14.07 1.52
75 439.99 75.78 21.96 2.18

100 553.89 102.30 30.90 3.16

M
ic

.S
u
g
en

o
-k 5 139.69 5.12 1.96 1.01

25 276.15 25.10 6.72 1.10
50 427.92 50.52 13.16 1.29
75 594.42 75.78 20.00 1.59

100 796.38 102.30 27.66 2.04

M
ic

1
D

-κ

5000 36.49 3.04 4.57 2.68
5500 472.69 4.48 6.79 3.90
6000 135.21 5.37 8.18 4.52
6500 556.24 7.89 11.70 6.56
7000 56.84 8.96 13.51 7.08

Non-correlated attributes

Table 3.10: SSE and real k′ of different microaggregation methods and param-
eterizations using the EIA data set. Mic.Method-k corresponds to microaggre-
gation using method Method (MDAV, PCP or Zscore) with initial anonymity
value k.
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k/κ SSE k′

1G 2G 3G

M
ic

.M
D

A
V

-k 5 28.18 5.09 1.94 1.00
10 46.14 10.00 3.14 1.01
15 72.03 15.20 4.42 1.01
20 94.24 20.00 5.75 1.04
25 114.56 25.33 7.28 1.10

M
ic

.P
C

P
-k

5 28.59 5.14 1.94 1.01
10 49.61 10.00 3.10 1.00
15 71.99 15.20 4.41 1.02
20 91.96 20.00 5.70 1.03
25 110.91 25.33 7.24 1.04

M
ic

.Z
sc

o
re

s-
k 5 23.78 5.14 1.94 1.01

10 49.05 10.00 3.13 1.01
15 72.23 15.20 4.43 1.03
20 93.10 20.00 5.69 1.03
25 111.69 25.33 7.23 1.07

M
ic

.S
u
g
en

o
-k 5 26.59 5.07 2.03 1.01

10 53.88 10.00 3.30 1.01
15 84.86 15.20 4.65 1.03
20 95.35 20.00 5.98 1.08
25 121.94 25.33 7.51 1.11

M
ic

1
D

-κ

300 32.67 1.62 1.51 1.10
500 65.89 3.25 3.39 1.76
800 80.95 7.87 7.55 4.67
850 132.13 9.65 10.03 6.65
900 255.64 12.95 13.61 9.14

Correlated attributes

k/κ SSE k′

1G 2G 3G

M
ic

.M
D

A
V

-k 5 69.51 5.00 2.03 1.03
10 126.21 10.00 3.55 1.16
15 173.96 15.20 5.28 1.39
20 247.58 20.00 7.00 1.53
25 259.07 25.33 9.22 1.91

M
ic

.P
C

P
-k

5 93.67 5.02 1.94 1.01
10 133.83 10.00 3.14 1.02
15 170.12 15.20 4.47 1.03
20 206.74 20.00 5.75 1.06
25 229.50 25.33 7.33 1.13

M
ic

.Z
sc

o
re

s-
k 5 73.52 5.02 1.97 1.02

10 115.77 10.00 3.27 1.06
15 160.30 15.20 4.75 1.10
20 197.20 20.00 6.32 1.28
25 231.81 25.33 8.21 1.46

M
ic

.S
u
g
en

o
-k 5 102.76 5.09 2.07 1.03

10 188.85 10.00 3.29 1.04
15 216.44 15.20 4.66 1.07
20 281.02 20.00 5.96 1.10
25 294.89 25.33 7.53 1.15

M
ic

1
D

-κ

300 32.67 1.11 1.35 1.35
500 65.89 2.78 2.58 2.63
800 80.95 4.74 7.17 6.88
850 132.13 6.54 9.77 8.67
900 255.64 9.07 14.52 11.71

Non-correlated attributes

Table 3.11: SSE and real k′ of different microaggregation methods and param-
eterizations using the Water Treatment data set. Mic.Method-k corresponds to
microaggregation using method Method (MDAV, PCP or Zscore) with initial
anonymity value k.
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by multivariate microaggregation. Note also that, if the intruder had more than
three attributes, it would not be possible to consider 1G. We are considering
the case were the intruder only has three attributes to study a scenario were
multivariate microaggregation can still preserve k-anonymity.

The second column of Tables 3.10 and 3.11 presents the SSE values for all
the parameterizations and situations described before. Note that the range of
SSE covered by the two methods is similar, so this allows us to compare the
disclosure risk of both methods fairly. For all these scenarios, we compute k′

and the mean of all the k′ values in each situation is presented in the third,
fourth and fifth columns. Note that, whereas multivariate microaggregation is
affected by the fact that the chosen attributes are correlated or not, this effect
is not noticeable using Mic1D-κ. Specifically, when the attributes in a group are
not correlated, the information loss (SSE) using multivariate microaggregation
tends to be increased since we are trying to collapse the records in a single
value, using three independent attributes or dimensions. Nevertheless, this effect
can be neglected with Mic1D-κ since, thanks to the data preprocessing, the
whole microaggregation process is performed on a single dimension (vector of
values), the semantics of attributes are ignored and the effect caused by attribute
correlations is avoided.

These results show that, in this scenario, Mic1D-κ achieves lower disclosure
risk levels (larger values of k′) than those achieved by multivariate microaggre-
gation for similar information loss (SSE), especially when the attributes chosen
come from different microaggregated groups (2G and 3G), which is the most
common case. When the intruder has access to the three attributes coming
from a single microaggregated group, multivariate microaggregation configura-
tions present k′ values which are similar or, in some cases, even larger than
those obtained by Mic1D-κ (comparing cases with similar SSE). This is nor-
mal since such methods preserve the k-anonymity in this case. However, in the
remaining scenarios (2G and 3G), that represent most of the cases, Mic1D-κ
achieves larger k′ values than those obtained by multivariate microaggregation
when similar SSE values are compared.

Table 3.12 and 3.13 show the score and its components. For DLD, PLD and
ID computation we have considered different cases, according to the number of
attributes of the original record(s), to be linked, that the intruder knows. This
number varies from 1 to the total number of attributes of each data set. The
values in the table are the average of the obtained correct links in all these cases,
for each parameterization of each protection method. The first column of these
tables presents the IL values for each configuration, the IL values are similar for
all protection methods, except for the case of Zscores microaggregation using
non-correlated attributes in the Water Treatment data set and Mic1D-κ in the
EIA data set. These differences are due to the parameter selection, the selection
has been done to ensure similar SSE values, and then in some configurations,
it is possible to obtain very different IL values.

The second and the third columns of Table 3.12 and 3.13 show the DLD
and PLD risk measures. As in Section 3.2, the lowest disclosure risk is achieved
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by Sugeno microaggregation, where the largest disclosure risk values have been
obtained using P-RL and it is always lower than 15%. If we observe the disclosure
risk obtained by Mic1D-κ in this scenario, we will see that, in some cases, the
disclosure risk of Mic1D-κ is larger than multivariate microaggregation. This
happens because we are averaging nine possible scenarios, in three of them the
intruder knows attributes of only one group (the best situation for multivariate
microaggregation), another three the intruder knows attributes of two groups
and, finally, only in three situations the intruder knows attributes belonging
to all groups. This averaging process favours to multivariate microaggregation
and makes the comparison between Mic1D-κ and multivariate microaggregation
unfair. However, it is clear that in this kind of scenarios the disclosure risk of
Mic1D-κ increases.
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k IL DLD PLD ID Score

M
ic

.M
D

A
V

-k 5 6.68 1.78 2.87 87.60 25.82
25 11.83 0.78 0.68 79.55 25.99
50 13.23 0.60 0.56 72.37 24.85
75 15.56 0.53 0.55 72.16 25.96

100 17.63 0.39 0.49 67.52 25.81

M
ic

.P
C

P
-k

5 16.61 1.78 2.87 65.29 25.21
25 18.33 0.78 0.68 61.62 24.75
50 19.77 0.60 0.56 59.71 24.96
75 21.16 0.53 0.55 59.67 25.63

100 22.26 0.39 0.49 57.87 25.71

M
ic

.Z
sc

o
re

s-
k 5 12.58 6.17 8.36 75.09 26.88

25 16.04 5.03 5.98 70.88 27.12
50 16.84 4.92 5.60 69.36 27.08
75 18.69 3.91 5.30 69.71 27.92

100 18.86 3.48 4.63 67.78 27.39

M
ic

.S
u
g
en

o
-k 5 14.83 2.56 5.22 67.86 25.35

25 18.10 1.22 1.78 63.17 25.22
50 18.28 1.01 1.23 62.17 24.96
75 18.55 0.88 1.13 62.15 25.06

100 18.88 0.63 0.75 60.49 24.74

M
ic

1
D

-κ

5000 60.25 0.00 0.00 67.44 46.99
5500 88.10 0.00 0.00 70.38 61.65
6000 93.13 0.00 0.00 74.19 65.11
6500 104.57 0.00 0.00 61.47 67.65
7000 133.38 0.00 0.00 59.97 81.68

Correlated attributes

k IL DLD PLD ID Score

M
ic

.M
D

A
V

-k 5 10.05 1.61 2.43 83.30 26.36
25 16.58 0.81 0.56 72.27 26.53
50 21.86 0.62 0.49 67.16 27.86
75 20.26 0.68 0.60 64.61 26.44

100 25.14 0.60 0.48 61.29 28.03

M
ic

.P
C

P
-k

5 19.37 0.62 0.54 57.35 24.17
25 22.07 0.63 0.48 53.45 24.54
50 22.25 0.64 0.48 52.41 24.37
75 22.70 0.64 0.49 52.11 24.52

100 23.07 0.66 0.50 50.93 24.41

M
ic

.Z
sc

o
re

s-
k 5 16.81 2.58 3.82 75.75 28.14

25 17.06 1.92 2.55 75.21 27.89
50 17.25 1.44 2.22 73.88 27.55
75 17.83 1.25 2.14 73.71 27.77

100 17.80 1.16 1.88 70.95 27.02

M
ic

.S
u
g
en

o
-k 5 20.98 0.83 1.56 58.39 25.39

25 25.25 0.33 0.57 53.77 26.18
50 33.42 0.29 0.34 52.20 29.84
75 43.41 0.23 0.33 51.65 34.69

100 27.82 0.25 0.29 50.28 26.55

M
ic

1
D

-κ

5000 60.25 0.00 0.00 67.44 46.99
5500 88.10 0.00 0.00 70.38 61.65
6000 93.13 0.00 0.00 74.19 65.11
6500 104.57 0.00 0.00 61.47 67.65
7000 133.38 0.00 0.00 59.97 81.68

Non-correlated attributes

Table 3.12: Scores of different microaggregation methods and parameterizations
using the EIA data set. Mic.Method-k corresponds to microaggregation using
method Method (MDAV, PCP or Zscore) with initial anonymity value k.
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k IL DLD PLD ID Score

M
ic

.M
D

A
V

-k 5 14.14 73.03 67.24 72.73 42.79
10 18.78 61.97 55.66 63.56 39.98
15 17.34 49.74 43.95 56.99 34.63
20 18.28 39.34 35.53 51.18 31.29
25 21.68 32.37 29.08 48.59 30.67

M
ic

.P
C

P
-k

5 18.36 40.39 30.39 60.82 33.23
10 18.11 30.00 21.58 53.66 28.92
15 21.67 23.82 20.39 50.54 29.00
20 25.17 21.45 16.05 47.21 29.08
25 23.25 19.08 13.68 49.34 28.06

M
ic

.Z
sc

o
re

s-
k 5 17.62 76.05 62.50 68.65 43.29

10 20.62 63.82 54.87 61.53 40.53
15 20.99 54.08 47.76 56.42 37.33
20 20.74 47.76 40.79 53.48 34.81
25 24.30 43.95 34.47 54.04 35.46

M
ic

.S
u
g
en

o
-k 5 15.18 1.67 12.89 64.17 25.45

10 24.56 1.23 10.35 56.49 27.85
15 25.69 0.70 8.98 52.53 27.19
20 32.30 0.88 8.71 48.14 29.38
25 28.18 0.96 6.84 47.44 26.93

M
ic

1
D

-κ

300 29.63 62.63 67.13 81.54 51.42
500 46.68 42.87 49.36 56.39 48.97
800 82.99 24.44 12.46 39.36 55.95
850 85.50 14.85 2.28 50.61 57.54
900 87.70 9.80 1.93 43.72 56.25

Correlated attributes

k IL DLD PLD ID Score

M
ic

.M
D

A
V

-k 5 31.75 8.16 39.87 45.79 33.33
10 28.28 5.26 28.95 43.00 29.17
15 35.60 2.50 18.82 41.89 30.94
20 32.44 2.63 14.21 39.34 28.16
25 36.74 1.71 12.89 30.85 27.91

M
ic

.P
C

P
-k

5 50.41 8.95 2.11 36.63 35.75
10 53.51 5.00 0.79 30.96 35.22
15 56.28 4.21 1.32 30.37 36.42
20 61.02 4.74 1.05 26.30 37.81
25 62.48 3.82 0.26 25.61 38.15

M
ic

.Z
sc

o
re

s-
k 5 98.33 10.13 3.16 42.96 61.57

10 108.75 6.05 2.24 40.61 65.56
15 113.74 5.39 1.71 40.18 67.80
20 114.78 3.03 1.45 39.98 67.95
25 113.71 3.29 1.05 37.60 66.80

M
ic

.S
u
g
en

o
-k 5 36.15 4.97 0.82 44.25 29.86

10 41.55 3.22 0.12 36.53 30.32
15 48.41 1.73 0.23 31.45 32.31
20 47.45 1.75 0.94 30.26 31.63
25 51.53 1.11 0.53 28.62 33.12

M
ic

1
D

-κ

300 29.63 62.63 67.13 81.54 51.42
500 46.68 42.87 49.36 56.39 48.97
800 82.99 24.44 12.46 39.36 55.95
850 85.50 14.85 2.28 50.61 57.54
900 87.70 9.80 1.93 43.72 56.25

Non-correlated attributes

Table 3.13: Scores of different microaggregation methods and parameterizations
using the Water Treatment data set. Mic.Method-k corresponds to microaggre-
gation using method Method (MDAV, PCP or Zscore) with initial anonymity
value k.
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Chapter 4

Specific Disclosure Risk

Measures

As we stated in Chapter 2, only generic measures, as distance based or prob-
abilistic record linkage, are considered when the disclosure risk of a protection
method is computed. The use of these generic measures causes an underestima-
tion of the resulting disclosure risk.

In this chapter we define specific record linkage methods which take into ac-
count the protection method applied to the protected data set. The direct conse-
quence of these definitions is that we achieve a larger number of re-identifications
than with generic record linkage methods. Therefore, under this scenario, dis-
closure risk is larger than believed up to now.

4.1 Rank Swapping Record Linkage

In this section, we describe a new record linkage method, specific for rank swap-
ping. We call this method rank swapping record linkage (RS-RL for short). This
method takes advantage of the fact that only a few values of the data set are
eligible when doing rank swapping. By using this information, we can limit the
pairs of records where record linkage method is applied and decrease in this
way the probability of finding incorrect links. The result causes an increase on
the number of correct links, and therefore an increment in the disclosure risk of
standard rank swapping.

Then, we propose two new protection methods, obtained as variants of rank
swapping, which are called rank swapping p-distribution and rank swapping p-
buckets and which are in some way immune to the effect of the new record linkage
method. The main idea of these methods is that each attribute value can be
potentially (maybe with very low probability, but never equal to 0) swapped
with any other value. In this way, an intruder linking records will not be able to
limit the swap interval with total confidence; this will lead to a higher number
of incorrect linkages.

69
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Figure 4.1: Graphic representation of disclosure risk.

4.1.1 Algorithm Description

The idea is quite easy to understand: standard rank swapping swaps one original
value with one of the p following values in the sorted table (recall the rank
swapping description presented in Section 2.4.1). Therefore, if the protected
values of the attribute are known, as in the scenario described in Section 2.4, it
is possible to restrict the protected records into which a specific original record
can have been mapped. Formally, the intruder must compare the original record
xi that he wants to link with only 2p records in the protected microdata file
(note that a protected value can be either the source or the destination in the
swap process). In other words, for every original attribute value xij , there is
an efficiently computable set B(xij) of 2p protected records which may be the
result of transforming the original record xi.

Obviously, if more than one attribute is known, it is possible to repeat the
process for each attribute. In particular, if the original record xi is represented by
xi = (xi1, . . . , xic) for c attributes attr1, . . . , attrc, then the matching protected
record x′

ℓ will necessarily satisfy the condition

x′
ℓ ∈ ∩1≤j≤cB(attri = xij)

That is, the search of the linkage is reduced to the intersection of the sets of
possible protected records. Of course, the more attributes are considered, the
less records will be in this intersection, and therefore the probability of finding
the correct record linkage will increase. This effect is illustrated in Figure 4.1.
In particular, if some intersection (for some combination of the protected at-
tributes) gives a unique possible record, we can be sure that this is the protected
record which matches with the considered original record, because this linkage
method does not introduce error probabilities. This is in contrast to the stan-
dard record linkage methods, where an original record is compared to all the
protected records, possibly leading to incorrect linkages.
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Example 4.1 Let us illustrate this fact throughout the example described in Ta-
ble 2.1 and reproduced here in Table 4.1 (this table is also used in Example 2.1 in
Section 2.4.1). Consider the standard distance based record linkage method (with
the Euclidean distance) applied to the original record (6, 7, 10, 2). When, the dis-
tances between this record and all the protected records are computed, the closest
protected record results to be (6, 7, 6, 3), which is not the matching one. There-
fore, this method leads to the incorrect linkage (6, 7, 10, 2) ↔ (6, 7, 6, 3). In con-
trast, consider the new specific technique applied to the same record (6, 7, 10, 2).
The set of possible protected values consistent with a 6 in the first origi-
nal attribute is B(attr1 = 6) = {(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6),
(8, 4, 2, 2)}. Analogously for the other three attributes, we obtain B(attr2 =
7) = {(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)}, B(attr3 = 10) =
{(5, 5, 8, 1), (2, 6, 9, 8), (4, 1, 10, 10)} and B(attr4 = 2) = {(5, 5, 8, 1), (8, 4, 2, 2),
(6, 7, 6, 3), (9, 2, 4, 4)}. Therefore, as the intersection of the four sets is just the
protected record (5,5,8,1), in this case we obtain the correct linkage. Note that
if there had been more than one record in the intersection, the closest one to the
considered original record would have been chosen.

Note also that this new method has been defined assuming that the value of
the parameter p is known. In situations where this value is kept secret by the
owner of the original data set, then the method can be applied by first fixing an
upper bound for the value of p (for example, the 20% of the number of entries of
the database). Of course, the results of the method are optimal when the exact
value of p is used. This assumption is quite realistic, for example, all available
microdata files in the EUROSTAT web page [29] include a full description of the
anonymization criteria that have been applied.

Original Data Set X Protected Data Set X ′

attr1 attr2 attr3 attr4 attr′1 attr′2 attr′3 attr′4
8 9 1 3 10 10 3 5
6 7 10 2 5 5 8 1
10 3 4 1 8 4 2 2
7 1 2 6 9 2 4 4
9 4 6 4 7 3 5 6
2 2 8 8 4 1 10 10
1 10 3 9 3 9 1 7
4 8 7 10 2 6 9 8
5 5 5 5 6 7 6 3
3 6 9 7 1 8 7 9

Table 4.1: Rank swapping example.

In Table 4.2, we show the number of correctly linked records for the data
in the Example 4.1 with the three considered record linkage methods, when
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attr1 attr1−2 attr1−3 attr1−4 average DR
RS-RL 0 2 7 8 42.5
DB-RL 0 2 4 1 17.5
P-RL 0 0 0 0 0.00

Table 4.2: Correct links and average disclosure risk for Example 2.1 on record
linkage of Section 2.4.1, computed with rank swapping (RS-RL), distance based
(DB-RL) and probabilistic (P-RL) record linkage.

different collections of attributes are assumed to be known by the intruder. We
also show the average disclosure risk. Note that the record linkage process uses
only the known attributes to compute the nearest record. From the comparison
between the average disclosure risk using the new method and the DB-RL and
P-RL showed in Table 4.2, it is clear that the real disclosure risk is much larger
than the standard estimated using DB-RL or P-RL.

4.1.2 New Rank Swapping Methods

In this section, we present two variants of rank swapping which resist the record
linkage method introduced in Section 4.1.1. The main idea in both variants is
the same: to eliminate the fact that the swap interval is closed.

Rank Swapping p-Distribution

As we have explained in Section 2.4.1 the swap interval in the rank swapping is
defined by the parameter p, this fact is exploited by the record linkage technique
defined in Section 4.1.1 to increase the number of linked records. For this reason,
rank swapping p-distribution defines the swap interval using a normal probability
distribution defined by µ = σ = 0.5 · p. This modification makes possible that
any value in the data set can be selected. Obviously very different values have
lower probability to be elected than similar values, but never equals to zero.
Therefore some values xij are swapped with values out of the standard interval
ℓ ∈ [i + 1, i + p]; we can observe this in Figure 4.2 where the swap interval is
defined by a normal probability distribution, in this case it is clear that the
swap interval is an open interval. When this effect is propagated to all protected
attributes, the RS-RL method becomes unsuitable. In the experiments presented
in the next section we will show that the number of correct links obtained by an
intruder decreases when more attributes are known.

Rank swapping p-distribution applied to an attribute attrj of an original
microdata file X can be defined as follows: firstly, the table (microdata file) is
sorted in increasing order of the values xij of the considered attribute attrj . For
simplicity, we assume that the records are already sorted, that is xij ≤ xℓj for
all 1 ≤ i < ℓ ≤ n. Then, for each value xij , a random value r is computed by
using the N(0.5 · p, 0.5 · p) normal distribution, and the values xij and xℓj are
swapped, where ℓ = i + r. Finally, the sorting step is undone.
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i i+(p/2) i+p

Figure 4.2: Graphic representation of the p-distribution swap interval.

The negative effect produced by swapping two different values is that the
information loss of the protected files increases. We will show in Section 4.1.3
that the increment of information loss is compensated by a reduction of the
disclosure risk, and therefore the scores obtained by this method are lower than
the ones obtained by the standard rank swapping.

In Section 4.1.4 we present a possible specific record linkage for this new rank
swapping p-distribution method. The experiments show that the performance
of this specific record linkage is similar to distance based record linkage.

In the rest of this thesis, we will use rs α-d to denote the application of rank
swapping p-distribution with p = α.

Rank Swapping p-Buckets

The rank swapping p-buckets method pursues the same goal as rank swapping
p-distribution. For this reason it also replaces the close swap interval of the rank
swapping with an unlimited interval, but using now a different technique.

The idea of this method is to split the sorted original values of an attribute
into several buckets. Firstly, a probability function is used to choose a bucket
for each value. Once the bucket is selected, the method works identically to
the standard rank swapping, by using this bucket as the closed swap interval.
Again, every original record will have some non-zero probability of being the
correct link of every protected record. For this reason, the RS-RL method will
be less effective here than when it is applied to the standard rank swapping.

Rank swapping p-bucket applied to an attribute attrj of an original microdata
file X can be defined as follows: firstly, the table is sorted in increasing order of
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the values xij of the considered attribute attrj . For simplicity, we assume that
the records are already sorted, that is xij ≤ xℓj for all 1 ≤ i < ℓ ≤ n. The
sorted values {xij |1 ≤ i ≤ n} are split into p buckets B1, . . . , Bp. For each value
xij , which belongs to some bucket Br, a bucket Bs is chosen, according to the
probability distribution

Pr[Bs is chosen] =
1

2s−r+1
.

Then, a value xℓj is randomly and uniformly chosen in the selected bucket Bs,
and the values xij and xℓj are swapped. Note that, if the same bucket Bs = Br

is chosen, the condition ℓ > i must be imposed.
Note that, closer buckets to the original value are selected with higher proba-

bility than the far-off buckets and, therefore, the information loss of the protected
microdata file is under control. Note that many other probability distributions
could be used to define similar variants of rank swapping.

In the rest of the thesis, rs α-b will be used to denote a rank swapping
p-bucket with p = α.

4.1.3 Experimental RS-RL Results

As stated above, we have introduced the two variants of rank swapping to mit-
igate the effect of the specific record linkage method RS-RL. Of course, this is
at the cost of increasing information loss, because some values may be swapped
with values which are quite far. Our feeling was that this increment of the in-
formation loss had to be less significant than the saving in disclosure risk and,
therefore, the new methods would obtain better general scores than standard
rank swapping. The results described in this section confirm our feelings.

In short, this section describes the analysis of disclosure risk using our specific
record linkage method and the comparison of the new rank swapping methods
against standard ones. We start reviewing the data sets used in the experiments.

Disclosure Risk Analysis for Rank Swapping

In order to evaluate the specific record linkage method (RS-RL) introduced in
Section 4.1.1, we have protected the Census and EIA data sets (defined in
Section 2.6) by using different parameterizations of standard rank swapping
(p = 2 . . . 20), rank swapping p-distribution (p = 2 . . . 20) and rank swapping
p-buckets (p = 75, 50, 35, 30, 25, 20, 15,10, 5). For each protected data set, we
have computed its disclosure risk using RS-RL. At this point, in order to study
the worst case scenario, the parameter p is assumed to be known.

It is clear that the rank swapping p-distribution and the rank swapping p-
buckets have an advantage with respect to standard rank swapping when RS-RL
is used. For this reason, disclosure risk measures have been computed using a
larger parameter. In particular, we used 2·p for the rank swapping p-distribution,
and p = 2 · Bucket Size for the rank swapping p-buckets. For standard rank
swapping, the parameter p was used to protect the data set.
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Figure 4.3: Graphic representation of the results obtained by the rank swapping
disclosure risk measure applied to the Census data set (a) and EIA data set (b),
protected with standard rank swapping.
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Figure 4.4: Graphic representation of the results obtained by the rank swapping
disclosure risk measure applied to the Census data set (a) and EIA data set (b),
protected with rank swapping p-distribution.

Figure 4.3 shows, in a graphic way, the number of correct links that RS-
RL obtains, when applied to standard rank swapping, for both data sets, when
different numbers of attributes are assumed to be known by the intruder (from
one to all). It is easy to observe that the more attributes are known by the
intruder, the more records are linked. Figures also show that for the five less
protected data sets from Census, an intruder links more than 70% of the records
when only half of the attributes are known. Another interesting result with the
Census data set is that the intruder is always able to link more than 50% of the
records if he knows all the attributes.

Similar results are obtained for the EIA data set. For the three less protected
data sets, the intruder is able to link more than 50% of records when all the
attributes are known. In EIA, the results of our specific record linkage are not
so good because (i) the EIA data set has four times more records than Census
data set, (ii) the EIA data set has less attributes than Census.
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Figure 4.5: Graphic representation of the results obtained by the rank swapping
disclosure risk measure applied to the Census data set (a) and EIA data set (b),
protected with rank swapping p-buckets.

Figure 4.4 presents the results of RS-RL applied to the data sets protected
using rank swapping p-distribution. The chart lines show that an intruder can
make no use of knowing all the attributes when data is protected using rank
swapping p-distribution. Therefore, the rank swapping record linkage becomes
unsuitable now. This is so because when the intruder knows many attributes, he
is forced to consider all the records, and not a small subset, to take advantage
of his knowledge. For the Census data set, only in the less protected parame-
terization (p = 2) the intruder is able to link more than 50% of the records, and
this happens when he knows three or four attributes: the knowledge of more
attributes is not useful in this case. The rest of the cases are protected enough
to avoid a large number of correct linkages for both the Census and EIA data
sets.

The results obtained for rank swapping p-buckets, which are shown in Fig-
ure 4.5, are similar to the results of rank swapping p-distribution. Only in the
less protected case of the Census data set the intruder is able to link more than
50% of the records, the remainder configurations are protected enough to avoid
a large number of correct linkages. As it happens with the rank swapping p-
distribution, the knowledge of all attributes is not useful for an intruder when
using rank swapping record linkage.

New Rank Swapping Methods vs Standard Rank Swapping

In this section, we compare the overall behavior of the new methods with the
standard one. We study the effects of the introduced modifications in informa-
tion loss and standard disclosure risk measures.

The comparison is based on the score defined in Section 2.5. We have mod-
ified the score so that the disclosure risk measure takes into account the new
rank swapping record linkage. Formally, we use the following disclosure risk
measure DR = 0.166 · RSLD + 0.166 · DLD + 0.166 · PLD + 0.5 · ID instead
of DR = 0.25 · DLD + 0.25 · PLD + 0.5 · ID. Here, RSLD stands for Rank
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p IL RSLD DLD PLD IDScore
ra

n
k

sw
a
p
p
in

g
p

2 3.89 77.73 73.52 71.28 93.98 42.63
4 6.54 66.65 58.40 42.92 83.09 36.67
6 10.57 54.65 43.76 22.49 72.12 31.93
8 16.54 41.28 32.13 11.74 62.11 29.16

10 20.18 29.21 23.64 6.03 53.28 26.31
12 23.46 19.87 18.96 3.46 47.17 24.77
14 28.93 16.14 15.63 2.06 43.39 25.86
16 35.16 13.81 13.59 1.29 40.78 27.97
18 32.52 12.21 11.50 0.83 38.90 25.81
20 35.12 10.88 10.87 0.59 37.33 26.55

Census data set

p IL RSLD DLD PLD IDScore

ra
n
k

sw
a
p
p
in

g
p

2 4.24 43.27 21.71 16.85 93.10 28.06
4 9.67 12.54 10.61 4.79 82.09 21.89
6 14.63 7.69 7.40 2.03 72.21 21.42
8 18.71 6.12 5.98 1.12 63.90 21.61

10 22.87 5.60 5.19 0.69 57.09 22.37
12 26.60 5.39 4.87 0.51 51.64 23.25
14 29.42 5.28 4.55 0.32 47.49 23.91
16 32.38 5.19 4.54 0.23 44.19 24.82
18 34.22 5.20 4.54 0.22 41.42 25.28
20 36.27 5.15 4.36 0.18 38.97 25.87

EIA data set

Table 4.3: Score calculation for standard rank swapping(rs-p). IL stands for
Information Loss, RSLD stands for Rank Swapping Linkage Disclosure, DLD
stands for Distance Linkage Disclosure, PLD stands for Probability Linkage
Disclosure and ID stands for Interval Disclosure.

Swapping Linkage Disclosure, the average percentage of correctly linked records
using rank swapping record linkage (RS-RL). Information loss measures are not
changed and thus they are computed using the standard measures presented in
Section 2.5.

Table 4.3 presents the scores as well as the original values before their ag-
gregation, for both Census and EIA data sets protected using standard rank
swapping. We can observe that the largest disclosure risk measure in all cases
is RSLD. Therefore, it is clear that the new method increases the risk with
respect to standard ones for the standard rank swapping. Another interesting
result is that PLD is always lower than RSLD and DLD. This is because all the
values in all the attributes are swapped, and therefore the coincidence vectors
for the correct links are always equal to zero, unless the swapped positions have
the same value (which is possible only if the attributes have repeated values).
It is possible to observe in Figures 4.6.(b) and 4.7.(b) that the standard rank
swapping has the largest disclosure risk when the different parameterizations of
the three methods are compared. This effect is much clearer in Figure 4.6.(b)
(corresponding to the Census data set) than in Figure 4.7.(b) (corresponding to
the EIA data set).

Tables 4.4 and 4.5 show the score values for rank swapping p-distribution
and rank swapping p-buckets respectively. In both cases the largest disclosure
risk measure is DLD. Therefore, when an intruder is interested in linking the
original data set with the one protected using any of the two methods, the best
way is just to consider all possible links.

In Section 4.1.4 we discuss a possible record linkage method specifically de-
signed for rank swapping p-distribution and p-buckets. Since the obtained re-
sults are essentially the same as with distance based record linkage we have not
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p IL RSLD DLD PLD IDScore
ra
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sw
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.
2 3.80 40.90 71.63 1.38 89.81 29.70
4 7.42 28.34 53.10 0.68 71.48 24.83
6 14.44 20.51 37.57 0.62 55.58 23.08
8 17.31 15.74 25.98 0.54 44.44 20.90

10 22.49 11.69 19.42 0.46 38.60 21.28
12 31.04 9.10 16.17 0.41 35.05 24.26
14 31.80 6.12 13.16 0.38 32.19 23.41
16 33.53 4.63 11.77 0.32 30.42 23.61
18 37.89 3.10 11.12 0.35 28.98 25.25
20 43.92 2.15 9.59 0.31 27.05 27.65

Census data set

p IL RSLD DLD PLD IDScore

ra
n
k

sw
a
p
p
in

g
p
-d

is
tr

.

2 5.24 10.74 18.78 13.94 90.76 22.26
4 11.33 3.13 9.12 3.90 78.07 20.28
6 16.83 1.27 6.41 1.61 67.20 20.50
8 18.71 6.12 5.98 1.12 63.90 21.61

10 26.11 0.39 4.81 0.55 52.05 22.24
12 29.89 0.39 4.62 0.42 47.11 23.28
14 32.01 0.30 4.51 0.29 43.30 23.67
16 35.59 0.20 4.60 0.22 39.95 24.89
18 37.69 0.10 4.69 0.18 37.52 25.52
20 40.12 0.10 4.57 0.11 35.25 26.34

EIA data set

Table 4.4: Score calculation for rank swapping p-distribution (rs p-d). IL stands
for Information Loss, RSLD stands for Rank Swapping Linkage Disclosure, DLD
stands for Distance Linkage Disclosure, PLD stands for Probability Linkage
Disclosure and ID stands for Interval Disclosure.

considered this method to compute the disclosure risk and the score.

Interval disclosure for standard rank swapping is higher than the one for
the two new rank swapping methods. This is so because the rank swapping
p-distribution and the p-buckets may do swaps between two far values avoiding
the interval disclosure. This is not the case in standard rank swapping.

In general, when we compare the same parameterizations for the three dif-
ferent rank swapping methods (e.g. rs 2, rs 2-d and rs 75-b), information loss
is higher for the rank swapping p-distribution and the rank swapping p-buckets.
Nevertheless, disclosure risk is higher for standard rank swapping (in some cases
more than 15%) for these parameterizations. In Figures 4.6.(a) and 4.7.(a) we
can observe that some cases of standard rank swapping have lower information
loss than the other rank swapping versions. However, these differences are rather
small in most of the cases. See, for example, the IL in the EIA data set for the
fourth parameterization of the three rank swapping methods (rs 8, rs 8-d and rs
30-b). It is clear that the values for IL are rather similar.

In relation to the overall scores, the best scores obtained for the standard rank
swapping (see Table 4.3) are 24.77 for Census and 21.42 for EIA. In contrast to
that, the best scores obtained for the rank swapping p-distribution (see Table 4.4)
are between 20.90 and 21.30 for the Census data set and between 20.20 and 21.00
for the EIA data set. The best score presented in Table 4.5 for the rank swapping
p-buckets is 20.92 for the Census data set and 20.32 for the EIA data set. So,
the new rank swapping methods lead to better scores and, thus, the trade-off
between information loss and disclosure risk benefits the rank swapping methods
introduced in this section. Even though the new methods have a small increment
in the information loss, they gain an important reduction in disclosure risk. This
effect is illustrated in Figures 4.6.(c) and 4.7.(c) where in most of the cases the
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Figure 4.6: Graphic representation of the information loss (a), disclosure risk
(b) and score (c) values for the three rank swapping methods when Census data
set is protected.
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Figure 4.7: Graphic representation of the information loss (a), disclosure risk
(b) and score (c) values for the three rank swapping methods when EIA data
set is protected.
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p IL RSLD DLD PLD IDScore
ra

n
k

sw
a
p
p
in

g
p
-b

u
ck

et
s 75 7.51 36.24 58.08 44.50 83.02 32.18

50 13.14 17.09 42.71 27.21 62.60 25.68
35 17.03 9.96 29.93 13.36 61.29 24.00
30 18.96 8.56 24.86 9.81 56.37 23.19
25 22.79 5.26 20.18 0.40 41.60 20.92
20 30.97 8.51 15.86 0.42 36.61 24.36
15 36.29 5.36 11.59 0.44 30.82 25.18
10 46.91 2.19 8.53 0.40 25.40 28.80
5 65.29 0.63 6.54 0.31 20.18 36.68

Census data set

p IL RSLD DLD PLD ID Score

ra
n
k

sw
a
p
p
in

g
p
-b

u
ck

et
s 75 10.03 5.35 10.90 6.50 80.37 20.75

50 14.35 2.83 7.53 3.17 70.70 20.32
35 20.03 1.46 5.53 1.56 60.80 20.98
30 22.49 1.11 5.42 1.16 56.92 21.47
25 25.98 0.78 4.90 0.79 51.61 22.19
20 30.46 0.28 4.65 0.54 45.88 23.35
15 36.32 0.14 4.82 0.33 39.12 25.13
10 45.17 0.09 4.74 0.17 31.04 28.18
5 54.96 0.08 4.55 0.08 22.87 31.69

EIA data set

Table 4.5: Score calculation for rank swapping p-buckets (rs p-b).IL stands for
Information Loss, RSLD stands for Rank Swapping Linkage Disclosure, DLD
stands for Distance Linkage Disclosure, PLD stands for Probability Linkage
Disclosure and ID stands for Interval Disclosure.

standard rank swapping has the largest score.

4.1.4 Specific Record Linkage Methods for the New Vari-

ations of Rank Swapping

In Section 4.1.1 we have shown that standard rank swapping can be attacked
using a specific record linkage method. These results have motivated the intro-
duction of two variants of rank swapping, variations that cannot be attacked
using the specific methods. Nevertheless, it is worth considering at this point
whether other ad-hoc attacks might be developed for these new methods. In
this section we present another specific record linkage method specially designed
for rank swapping p-distribution and p-buckets. We show that this new method,
when applied to the same data sets used in Section 4.1.3 leads to similar results
to the ones obtained with standard distance based record linkage method.

The difficulty of applying record linkage to data protected by rank swapping
p-distribution and p-bucket is that the intruder cannot limit the swap interval.
In other words, it is always possible that the correct linkage is not included in the
intersection set B(xi) = ∩1≤j≤cB(xij). Therefore, the use of B(xi) is sometimes
useless.

To avoid this, but reducing at the same time the complexity of record linkage,
we can consider proper subsets B(xij), and then compute their union. Of course,
with a large probability, the correct link will be in B(xij) for at least one of the
attributes j. In fact, the record will belong to most of the B(xij). Because of
this, the record will be also in the union of the B(xij). That is, in B(xi) =
∪1≤j≤cB(xij).

We will compute an annotated union that takes into account the number of
sets B(xij) where each record is stored. Then, we assume that the intruder
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p DB-RL RS-RL RS-RL
[i − p
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2 1048.2 752.8 1054.4
4 938.9 461 907.4
6 723.6 285.3 686.6
8 502.5 190 487.1

10 335.1 136.2 347.2
12 219.5 96.4 241.7
14 145.2 70.4 161.7
16 95.7 48.9 109.7
18 69.6 42.5 76.5
20 47.8 33.7 54.3

Census data set

p DB-RL RS-RL RS-RL
[i − p

2
, i + p

2
] [xi − p, xi + p]

ra
n
k

sw
a
p
p
in

g
p
-d

is
tr

.

2 1267.2 771.5 1443.8
4 330.1 256 419.2
6 130.4 118.4 159.4
8 60.4 58.9 72.9

10 36 37.2 41.1
12 22.4 23.9 28.4
14 16.8 17 19.9
16 11.5 11.3 13.1
18 8.9 11.2 9.9
20 7 8.3 9.4

EIA data set

Table 4.6: Average linkage values for rank swapping p-distribution.DB-RL
stands for Distance Based Record Linkage, RS-RL stands for Rank Swapping
Record Linkage.

only compares the original record with the protected records which have the
maximum cardinality in the annotated union set (i.e. records stored in the
maximum number of B(xij) sets). In this approach the intruder is minimizing
the far swaps in the protected attributes. So, the intruder is exploiting his
knowledge of the rank swapping p-distribution and p-buckets because he knows
that the probability of a far swap is near to 0.

As we did in Section 4.1.3, we suppose here that the parameter p is known.
We have applied this variation of the rank swapping record linkage method to
the rank swapping p-distribution. In order to apply the method in the worse
case scenario, we also suppose that the intruder has the maximum number of
attributes, i.e. the intruder knows the half of the protected attributes (this as-
sumption is the same as in Section 2.5). At this point, the intruder needs to
decide the size of the intervals B(xij). From the cumulative normal distribution,
the intruder can deduce the confidence of the selected swap intervals. For exam-
ple, if the swap intervals are [i − 0.5p, i + 0.5p] the probability that the correct
linkage is inside one of these intervals is equal to 68%. Otherwise, if the swap
intervals are [i − p, i + p]; then, the same probability increases to 96%. Note
that when the union is computed the probability to find the correct link inside
increases with respect to the number of attributes known.

Table 4.6 shows the results for the distance based record linkage and for the
rank swapping record linkage with two different swap intervals. The table also
includes the results obtained by the DB-RL for the same files and number of
attributes.

The results show that, in general, when we use the interval [i−p, i+p] the new
method lead to results similar to the ones by DB-RL. There are only two cases
were we can find a significant improvement, they correspond to the application
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of the method when p = 2 and p = 4 and using the EIA data set. RS-RL finds
1443 records while DB-RL finds 1267, and RS-RL finds 419 where DB-RL finds
330. Nevertheless, these cases are not a real threat to the protection method
because they already correspond to the cases with a lower protection and high
risk (note that in the case of the Census database, that is a smaller data set,
almost all records are re-identified by DB-RL). Taking this into account, we have
that the influence of the results shown here in the score would not be significant.

The table also shows the results for the interval [i − p/2, i + p/2]. This
smaller interval reduces more the search than the other one. However, the results
obtained by the new record linkage are much worse than the ones obtained by
DB-RL.

Summing up, we have that the ad-hoc record linkage method has a similar
behavior as DB-RL, except for a few cases that can not be considered a great
threat to the protection mechanism.

4.2 Alignment Record Linkage

In this section, we propose a new record linkage method for univariate microag-
gregation based on finding the optimal alignment between the original and the
protected sorted attributes. We show that this method, which uses a DTW
distance to compute the optimal alignment, provides in many cases enough in-
formation to the intruder to decide if the link is correct or not. Note that,
standard record linkage methods never ensure the correctness of the linkage.

The alignment record linkage uses the Dynamic Time Warping distance [47]
to find the optimal alignment between the sorted original values and the sorted
cluster centroids (i.e., the protected values using microaggregation). In general,
DTW is a distance to find an optimal match between two given sequences (e.g.
time series or two sorted attributes) with certain restrictions (e.g. minimum
or maximum number of elements of one sequence which can be aligned with
one element of the other one). The sequences are ’warped’ non-linearly in one
dimension (e.g. time or a given order) to determine a measure of their similarity
independent of certain non-linear variations in the dimension. In this scenario,
optimality is understood as the shortest alignment between the two sequences
in a given distance (in our case shorter with respect to the Euclidean distance).
When the intruder computes an alignment for one attribute, he is limiting the
number of possible correct links to a small set of records. When he knows more
than one attribute, the intruder can combine (intersect) all the sets (one for each
known attribute) to obtain all the possible correct links (this technique is very
similar to the one applied to RS-RL). This intersection often results in a single
possible link. When such situation happens (i.e., the final set only contains a
single link) the intruder is completely sure that the link is correct because it is
the only possible one.

In the experiments described in Section 4.2.2, we show that this new record
linkage method improves the performance of standard ones when applied to
compute the disclosure risk of univariate microaggregation. Thus, the real risk
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of univariate microaggregation is underestimated when computed using standard
record linkage methods.

4.2.1 Algorithm Description

Standard record linkage methods need to compare all the original records X
with all the protected records X ′. This process has two clear drawbacks. The
first one is the high computational cost of the comparisons. The second one is
that results obtained may not be as good as the ones that would be obtained
using a more specific record linkage method.

If one takes into account the two results from [19] presented in Section 2.4.2
which hold for all optimal univariate microaggregation algorithms, it is clear
(from Result 1) that it is unnecessary to compute all the comparisons because
original values (once sorted) are put in contiguous clusters. Therefore, if we sort
the original values and the protected cluster centroids, and we find the optimal
alignment (using the DTW algorithm), we can define for an attribute j of the
protected record xi a set of original records B(xij) and limit the comparisons
done by the standard record linkage process to the original records stored in this
set B(xij). Note that the size of the set B(xij) is always between k and 2k − 1,
and that the DTW can be constrained to have between k and 2k − 1 horizontal
shifts, for each vertical shift (these values are directly obtained from Result 2
presented in Section 2.4.2).

As in RS-RL, when more than one attribute is known, it is possible to repeat
the same process for each attribute. Let the protected record to be linked have
c attributes attr′1, . . . , attr′c and be represented by x′

i = (x′
i1, . . . , x

′
ic). Then, the

corresponding original record xℓ will necessarily satisfy the condition

xℓ ∈ ∩1≤j≤cB(attr′i = x′
ij).

That is, the alignment record linkage method can reduce the search to the in-
tersection of the sets of possible original records. Of course, the more attributes
are considered, the less records will be in this intersection, and therefore the
probability of finding the correct linkage will be larger.

When the intersected set has only one record the intruder is sure that this
is the correct linkage. Note that, probabilistic or distance based record linkage
methods never satisfy this property and, therefore, the intruder never knows
which links are the correct ones. So, he only has some heuristic information. In
our method, in the rare situations in which the final intersected set has more
than one possible protected record, the closest one is chosen.

Non-optimal microaggregation methods (as MDAV) do not need to satisfy
Results 1 and 2 (presented in Section 2.4.2). Nevertheless, MDAV microaggre-
gation (univariate version) satisfies Result 1, and from this result, it is clear that
the clusters are non-overlapping. As a consequence thereof, we are sure that
each value is assigned to a cluster with a centroid greater or lower than itself
or equal. As all the values of these clusters are contiguous, the value has to
belong to one of these contiguous clusters. Therefore, we have to compute the
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k Optimal MDAV

u
n
iv

.
m

ic
ro

a
g
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g
a
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o
n

5 7.44 11.10
10 25.34 29.20
15 44.77 49.43
20 65.45 69.92
25 85.48 89.87
30 104.57 108.73
35 123.16 127.30
40 141.36 145.34
45 158.89 163.00
50 176.82 180.68

Census data set

k Optimal MDAV

u
n
iv

.
m

ic
ro

a
g
g
re

g
a
ti
o
n

5 1.91 2.79
10 9.87 10.91
15 22.39 24.33
20 37.59 39.78
25 53.34 55.82
30 69.23 71.44
35 84.71 86.25
40 98.16 100.33
45 112.57 115.32
50 128.20 131.25

EIA data set

Table 4.7: SSE results for univariate microaggregation.

intersection using all the values assigned to such clusters, instead of computing
the optimal alignment using the DTW distance.

If one attribute j has more than k equal values, then it is possible that some of
them are put in a non contiguous cluster, but the centroid of the corresponding
cluster is never further than Max(d(xij , x

′
lower), d(xij , x

′
upper)) of the original

value. Here, xij represents, as stated above, the value for the element for the
given attribute, x′

lower is the first centroid of the attribute with a value smaller
than xij and x′

upper is the first centroid of the attribute with a value larger than
xij .

4.2.2 Experimental A-RL Results

As in Section 4.1, we have considered the reference microdata files proposed in
the CASC project [10]. We have protected both data sets using (a) the optimal
univariate microaggregation and (b) the MDAV heuristic algorithm (univariate
version). The protection method has been applied using several different values
for k ranging from 5 to 50.

To understand better the behavior of the two microaggregation approaches,
we present in Table 4.7 the SSE values obtained for each k configuration using
both microaggregation algorithms over the two data sets. As it is expected,
the larger the k, the larger the SSE. Thus, the difference between the original
and the protected data set increases with larger k. In principle, when the SSE
increases, the statistical utility of the protected data set decreases but at the
same time it is more difficult for an intruder to link the protected values with
the original ones. Comparing SSE values using optimal and MDAV univariate
microaggregation with the same k parameter, we observe that optimal univariate
microaggregation has lower SSE (better statistical utility) than MDAV. However,
as we will see later, MDAV behaves better with respect to disclosure risk than
optimal univariate microaggregation.
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Figure 4.8: Graphic representation of the number of links obtained with different
record linkage techniques, applied to the Census data set protected with optimal
microaggregation (a) and MDAV microaggregation (b) using k = 50.
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Figure 4.9: Graphic representation of the number of links obtained with different
record linkage techniques, applied to the EIA data set protected with optimal
microaggregation (a) and MDAV microaggregation (b) using k = 50.

In these experiments, we are interested in the comparison between the new
alignment record linkage method and standard ones. For this reason we compare
four distinct scenarios corresponding to different sets of attributes of different
size. That is, we assume intruders with different knowledges. In the worst (most
dangerous) scenario, the intruder knows five attributes and in the best one, only
two of them.

Figure 4.8 illustrates the number of correct links obtained for the census data
set by the following three record linkage methods: alignment, distance based and
probabilistic for optimal and MDAV microaggregation with k = 50. We can ob-
serve that the three methods obtain similar results, although our new method
always presents the best performance (larger number of correct links) and some-
what slightly worse results in P-RL. The best performance of our method is
due to the fact that the new method limits the number of records to be com-
pared in the linkage process. As this reduction never eliminates good records,
the amount of false links is reduced. For example, using optimal microaggre-
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gation with k = 50 alignment record linkage obtains a number of correct links
between 379 (the intruder only knows two attributes) and 1069 (the intruder
knows five attributes), whereas probabilistic and distance based record linkage
obtain between 374 and 1057, and between 369 and 1047, respectively, for the
same scenarios.

Figure 4.8 illustrates the results for the EIA data set for optimal and MDAV
microaggregation with k = 50. This figure shows clearly that the distance based
record linkage obtains the worst results. As in the case of the Census data
set, the alignment based record linkage method obtains the best results in all
the scenarios considered. In all cases, the larger the number of attributes, the
better is to use our new method. Similar results are obtained with respect
to the k; the larger the k, the better is the performance of our method with
respect to the others. For example, when using optimal microaggregation with
k = 50, the alignment record linkage obtains a number of correct links beween
1012 (the intruder only knows two attributes) and 3703 (the intruder knows
five attributes), whereas probabilistic and distance based record linkage obtain
between 1011 and 3694, and between 469 and 2353, respectively, for the same
scenarios.

From the comparison of these results we can conclude that alignment record
linkage obtains the best (or at least the same) result than the best of the standard
record linkage method. However, such results are still more relevant since with
such approach the intruder is completely sure in most of the cases that the
links found are the correct ones. This is not possible using the standard re-
identification methods (as only a probabilistic estimation of correctness can be
given). So, in the light of these results, our method is better than the existing
ones and can be exploited by any intruder.

In addition to these results, it is also worth to recall that the application of
both DB-RL and P-RL need some parameters. P-RL needs probabilities of false
match and false non-match, and DB-RL needs to assess the weights of attributes
(of special relevance when data includes some bias). As such parameters are
almost never needed in the alignment record linkage method (they are only
needed in the few cases when the intersection of sets does not obtain singletons),
the application of our approach is simpler. In our approach the single parameter
needed (the number of horizontal shifts) can be directly extracted from the
microaggregation parameter k.

In addition to that, if we compare the disclosure risk of both microaggregation
methods, we find that the optimal microaggregation has a higher disclosure risk
than MDAV. This seems to be related with the fact that the SSE is larger for
MDAV than for optimal microaggregation. As the larger the SSE, the larger
the difference between the original and the protected data set; it is natural that
record linkage finds more difficulties in finding correct links with MDAV.
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4.3 Projected Record Linkage

In this section we present a new record linkage technique, specific for multivariate
microaggregation, which obtains more correct links than standard techniques.
We have tested this new technique with MDAV microaggregation, PCP microag-
gregation and Zscores microaggregation.

4.3.1 Traditional Disclosure Risk Evaluation for Multivari-

ate Microaggregation

In order to compare the microaggregation methods, we have protected the same
microdata files as in the case of univariate microaggregation and rank swapping,
with different instances of the three microaggregation methods, and then we have
computed the resulting scores, after having applied the standard information loss
and disclosure risk measures (detailed in Section 2.5).

Table 4.8 and 4.9 show the results of these experiments. Each of the three
microaggregation methods has been applied with the following 9 parameteriza-
tions of the pairs (k,a): k = 5, 15, 25 for the minimal number of elements in
the resulting clusters, and a = 2, 3, 4 for the number of attributes contained
in each block of attributes to which microaggregation is applied. For example,
Mic2.Zscores.15 refers to the Zscores microaggregation method applied to blocks
of a = 2 attributes, with the constraint that resulting clusters must contain at
least k = 15 records. When the total number of attributes is not a multiple of
a (for example, this always happens with Census data set, since 13 is prime),
the last non used attributes are non microaggregated and removed from the
beginning.

For DLD, PLD and ID computation we have considered different cases, ac-
cording to the number of groups of attributes of the original record(s), to be
linked, that the intruder knows. This number varies from 2 to the total num-
ber of attributes of each data set. The values in the table are the average of
the obtained correct links in all these cases, for each parameterization of each
microaggregation method.

For the Census data set, the best scores are clearly obtained with MDAV;
but for the larger EIA data set, both PCP microaggregation and (specially)
Zscores microaggregation lead to better scores than MDAV. The lowest score
using Zscores microaggregation is 16.55 (Mic3.Zscore.5) while the lowest score
using MDAV is 29.15 (Mic3.MDAV.15). Since MDAV produces in (almost) all
the cases less information loss (IL) than the other two methods, the difference
has to come from the disclosure risk part. In effect, the standard methods
(distance-based, probabilistic) for record linkage are less effective against the
two projection based microaggregation than against MDAV. This difference in
the disclosure risk seems to grow up with respect to the number of records of
the data set, since it is much larger in the case of EIA than in the case of Census
(although they are different data sets, so it is impossible to formally conclude
anything from this fact).
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v k IL DLD PLD ID DR Score

M
ic

.v
.P

C
P

-k

2 5 80.96 12.93 5.70 42.60 25.96 53.46
2 15 92.94 8.46 2.94 35.64 20.67 56.81
2 25 84.77 6.61 1.94 32.93 18.6 51.69
3 5 57.72 10.15 5.71 43.48 25.71 41.71
3 15 71.28 4.35 3.49 37.36 20.64 45.96
3 25 72.49 4.07 2.65 35.51 19.44 45.96
4 5 72.23 6.48 3.06 45.12 24.94 48.59
4 15 91.74 3.43 2.04 40.73 21.73 56.74
4 25 92.17 2.92 1.71 39.72 21.02 56.59

M
ic

.v
.Z

sc
o
re

s-
k

2 5 101.95 21.24 9.57 50.69 33.05 67.50
2 15 121.76 16.17 6.11 46.14 28.64 75.20
2 25 122.72 14.61 5.76 44.58 27.38 75.05
3 5 90.72 14.97 11.48 51.89 32.56 61.64
3 15 124.92 9.57 6.94 48.18 28.22 76.57
3 25 128.25 9.23 5.86 46.73 27.14 77.69
4 5 103.98 11.25 7.22 50.64 29.94 66.96
4 15 136.65 6.53 3.75 46.74 25.94 81.29
4 25 133.39 5.69 2.92 45.30 24.8 79.10

M
ic

.v
.M

D
A
V

-k

2 5 19.30 69.06 49.22 74.77 66.95 43.13
2 15 37.70 45.83 26.67 60.94 48.6 43.15
2 25 47.16 28.56 16.81 51.93 37.31 42.23
3 5 30.66 37.44 33.58 65.21 50.36 40.51
3 15 42.76 22.75 19.38 54.79 37.93 40.34
3 25 56.13 15.86 13.36 51.57 33.09 44.61
4 5 34.67 31.9 24.35 61.37 44.75 39.71
4 15 45.58 15.97 12.31 52.43 33.29 39.43
4 25 54.6 11.2 7.08 45.09 27.12 40.86

Table 4.8: Score of different microaggregation methods and parameterizations
when applied to Census data set. Mic.i.var.j corresponds to microaggregation
using variation var (either PCP, Zscores of MDAV) with v = i and k = j.

Summing up, the two projection based microaggregation methods can be
a real alternative to MDAV in some situations, offering a better privacy level
against (standard) re-identification attacks. However, as we will see in the next
section, these conclusions are not completely right: we will show some new record
linkage methods, specially designed for projection based microaggregation, which
increase the real risk of re-identification (and so, the disclosure risk) of these
methods. Maybe surprisingly, the new methods are also very effective when
applied to MDAV. This will result in important changes to the real disclosure
risk, and consequently the real score, of all these multivariate microaggregation
methods.
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v k IL DLD PLD ID DR Score

M
ic

.v
.P

C
P

-k

2 5 13.9 2.94 6.91 70.04 37.48 25.69
2 15 17.24 1.72 2.37 67.67 34.86 26.05
2 25 19.98 1.42 1.58 67.21 34.36 27.17
3 5 16.08 2.47 2.69 62.79 32.68 24.38
3 15 17.76 1.49 1.21 59.41 30.38 24.07
3 25 18.49 1.31 0.9 58.49 29.8 24.14
4 5 18.25 4.23 4.81 73.22 38.87 28.56
4 15 16.39 1.96 2.13 70.48 36.26 26.33
4 25 17.27 1.93 1.91 69.66 35.79 26.53

M
ic

.v
.Z

sc
o
re

s-
k

2 5 4.11 33.88 44.25 28.14 33.6 18.86
2 15 4.77 32.05 46.56 28.11 33.71 19.24
2 25 4.95 31.15 49.39 28.08 34.18 19.56
3 5 13.74 7.20 11.99 29.12 19.35 16.55
3 15 15.82 4.66 8.46 29.63 18.09 16.95
3 25 16.76 4.83 7.54 29.80 17.99 17.37
4 5 20.06 6.87 11.85 32.92 21.14 20.60
4 15 21.00 4.52 7.48 33.21 19.61 20.30
4 25 27.50 3.96 6.84 36.28 20.84 24.17

M
ic

.v
.M

D
A
V

-k

2 5 2.99 35.01 50.8 93.71 68.31 35.65
2 15 5.49 20.02 31.49 86.5 56.13 30.814
2 25 6.35 16.09 26.89 83.88 52.69 29.52
3 5 7.64 21.47 34.53 85.52 56.76 32.2
3 15 9.99 11.33 22.67 79.63 48.31 29.15
3 25 11.12 9.6 18.32 77.63 45.8 28.46
4 5 8.3 25.71 36.78 87.76 59.5 33.9
4 15 19.16 12.66 21.31 81.57 49.28 34.22
4 25 20.11 8.11 14.66 78.28 44.83 32.47

Table 4.9: Score of different microaggregation methods and parameterizations
when applied to EIA data set. Mic.i.var.j corresponds to microaggregation using
variation var (either PCP, Zscores of MDAV) with v = i and k = j.

4.3.2 The Projected Record Linkage Technique

Let X ′ be the result of applying a data protection method to a data set X , with
n records and A attributes. Let y be an original record of X (obtained by an
intruder, possibly from a different data set Y ). The goal of the record linkage
method is to find the record x′ ∈ X ′ which corresponds to the original y.

Projected record linkage technique (Pro-RL) is specifically designed for the
case of microaggregation. Therefore, we can assume that X ′ is implicitly split
into r blocks X ′

i of ai attributes, according to the blocks which have been consid-
ered to perform microaggregation. The algorithm of the projected record linkage
method is defined in Algorithm 5.
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Algorithm 5: Projected record linkage

Data: Y: external data set, X’: protected data set
Result: LP: linked pairs
begin1

foreach X ′
i of X ′ do2

Apply a projection to the ai attributes in X ′
i, for all the3

protected records. For example, the projection can be PCP or
the Zscores one (intuitively, if X ′

i has been obtained with PCP
microaggregation, then PCP should be chosen as the projection
method for record linkage)
Apply the same projection to the corresponding ai attributes of4

the original record y

The result of the previous step is a projected original record ỹ and5

n projected protected records x̃′, all of them with r values
Find the record x̃′

∗ which is closest to ỹ (for example, according to6

the Euclidean distance)
Let x′

∗ be the protected record whose projection was x̃′
∗. Then the7

output link is y ↔ x′
∗ is added to LP

end8

In some way, the reasoning behind this strategy is that the results of pro-
jecting the original data, in X , and the protected data, in X ′, should be very
similar, specially if the projection method applied in the record linkage algo-
rithm has a similar statistical behaviour to the data protection method which
transformed X into X ′. The experiments that we have performed and explained
in the following section, show that this intuition is right.

Although we have explained here a version of the projected record linkage
technique which is specific for microaggregation, the idea can be easily extended
to works with any data protection method. One can choose to project all the
attributes of X into a single projected attribute, or to first split X in disjoint
blocks of attributes, and then to project the attributes in each block, separately.
We have implemented and run this generic record linkage technique against
other protection methods (rank swapping, noise addition) and, differently to
what happens in the case of microaggregation, the results do not improve those
obtained by standard record linkage techniques.

4.3.3 Consequences of Pro-RL in Multivariate Microag-

gregation

We have executed the two projected record linkage methods (using PCP and
Zscores as the inherent projection mechanism) against all the protected data
sets obtained in the experiments of Section 4.3.1; that is, the result of apply-
ing PCP microaggregation, Zscores microaggregation and MDAV, with different
parameterizations, to the data sets Census and EIA.
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Figure 4.10: Percentage of correct links obtained with different record linkage
techniques, applied to the Census data set (a) and EIA data set (b), protected
with PCP microaggregation with v = 4.
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Figure 4.11: Percentage of correct links obtained with different record linkage
techniques, applied to the Census data set (a) and EIA data set (b), protected
with Zscores microaggregation with v = 4.
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Figure 4.12: Percentage of correct links obtained with different record linkage
techniques, applied to the Census data set (a) and EIA data set (b), protected
with MDAV with v = 4.
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Figures 4.10, 4.11 and 4.12 show the percentage of correct links obtained
with different record linkage methods, when applied to both the Census and
EIA data sets, protected with the three multivariate microaggregation schemes
that we analyze in this section using the most secure configuration (using blocks
of four attributes). The percentage is computed by taking into account different
scenarios, where the intruder knows different amounts of groups of attributes of
the original record(s) to be linked, from 2 to all the groups of attributes.

v k IL DLD PLD ProjLD ID ScoreOld ScoreNew ScoreMax

M
ic

.v
.P

C
P

-k

2 5 80.96 12.93 5.70 49.83 42.60 53.46 56.84 63.59
2 15 92.94 8.46 2.94 45.67 35.64 56.81 60.14 66.80
2 25 84.77 6.61 1.94 43.70 32.93 51.69 54.97 61.54
3 5 57.72 10.15 5.71 27.59 43.48 41.71 43.35 46.63
3 15 71.28 4.35 3.49 23.46 37.36 45.96 47.59 50.84
3 25 72.49 4.07 2.65 20.90 35.51 45.96 47.42 50.35
4 5 72.23 6.48 3.06 18.43 45.12 48.59 49.73 52.00
4 15 91.74 3.43 2.04 14.77 40.73 56.74 57.74 59.74
4 25 92.17 2.92 1.71 12.87 39.72 56.59 57.47 59.23

M
ic

.v
.Z

sc
o
re

s-
k

2 5 101.95 21.24 9.57 99.59 50.69 67.50 74.52 88.55
2 15 121.76 16.17 6.11 96.28 46.14 75.20 82.29 96.48
2 25 122.72 14.61 5.76 90.65 44.58 75.05 81.75 95.17
3 5 90.72 14.97 11.48 87.04 51.89 61.64 67.79 80.09
3 15 124.92 9.57 6.94 67.41 48.18 76.57 81.50 91.36
3 25 128.25 9.23 5.86 60.80 46.73 77.69 82.13 91.01
4 5 103.98 11.25 7.22 53.75 50.64 66.96 70.67 78.09
4 15 136.65 6.53 3.75 28.80 46.74 81.29 83.26 87.21
4 25 133.39 5.69 2.92 21.85 45.30 79.10 80.56 83.48

M
ic

.v
.M

D
A
V

-k

2 5 19.30 69.06 49.22 80.59 74.77 43.13 44.92 48.49
2 15 37.70 45.83 26.67 69.48 60.94 43.15 45.92 51.46
2 25 47.16 28.56 16.81 61.28 51.93 42.23 45.45 51.88
3 5 30.66 37.44 33.58 75.06 65.21 40.51 43.81 50.40
3 15 42.76 22.75 19.38 60.03 54.79 40.34 43.59 50.09
3 25 56.13 15.86 13.36 53.49 51.57 44.61 47.85 54.33
4 5 34.67 31.90 24.35 57.64 61.37 39.71 42.17 47.09
4 15 45.58 15.97 12.31 41.99 52.43 39.43 41.75 46.40
4 25 54.60 11.20 7.08 34.63 45.09 40.86 42.98 47.23

Table 4.10: New scores of the different microaggregation methods, applied to
Census data set. Mic.i.var.j corresponds to microaggregation using variation
var (either PCP, Zscores of MDAV) with v = i and k = j.

The results of these experiments can be summarized as follows:

• The new projected record linkage methods obtain, in almost all the cases,
more correct links than the other (standard) record linkage methods. The
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v k IL DLD PLD ProjLD ID ScoreOld ScoreNew ScoreMax

M
ic

.v
.P

C
P

-k
2 5 13.90 2.94 6.91 16.20 70.04 25.69 27.35 28.51
2 15 17.24 1.72 2.37 9.17 67.67 26.05 26.98 27.83
2 25 19.98 1.42 1.58 8.64 67.21 27.17 28.07 28.95
3 5 16.08 2.47 2.69 7.17 62.79 24.38 24.97 25.53
3 15 17.76 1.49 1.21 4.84 59.41 24.07 24.49 24.94
3 25 18.49 1.31 0.90 3.85 58.49 24.14 24.46 24.83
4 5 18.25 4.23 4.81 9.24 73.22 28.56 29.19 29.74
4 15 16.39 1.96 2.13 6.52 70.48 26.33 26.90 27.45
4 25 17.27 1.93 1.91 6.01 69.66 26.53 27.04 27.55

M
ic

.v
.Z

sc
o
re

s-
k

2 5 4.11 33.88 44.25 98.08 28.14 18.86 26.88 33.61
2 15 4.77 32.05 46.56 94.13 28.11 19.24 27.00 32.94
2 25 4.95 31.15 49.39 88.99 28.08 19.56 26.79 31.74
3 5 13.74 7.20 11.99 91.09 29.12 16.55 27.04 36.92
3 15 15.82 4.66 8.46 79.03 29.63 16.95 26.25 35.07
3 25 16.76 4.83 7.54 71.00 29.80 17.37 25.65 33.58
4 5 20.06 6.87 11.85 96.85 32.92 20.60 31.85 42.47
4 15 21.00 4.52 7.48 86.61 33.21 20.30 30.57 40.46
4 25 27.50 3.96 6.84 73.17 36.28 24.17 32.82 41.11

M
ic

.v
.M

D
A
V

-k

2 5 2.99 35.01 50.80 54.48 93.71 35.65 38.08 38.54
2 15 5.49 20.02 31.49 36.66 86.50 30.81 32.89 33.53
2 25 6.35 16.09 26.89 32.84 83.88 29.52 31.61 32.36
3 5 7.64 21.47 34.53 35.40 85.52 32.20 33.94 34.05
3 15 9.99 11.33 22.67 20.53 79.63 29.15 30.30 30.57
3 25 11.12 9.60 18.32 15.35 77.63 28.46 29.18 29.55
4 5 8.30 25.71 36.78 35.29 87.76 33.90 35.10 35.28
4 15 19.16 12.66 21.31 23.29 81.57 34.22 35.55 35.79
4 25 20.11 8.11 14.66 16.81 78.28 32.47 33.56 33.83

Table 4.11: New scores of the different microaggregation methods, applied to
EIA data set. Mic.i.var.j corresponds to microaggregation using variation var
(either PCP, Zscores of MDAV) with v = i and k = j.

difference is in some cases very significant. For instance, when the Census
data set is protected using the Zscores microaggregation with a = 4 and
k = 25 (the most protected configuration) DLD is equal to 5.69, a very
small value, and ProjLD is equal to 21.85. A similar situation happens
with MDAV, if we observe the configuration with a = 3 k = 15 (see Table
4.10), we observe an important increase of the disclosure risk: DLD is
equal to 22.75 while ProjLD is equal to 60.03, much more than 50% of
correctly linked records.

• Not surprisingly, the most effective record linkage method against PCP
microaggregation is the projected one when PCP is used as the inher-
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94 Chapter 4. Specific Disclosure Risk Measures

ent projection, and the same happens with Zscores microaggregation and
Zscores projection. For instance, if we compare the ProjLD-PCP and
ProjLD-Zscores in Figure 4.11 we observe that the best method is to ap-
ply Zscores projection in the record linkage when the data set is protected
using Zscores microaggregation.

• Using PCP projection in the record linkage method to obtain correct links
against Zscores microaagregation, or vice-versa, is not effective at all.

• When applied to MDAV, the projected record linkage method using PCP
is very effective (more than any other method in the case of Census, and
only overcome by Probabilistic Record Linkage in some instances of EIA).
However, using Zscores as the inherent projection leads to quite bad results.
For example, if we observe the MDAV configuration with a = 3 and k = 25
in the Census data set (Table 4.10), we observe that ProjLD is equal to
53.49 while DLD and PLD are equal to 15.86 and 13.36. Here, the ProjLD
is four times higher than standard record linkage disclosure risks.

Obviously, the fact that the projected record linkage technique has a higher
success rate than the other record linkage techniques must have a direct impact
in the real disclosure risk (and so, in the score) of the studied multivariate
microaggregation methods.

One possibility is to compute the disclosure risk, again, as the average of the
Interval Disclosure risk (ID) and the Record Linkage risk, but now this last value
is computed as the average of three values: Distance based Linkage Disclosure
risk (DLD), Probabilistic Linkage Disclosure risk (PLD) and Projected Linkage
Disclosure risk (ProjLD), which is the maximum percentage of correct links ob-
tained by the projected record linkage technique, using either PCP or Zscores as
the inherent projection. When the protection method is PCP microaggregation
or MDAV, the maximum is obtained by using PCP as the inherent projection
for record linkage; when the protection method is Zscores microaggregation, the
maximum is obtained by using Zscores projection.

Another possibility, maybe more realistic, is to assume that the intruder who
wants to break the privacy of the protection method knows which is the most
successful strategy to find correct links. For example, after reading this section,
he may know that projected record linkage with PCP as the inherent projection
is the best known technique to attack PCP microaggregation. In this case,
it is clear that he will always use this technique to find correct links between
original and protected records. Therefore, considering other values to compute
the linkage disclosure risk would make no sense in this situation; the real linkage
disclosure risk would be defined as the maximum among all the linkage disclosure
risk values: DLD, PLD, ProjLD.

Summing up, there would be two different alternatives to compute the new
scores of these methods. In the first one, that we call ScoreNew, the disclosure
risk is computed as DR New = 0.5·(0.333·DLD+0.333·PLD+0.333ProjLD)+
0.5·ID. In the second one, that we call ScoreMax, the disclosure risk is computed
as DR Max = 0.5 ·MAX{DLD, PLD, ProjLD}+ 0.5 · ID. As usual, the final
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score value is computed as the average of the information loss (IL) and the
corresponding disclosure risk (DR).

Tables 4.10 and 4.11 show the new values of the scores, which strongly depend
on the success rate (ProjLD) of the new projected record linkage technique. This
can be easily verified by comparing the new ScoreNew and ScoreMax with the
standard Score, computed by considering only standard (and generic) record
linkage techniques. We consider the same parameterizations than in Section
4.3.1.

After looking at these tables, one can conclude that the real scores of mul-
tivariate microaggregation methods are not as good as one could think (see the
classification of data protection methods in [21]). In particular, the percentage
of correct links are now over the threshold of 50% in many cases, so it is not
clear if these methods offer the desired level of privacy.
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Chapter 5

Record Linkage using Fuzzy

Integrals

Standard record linkage algorithms assume that both data sets are described
using the same attributes, i.e. they assume that the two microdata files A and
B are described using the same attributes. In this chapter, we will study the
non-standard case when attributes are not the same. In this scenario, record
linkage methods described in Section 2.3 and in Chapter 4 cannot be applied.

5.1 An Alternative Disclosure Risk Scenario

At present, there are several works in the literature dealing with scenarios in
which data sets do not include common attributes. Most of the research corre-
sponds to attribute matching or schema matching [18, 51, 52]. This is possible
due to attribute matching is computationally simpler than record matching be-
cause the amount of redundant information existing in the data for attributes is
larger than that for records.

[63] introduced a scenario in which data sets do not share the same attributes.
Re-identification is still possible in such scenario when the attributes still rep-
resent similar information. This would be the case, for example, if we have the
attribute Income-tax in data set B while the data set A contains Net-income.

In general, re-identification can still be achieved in this context under the
following assumptions:

Assumption 1 A set of common individuals is shared by both files.

Assumption 2 Data in both microdata files contain, implicitly, similar struc-
tural information.

According to [63], we can say that structural information of data is defined
as any organization of the data that allows explicit representation of the rela-
tionship between individuals. This structural information is obtained from the

97
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Benefit

Start−up costs

Business

Figure 5.1: Graphical representation of an artificial problem that satisfies As-
sumption 2: Data set A with attributes {Benefits, Start-up costs} and data set
B with attribute {Business type}. In this figure, business types are represented
using squares, ellipses, triangles, and so on.

data files through manipulation of such data (e.g. using clustering techniques or
any other data analysis or data mining techniques). In other words, even though
there are no common attributes, there is substantial correlation between some
attributes in both data sets; or applying some clustering techniques we obtain
the same clusters for both sets of records, this latter approach was considered
in [23];

Figure 5.1 represents a case that satisfies this latter assumption. In this case,
two data sets A and B are considered. Data set A describes a set of retailers in
terms of the attributes {Benefits, Start-up costs}, whereas B describes the same
retailers with the attribute Business type. In this case, some re-identifications
are possible.

As different formalisms can be used for representing the structural infor-
mation, different techniques are needed to extract such structural information.
In this section, we will focus on structural information represented by means
of numerical representatives (as in the example given above of Income-tax vs
Net-income). Therefore, the following assumption is considered:

Assumption 3 Structural information is expressed by means of numerical rep-
resentatives for each individual.

Here, we describe an approach for record linkage for the case that data sets do
not share attributes and when the structural information is expressed using nu-
merical representatives. Then, we show that under a few conditions aggregation
functions arise as the appropriate functions for building such representatives.
Aggregation functions (described in Section 2.1) are functions that combine (ag-
gregate) N values into a single one.

To tackle this problem, we consider the transformation of data sets A and
B into two new data sets A′ and B′ in order that standard re-identification
algorithms can be applied on this latter pair of microdata files (A′, B′).

To do so, we consider the construction of several representatives for each
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Algorithm 6: Transform File

Data: A: data set, F : set of functions
Result: A’: transformed data set
begin1

foreach a ∈ A do2

a′:=new record(f1(a, A), . . . , fk(a, A))3

write(a’,A’)4

end5

record a in A and each record b in B so that re-identification can be performed
over such representatives. This process is detailed below:

• Firstly, we consider a set of functions fi for building the representatives.
In general, we consider that fi is a function of both the record and of the
whole data set A. Therefore, being a a record in A, fi(a, A) stands for a
representative of the record. We denote by F = {fi} for i = 1, . . . , k the
set of considered functions.

• Then, we apply the functions in F to the records a in A to obtain a′.
Formally speaking a′ := F(a, A) where:

a′ := F(a, A) = (f1(a, A), . . . , fk(a, A))

• Now, assuming that functions in F are also applicable to records b in B,
we define records b′ in B in a similar way:

b′ := F(b, B) = (f1(b, B), . . . , fk(b, B))

• Finally, we define files A′ and B′ in terms of the new records a′ and b′.
That is:

A′ := {F(a, A)}a∈A

B′ := {F(b, B)}b∈B

Therefore, given the set of functions F = {fi} for i = 1, . . . , k, and applying
each fi to every record in A and B, we obtain data sets A′ and B′. This process
is defined in Algorithm 6 in a procedural point of view.

Thus, data sets A′ and B′ are obtained as:
A′:=transformFile(A, F); B′:=transformFile(B, F);

With this construction, both data sets A′ and B′ contain the same number
of records as A and B, and records in both microdata files are described using
the same kind of representatives. Therefore, both data sets can be considered
as described using the same attributes and, as such, standard re-identification
algorithms can be applied to the pair (A′, B′).

At this point, it is clear that a crucial decision is the selection of functions
in F . This is reviewed in detail in next section.
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5.1.1 Aggregation Functions for Building Representatives

For building the representatives, we have to select the functions in F . Firstly,
we show that aggregation functions are suitable functions for this purpose, and
then, on the basis of the properties we require for fi, we will illustrate that OWA
is an appropriate selection.

So, we come back to the requirements for functions f ∈ F :

i) The outcome of f applied to a record a should not depend on the values of the
other records in A. This condition corresponds to the so-called condition
of independence of irrelevant alternatives, and its inclusion excludes func-
tions based e.g. on principal component analysis. Formally speaking, this
condition implies that functions f(a, A) do only depend on a and should
not depend on the other values in A.

ii) When all the values of a record are equal, the representative is this value.
This condition implies that all functions f satisfy unanimity (idempo-
tency).

iii) The representatives should be monotonic with respect to their inputs. That
is, given two records a = (a1, . . . , aN ) and a∗ = (a∗

1, . . . , a
∗
N ) so that ai ≤

a∗
i , the representatives of a should always be smaller than (or equal to) the

representatives of a∗.

iv) When there is no prior knowledge on the attributes (if this is not the case,
other methods might be used for linkage), no preference should be given
to any of the attributes involved in the process. In other words, the order
of the attributes is irrelevant. This is formally expressed saying that a
permutation of the attributes does not affect the output:

f(a1, . . . , aN ) = f(aπ(1), . . . , aπ(N))

where π is a permutation of the indices. That is, f is a symmetric function.

v) The function should be easily extensible to an arbitrary number of parame-
ters, so that the same procedure can be applied to files with an arbitrary
number of attributes. In this way, we can apply F to both data sets A and
B although the number of attributes in each one is different.

vi) This function should be parameterizable so that different representatives
can be computed for the same record.

These requirements constrain functions in F . In particular, the first condition
implies that functions fi(a, A) can be defined in terms of another function f ′

i

that depends only on a. That is, fi(a, A) = f ′
i(a). Then, conditions (ii) and (iii)

imply that functions f ′
i are aggregation functions as they should be idempotent

and monotonic (see Definition 1 in Section 2.1). Therefore, the following holds:
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Proposition 1 Let the functions in F satisfy the condition of independence of
irrelevant alternatives, idempotency and monotonicity. Then, the functions in
F are aggregation functions.

Additionally, when conditions (iv), (v) and (vi) are required for aggregation
functions, we have that some of such operators are discarded. This is the case of
the weighted mean (that is not symmetric and not easily extensible because it
requires weights for each attribute) or the arithmetic mean (that is not param-
eterizable). The OWA operator and other fuzzy integrals with symmetric fuzzy
measures are some of the few ones that are appropriate. They are symmetric
and parameterizable (in terms of the function Q). In relation to the property
of being extensible for an arbitrary number of parameters, we have that not all
definitions for OWA operators are appropriate. For example, definitions based
on weighting vectors (as the original definition in [77]) are not appropriate be-
cause additional arguments would require additional weights. Nevertheless, the
definition given in Definition 2 is appropriate because the same function Q can
be used for an arbitrary value of N .

Taking all this into account we state that we can use either OWA operators,
Sugeno integrals or twofold integrals (all based on non-decreasing functions Q).
This selection is valid as the following proposition holds:

Proposition 2 The functions OWAQ, SIQ TIQ,Q and satisfy conditions (i)-
(vi) for all non-decreasing functions Q.

Additionally, as functions satisfying condition (v) above are applicable to an
arbitrary number of parameters, they can also be applied to situations in which
data contains missing values. In this case, instead of defining record a′ as before,
we would define:

a′ := F(a, A) = (f1(â, A), . . . , fk(â, A))

where â is a projection of a over those attributes with non-missing values in
a. For all this, the following holds:

Proposition 3 The functions OWAQ, SIQ and TIQ,Q are applicable to records
with missing data for all non-decreasing functions Q.

5.1.2 Example

Now, we illustrate with an illustrative example the method we have proposed.
In Section 5.2 we will describe several experiments with real data.

Let us consider the two data files A and B represented in Figure 5.1. Data
set A consists of 10 records described in terms of 4 attributes. All attributes
are numerical and numbers belong to the interval [0, 1]. Data set B contains the
same data included in A but the attributes have been permuted.

Standard re-identification algorithms cannot be applied to establish links
between the records in A and B without knowing the correspondence between
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attr1 attr2 attr3 attr4

rA
1 0.2 0.4 0.2 0.4

rA
2 0.1 0.2 0.1 0.2

rA
3 0.5 0.6 0.5 0.1

rA
4 0.8 0.4 0.4 0.7

rA
5 0.9 0.2 0.0 0.0

rA
6 0.2 0.2 0.3 0.9

rA
7 0.5 0.3 0.2 1.0

rA
8 0.0 0.1 0.5 1.0

rA
9 1.0 0.0 0.9 0.2

rA
10 0.5 1.0 1.0 0.8

(a)

attr′1 attr′2 attr′3 attr′4
rB
1 0.4 0.2 0.2 0.4

rB
2 0.2 0.1 0.1 0.2

rB
3 0.1 0.5 0.5 0.6

rB
4 0.7 0.4 0.8 0.4

rB
5 0.0 0.0 0.9 0.2

rB
6 0.9 0.3 0.2 0.2

rB
7 1.0 0.2 0.5 0.3

rB
8 1.0 0.5 0.0 0.1

rB
9 0.2 0.9 1.0 0.0

rB
10 0.8 1.0 0.5 1.0

(b)

Table 5.1: Data sets A and B for re-identification.

attributes in A and B. Nevertheless, in this case, we can apply the method
described in this section. To do so, we need to define the set of functions F .
We will use here the OWA operator with Qα(x) = xα with several values of α.
In particular, we consider 10 different functions corresponding to Qα with the
following values of α:

α = (1/5, 2/5, 3/5, 4/5, 5/5, 6/5, 7/5, 8/5, 9/5, 10/5)

By applying these aggregation functions, we obtain exactly the same records
for both microdata files A and B presented in Figure 5.1. The records obtained
are given in Table 5.2. Now, as both files contain exactly the same records, the
re-identification is trivial.

Note that the first row in Table 5.2 is obtained by applying the OWA operator
to the first row of Tables (a) and (b) of Table 5.1 using the function Qα(x) = xα

with α = 1/5, . . . , 10/5. In particular, the first column in Table 5.2 corresponds
to α = 1/5, second column to α = 2/5 and so on since the tenth column where
α = 10/5.

Therefore, the element in the i-th row, column Qα in Table 5.2 corresponds
to OWAQα

(rA
i ). Of course, OWAQα

(rA
i ) is equivalent to OWAQα

(rB
i ) in this

example because rB
i is a permutation of rA

i and the OWA operator is symmetric.

This example can be considered as too simplistic. Nevertheless, this same
situation arises in database integration with unlabeled attributes or with incon-
sistent labeled attributes. In a more general case, instead of having a permu-
tation of exactly the same attributes, we might have attributes in one data set
that are combinations of some attributes in the other database.
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Q1/5 Q2/5 Q3/5 Q4/5 Q5/5 Q6/5 Q7/5 Q8/5 Q9/5 Q10/5

r′A1 = r′B1 0.37 0.35 0.33 0.32 0.30 0.29 0.28 0.27 0.26 0.25
r′A2 = r′B2 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.13 0.13 0.13
r′A3 = r′B3 0.55 0.51 0.48 0.45 0.43 0.40 0.38 0.36 0.35 0.33
r′A4 = r′B4 0.74 0.69 0.64 0.61 0.56 0.55 0.53 0.51 0.49 0.48
r′A5 = r′B5 0.71 0.55 0.44 0.35 0.28 0.22 0.18 0.14 0.12 0.094
r′A6 = r′B6 0.74 0.62 0.53 0.46 0.40 0.36 0.32 0.30 0.28 0.26
r′A7 = r′B7 0.85 0.73 0.63 0.56 0.50 0.45 0.41 0.38 0.36 0.34
r′A8 = r′B8 0.82 0.68 0.57 0.47 0.40 0.34 0.29 0.25 0.22 0.19
r′A9 = r′B9 0.87 0.77 0.67 0.59 0.53 0.47 0.41 0.37 0.33 0.29
r′A10 = r′B10 0.96 0.92 0.88 0.85 0.83 0.80 0.78 0.755 0.74 0.72

Table 5.2: Data set A (and B) for re-identification.

5.2 Experiments

The approach presented herein has been extensively tested with several micro-
data files, considering three types of aggregation functions (OWA, Sugeno inte-
gral and twofold integral) and considering three different quantifiers. We have
used the seven data sets extracted from the UCI repository [46] and the Census
data set extracted from the CASC project. All these data sets are described in
Section 2.6.

5.2.1 Preprocessing

To test the re-identification algorithms the microdata files have been partitioned.
Each data set was split into two new data sets in such a way that both data sets
contained the same records but only some of the attributes. Attribute selection
was done on the basis of the correlation coefficients. In particular, attributes
with a low correlation coefficient over all the other attributes were discarded and
pairs of attributes with a correlation coefficient of at least 0.7 were separated
assigning one of each to a different microdata file.

Below we list the microdata files used in the experiments, and for each one
the two sets of attributes considered (each set defines one microdata file). For
example, in the case of the Iris Plants Database, that contains 150 records,
one microdata file contains the 150 records but only the attributes Sepal-length
and Petal-length and the other one (that also contains 150 records) contains the
attributes Sepal-width and Petal-width.

• Iris data set. {a1, a2}, {a3, a4}

• Abalone data set. {a4, a5, a7}, {a2, a3, a6, a8}

• Ionosphere data set. {a1, a2, a3, a4, a5, a6}, {a7, a8, a9, a10, a11, a12}
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• Dermatology data set. {a1, a2, a3, a4, a5, a6, a7, a8, a9}, {a10, a11,
a12, a13, a14, a15, a16}

• Housing data set. {a1, a2, a3, a4}, {a5, a6, a7}

• Water Treatment data set. {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
a11}, {a12, a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25}

• WDBC data set. {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12}, {a12,
a13, a14, a15, a16, a17, a18, a19, a20, a21, a22}

• Census data set. {a1, a3, a8, a9, a10, a12, a13}, {a2, a4, a5, a6, a7,
a11}

Before applying the re-identification algorithm, the data has been normalized.
We have considered both ranging (denoted below by N1) and standardization
(N2). Missing values have been replaced by zero (after normalization).

5.2.2 Tests

The procedure described in Section 5.1.1 has been applied to each pair of data
set. For each pair, we have selected at random sets of 100 records and applied the
re-identification algorithms. 10 executions have been applied and the average
number of re-identifications has been computed.

Experiments have been done using the OWA operator as well as for the
Sugeno integral and twofold integral with respect to a fuzzy measure of the form
µ(A) = Q(|A|/N) (and also with respect to µ(B) = Q(|B|/N) in the case of
the twofold integral). For the aggregation functions, three different families of
non-decreasing functions were considered. The functions and the parameters
used are the following ones:

1. Qe
α(x) = xα for α = 1/5, 2/5, 3/5, . . . , 10/5

2. Qs
α(x) = 1/(1 + e(α−x)∗10) for α = {0, 0.1, . . .0.9}

3. Qt
α(x) =

{
0 if x ≤ α
1 if x > α

for α = {0, 0.1, . . .0.9}

Here, Qe stands for exponent, Qs for sigmoidal and Qt for threshold. Fig-
ures 5.3, 5.2, and 5.4 give a graphical representation of these functions.

Once we have obtained microdata files with common attributes, we used both
probabilistic and distance-based record linkage.

5.2.3 Results

The results for the data sets with better performance are given in Tables 5.4,
5.5, 5.6, and 5.7. They correspond to the microdata files Abalone, Ionosphere,
Census, and WDBC. Iris, Dermatology and Housing led to poor results. The
bad performance of Iris and Housing was probably due to the reduced number of
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Figure 5.2: Graphical representation of Qe
α for α = 1/5, . . . , 10/5.

attributes, that did not permit to express structural information correctly. The
file Water Treatment, not included herein, led to results similar to Census with
around 10 re-identifications and a maximum of 16.

In the aforementioned tables, we give the average number of re-identifications
obtained over 10 executions, considering in each execution the parameters de-
scribed above: (i) either OWA, the Sugeno integral (denoted SI) or twofold
integral (TI) with respect to a symmetric fuzzy measure; (ii) either distance-
based record linkage (DB-RL) or probabilistic one (P-RL); (iii) either ranging
(denoted N1) or standardization (N2) as the normalization method and (iv) ei-
ther Qe, Qs or Qt as the non-decreasing functions Q that with OWA or SI
define the set F ; to define the set F for TI we have selected the three best
possible combinations of Qe, Qs and Qt in each case.

The experiments show that, except for the data sets with poor performance,
at least 10% of the records were re-identified achieving averages of 18.2 or 22.6
for data sets WDBC and Ionosphere. The maximum percentage of records re-
identified in an experiment was 26% in WDBC and 28% in Ionosphere. These
values are not given in the tables, since tables only include the averages of 10
executions.

The evaluation of our approach is not straightforward as there are no system-
atic alternative approaches to deal with the same problem. Two simple methods
were considered in [23] for the Census data set:

• The one-dimensional ranking based on first principal component: that
permitted to correctly re-identify 5 out of 90 records.
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Figure 5.3: Graphical representation of Qs
α for α = 0, 0.1, . . . , 0.9.

• The one-dimensional ranking based on the sum of z-scores: by using this
approach, 5 out of 90 records were correctly re-identified.

For the same problem, by using the approach described herein, we were able
to correctly re-identify 12 records out of 100 and the better average over 10 runs
was 10.4 (see Table 5.6).

An alternative way to assess the successfulness of the method is to consider
the probability of random linkage. The probability of randomly obtaining r or
more linkage out of n is defined in the next proposition.

Proposition 4 [64, 67] If A and B both contain n records corresponding to
the same set of n individuals, the probability of correctly re-identifying exactly r
individuals by a random strategy is

∑n−r
v=0

(−1)v

v!

r!
(5.1)

Table 5.3 gives the probabilities for some values of r when the number of
records is 100. It can be seen that the probability of obtaining between 15 and
30 records (as obtained in some of the experiments reported here) is almost zero.
For example, the probability of re-identifying 26 records or more as in wdbc is
9.47 · 10−28 and for 28 records as in Ionosphere is 1.24 · 10−30.

Finally, it is possible to compare the results of our approach with the success
rate of re-identification of standard record linkage when an original data set and
a masked data set are compared. In [22], around 300 experiments are described
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Figure 5.4: Graphical representation of Qt
α for α = 0, 0.1, . . . , 0.9.

and an average number of re-identifications of 26.12% was obtained for distance-
based record linkage and 19.72% for probabilistic one. Here, the rate is smaller
but considering that we use data sets not sharing attributes the performance
is acceptable, specially since the best performance for Ionosphere is 28 (larger
than 26.12%) and the best average for the same problem for probabilistic record
linkage is 22.2%, still larger than the result in [22] for probabilistic record linkage.
Similar results were reported [24] with respect to re-identification of synthetic
data.

The results permit to compare the different approaches experimented. In
general, we can state that the use of the Choquet integral and twofold integral
are more successful than that of the Sugeno integral. Also, we may add that
the use of the quantifier Qt leads to better results than the use of Qe and Qs.
The results also show that distance-based record linkage is more suitable for
numerical data. Finally, we have that the use of standardization is, in general,
preferable over ranging.
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r prob. |links| = r prob. |links| ≥ r
0 0.36787944 1
1 0.36787944 0.63212056
2 0.18393972 0.26424112
3 0.06131324 0.08030140
5 0.00306566 0.00365985

10 1.0138E-7 1.1143E-7
15 2.8132E-13 3.0000E-13
20 1.5121E-19 1.5875E-19
25 2.3717E-26 2.4664E-26
26 9.1219E-28 9.4723E-28
28 1.2066E-30 1.2496E-30
30 1.3869E-33 1.4331E-33
50 1.2096E-65 1.2338E-65

100 1.071E-158 1.071E-158

Table 5.3: Probabilities of having r correct links and of having more or equal
than r links for 100 records.

OWA SI TI
Qe Qs Qt Qe Qs Qt Qe Qt Qs Qt Qt Qt

N
1 DB-RL 6.5 5.9 6.7 4.8 4.2 6.7 6.6 6.4 6.1

P-RL 3.9 5.2 1.8 5.5 5.2 1.8 5.3 4.1 4.2

N
2 DB-RL 9.9 7.9 8.8 5.6 6.5 7.0 11.2 8.6 7.3

P-RL 6.3 8.4 2.2 5.6 6.2 2.4 8.2 7.6 8.1

Table 5.4: Average number of re-identified records for the Abalone example.

OWA SI TI
Qe Qs Qt Qe Qs Qt Qs Qt Qs Qs Qt Qs

N
1 DB-RL 14.4 21.8 21.9 11.6 20.3 21.9 19.3 19.1 17.7

P-RL 12.9 22.2 3.9 10.8 20.7 3.9 22.4 22.6 17.7

N
2 DB-RL 5.7 7.9 8.6 6.4 6.9 8.0 8.2 7.3 7.1
P-RL 4.2 7.5 1.3 4.9 6.2 1.6 6.1 4.3 5.8

Table 5.5: Average number of re-identified records for the Ionosphere example.
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OWA SI TI
Qe Qs Qt Qe Qs Qt Qe Qs Qs Qe Qs Qs

N
1 DB-RL 7.1 9.5 7.5 6.1 8.6 7.5 9.9 8.7 8.8

P-RL 4.7 9.6 10.4 6.0 7.9 10.4 9.6 9.1 7.3

N
2 DB-RL 8.4 8.8 9.9 4.3 3.6 5.0 9.8 9.6 9.3

P-RL 7.4 8.8 5.0 3.7 3.5 2.2 7.1 8.2 7.6

Table 5.6: Average number of re-identified records for the Census example.

OWA SI TI
Qe Qs Qt Qe Qs Qt Qs Qt Qt Qs Qt Qt

N
1 DB-RL 5.0 7.0 4.4 5.5 5.8 4.4 6.8 5.8 5.1

P-RL 4.4 7.1 8.0 6.3 5.8 8.0 7.8 6.2 4.3

N
2 DB-RL 10.8 15.8 18.2 3.3 4.6 5.1 17.7 18.2 16.4

P-RL 10.5 14.8 16.2 3.3 4.7 4.6 16.4 14.1 12.3

Table 5.7: Average number of re-identified records for the WDBC example.
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Chapter 6

Time Series Protection

In this chapter we present some results about time series protection and re-
identification. We propose a complete framework to evaluate time series protec-
tion methods. We also present some empirical results to show how our framework
works.

To the best of our knowledge, neither information loss nor disclosure risk
measures are described for the case of time series protection. In this chapter we
propose a group of information loss measures designed for time series protection
evaluation. Such measures consider the main uses of time series, e.g. forecasting
and autocorrelation analysis. We also propose the use of the record linkage
methods, specially adapted to time series, as the most straightforward way to
compute the disclosure risk. Finally, we propose to combine both IL and DR
measures in a final score using the arithmetic mean.

6.1 Time Series Protection

A lot of effort has been made in the last few years to develop protection methods,
see [1, 21] for a survey. Nevertheless, the research on protection methods focuses
on the anonymization of numerical and categorical data.

However, in the real world, an increasing percentage of the released infor-
mation has an implicit or explicit time component. This is the case of e.g.,
income or stock prices. Similarly, data accumulation through consecutive years
(e.g., economical data from companies or census data from individuals) can also
be considered from this point of view. Standard protection methods have been
designed for non-temporal attributes and they disregard many key questions
regarding time series as e.g. time series normalization or preservation of time
information. In general, methods ignore the standard uses specific for time series
as e.g. forecasting or tendency analysis.

In this section, we present a method for time series protection. It is a method
based on MDAV microaggregation. Recall that MDAV (and microaggregation in
general) requires the definition of a distance on the data. For standard data, the

111
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Figure 6.1: Graphical representation of distance function selection.

usual distance is the Euclidean one. In the case of time series, several distances
on time series can be considered. Here, we propose two different distances: short
time series distance and Euclidean distance (both described in Section 2.2.1).

6.1.1 Time Series Microaggregation

To specialize the MDAV algorithm for time series we need to establish which
distance and which average function will be used. We propose to implement
the general MDAV algorithm described in Algorithm 3 (Section 2.4.2) with the
following parameterizations:

• Distance functions. We propose the use of Euclidean and STS distances:
dEU (x, v) and dSTS(x, v) as defined in Section 2.2.1.

• Average. We propose to use a kind of arithmetic mean. Such mean has
been defined component-wise. That is, given the set X = {xj}j=1,...,J with

time series xj for j = 1, . . . , J , each one with xj
k, we define the average

series x̃k by x̃k = (1/J)
∑

j=1,...,J xj
k.

With these definitions, the average record x̃ in the MDAV algorithm is the
average of all records (time series) in X .

The two distance functions considered (Euclidean and STS distances) lead
to different results when combined with the microaggregation algorithm. While
the Euclidean distance makes clusters based on the distance between data com-
ponents, the STS distance makes clusters based on the shape of the time series.
This is illustrated in the following example.

Example 6.1 Figure 6.1 (left) represents 4 series to be microaggregated. The
results of microaggregating these 4 series into 2 clusters using either Euclidean
or STS distances are given, respectively, in middle and right chart of Figure 6.1.
It can be observed that the Euclidean distance gathers together the nearest series
even in the case that they have different shapes (and, thus, the outcomes are just
lines but that mainly keep the original values). In contrast, the STS distance
gathers series according to shapes (and, thus, the outcomes keep such shapes but
not the original position of the series).

In this example, we have used point-wise average for computing the represen-
tative of each cluster.
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According to this, in the step of selecting the distance function, we have the
opportunity to model how the microaggregation procedure makes the clusters
and decide which information is the most important to be kept in the final
protected model.

In the following we will use eu-microaggregation to denote the microaggre-
gation based on the Euclidean distance and sts-microaggregation to denote the
microaggregation based on the STS distance.

6.2 Time Series Information Loss Measures

Strictly speaking, information loss depends on the data uses to be supported
by the protected data. However, potential data uses are very diverse and it
could be even hard to identify them all at the moment of data release. It is
thus desirable for the data protector to be able to measure information loss in a
generic way. Information loss measures should reflect how much perturbation is
added by a given protection method. The amount of information loss measured
in this generic way should roughly correspond to the amount of information loss
for a reasonable range of data uses. When one defines the measure from a set
of components, we need such components to cover (almost) all the possible data
uses of a generic user.

In our scenario for time series protection, information loss components have
to cover a broad variety of uses, ranging from the statistical analysis to fore-
casting. For this reason, we divide the information loss components into three
different categories:

• IL1. Measures related to statistical analysis. Such measures, as the average
or the autocorrelation function, cover part of the typical statistical analysis
like ARMA or ARIMA processes [9].

• IL2. Measures related to the differences among original and protected time
series. It is clear that information loss increases if protected elements are
’far’ (dissimilar) to the original ones.

• IL3. Measures related to forecasting. As forecasting is one of the most
common uses of time series, we can say that the statistical information is
preserved when the forecast from protected time series is similar to the
forecast using the original data.

6.2.1 Information Loss Computation

We have defined the general information loss in terms of the three different
components described above IL1, IL2 and IL3:

IL =
IL1 + IL2 + IL3

3
We formally define IL1, IL2 and IL3 below. These three measures are

calculated using the differences between values obtained from the original and
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the protected data. It is possible to define such differences in different ways (e.g.
by using the mean square error or the mean absolute error). However, as we
want to obtain a value in the [0, 1] interval, we define the ILi measures as mean
variations dividing the differences by the largest value (original or protected)
to ensure that the result is always inside the rank [0, 1]. We denote γ for the
original statistic value and γ′ for the same statistic computed in the protected
data set.

• IL1. It is defined as the average of the difference between the time series
means and the autocorrelation functions of both original and protected
time series. Formally, IL1 is computed using the formula

IL1 =
IL1.1 + IL1.2

2

where IL1.1 and IL1.2 correspond, respectively, to

IL1.1 =

∑s
i=1

(|µi|−|µ′
i|)

Max(|µi|,|µ′
i
|)

s

IL1.2 =
1

4

∑

i=0,n/4,n/2,3n/4

(

∑s
i=1

|(Ri|−|R′
i)|)

Max(|Ri|,|R′
i
|)

s
)

where s is the number of series in the data set and n is the number of
elements (length) of the time series.

• IL2. It is defined in terms of the absolute differences between original and
protected time series elements

IL2 =

∑s×n
i=1

|xi−x′
i|

Max(|xi|,|x′
i
|)

s × n

• IL3. It is defined using the differences between different forecasting models
for the n + 1, n + 2 and n + 3 values

IL3 =

∑
m∈FM

P3
i=1

|xn+i−x′
n+i

|

Max(xn+i,x′
n+i

)

3

5

where FM is the set containing all the forecasting models de-
scribed in Section 2.2.2. Then, FM is defined as FM =
{SESF, DESF, RF, MLRF, PRF}.
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6.3 Time Series Disclosure Risk Measures

Section 6.2 discusses ways to measure the information loss caused by protection
methods for time series. However, as we have explained in the preliminaries, the
assessment of the quality of a protection method should not be restricted to its
information loss but it should also include a measure of its disclosure risk.

Following the scenario described in Section 2.4, once the modified (protected)
data set X ′ is released, everybody can see its content. This scenario also assumes
that the intruder has access to some other data set Y = Yid||Ync which includes
an identifier and some of the non-confidential quasi-identifier attributes of some
of the individuals whose data is in X ′. Then, according to this scenario, disclo-
sure risk measures have to be in accordance with the difficulty for an intruder
of linking the protected data X ′ with the original data Y . To do this, in this
thesis we propose to modify the distance based record linkage method presented
in Section 2.3.1 for time series re-identification.

We also measure the disclosure risk in the scenario where the intruder has no
access to an external data set. In this case, we assume that the intruder tries to
infer the original values from the protected ones. We model this situation using
the interval disclosure. In this approach an interval is considered around each
protected value. Then, when one original value falls within the interval defined
around the corresponding protected value, we assume that the intruder obtains
a value of enough quality to break the privacy of the data respondent.

6.3.1 Time Series Normalization

It is usual to normalize data sets before applying record linkage methods. This
is so, to avoid the scale problems of raw data. The following two alternatives
are usually considered:

• Ranging. Raw data is translated into the [0, 1] interval using this ex-

pression x′ = (x−min(a))
(max(a)−min(a)) , where x is the original value and max(a)

and min(a) are the maximum and minimum values for the corresponding
attribute a.

• Standardization. Raw data is normalized by translating the mean to
be equal zero and the standard deviation to be equal one. That is, x′ =
(x−µa)

Sa
, where µa and Sa are, respectively, the mean and the standard

deviation of the corresponding attribute a.

This kind of pre-processing, when applied independently for each compo-
nent of the time series, causes the loss of the temporal information of the time
series. For this reason, we apply another type of normalization using all the
elements included into the time series. In this work we had used the following
normalization

x′
i =

(xi − µx)

Sx
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Index of prices
1993 1994 1995 1996 1997 1998 1999 2000 2001

Bread 106.5 110.3 114.9 117.9 119.3 121 122.2 124.1 129
Oil 102.7 119.8 147.8 178.7 130.8 116.2 133.6 123.5 114.4

Vegetables 95.6 101.9 110.8 116.4 114.2 119 124.6 126.4 133.9
Potatoes 101.1 133.6 162.8 123.8 121.3 140.4 149.8 148.6 177.6

Table 6.1: Data extracted from Spanish National Statistics Institute.

Index of prices
1993 1994 1995 1996 1997 1998 1999 2000 2001

Bread 1.00 0.26 0.08 0.02 0.31 0.20 0.00 0.02 0.23
Oil 0.65 0.56 0.71 1.00 1.00 0.00 0.41 0.00 0.00

Vegetables 0.00 0.00 0.00 0.00 0.00 0.12 0.09 0.12 0.31
Potatoes 0.50 1.00 1.00 0.12 0.43 1.00 1.00 1.00 1.00

Table 6.2: Data normalized with the standard component-wise procedure.

where µx and Sx are the mean and the standard deviation of the elements
of the corresponding time series.

Now, we illustrate with a clear example (that uses the index prices for some
food products) the impact of the normalization of the time series, comparing
the normalization by component (each component treated as an attribute) and
the normalization of the time series as a whole. The example illustrates that the
normalization by component distorts completely the shape of the time series.

Example 6.2 Let us consider the price index of four different foods in nine
years. We can observe in Table 6.1 the original raw values and their tendency
in the period 1993 - 2001 and in Tables 6.2 and 6.3, respectively, the normalized
data values after standard (component-wise) and time series (data altogether)
normalization.

Figure 6.2 shows that different normalizations produce different outcomes and
that the standard component-wise normalization causes important divergences on
the tendency of the time series between the original time series and the normal-

Index of prices
1993 1994 1995 1996 1997 1998 1999 2000 2001

Bread 106.5 110.3 114.9 117.9 119.3 121 122.2 124.1 129
Oil 102.7 119.8 147.8 178.7 130.8 116.2 133.6 123.5 114.4

Vegetables 95.6 101.9 110.8 116.4 114.2 119 124.6 126.4 133.9
Potatoes 101.1 133.6 162.8 123.8 121.3 140.4 149.8 148.6 177.6

Table 6.3: Data normalized with the time series procedure.
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Figure 6.2: Graphical representation of the effects of time series normalization,
(a) represents the original data without normalization, (b) represents normalized
data with independent normalization, (c) represents normalized data with time
series normalization.
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Algorithm 7: Time Series Record Linkage

Data: X: original data set, X’: protected data set
Result: LP: linked pairs
begin1

Apply time series normalization to X and X’2

foreach a ∈ X do3

b′ = arg minb∈X′dts(a, b)4

LP = LP ∪ (a, b′)5

foreach a ∈ X do6

NP = NP ∪ (a, b)7

end8

ized one. For example, in the case of bread, when comparing charts (a) and (b),
we observe that in the original data bread price tendency was to increase every
year but that after normalization bread price has a decreasing tendency. This is
a negative effect of the normalization over the data.

To avoid this effect of component-wise normalization, we propose the use of
specific normalization procedures for time series: normalization of all the series.

6.3.2 Time Series Re-identification

The time series record linkage presented in this section is based on the standard
distance based record linkage. Recall that DB-RL method can be applied when
a distance between pairs of records (one in the original data set and the other in
the protected data set) can be defined. Then, every protected record is linked
to the closest original one. When the data is numerical (DB-RL standard), it
is usual to use the Euclidean distance (after normalizing the whole data set).
In our case with time series, we use the normalization explained above and the
distances presented in Section 2.2.1. That is, the Euclidean distance and the
STS distance. Formally, time series record linkage is described in Algorithm 7,
where dts(a, b) is defined in terms of a given distance dxi

for each time series xi.

6.3.3 Time Series Interval Disclosure

When the intruder has no access to any external data source, he can try to
approximate original values assuming that they are in a finite interval around the
protected value. To measure the risk of this approach, we apply the Algorithm 8
where p is a parameter defined by the user and |E| is the number of values in
the entire data set.

Normally, the parameter p is defined using a percentage of difference of an
element. For example, with p = 10%, if the element is equal to 10, the corre-
sponding interval will be [9, 11].
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Algorithm 8: Time Series Interval Disclosure

Data: X: original data set, p: interval size
Result: c: percentage of elements revealed
begin1

foreach record r ∈ X do2

foreach time series t ∈ r do3

foreach element x ∈ t do4

r = p × x′
5

if (x ≥ x′ − r) and (x ≤ x′ + r)) then6

c = c + 17

end8

6.3.4 The Computation of the DR Measures

Considering the two scenarios presented above, it is possible to compute the final
disclosure risk as:

DR =
DR1 + DR2

2

where DR1 and DR2 summarize the re-identification risk and the interval
disclosure risk respectively.

DR1 is computed averaging the percentage of records correctly linked by the
intruder using different time series distances. In our case we consider EULD
(Euclidean distance linkage disclosure) and STSLD (Short time series linkage
disclosure). Formally, we compute DR1 using the formula

DR1 =
EULD + STSLD

2

where EULD and STSLD are the average percentage of records correctly
linked using time series record linkage with Euclidean and STS distance when
the intruder knows different numbers of time series (from 1 to all).

DR2 is computed as the interval disclosure using different values for the
parameter p, in our case p ranges from 1% to 10%

DR2 =

∑0.1
p=0.01 IDp

10

6.4 Final Trade-off Evaluation

As we said in the preliminaries, information loss and disclosure risk have to be
combined to obtain a global value about the performance of a specific protec-
tion method. This value weighs the relationship between information loss and
disclosure risk. To do this, we follow the definition of the score presented in
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Section 2.5. Then, the final evaluation of a time series protection method is as
follows:

score =
IL + DR

2
where IL is the overall information loss measure and DR is the overall dis-

closure risk measure.

6.5 Experiments

As stated above, we have introduced a new data protection method for time se-
ries, and we have also presented a framework to evaluate time series anonymiza-
tion methods. In this section, we describe some experiments done with real data
using the time series microaggregation protection method. These experiments
show how our framework works.

6.5.1 Data Protection

To analyse empirically our framework and to evaluate the time series microag-
gregation method we have protected some real data sets that can be obtained
freely from different data sources. Firstly, we have used a file from [38] (the so-
called forecasters) with 3003 time series of different lengths (between 14 and 64
elements). We have re-sampled all time series to 10 elements to covert them into
the same length. Secondly, we have used the Stock Exchange information of the
thirty five most important Spanish companies. These companies are ranked in
the so-called Ibex35 stock market. We have downloaded the information about
prices from June, 21st 2005 to April, 28 th 2006 from [56]. And finally, we have
used data information about all football teams of the nine most important Eu-
ropean domestic leagues from [33]. As said above, the information about these
three testbeds is publicly available. Data details are given in Table 6.4.

We have protected the original data with the time series microaggrega-
tion method described in Section 6.1. We have applied this method with
k ∈ {2, 3, 6, 9, 12}.

We have applied the time series microaggregation method splitting the orig-
inal time series into n masked ones to obtain a larger variety of tests. We detail
now these conversions for each file.

• Forecasters problem. We have split the original time series into n ∈
{1, 2} time series. So, in this case we have two different data sets, one with
one time series and the other with two time series.

• Ibex35 problem. We have split the original time series into n ∈ {2, 4, 20}
time series. So, in this case, we have three different data sets with 4, 8 and
40 time series.

• football problem. In this case, no conversion is done because the original
data set already consisted on eight time series.
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F
o
re

ca
st

er
s Records 3003

Number of time series 1
Time series length 10
Number of records 10
Series description Financial information

Ib
ex

3
5

Records 35
Number of time series 2
Time series length 220
Number of records 440
Series description Financial information, Volume transactions

fo
o
tb

a
ll

Records 176
Number of time series 8
Time series length 25
Number of records 200
Series description Years, FIFA points, Leage position, Goals for

Goals against, Matchs win, Matchs dice, Matchs loose

Table 6.4: Details of time series examples.

6.5.2 Results

Tables 6.5, 6.6 and 6.7 present the score and its components for the forecaster,
football and ibex35 data set respectively. Columns one to three present the ILi

components and column four shows the overall IL value. From these columns
we can infer that IL increases when k increases. E.g. in the forecaster prob-
lem protected with eu-microaggregation, IL values range from 6.78 to 15.89.
This behavior is consistent with the usual results for general microaggregation
methods.

We can also infer from IL1 (column one) that time series microaggregation
preserve the time series mean and autocorrelation function. See, for example,
the forecasters data set in Table 6.5, where for all the microaggregation configu-
rations, IL1 is always 0.00. It is known that general microaggregation preserves
the average when applied to numerical attributes. Therefore, it is not surprising
that time series microaggregation also preserves time series mean, when applied
to time series.

Comparing eu-microaggregation and sts-microaggregation with the same k
and number of series, it can be observed that (in general) IL is lower for the eu-
microaggregation. However, in a few cases, sts-microaggregation obtains a lower
IL. For instance, in the forecasters data set with two time series and k = 2, IL
for eu-microaggregation is equal to 18.57 while for sts-microaggregation is equal
to 17.11.

Columns five and six present the EULD and STSLD. From these two
columns it is clear that re-identification risk decreases when k increases. The
same happens with ID and the overall DR (columns seven and eight). Then,
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i k IL1 IL2 IL3 IL EULD STSLD ID DR score

fo
re

ca
st

er
s.

i.
eu

-k

1 2 0.00 6.33 6.78 4.37 42.79 33.37 40.32 39.20 21.79
1 3 0.00 8.32 9.27 5.86 25.67 17.32 39.20 30.35 18.11
1 6 0.00 11.00 12.56 7.85 10.62 6.03 37.63 22.98 15.41
1 9 0.00 12.57 14.20 8.92 7.19 3.33 36.52 20.89 14.91
1 12 0.00 13.63 15.89 9.84 5.49 2.56 35.80 19.92 14.88
2 2 0.00 26.27 29.44 18.57 28.37 22.56 28.41 26.94 22.75
2 3 0.00 27.76 31.84 19.87 15.55 11.72 26.43 20.04 19.95
2 6 0.00 26.12 32.30 19.47 7.74 5.11 26.42 16.43 17.95
2 9 0.00 25.09 31.74 18.95 6.44 3.50 26.97 15.97 17.46
2 12 0.00 24.41 30.34 18.25 5.44 2.56 27.76 15.88 17.07

fo
re

ca
st

er
s.

i.
st

s-
k

1 2 0.00 10.16 7.88 6.01 30.67 42.12 38.14 37.27 21.64
1 3 0.00 12.72 10.10 7.61 17.65 25.61 36.60 29.11 18.36
1 6 0.00 16.53 13.39 9.97 7.16 10.92 34.05 21.55 15.76
1 9 0.00 18.51 15.46 11.32 4.83 7.49 32.70 19.43 15.38
1 12 0.00 20.41 17.10 12.50 3.26 5.19 31.39 17.81 15.16
2 2 0.00 23.69 27.63 17.11 20.63 30.82 29.63 27.68 22.39
2 3 0.00 26.01 29.40 18.47 11.39 17.62 27.80 21.15 19.81
2 6 0.00 28.68 31.31 19.99 5.81 8.04 26.05 16.49 18.24
2 9 0.00 30.30 32.78 21.03 3.70 5.61 24.93 14.79 17.91
2 12 0.00 31.69 34.17 21.95 2.86 4.56 24.19 13.95 17.95

Table 6.5: Score and its components in the forecasters data set. Forecaters.i.d-
k corresponds to microaggregation using distance d (Euclidean or STS) with i
series and parameter k.
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i k IL1 IL2 IL3 IL EULD STSLD ID DR score

fo
o
tb

a
ll
.i
.e

u
-k 8 2 0.11 44.55 44.25 29.63 84.16 84.37 19.94 52.11 40.87

8 3 0.15 45.38 45.51 30.35 78.91 75.14 19.73 48.38 39.36
8 6 0.17 45.39 45.75 30.44 65.27 54.26 19.49 39.63 35.03
8 9 0.40 45.44 46.37 30.74 54.97 34.38 19.61 32.14 31.44
8 12 0.22 45.43 45.20 30.28 50.28 27.91 19.44 29.27 29.77

fo
o
tb

a
ll
.i
.s

ts
-k 8 2 0.10 46.66 45.41 30.72 71.66 83.59 19.74 48.68 39.70

8 3 0.16 49.08 48.43 32.56 56.82 77.77 17.68 42.49 37.52
8 6 0.25 50.84 50.13 33.74 31.75 58.17 15.79 30.37 32.06
8 9 0.31 51.90 48.94 33.72 22.23 41.12 14.82 23.25 28.48
8 12 0.34 52.63 49.79 34.25 14.35 33.95 14.74 19.44 26.85

Table 6.6: Score and its components in the football data set. football.i.d.k
corresponds to microaggregation using distance d (Euclidean or STS) with i
series and parameter k.

we can say that parameter k is inversely proportional to disclosure risk.
In general, the greatest re-identification risk for a given microaggregation

(eu and sts) occurs when the same distance is used in the time series record
linkage. For instance, in the football data set configurations with k = 6, EULD
for eu-microaggregation is 65.54 while STSLD is 54.26. In contrast, using sts-
microaggregation the largest re-identification risk is STSLD (58.17).

If one compares the ID of both microaggregation methods, in general sts-
microaggregation achieves lower values. For instance, comparing in the football
data set both microaggregation methods with k = 12, eu-microaggregation ob-
tains 19.44 while sts-microaggregation only 14.74.

The last column of each table shows the overall score. It can be observed that
the score is very data set dependent. However, (in general) with small values
of k the best scores are obtained by sts-microaggregation (e.g. ibex35.20.eu.2
is equal to 31.62 and ibex35.20.sts.2 is equal to 27.67). On the other hand,
with large values of k the best scores are obtained by eu-microaggregation (e.g.
ibex35.20.eu.12 is equal to 21.02 and ibex35.20.sts.12 is equal to 23.17).
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i k IL1 IL2 IL3 IL EULD STSLD ID DR score

ib
ex

3
5
.i
.e

u
-k

2 2 0.00 29.82 31.51 20.44 57.14 52.86 13.54 34.27 27.36
2 3 0.00 36.82 40.05 25.62 35.71 35.71 10.57 23.14 24.38
2 6 0.01 43.61 44.18 29.27 14.29 18.57 8.69 12.56 20.91
2 9 0.02 44.40 52.81 32.41 5.71 10.00 7.47 7.67 20.04
2 12 0.03 49.34 52.54 33.97 7.14 4.29 6.74 6.23 20.10
4 2 0.00 31.85 32.12 21.32 60.00 60.71 12.50 36.43 28.88
4 3 0.00 37.44 37.28 24.91 45.71 42.14 10.06 27.00 25.95
4 6 0.01 42.61 44.96 29.19 21.43 22.86 8.83 15.48 22.34
4 9 0.01 44.29 47.63 30.64 11.43 14.29 7.14 10.00 20.32
4 12 0.01 49.90 53.63 34.51 8.57 7.14 6.78 7.32 20.92

20 2 0.00 32.78 35.27 22.68 67.86 70.57 11.89 40.55 31.62
20 3 0.00 37.71 41.09 26.27 48.71 48.14 9.76 29.10 27.68
20 6 0.00 42.73 45.59 29.44 26.43 24.71 8.72 17.14 23.29
20 9 0.00 44.97 49.81 31.59 12.29 16.71 6.65 10.58 21.08
20 12 0.00 50.63 52.83 34.49 8.29 7.71 7.09 7.55 21.02

ib
ex

3
5
.i
.s

ts
-k

2 2 0.02 45.94 47.57 31.18 20.00 51.43 6.81 21.26 26.22
2 3 0.04 47.87 49.53 32.48 15.71 28.57 6.13 14.14 23.31
2 6 0.07 58.98 62.03 40.36 10.00 11.43 4.83 7.77 24.07
2 9 0.18 57.09 64.54 40.60 1.43 2.86 3.56 2.85 21.73
2 12 0.17 58.04 61.52 39.91 4.29 2.86 5.77 4.67 22.29
4 2 0.02 45.61 45.72 30.45 20.71 52.86 7.94 22.36 26.41
4 3 0.03 51.69 50.39 34.04 15.00 34.29 4.94 14.79 24.41
4 6 0.07 56.50 57.91 38.16 10.00 16.43 5.08 9.15 23.65
4 9 0.08 57.44 57.11 38.21 7.86 7.86 4.75 6.30 22.26
4 12 0.13 57.88 57.72 38.58 5.71 4.29 5.16 5.08 21.83

20 2 0.00 46.47 47.28 31.25 19.57 60.29 8.24 24.09 27.67
2 3 0.01 51.55 53.66 35.08 14.43 43.43 5.55 17.24 26.16
2 6 0.02 57.51 59.55 39.03 11.43 22.43 4.19 10.56 24.79
2 9 0.03 57.06 60.42 39.17 7.86 13.86 4.70 7.78 23.47
2 12 0.02 57.25 60.06 39.11 6.00 12.00 5.46 7.23 23.17

Table 6.7: Score and its components in the ibex35 data set. ibex35.i.d.k cor-
responds to microaggregation using distance d (Euclidean or STS) with i series
and parameter k.
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Chapter 7

Conclusions and Future

Directions

Along the preceding chapters we have presented several contributions to disclo-
sure risk assessment. Now, in the first section of this chapter we review these
contributions. Afterwards, we will explain some conclusions obtained from the
work presented in this thesis. Finally, in the last section, we sketch future re-
search lines.

7.1 Summary of Contributions

In this thesis we have proposed different ways to calculate disclosure risk of
a protection method. In what follows, we review each contribution shortly,
summarizing its relevance.

• Microaggregation contributions. Firstly, we have defined an empirical
disclosure risk measure for multivariate microaggregation and provided a
theoretical limit for such measure. Secondly, we have described different
techniques for attribute selection in microaggregation, studying in detail
their consequences for the disclosure risk using real data sets. Finally,
we have explained two new variants of microaggregation, the first one
uses aggregation functions to replace the traditional projected methods in
projected microaggregation, whereas the second one solves the problem of
attribute selection in multivariate microaggregation.

• Ad-hoc methods for risk assessment. We have defined three specific
record linkage methods which take into account the protection method
applied to the protected data set. The direct consequence of these defi-
nitions is that such methods achieve a larger number of re-identifications
than generic record linkage ones. Therefore, the disclosure risk increases
when using the analyzed methods. Another advantage of two of these new
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methods (namely, RS-RL and A-RL) is that an intruder using them is sure
(in certain cases) that the linkages obtained are correct. This fact never
happens with generic record linkage methods.

• Record linkage using fuzzy integrals. We studied a method for record
linkage when data sets do not share attributes. An exhaustive testing has
been carried out to evaluate its performance. Results show that the re-
identification is still possible in this scenario.

• Time Series. We have presented a new framework for evaluating time
series protection methods. We have introduced some information loss mea-
sures and disclosure risk measures for time series which cover all their com-
mon uses. We have also presented some results analysing an extension of
microaggregation for time series.

7.2 Conclusions

In this thesis we have covered different aspects in the field of statistical disclosure
control. Most of our attention has been devoted to the accuracy of disclosure
risk assessment for certain well-known anonymization methods. From the re-
sults presented in this thesis, we can state that, protection methods have to be
designed to ensure that an intruder cannot perform specific attacks to break the
privacy of the respondents.

The privacy of the respondents is sometimes not regarded as important as
information loss when evaluating protection methods. The main reason for
this is that it is often difficult for an intruder to obtain a file with the same
(anonymized) quasi-identifiers from another data source. However, as we have
shown in this thesis, in many cases re-identification is still possible when the
intruder has access to a different set of quasi-identifiers. Therefore, in our opin-
ion, a correct protection method evaluation has to weigh disclosure risk and
information loss with the same importance. We would like to point out that
disclosure risk measures have to cover as many as possible different disclosure
risk scenarios.

A lot of research done in statistical disclosure control is related to protection
methods that, in some way, ensure k-anonymity. However, as we have seen in
Chapter 3, many times when such methods are used to protect real data by
statistical agencies, the theoretical k-anonymity is not preserved. Particularly
in microaggregation, the k-anonymity property is not preserved so that higher
values of data utility can be obtained. If this is the case, privacy of the re-
spondents is disregarded against the interest of the data users. Then, statistical
agencies have to ensure with a posteriori measures that at least k′-anonymity
(where 0 ≤ k′ ≤ k) is preserved.

Finally, we would like to highlight that intruders exploit whatever weakness
they detect to achieve their goal. For this reason, statistical agencies must
study countermeasures to avoid that intruders find and exploit such weaknesses.
In Chapter 6, we have described some modifications for distance based record
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linkage to increase the number of links when the intruder fuses several data sets
released at different times. Then, if the statistical agency knows in advance that
a data set will be released repeatedly, it has to anonymize such data with a
protection method prepared to avoid this attack.

7.3 Future Directions

Along the different topics explained in this dissertation, there are certain facets
which are still open. Now, we sketch some ideas to continue our research.

• Attribute disclosure risk evaluation. This thesis is devoted to individ-
ual re-identification, however, in some occasions, the intruder is not able
to infer which protected record belongs to one individual, but he is able
to infer that a respondent belongs to a certain group of records. Then,
if (almost) all the records of this group have the same value for a given
confidential attribute, the intruder is able to infer the confidential value
for the respondent. In this case, even though the intruder does not obtain
the correct linkage, he obtains the confidential value. We would like to de-
velop protection methods which avoid both problems, i.e., individual and
attribute re-identification.

• Probabilistic record linkage with conditional probabilities. As we
have explained in the preliminaries, probabilistic record linkage assumes
that attributes in the data set are independent, this assumption makes
easier the computation of indexes in the expectation-maximization algo-
rithm. However, in the real world, attributes are not independent. For
this reason we plan to develop a new record linkage method based on con-
ditional probabilities. Our intuition says that this new record linkage will
achieve a larger amount of correct linkages than traditional probabilistic
record linkage.

• Supervised re-identification. We are interested in the study of alter-
native methods for record linkage based on supervised machine learning
techniques as neural networks. For simplicity we will assume that only two
data sets A and B are considered. Our idea will work as follows. Firstly,
a model between the attributes of A and B is built. In this way, it is later
possible to translate the values on the domain of A into values on the do-
main of B. Then, after such translation, re-identification is possible using
classical record linkage. This is done using the new translated data set,
say A′, and the original data set B. We will consider that the construction
of such model is done in a supervised way. That is, we will consider that
there is a set of records of both data sets A and B for which we will know
the correct re-identifications. Such records will be used to build the model
between the two data sets.
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