
E
x
p
l
o

it
in

g
 t

h
E
 S

t
r

u
c

t
u

r
E
 o

f
 D

iS
t
r

ib
u

t
E
D
 c

o
n

S
t
r

a
in

t
 o

p
t
im

iz
a

t
io

n

p

r
o

b
l
E
m

S
 t

o
 a

S
S
E
S
S
 a

n
D
 b

o
u

n
D
 c

o
o

r
D

in
a

t
io

n
 a

c
t
io

n
S
 i

n
 m

a
S

MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ EN
INTEL·LIGÈNCIA ARTIFICIAL

4644447

M
e
ri

tx
e
ll
 V

in
ya

ls
 S

a
lg

a
d

o

CSIC

 Meritxell Vinyals Salgado

Exploiting thE StructurE
of DiStributED conStraint

optimization problEmS to aSSESS

anD bounD coorDination
actionS in maS

 Consell Superior d´Investigacions Científiques

MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ
EN INTEL·LIGÈNCIA ARTIFICIAL

Number 47

Exploiting the Structure of Distributed
Constraint Optimization Problems to Assess

and Bound Coordination Actions in MAS

Meritxell Vinyals Salgado

Foreword by Jesús Cerquides and Juan Antonio Rodrı́guez-Aguilar

2012 Consell Superior d’Investigacions Cientı́fiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor

Institut d’Investigació en Intel·ligència Artificial

Consell Superior d’Investigacions Cientı́fiques

Foreword by Jesús Cerquides and Juan Antonio Rodrı́guez-Aguilar

Institut d’Investigació en Intel·ligència Artificial

Consell Superior d’Investigacions Cientı́fiques

Volume Author

Meritxell Vinyals Salgado

Institut d’Investigació en Intel·ligència Artificial

Consell Superior d’Investigacions Cientı́fiques

c© 2012 ”CSIC Press”

ISBN: 978-84-00-09597-0

ISBN (online): 978-84-00-09598-7

NIPO: 723-12-169-8

NIPO (online): 723-12-170-0

Dip. Legal: B.31753-2012

All rights reserved. No part of this book may be reproduced in any form or by any elec-

tronic or mechanical means (including photocopying, recording, or information storage

and retrieval) without permission in writing from the publisher.

Ordering Information: Text orders should be addressed to the Library of the IIIA,

Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat Autònoma

de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Pots assolir aquell cim sense basarda

si vols pots dur la barca mar endins,

gaudir del teu jardı́ quan cau la tarda,

de la tela basta fer-ne mocadors fins,

Allunye’n de tu Meri, l’altivesa,

de les teves virtuds fes-ne un pomell,

tot l’entorn adornat amb senzillesa,

farà que el teu jardı́ sigui el més bell.

L’avi Francesc

Contents

Foreword

Abstract

Agraı̈ments

1 Introduction 1
1.1 Problem Statement . 2

1.2 Challenges . 4

1.3 Contributions . 7

1.4 Guide to the reader . 10

2 Problem definition 13
2.1 DCOP Definition . 13

2.2 Quality guarantees . 14

2.3 Motivating domains . 15

2.3.1 Indoor lighting control . 15

2.3.2 Gathering information in sensor networks 17

2.3.3 Traffic light control . 18

2.3.4 Task allocation in distributed scenarios 19

3 Related work 23
3.1 Complete DCOP algorithms . 23

3.1.1 Fully decentralised approaches 24

3.1.2 Partially centralized approaches 27

3.2 Incomplete DCOP algorithms . 28

3.2.1 Decision-based algorithms . 28

3.2.2 GDL-based algorithms . 30

3.3 Beyond the scope of this book . 31

3.4 Limitations of the current approaches 31

3.4.1 On exploring efficient problem representations for optimal DCOP

solving . 31

3.4.2 On assessing agents’ quality guarantees 32

3.4.3 On characterising local optimal solutions that allow system de-

signer’s quality guarantees . 32

Copia gratuita. Personal free copy http://libros.csic.es

3.4.4 Quality guarantees for the Max-Sum algorithm 33

4 Action-GDL: Extending GDL to solve DCOPs 35
4.1 Notation . 36

4.2 Background: The Generalized Distributive Law 37

4.2.1 Junction trees . 37

4.2.2 GDL operation . 39

4.2.3 Relationship with the Cluster Tree Elimination algorithm 41

4.3 The Action-GDL Algorithm . 42

4.3.1 Extending GDL to solve DCOPs 42

4.3.2 Computation and communication complexity 46

4.3.3 Distributed Junction Tree Generator 47

4.4 Generality of Action-GDL . 50

4.4.1 Action-GDL generalizes DPOP 51

4.4.2 Action-GDL generalizes DCPOP 57

4.5 Characterizing Action-GDL usefulness 63

4.5.1 Theoretical improvements with respect to DPOP 64

4.5.2 Postprocessing junction trees 67

4.6 Empirical evaluation . 68

4.6.1 Measures of interest . 69

4.6.2 Experimental design and results 69

4.6.3 Generic DCOP instances . 70

4.6.4 Meeting scheduling dataset . 72

4.7 Conclusions . 72

5 Divide-and-Coordinate 75
5.1 Divide-and-Coordinate framework . 76

5.1.1 Divide-and-Coordinate: the approach 76

5.1.2 Divide-and-Coordinate: formal foundations 78

5.2 A generic DaC algorithm . 81

5.3 DaCSA: Divide and Coordinate Subgradient Algorithm 87

5.3.1 Formal foundations . 88

5.3.2 DaCSA algorithm . 91

5.3.3 Complexity analysis . 94

5.4 EU-DaC: Egalitarian Utilities Divide And Coordinate algorithm 95

5.4.1 Formal foundations . 95

5.4.2 EU-DaC algorithm . 97

5.4.3 Complexity analysis . 100

5.5 Empirical evaluation . 100

5.5.1 Empirical settings . 101

5.5.2 Results . 103

5.6 Conclusions . 108

6 Region Optimality 111
6.1 Background: size and distance optimality 112

6.2 Generalizing size and distance optimality 114

© CSIC © del autor o autores / Todos los derechos reservados

6.2.1 Region optimality . 115

6.2.2 Fine quality guarantees for region optima 116

6.2.3 Coarse quality guarantees for region optima 119

6.2.4 Size-optimal bounds as a specific case of region optimal bounds 121

6.2.5 Distance-optimal bounds as a specific case of region optimal

bounds . 122

6.3 Empirical Evaluation . 122

6.3.1 Analysis of size and distance regions 123

6.3.2 Size-bounded distance optimality 124

6.3.3 DALO for region optimality 125

6.3.4 Empirical results . 126

6.4 Per-reward region optimal bounds . 128

6.4.1 Exploiting the minimum fraction reward 128

6.4.2 Exploiting the extreme relation rewards 131

6.4.3 Comparing per-reward region optimal bounds 132

6.5 Conclusions . 134

7 Max-sum as a region optimal algorithm 137
7.1 Background: the Max-Sum algorithm 138

7.1.1 Max-Sum in Pairwise Markov Random Fields 138

7.1.2 Region optimal characterisation of Max-Sum solutions 140

7.2 Fine Single Loops and Trees region optimal bounds 141

7.3 Coarse Single Loops and Trees region optimal bounds 141

7.3.1 Problem-independent Single Loops and Trees region optimal

bounds . 142

7.3.2 Per-structure coarse SLT region optimal bounds 144

7.4 Conclusions . 147

8 Conclusions and Future work 151
8.1 Conclusions . 151

8.1.1 On exploring efficient problem representations for optimal DCOP

solving . 154

8.1.2 On assessing agent’s quality guarantees 155

8.1.3 On extending the set of local optimal solutions that allow sys-

tem designer’s quality guarantees 158

8.1.4 Quality guarantees for the Max-Sum algorithm 160

8.2 Future work . 161

A Action-GDL generality proofs 165

B Region Optimality proofs 171

C Max-Sum bounds proofs 175

Bibliography 179

Monografies

Copia gratuita. Personal free copy http://libros.csic.es

© CSIC © del autor o autores / Todos los derechos reservados

List of Figures

1.1 Quality guarantees classification. 6

2.1 Example of a DCOP . 14

2.2 Lighting control problem modeled as DCOP. (a) shows a lighting con-

trol problem with three users and four lamps, and (b) DCOP model of

the lighting control problem. 16

2.3 Information gathering modeled as DCOP. (a) shows an gathering infor-

mation problem in a sensor network composed of four sensors, and (b)

the DCOP model. 17

2.4 An traffic light synchronization problem. (a) The traffic light synchro-

nization problem: there are four crossings with an square connection.

(b) The DCOP model: each crossing has an associated variable that

models the feasible plans for the crossing. 18

2.5 An task allocation problem. (a) The task allocation problem: there are

three rescue agents and three fires. (b) The DCOP model. 20

4.1 Example of junction tree. 38

4.2 Messages exchanged and operations performed during the GDL execu-

tion over the junction tree of figure 4.1. 39

4.3 Example of (a) DCOP constraint graph; and (b) the execution of Action-

GDL over the junction tree of figure 4.1 when encoding (a). 43

4.4 Example of DJTG execution. 48

4.5 Example of constraint graph, a pseudotree and its equivalent junction tree. 52

4.6 Example of constraint graph, cross-edged pseudotree and equivalent

junction tree. 58

4.7 Best junction tree. 66

4.8 (a) Postorder transformation and (b,c) transformations of the junction

tree in figure 4.5(c). 68

4.9 Action-GDL improvement over DCPOP in computation, communica-

tion and MPC . 71

5.1 Example of a DCOP. 76

5.2 Trace of DaC over the DCOP in figure 5.1. 77

Copia gratuita. Personal free copy http://libros.csic.es

5.3 Information exchanged between agents to update their bounded any-

time solutions during the three coordination stages that follow the di-

vision stage of figure 5.2(a). # stands for the iteration number of the

corresponding information. 85

5.4 Trace of DaCSA over the DCOP initial division of figure 5.2(a). 94

5.5 Division with max-marginals agreement for the DCOP of figure 5.1. . . 96

5.6 Trace of EU-DaC over the DCOP initial division of figure 5.2(a). 98

5.7 Graphs showing the percent gain of DaCSA with respect to MS and

DSA and the percent loss with respect to the DaCSA bound vs the num-

ber of message cycles on agent networks with different topologies and

scales. 104

5.8 Percent bound qualities of EU-DaC, DaCSA and k={2,3} optimal over

different topologies . 106

5.9 Percent gain of EU-DaC with respect to DaCSA, MGM-{2,3} over dif-

ferent topologies. 108

6.1 Example of (a) a DCOP graph, (b) its 2-size region and (c) its 3-size

region. 112

6.2 Example of (a) a DCOP graph, (b) its 1-distance region and (c) its 2-

distance region. 113

6.3 Example of a DCOP for which the fine 2-size region optimal bound

δ = 1
3 that applies to the 2-size optimal solution xC with respect to the

optimal x∗ is tight. 118

6.4 Example of (a) a DCOP graph, and (b)-(g) the set neighbourhoods for

the 5-size-distance bounded region. 124

6.5 Experimental results comparing DALO for K5, T1, T2 and S5 regions. 127

6.6 Per-reward bounds on 100 agent random DCOPs with density 4 using

as a criterion: (a) size 3 and (b) distance 1. 133

7.1 (a) 4-complete graph and (b)-(e) sets of variables covered by the SLT-

region. 141

7.2 Percent SLT-region optimal bounds for Max-Sum solutions in MRF

with specific graph structures. 143

7.3 Example of (a) a 3-3 bipartite graph and (b)-(p) sets of variables covered

by the SLT region. 144

7.4 Example of (a) a 4-grid graph and (b)-(e) sets of variables covered by

the SLT-region. 145

7.5 (a) 2 variable-disjoint cycles MRF of size 4 and (b-e) sets of variables covered

by the SLT-region. 147

© CSIC © del autor o autores / Todos los derechos reservados

Foreword

The main topic of this book is the provision of techniques for coordinating large pop-

ulations of agents by modelling the coordination problem as a distributed constraint

optimisation problem (DCOP). Thus, this work advances the state of the art and makes

significant contributions in decentralised coordination, a core area of the field of multi-

agent systems. The novel results contained in this work make it much easier to success-

fully tackle large-scale coordination problems on real-world domains.

Regarding the scientific contributions of this work, Meritxell Vinyals makes headway

on both complete and incomplete DCOP algorithms for decentralised coordination. As

to complete algorithms, Meritxell Vinyals introduces Action-GDL, a novel complete

DCOP algorithm based on the Generalised Distributive Law (GDL) that exploits a junc-

tion tree representation of the problem. As to incomplete algorithms, there is a wealth

of outstanding contributions. Since using an incomplete algorithm does not guarantee

that agents reach an optimal decision, this book has particularly focused on assessing

performance guarantees both prior to the execution of an algorithm (at design time) and

during the execution of an algorithm (run time).

In summary, the book addresses a complex and relevant topic with numerous facets and

applications. It is extremely well written and contains an excellent mix of research that

is theoretical, practical, empirical and analytical. All the chapters are of outstanding

scientific quality and provide truly original results. The depth and breadth of the overall

scientific contribution is exceptional and impressive, with interesting implications for

future decentralised coordination algorithms.

We have been lucky to work with Meritxell Vinyals along these years. Our collaboration

has been very fruitful and enjoyable both scientifically and personally. Thanks to her

enthusiasm, ambition for knowledge and team-work capabilities, Meritxell has been the

PhD student every advisor would like to work with.

We wish the reader an experience as pleasant as the one we had while advising the

author.

Bellaterra, October 2012

Dr. Jesús Cerquides and Dr. Juan Antonio Rodrı́guez-Aguilar

Institut d’Investigació en Intel·ligència Artificial

Consell Superior d’Investigacions Cientı́fiques

Copia gratuita. Personal free copy http://libros.csic.es

© CSIC © del autor o autores / Todos los derechos reservados

Abstract

This book focuses on Distributed Constraint Optimization as an approach to coordinate

the actions of a network of cooperative agents. Different scenarios pose very different

problems if we intend to endow agents with coordinated behaviour due to availability

of resources. Some resource-bounded problems require complete DCOP algorithms

that can find the most effective use of resources to achieve an optimal coordination,

while others need incomplete algorithms that sacrifice optimality in favour of low-cost

suboptimal solutions.

This motivates the main goal of this work: the design of efficient DCOP algorithms

to cope with different resource-bounded scenarios while ensuring that agents select the

actions that allow their coordination. Quality assessment is likely to play an impor-

tant role in this endeavour, because it is fundamental to weigh the cost of coordination

against the quality of the solution reached (trade-off quality versus cost). Unfortunately,

quality assessment for incomplete DCOP algorithms is a major challenge that requires

a broader concept of guarantees that includes approximate quality guarantees.

This book addresses these two major issues: efficiency and approximate quality assess-

ment. We make significant contributions to both issues. The main idea behind these

contributions is to design algorithms, and frameworks, which exploit a DCOP struc-

ture, namely the structure of agents dependencies and of their rewards, to assess and

bound high quality solutions.

Regarding optimality guarantees, we contribute with Action-GDL, a complete DCOP

algorithm that generalises and improves the efficiency of existing dynamic program-

ming DCOP algorithms, unifying them under the GDL framework. The key idea behind

Action-GDL is to better exploit a DCOP structure by using a novel problem represen-

tation based on junction trees.

As to approximate quality assessment, we propose two general frameworks: Divide-

and-Coordinate (DaC) and Region Optimality.

First, the DaC framework enables to trade-off quality versus cost from an agent per-

spective by defining a family of algorithms, the DaC family, which allows agents to

bound the quality of their solutions at run time. The DaC framework defines a new

approach to DCOP solving by: (i) splitting the problem into simpler sub-problems that

are computationally tractable; and (ii) having sup-problems agree on a solution. We

define DaCSA and EU-DaC, two DaC-compliant, incomplete DCOP algorithms. Both

algorithms can return anytime solutions with quality guarantees.

Secondly, this work introduces the region optimal framework, a general framework that

Copia gratuita. Personal free copy http://libros.csic.es

generalises local optimality frameworks introduced in the literature such as k-size or

t-size. Region optimality allows to obtain quality guarantees for arbitrary criteria and

depending on the available information about a DCOP. Moreover, we show that there

are criteria that outperform state-of-the-art local criteria such as (k-)size or (t-)distance

by introducing the novel size-bounded distance criterion. This contribution finishes by

proposing C-DALO, an asynchronous region optimal DCOP algorithm to search for

region optimal solutions in any region characterised by any arbitrary criteria.

Finally, we prove that region optimality is a valuable tool for bounding the quality of

the solutions achieved by the Max-Sum algorithm on convergence. These results shed

light on the relationship between the Max-Sum performance and the structure of the

problem. Moreover, they help identify new classes of graph structures for which Max-

Sum is guaranteed to converge to high-quality solutions.

© CSIC © del autor o autores / Todos los derechos reservados

Agraı̈ments

Aquest llibre, més que el resultat del meu treball, ha estat resultat de la meva interacció amb tot

un conjunt de persones sense les quals res hagués estat igual. A arribat l’hora doncs de treure

aquestes persones de l’anònimat i donar-los les gràcies i el reconeixement que es mereixen.

Primer de tot dono les gràcies als meus directors, en Jar i el Jesús, els quals han estat autors

actius de tot aquest treball. Al Jar, per no tindre mai un no per resposta, per posar un to aristocràtic

anglès en tots els meus articles (amb en les infinites correccions que això ha comportat) i, sobretot,

per encomanar-me el seu inesgotable optimisme. Al Jesús, per totes les idees brillants, esforç,

dedicació i comentaris sincers que han donat contingut i formalisme a aquest treball. Als dos, per

no haver-me deixat sola en aquest llarg camı́, ni tan sols quan el vaig girar per deixar enrera les

MMUCA.

Aquesta monografı́a s’ha portat a terme en un lloc molt especial, el IIIA, el qual ha estat com

la meva segona casa durant els últims quatre anys. A tota la gent del centre, des dels doctors

fins a les noies d’administració, m’agradaria donar-los les gràcies per haver-me fet sentir com a

casa durant tot aquest temps. Al Dani Polak, que em va obrir la porta de l’institut quan hi vaig

aterrar amb una beca patinet i me l’ha seguit obrint durant tots aquests anys. A l’Isa i Ana que

han sabut conviure amb el meu desordre. A Tito, per ser tant superadmin. També m’agradaria

agraı̈r especialment a en Carles, ja que després de parlar amb ell vaig decidir quedar-me al IIIA ,

per fer-se pròxim amb la seva energia i veu de tro i per no tindre mai un no per resposta sempre

que he necessitat un cop de mà. Finalment, aquest doctorat no hagués arribat a la seva meta

sense uns companys que, a més a més d’omplir tots aquests anys d’ experiències inolvidables,

no m’han deixat decaure en cap moment. En especial a tots aquells amb els quals he compartit

més part d’aquest trajecte junts. A en Dani, el bonico del to, per tots els seus “guapa” matinals

i el seu inesgotable optimisme i humor que han impulsat la majoria d’actes socials d’aquest

grup. A l’Angi, the google girl, per la seva confiança i per totes les bogeries i aventures que

hem compartit. A Dr. Pinyol, el hombre más bueno del mundo, per totes les converses, riures

i paraules sensates. A Sr. Nin, un amic que ha estat sempre diposat a fer-te un favor mentre et

contava les fatalitats del nostre futur doctoral. A Mari, que tot i la seva incorporació més tardana,

ja no em sé imaginar el IIIA sense ella ni el seu constant suport. A l’Arnau, per aquells temps en

la sala de robòtica, amb el projecte de final de carrera, i perquè sempre he pogut comptar amb ell

durant els anys de doctorat que l’han seguit. Al Marc per a contribuir activament en aquest llibre

tant en el seu treball de final de carrera com a en la seva tesina de màster. A JL, el único andaluz

que he dejado que lo estresara sin soltar queja. A Norman, por cuidarme en nuestro primer viaje

a Boston y por toda la reposteria que nos hemos comido a costa de su estrés. Al despatx 311, que

sempre va ser una mica meu. A la ciència, que ens ha portat a viatjar a congressos per tot el món

i per la qual hem brindat en cada ocasió .

Al Javi, Marc, i Alex pel gran esforç que van dedicar en els projectes de finals de carrera els quals

vaig tenir la sort de poder co-dirigir.

Copia gratuita. Personal free copy http://libros.csic.es

0

To Prof. Victor Lesser and the Amherst group for kindly accepting me in the short stay I realised

there during the first year of my PhD. In special to Yoonheui, Chongjie, Xiaoxi, Michele and

Hala for offering me their company and friendship when I was so far from home. I would also

like to thank Alan and Akshat for all the moments we shared in NIPS conference years later.

To the Santa Fe institute for offering me one of the best experiences of my PhD: an scholarship

to attend one month Complex Systems Summer School in Santa Fe with amazing lectures and

even more amazing participants. I would like to thank all of them for all the good memories I

have from these days. In special to Ana Marı́n Gonzalez, Lisa Friendland, Alan Campbell and

Rob Mills which I had the opportunity to meet again around the world.

Also, I would like to express my most sincerely gratitude to Prof. Nick Jennings and the IAM

group for the short stay I realised in Southampton during the last year of my PhD. Many thanks

to Kate, Gopal, Alessandro, George, Ruben, Francesco, Maria, Victor, Oleksandr, Rama, Alex,

Simon, Archie, Sid and Krishnen. I enjoyed a wonderful experience in Southampton.

To Prof. Milind Tambe, for his interest in my work and his invaluable collaboration.

Als de la uni, al José (i Marie), Alex, JL, Santi, Manel (i Laura), Trini i Toni per tots els moments

que hem seguit compartint junts i per la nova generació que esperem amb il·lusió. En especial

a JL, el meu company inseparable de saf on tot l’estrès de la feina se’n anava entre converses,

córrer, màquines, abdominals i lucecitas.

Al Jordi, per creure en mi, fer-me feliç, fer-me més forta i ser el meu company en tants viatges,

des de Granada, la qual va tindre un gran significat per mi, fins a Southampton.

A la meva famı́lia. Als meus pares i al meu germà. Sé que no hagués estat necessari escriure un

llibre perquè estiguessin orgullosos de mi. Ho han estat sempre. Ells tenen el do de fer-me sentir

important en els petits èxits, recolsant-me en tots els entrebancs. És fàcil tirar endavant amb una

famı́lia com aquesta al costat.

A tota la colla d’avis que m’han mimat tots aquests anys. Als meus avis Neus i Alex que han estat

per mi exemples de com viure i estimar. Als meus avis Francesc i Teresa, per haver fet voluntat

de compartir i ajudar-me en tots els moments importants de la meva vida. A l’Elvira, per a la seva

estima incondicional que s’ha expressat en tantes atmelles, sanfaina, verdures i un llarg etcètra

sense les quals no hagues disposat de la força per acabar aquesta feina.

Per últim, vull dedicar aquest llibre a la memòria de l’avi Francesc i a la lliçó que em va intentar

ensenyar: ser sàvia et farà important, ser estimada et farà feliç. Encara que necessitaré més

temps per apendre aquesta lliçó, sé que l’apendré, doncs són les sàvies paraules d’ un home que

serà recordat per tots els que vam tenir la sort d’estimar-lo.

Meritxell

© CSIC © del autor o autores / Todos los derechos reservados

Chapter 1

Introduction

This book focuses on cooperative Multi-Agent Systems (MAS) where a network of

agents have to coordinate their actions in order to achieve some system performance.

That is the case of many MAS scenarios such as coordination, scheduling or task al-

location problems where agents need to choose individual actions whose outcomes are

dependent on the actions of other agents. For example, disaster management rescue

agents (i.e. emergency or police units) are required to coordinate their activities to form

teams of multiple responders because no single agent has all the resources to perform a

rescue task (i.e. extinguish a fire, save victims).

Among the multiple frameworks that have been proposed to handle cooperative Multi-

Agent coordination, this book focuses on Distributed Constraint Optimization. One

of the main advantages of Distributed Constraint Optimisation is its capacity to cap-

ture the locality of agents’ interactions by means of a graphical model. Additionally,

with respect to other Multi-Agent coordination frameworks (i.e. belief-desire-intention

or distributed POMDPs), it improves the computationally tractability of the model at

the cost of sacrificing the representation of some problem features (i.e. agents’ cogni-

tive capabilities or the uncertainty over the outcome of agents’ actions) (Tambe et al.,

2005). Hence, agents’ interactions are compactly modeled in a Distributed Constraint

Optimization Problem (DCOP) by means of a graphical model where variables stand

for agents’ actions and each edge across variables denotes a subsets of agents whose

joint action incurs some cost or rewards to coordination. For example, task allocation

in a disaster scenario can be effectively modeled as a DCOP by creating variables cor-

responding to rescue agents’ actions and edges to coordinate the actions of each rescue

task among all agents that may contribute to it. Each rescue task generates a reward for

each possible joint configuration of rescue agents that expresses its degree of accom-

plishment with the allocated resources. Now, the problem is to maximise the overall

utility of agents joint action determined by the sum of rewards of all these rescue tasks.

Unlike centralised approaches where the whole problem is communicated and solved

by a single agent (Schiex et al., 1995), DCOP solving agents are required to coordi-

nate in a decentralised manner, by exchanging messages with other agents in a local

neighborhood, to agree on the best joint decision. This decentralisation is suitable for

multiple reasons. First, it allows to preserve the autonomy and decentralised structure

1

Copia gratuita. Personal free copy http://libros.csic.es

2 Chapter 1. Introduction

of problems that are decentralised by nature (e.g. information is spread across the net-

work or the system is composed of multiple units with limited capabilities). That is the

case of rescue agents in disaster management that are physically distributed in an large

area (i.e. a city, a neighborhood) with access only to the information about the rescue

tasks in their surroundings. Moreover, decentralisation fosters parallelism, robustness

and scalability with respect to centralised approaches. Thus, decentralisation in dis-

aster management is motivated by robustness, to avoid a single point of failure, and

scalability, because agents can only communicate locally due to severe communication

restrictions.

1.1 Problem Statement
Recent research in the area of Distributed Constraint Optimisation is motivated by some

challenging new applications, such as the control of environmental monitoring sensor

networks (Stranders et al., 2010), the deregulation of power networks (Petcu and Falt-

ings, 2008) or coordination in large-scale disaster management (Ramchurn et al., 2010).

In these domains agents, and therefore DCOP techniques, have to cope with different

limitations on resource availability. For instance, if emergency units in a disaster man-

agement environment take minutes before being assigned a task or need a very expen-

sive controller, then such coordination is no longer useful. Along this line, DCOPs have

been identified as one of the MAS key techniques to contribute to the deployment of

sensor networks (Rogers et al., 2009; Vinyals et al., 2010) by autonomously coordinat-

ing sensors actions to achieve their system-wide goals. As we pointed out in (Vinyals

et al., 2010), the features of a sensor network (i.e. physical hardware, scale) and its envi-

ronment, along with the goals it pursues, must be carefully considered because different

features lead to different constraints, and hence to different problems.

Under resource-boundedness some problems require complete DCOP algorithms that

can find the most effective use of resources to achieve optimal coordination. For ex-

ample, consider the use of sensor networks to enable intelligent lighting control in a

building (Singhvi et al., 2005; Park et al., 2007) with two primary objectives: user

comfort and energy costs. DCOPs enact the trade-off between these two objectives by

allowing agents to coordinate lamp settings (i.e. intensity levels) to meet users’ comfort

whereas minimising their consumption. Fortunately, in this domain, agents are typically

deployed in a very reliable environment, linked through wireless or wired communica-

tion channels and electric-power. Moreover, the building architectural design structure

allows to break coordination into smaller zones that allow independent light control

(i.e. different rooms or other architectural separators), defining coordination problems

of small or medium scale that allow optimal coordination.

However, in contrast with this first scenario, other problems require for more efficient

coordination due to severe resource restrictions. As an example, consider a network of

sensors deployed for environmental monitoring whose sensors are required to coordi-

nate to maximise the amount of gathered information and reduce the waste of sensing

resources. Given the vast area to be covered and the possibility of damaging sensors

on deployment, this kind of sensor network is typically composed of a large number

of small-sized battery sensors that communicate through radio frequency transmission.

© CSIC © del autor o autores / Todos los derechos reservados

1.1. Problem Statement 3

Hence, coordination in this second scenario requires incomplete DCOP algorithms that

sacrifice optimality in favour of low-cost suboptimal solutions.

This lack of optimality guarantees due to scarcity of resources is a situation that DCOP

techniques will need to face more and more often in the near future to cope with emerg-

ing large-scale real-world problems. It is important to guarantee that individual agents

select actions that result in coordinated behaviour, although maybe not optimally. Qual-

ity assessment plays an important role in this endeavour. Because one cannot improve
what one cannot measure, quality assessment over coordination is fundamental for

agents and/or for the system designer in order to trade-off the cost of coordination

against the quality of the solution reached (trade-off quality versus cost).

First, from an agent perspective, agents require some measure of self-awareness over

the efficiency of their actions in order to trade-off quality versus cost at runtime. For

example, agents in environmental monitoring need to know if it is worth investing more

resources on coordination to improve their energy consumption. Alternatively, disaster

management agents are required to coordinate while avoiding the risk of catastrophic

effects (in terms of human and structural factors). Hence, from an agent perspective,

resource-boundedness efficient coordination poses the following fundamental questions

at runtime:

(A:Q1) Should I invest more resources on coordination to obtain a better solution?

(A:Q2) Is the quality of my current solution above some critical threshold?

To provide an answer to these questions, agents need to be aware of the quality of the so-

lutions they explore at runtime. By answering question (A:Q1) agents can intelligently

trade-off quality versus cost. Alternatively, by answering question (A:Q2) agents can

discard solutions that do not guarantee a minimum performance quality.

Second, from a system designer perspective, he/she must be able to evaluate design al-

ternatives to trade-off quality versus cost at design time. In particular, at design time, the

system designer needs to face decisions such as which algorithm to choose (algorithm

selection) and/or how to configure the problem (configuration selection).

As to algorithm selection, the system designer aims to exploit any a-priori knowl-

edge about the characteristics of the problem to select the algorithm that ensures better

agents’ coordination. For example, consider designing a network of agents to synchro-

nize traffic lights in a city. Although the best signal plan configuration would vary with

traffic conditions, the structure of such synchronisation is fixed and determined by the

particular urban grid (e.g. road junctions and crossings). Therefore, the system designer

can exploit this a-priori knowledge to select the most suitable algorithm that would vary

from city to city and from neighborhood to neighborhood.

In contrast, for those characteristics of the problem that are configurable, the system

designer aims to select a configuration that eases coordination. For example, when

deploying environmental monitoring sensor network, the system designer aims to se-

lect a placement for sensors. When considering mobile sensors, he would look for a

formation that in addition to support information gathering also advocates in favor of

coordination.

Hence, from a system designer perspective, enabling efficient resource-bounded raises

the following fundamental questions at design time:

Copia gratuita. Personal free copy http://libros.csic.es

4 Chapter 1. Introduction

(D:Q1) Which algorithm leads to better coordination under the known problem
characteristics?

(D:Q2) Which problem configuration allows better coordination?

Both questions are of crucial importance to enable algorithm and configuration selection

to trade-off quality versus cost.

This motivates the main goal of this work: the design of efficient DCOP algorithms to

cope with different resource-bounded scenarios while ensuring, by means of quality as-

sessment, that agents select the actions that allow their coordination. In the next section,

we analyse the challenges that these two interrelated problems, resource-boundedness

and quality assessment, pose on the design of DCOP algorithms.

1.2 Challenges
This section analyses the challenges regarding the design of efficient DCOP algorithms

that provide quality guarantees over their solutions in scenarios with different levels of

resource-boundedness.

First, we focus on domains where the cost of coordination of an optimal solution is

affordable. An example of this kind of domains is the lighting control problem in

a building scenario described in section 1.1. Quality assessment in this scenario is

straightforward because we can apply complete DCOP algorithms that are guaranteed

to return the optimal solution. In contrast, the challenge in the design of complete

DCOP algorithms consists in maximising the efficiency on the use of limited resources.

The efficiency of a DCOP algorithm is measured along three dimensions:

• Communication: the number and size of messages exchanged by agents.

• Computation: required by agents.

• Parallelism: the number of operations that agents can execute in parallel. Due

to the distributed nature of DCOPs, it is desirable that operations are equally

distributed among agents, minimizing the amount of time that agents are idle on

the system.

Hence, the design of efficient complete DCOP algorithms aims to minimize the com-

putation and communication required by agents and maximise the parallelism.

Time Specificity

Design Time Runtime
Problem-

independent
Per-Class Per-Instance

Agent � �
Designer � � �

Table 1.1: Requirements for an agent and a system designer’s approximate quality guar-

antees regarding time and specificity.

© CSIC © del autor o autores / Todos los derechos reservados

1.2. Challenges 5

Secondly, we consider domains in which achieving an optimal coordination is simply

unaffordable. Examples of this kind of domains range from traffic or power control to

distributed task allocation in disaster management.

These domains require extremely efficient incomplete DCOP algorithms that return

locally optimal solutions, but only require a small amount of computation and local

communication per agent. However, quality assessment for incomplete algorithms is a

major challenge, an objective of research that has attracted recently much attention in

the DCOP community (Pearce and Tambe, 2007; Rogers et al., 2011; Yeoh et al., 2009;

Petcu and Faltings, 2005a). This challenge requires a broader concept of guarantees

that, in addition to optimality, includes approximate guarantees. Approximate quality

assessment stands for assessing guarantees for solutions that may not be optimal but are

guaranteed to be within a given distance from the optimal one.

As advanced in section 1.1, approximate guarantees have different requirements de-

pending on whether the quality assessment is realised by agents or by the system de-

signer. Concretely, here we observe that these requirements vary among two dimen-

sions: the time when quality guarantees are available and the specificity of guarantees

with respect to a particular problem. Table 1.1 depicts the different categories in these

dimensions. As time availability, we classify approximate quality guarantees into two

categories:

• design time, namely quality guarantees assessed before coordination; and

• runtime, namely quality guarantees assessed during coordination;

As to specificity, we can classify quality guarantees into three categories (from more

specific to more general):

• per-instance that are dependent on the particular instance of the problem, that is

apply to a particular DCOP;

• per-class that apply to a class of DCOPs namely those that have some problem’s

characteristics/structure;

• problem-independent that apply to any DCOP, independently of its characteris-

tics.

Intuitively, the more the knowledge about a problem, the tighter the quality guarantees.

That is the reason why per-instance quality guarantees, which only apply to a partic-

ular problem instance, are expected to be much tighter than per-class and problem-

independent guarantees.

First, we analyse the requirements of the quality guarantees from an agent perspective.

We shall refer to them as agent’s quality guarantees. As discussed in section 1.1, to

trade-off quality versus cost agents need to be aware of the quality of the solutions they

explore at runtime. Hence, agent’s guarantees must be assessed anytime at runtime

over the quality of the solution that agents currently explore. Moreover, at runtime

agents know exactly the problem they are solving, namely their dependencies with other

agents and rewards for their actions. For example, in disaster management, rescue

agents at any particular execution point know exactly: the set of rescue tasks they can

Copia gratuita. Personal free copy http://libros.csic.es

6 Chapter 1. Introduction

Quality

guarantees

Optimal Approximate

Agents System designer

Figure 1.1: Quality guarantees classification.

participate to, the set of agents they need to coordinate with, and how much resources

need to be assigned to each task to be successfully accomplished. Hence, with respect to

specificity, at runtime agents aim to bound the quality of the solutions of the particular

DCOP by assessing quality guarantees with the maximum specificity with respect to

the problem instance, namely per-instance quality guarantees. Table 1.1 summarises

the quality guarantees that agents require.

Second, we analyse the requirements of the quality guarantees from a system designer

perspective. We shall refer to them as system designers quality guarantees. As dis-

cussed in section 1.1, system designer must assess these quality guarantees at design

time over the quality of the solution that an algorithm achieves on convergence. This

is a very challenging task, because at design time there is uncertainty about the specific

problems that agents will deal with when deployed. For example, consider designing

a DCOP algorithm for coordination in disaster management. In this domain the set

of dependencies of an agent depends on their current position and on the active set of

rescue tasks. Additionally, until a rescue task is not discovered, agents do not know

how many rescue units are required to accomplish it. Both, agents positions and res-

cue tasks change over time. Therefore, system designer in these domains requires the

assessment of quality guarantees that apply to any problem (problem-independent guar-

antees). That is not the case of other domains where the agent’s dependencies (graph

structure) or some knowledge about the rewards (reward structure) are known at design

time. For example, as argued in section 1.1, agent’s dependencies are fixed in traf-

fic control or determined by sensors positions/formations in environmental monitoring.

Alternatively, the system designer may know the maximum and minimum rewards of a

measurement in environmental monitoring or assume rewards superadditive in disaster

management (the more rescue units you add to a task the more reward you get from

it). As pointed out in the section 1.1, system designer in these domains must assess

per-class quality guarantees that use this a-priori knowledge about the characteristics

of the problem. Hence, when the characteristics exploited are the structure of agents’

dependencies, we will call these guarantees as per-structure quality guarantees. Alter-

natively, when the guarantees exploit some characteristics of the rewards, we call these

guarantees per-reward quality guarantees.

Table 1.1 summarises the requirements of the system designer’s approximate guaran-

© CSIC © del autor o autores / Todos los derechos reservados

1.3. Contributions 7

tees, namely problem-independent and per-class quality guarantees assessed at design

time.

In summary, under resource-boundedness, DCOP algorithms can be classified in two

categories: complete and incomplete. The challenge for complete DCOP algorithms is

to maximise efficiency. The challenge for incomplete algorithms is the assessment of

approximate quality guarantees that allow to trade-off quality versus cost from an agent

and/or a system designer perspective. Figure 1.1 shows the classification of quality

guarantees into these three categories: optimality, agents’ approximate guarantees, and

system designer’ approximate guarantees.

1.3 Contributions
In this book we contribute to the challenges posed by quality assessment under resource-

boundedness with frameworks, and algorithms, which enable the assessment of quality

guarantees for the three categories shown in figure 1.1. The approach we follow is to

exploit the structure of the problem to assess and bound high quality solutions.

First, as to optimality guarantees, we contribute with Action-GDL, a complete DCOP

algorithm that generalises existing dynamic programming approaches by exploiting a

more general representation of the problem. Second, as to approximate guarantees,

we contribute with two frameworks for approximate quality assessment: Divide-and-
Coordinate, which provides agent’s quality guarantees, and Region Optimality, which

computes system designer’s quality guarantees. Additionally, from an algorithm design

perspective, we formulate three novel incomplete DCOP algorithms: DaCSA, EU-DaC
and C-DALO. They all return suboptimal solutions with quality guarantees. Finally, we

prove that region optimality is a valuable tool to bound the solutions of the Max-Sum

algorithm, one of the most relevant algorithms in the DCOP literature. In what follows

we describe the scope of these contributions in more detail.

Optimality guarantees

In the first part of this book we focus on DCOPs for which we guarantee optimality. We

present a novel complete DCOP algorithm, the so-called Action-GDL. Action-GDL im-

proves the efficiency of some state-of-the-art complete DCOP algorithms by exploring a

novel problem representation in terms of junction trees (Jensen and Jensen, 1994) which

allows to better exploit, and with more flexibility, the structure of a DCOP. Although

junction trees have been used before in other areas (e.g. find the most probable state in

graphical models or decode error correcting codes), to the best of our knowledge, it is

the first time that they are used for DCOP solving.

We define Action-GDL as an extension to the Generalized Distributive Law (GDL)

algorithm (Aji and McEliece, 2000), a general message-passing algorithm that has been

used by different communities under different names (e.g. Viterbi’s (Viterbi, 1967),

Pearl’s belief propagation (Pearl, 1988), or Shafer-Shenoy (Shafer and Shenoy, 1990)

algorithms among others). This formal connections with the GDL framework allows

us to show how Action-GDL unifies existing dynamic programming algorithms under

GDL. Concretely, we prove that Action-GDL generalises two leading state-of-the-art

dynamic programming DCOP algorithms, namely:

Copia gratuita. Personal free copy http://libros.csic.es

8 Chapter 1. Introduction

• the Dynamic Programming Optimization Protocol (DPOP) (Petcu and Faltings,

2005b), which uses a pseudotree representation of a DCOP; and

• the Distributed Cross-edged Pseudotree Optimization Procedure (DCPOP) (Atlas

and Decker, 2007), which uses a cross-edge tree representation of a DCOP.

To prove such generalisation we formalise two different mappings between the space

of problem representations used by these algorithms: (1) a mapping from pseudotrees
to junction trees; and (2) a mapping between cross-edge trees to junction trees.

Finally, we provide theoretical and empirical results that characterise the improvement

on efficiency of Action-GDL with respect to DPOP and DCPOP.

Approximate quality guarantees

In the rest of this book we focus on domains in which achieving an optimal coordination

is simply unaffordable.

Agent’s quality guarantees

First, we define the DaC framework that defines an approach for approximate DCOP

solving that allows agent’s quality guarantees.

Intuitively, the DaC approach operates as follows. DaC agents divide the DCOP into

simpler local subproblems that are individually solved by each agent. Then, because

agents’ solutions to their local problems may conflict, namely they can assign different

values to very same variable, agents coordinate by exchanging local information and

employ such information to update their subproblems. Thus, DaC agents iteratively

divide and coordinate until finding an agreement, namely a set of subproblems whose

local solutions assign the very same value to each variable of the problem.

When exploring the space of divisions, DaC agents exploit the structure of subproblems

in order to: (i) assess good solutions; and (ii) bound the error of such solutions.

As to assessing good solutions, we formally prove that if all agents reach an agreement

on a joint solution when optimizing their local subproblems, such solution is the optimal

one. Therefore, agreement in DaC entails optimality, and hence agents can exploit local

solutions, even in presence of conflicts, to generate solutions close to the optimal.

As to bound the error of these solutions, we prove that the sum of the values of local

agent’s solutions, that we shall refer to as the value of a division, bounds the quality of

the optimal and hence, it allows agents to bound the error of their anytime solutions.

The DaC framework leads to the definition of different DaC algorithms, depending on

the coordination information exchanged and the strategy used to reach an agreement.

Concretely, in this chapter we propose, and benchmark, two different DaC algorithms:

a first one whose agents coordinate and update their subproblems based on their local

solutions, the so-called Divide and Coordinate Subgradient Algorithm (DaCSA); and a

second one whose agents coordinate and update their subproblems based on their util-

ities, that so-called Egalitarian Utilities Divide-and-Coordinate algorithm (EU-DaC).

These results are significant because, in contrast with most DCOP incomplete algo-

rithms that lack of quality guarantees, DaCSA and EU-DaC are scalable algorithms

that can return anytime solutions with per-instance quality guarantees.

© CSIC © del autor o autores / Todos los derechos reservados

1.3. Contributions 9

System designer’s quality guarantees

Secondly, we contribute with region optimality, a framework that allows to assess qual-

ity guarantees that the system designer can use for a class of DCOP solutions, that

we shall refer to as region optimal solutions. We define region optimal solution as a

DCOP assignment, that is a set of agents’ decisions, whose value can not be improved

by changing the decision of any group of agents inside a region.

As part of region optimality we define mechanisms for computing system designer’s

quality guarantees on any region optimum. As argued in section 1.2, system designer’s

quality guarantees, besides being assessed at design time, need to be general enough to

apply to any problem that agents may face at runtime. With this aim, we provide qual-

ity guarantees over region optimal solutions that apply to: (i) any problem instance;

(ii) any problem with a particular graph structure; and (iii) any problem with a partic-

ular reward structure. The definition of region optimality allows us to explore a new

dimension, namely the criteria used for defining regions. We show that one can bene-

fit from exploring this larger space of local criteria by formulating a novel criterion to

characterise regions, the so-called size-bounded distance criterion.

We present region optimality as an algorithmic-independent framework: quality guar-

antees are provided over region optimal solutions, independently of the algorithm em-

ployed to find them. Hence, we address the complementary algorithmic-design issue

by defining C-DALO, a generic region optimal DCOP algorithm that can find region

optimal solutions for any specified arbitrary region. Since we can assess the cost of

agents coordination in C-DALO under different criteria, this generic region optimal al-

gorithm, along with the corresponding quality guarantees, enables to trade-off quality

versus coordination cost.

Finally, we claim that region optimality generalises and unifies the only two local opti-

mality approaches in the literature that provide system designer’s quality guarantees: k-

size optimality (Pearce and Tambe, 2007) and t-distance optimality (Kiekintveld et al.,

2010).

The last contribution of this book proves that region optimality framework is a valuable

tool to bound the quality of Max-Sum solutions (Farinelli et al., 2008). Max-Sum is

a state-of-the-art DCOP algorithm for which no quality guarantees are currently avail-

able. As a result, we are the first time to provide quality guarantees for Max-Sum at

design time in general settings. Concretely, by means of region optimality we provide

worst-case bounds on the quality of any Max-Sum solution (on convergence): (i) in-

dependently of the problem (problem-independent guarantees); and (ii) exploiting the

graph structure of the problem (per-structure quality guarantees). These results shed

light on the not well-understood behaviour of the Max-Sum algorithm and on the rela-

tionship between the quality of Max-Sum assignments and the structure of the problem.

Moreover, it identifies new classes of graph structures for which we can provide signif-

icant guarantees on the quality of Max-Sum solutions.

This contribution is important for MAS coordination given the few DCOP algorithms

that can provide system designer’s quality guarantees. Moreover, since the Max-Sum

algorithm, also known as loopy belief propagation (Pearl, 1988) or Max-Product (Aji

and McEliece, 2000) algorithm, is one of the most used techniques for finding the most

Copia gratuita. Personal free copy http://libros.csic.es

10 Chapter 1. Introduction

probable state in graphical models, this contribution is also of interest to other areas

such as statistical physics, computer vision or error-correcting coding theory, to name a

few.

1.4 Guide to the reader
The remaining of this book is organised as follows.

Chapter 2. We introduce the DCOP problem and a set of definitions and notations to

define quality guarantees. Finally, we describe some motivating DCOP domains. The

analysis of the potential of the Distributed Constraint Optimization framework to model

problems that emerge in sensor networks has been published in:

• M.Vinyals, J. A. Rodriguez-Aguilar, J. Cerquides. A Survey on Sensor Networks
from a Multiagent Perspective. The Computer Journal (2011) 54(3):455-470.

2010. first published online February 25, 2010. DOI:10.1093/comjnl/bxq018.

Chapter 3. We put in context our work with respect to the state of the art. In particular,

we elaborate with the level of resources needed by these algorithms and the quality

guarantees they provide. We also outline the limitations of current approaches when

addressing quality assessment under resource-boundedness.

Chapter 4 introduces our contributions to designing complete DCOP algorithms related

to the Action-GDL algorithm. The material contained in this chapter has been published

in:

• M.Vinyals, J. A. Rodriguez-Aguilar, J. Cerquides. Constructing a unifying the-
ory of dynamic programming DCOP algorithms via the Generalized Distributive
Law. In Journal of Autonomous Agents and Multi Agent Systems (JAAMAS).

Volume 22, Number 3, 439-464. DOI: 10.1007/s10458-010-9132-7.

• M.Vinyals, J. A. Rodriguez-Aguilar, J. Cerquides. Action-GDL, a new complete
algorithm for DCOPs. In Proceedings of the 8th International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2009), pages 1239-

1240. Budapest, Hungary 5/2009.

• M.Vinyals, J.A Rodriguez-Aguilar, J. Cerquides. Generalizing DPOP: Action-
GDL, a new complete algorithm for DCOPs. In Proceedings of the AAMAS’2009

Workshop on Optimization in Multi-Agent Systems (OPTMAS 2009). Budapest,

Hungary 5/2009.

Chapter 5 includes our contributions related to the Divide-and-Coordinate framework.

The material contained in this chapter has been published in:

• M.Vinyals, M. Pujol, J. A. Rodriguez-Aguilar, J. Cerquides. Divide and Coor-
dinate: solving DCOPs by agreement. In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),

pages 149-156. Toronto, Canada 5/2010.

© CSIC © del autor o autores / Todos los derechos reservados

1.4. Guide to the reader 11

• M.Vinyals, J. A. Rodriguez-Aguilar, J. Cerquides. Divide-and-Coordinate by
Egalitarian Utilities: turning DCOPs into egalitarian worlds. In Proceedings

of the AAMAS’2010 Workshop on Optimization in Multi-Agent Systems (OPT-

MAS 2010). Toronto, Canada 5/2010.

• M.Vinyals, J. A. Rodriguez-Aguilar, J. Cerquides. Egalitarian Utilities Divide-
and-Coordinate: Stop Arguing about decisions, let’s share rewards. In Proceed-

ings of the 19th European Conference on Artificial Intelligence (ECAI 2010),

pages 1025-1026. Lisbon, Portugal 8/2010.

Chapter 6 includes our contributions related to the region optimality framework. The

material contained in this chapter has been published in:

• M.Vinyals, E. Shieh, J. Cerquides, J. A. Rodriguez-Aguilar, Z. Yin, M. Tambe,

E. Bowring. Quality guarantees for region optimal algorithms. In Proceedings of

the 10th International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS 2011). Taipei, Taiwan, 5/2011. To appear.

• M.Vinyals, E. Shieh, J. Cerquides, J. A. Rodriguez-Aguilar, Z. Yin, M. Tambe, E.

Bowring. Reward-based region optimal quality guarantees. In Proceedings of the

AAMAS’2011 Workshop on Optimization in Multi-Agent Systems (OPTMAS

2011). Taipei, Taiwan, 5/2011. To appear.

Chapter 7 includes the bounds on the solution quality for the Max-Sum algorithm.

The material contained in this chapter has been published in:

• M.Vinyals, J. Cerquides , A. Farinelli, J. A. Rodrı́guez-Aguilar. Worst-case
bounds on the quality of max-product fixed-points. In Proceedings of the Neural

Information Processing Systems (NIPS), pages 2325-2333, Vancouver, Canada,

12/2010. MIT press.

Chapter 8. We draw some conclusions and thoroughly describe paths to future re-

search.

Copia gratuita. Personal free copy http://libros.csic.es

© CSIC © del autor o autores / Todos los derechos reservados

Chapter 2

Problem definition

This chapter introduces the Distributed Constraint Optimisation formalism (section

2.1), quality guarantees (section 2.2), and relevant domains for the application of DCOP

techniques developed in this work (section 2.3).

2.1 DCOP Definition
A Distributed Constraint Optimization Problem (DCOP) (Petcu, 2007; Modi et al.,

2005) consists of a set of variables, each assigned to an agent, which must assign a

discrete value to the variable. The set of values that an agent can assign to a variable

correspond to individual actions that can be taken by this agent. Dependency rela-

tions exist between subsets of these variables that determine rewards to the agent team

based on the combinations of values chosen by their respective agents. Solving a DCOP

amounts to choosing values for the variables such that the solution quality is maximized.

Let X = {x1, . . . , xn} be a set of variables over domains D1, . . . ,Dn. A relation on a

set of variables V ⊆ X is expressed as a reward function rV : DV → R
+, where DV

is the joint domain over the variables in V . Thus, a relation rV assigns a utility value

(reward) to each combination of values of its domain variables.

Formally, a DCOP is a tuple Φ = 〈A,X ,D,R〉 where:

• A is a set of agents;

• X is a set of variables (each one assigned to a different agent);

• D is the joint domain space for all variables; and

• R is a set of utility/reward relations.

The objective function R is described as an aggregation over the set of relations. For-

mally:

R(d) =
∑

rV ∈R
rV (dV) (2.1)

13

Copia gratuita. Personal free copy http://libros.csic.es

14 Chapter 2. Problem definition

x2 x1 x3

x∗ = {x1 = 1,x2 = 0,x3 = 0}, R(x∗) = 15

a2 a1 a3

r3
0 0

1 -2

r13 0 1

0 0 10

1 10 10

r1
0 0

1 -5

r12 0 1

0 0 10

1 10 10

r2
0 0

1 -10

Figure 2.1: Example of a DCOP

where d is an element of the joint domain space D and dV ∈ DV contains the values

assigned by d to the variables in V . The goal in a DCOP is to assess a configuration

x∗ = {x∗
i |xi ∈ X} with utility R(x∗) that maximizes the objective function in equation

2.1.

In a DCOP each agent receives knowledge about all relations that involve its variable(s).

Although an agent can be in charge of one or more variables, hereafter, we assume that

each agent ai is assigned a single variable xi. Therefore, across this book we will use

the terms agent and variable interchangeably.

Binary DCOPs are usually represented by their constraint graphs, where nodes stand for

variables and edges link variables that have some direct dependency (appear together

in the domain of some relation). Figure 2.1 shows an example of a DCOP represented

by its constraint graph. For instance, note that relation r12 is known by agent a1, that

controls variable x1, and agent a2, that controls variable x2. In this context, the neigh-

bours of some agent a are those that share some relation with a. Thus, in figure 2.1,

a2 and a3 are neighbours of a1 because a1 shares relation r12 with a2 and r13 with a3.

Additionally, each relation shows its reward in a table. Thus, agent x2 has a reward of

−10 to set its variable x1 to 1 whereas a1 and a3 have a joint reward of 10 to set at least

one of their variables to 1.

For the sake of simplicity, through in some parts of this book we indulge a bit in notation

as follows. Whenever there is no need to identify the domain, we simply use r to

note a relation and Dr to denote the joint domain of its variables. This allows writing

equation 2.1 as R(d) =
∑

r∈R r(dr). where d is an element of the joint domain space

D and dr is an element of Dr. Additionally, when focusing on binary DCOPs (those

whose utility relations involve at most two variables), we will simplify notation and

refer to unary constraints involving variable xi ∈ X as ri, and to binary constraints

involving variables xi, xj ∈ X as rij .

2.2 Quality guarantees
Through this book we characterize algorithms depending on the quality guarantees they

can provide over their solutions. Next, we provide formally definitions for these quality

© CSIC © del autor o autores / Todos los derechos reservados

2.3. Motivating domains 15

guarantees.

A DCOP solution with quality guarantees is a solution x for which we can bound its

error with respect to the value of the optimal. We can classify these bounds on DCOP

solutions values into two categories:

• Absolute error bounds. An absolute error bound δ ≥ 0 characterizes the error

of the DCOP solution using an absolute distance with respect to the value of the

optimal. Formally, a δ-absolute error bound over a solution x guarantees:

R(x) ≥ R(x∗)− δ (2.2)

• Relative error bounds. A relative error bound 0 ≤ δ ≤ 1 characterizes the error

of a DCOP solution as a fraction of the value of the optimal. Formally, a δ-relative

error bound over a solution x guarantees:

R(x) ≥ δ ·R(x∗) (2.3)

In general assessing a relative error bound is more desirable because they give a much

intuitive idea of the magnitude of the error of a solution independently of the value of

the optimal. The impact of absolute error bounds are highly influenced by the current

value of the global optimum. For example, the same absolute error bound of 10 can

lead to accurate solutions in a DCOP where the value of the optimal is 1000 but to

poor solutions in a DCOP with an optimal solution value of 20. Relative error bounds

capture this reality, by providing a percent error bound of 99% in the first case and of

50% in the second case.

2.3 Motivating domains
There is a large class of multi-agent coordination problems that can be modeled in

the DCOP framework. Examples include meeting scheduling, sensor networks, staff

scheduling and power networks to name a few (Petcu and Faltings, 2008; Khanna et al.,

2009; Vinyals et al., 2010; Maheswaran et al., 2004b). In the following, we will present

in detail some examples that motivate the contributions of this work, namely indoor

lighting control, gathering information in sensor networks, traffic light control and task

allocation in disaster management scenarios.

2.3.1 Indoor lighting control
Increasing user comfort and reducing energy costs have always been two primary ob-

jectives of intelligent buildings (Finley et al., 1991). Recent works have proposed de-

centralised control approaches for this domain (Singhvi et al., 2005; Park et al., 2007).

Consider a building with n users {u1, . . . , un} and m lamps {l1, . . . , lm}. Users prefer

different light levels that vary with sunlight conditions and when performing different

tasks. Agents actuate over lamps to achieve specific desired light levels at different

locations. The comfort of each user will depend on the state of nearby lamps, and

nearby users may have conflicting desires. To achieve the setting of the lamps that are

Copia gratuita. Personal free copy http://libros.csic.es

16 Chapter 2. Problem definition

l0

L4L4

l1

l3

l2

u1

u2

u3

(a) Lighting control problem.

xl0

rl0

xl1

rl1

ru1

xl2

rl2

ru2

ru3

xl3

rl3
(b) DCOP model.

Figure 2.2: Lighting control problem modeled as DCOP. (a) shows a lighting control

problem with three users and four lamps, and (b) DCOP model of the lighting control

problem.

best for all of the users, we can specify for each user a reward function which encodes

its local utility for a setting of the lamps. Higher utility function value means higher

satisfaction for the user. DCOPs enacts the trade-off between these two objectives by

allowing agents to coordinate lamp settings (i.e. intensity levels) to meet users comfort

whereas minimising their consumption.

Definition 1. The lighting control problem can be modeled as a DCOP Φ = 〈A,X ,D,R〉
such that:

• A = {a1, . . . , an} is a set of agents, one per each lamp;

• X = {x1, . . . , xn} are decision variables that model the lamp settings;

• D is the joint settings for all lamps;

• R = {ru1 , . . . , rum , rl1 , . . . , rln} is a set of utility functions, one per each user
and one per each lamp. A user function rui expresses the utility of user ui for
each possible configuration of the lamps. A lamp function rli encodes the con-
sumption costs of lamp li.

Example 2.3.1.1 (Lighting control problem). See figure 2.2(a) for en example of light-
ing control problem with 4 lamps and 3 users. Figure 2.2(b) shows the DCOP model
where round nodes stand for variables and square nodes stand for relations. The vari-
ables represent lamps and relations represent users preferences on the subsets of lamps
variables. For example, user u1 reports its preferences as a relation ru1

that depends
on three lamps variables xl0 , xl1 , xl3 . Similarly, lamp l0 encodes its consumption cost
as a relation over the lamp variable xl0 .

© CSIC © del autor o autores / Todos los derechos reservados

2.3. Motivating domains 17

s0

s1

s2

s3

(a) Sensor network problem.

x0

x1

x2

x3
r03 on off

on 0 3
2

off 7
4

2

r0
off 0

on − 1
2

r0
off 0

on − 7
4

r2
off 0

on − 1
2

r3
off 0

on -1

r01 on off

on 0 5
2

off 2 3

r12 on off

on 0 2

off 5
2

5
2

r23 on off

on 0 1

off 2
3

2

(b) DCOP model.

Figure 2.3: Information gathering modeled as DCOP. (a) shows an gathering informa-

tion problem in a sensor network composed of four sensors, and (b) the DCOP model.

As argued in chapter 1, intelligent lighting control is an example of a domain where the

characteristics of the environment and the architectural design principle of the building

typically allows an efficient optimal coordination.

2.3.2 Gathering information in sensor networks
Gathering information in a fast, accurate and decentralised fashion is of vital impor-

tance in many domains, that include (but are not limited to) spatial phenomena (e.g.

temperature or water contaminants) (Stranders et al., 2010; Krause et al., 2008), or

targets moving within the environment (Vidal et al., 2001). In this context, the key

challenge faced by sensors is the need to coordinate in order to maximise the amount

of gathered information, since uncoordinated behaviour is likely to result in redundant

sensor coverage of the environment and a waste of sensing resources.

This problem maps easily to a DCOP model. Consider a team of sensors S = {s1, . . . , sn}.

Each agent is assigned a sensor si for which it creates one variable xi. A variable xi

models the possible actions (i.e. movements, measurement settings) of a sensor si.
Then, the value of a set of sensors measurements V ⊆ X is mapped to a utility function

rV . The specification of this function depends on the application domain and the goals

of the sensors within this application domain. For example, in (Stranders et al., 2009b)

to predict spatial phenomena defines a value function stands for the entropy reduction

that results from taking measurements for sensors at the positions specified for their

variables.

Example 2.3.2.1 (Information gathering problem.). Please refer to figure 2.3(a) for
example of a sensor network for information gathering with four sensors. The sen-
sors have fixed positions and have dependencies with the other sensors in a certain
area around them (denoted with edges). For example, sensor s0 has to coordinate with

Copia gratuita. Personal free copy http://libros.csic.es

18 Chapter 2. Problem definition

1st. st.

2nd. st.
3r

d
. s

t.

4t
h.

 s
t.

(a) Traffic light synchronization

problem.

x0 x1

x2 x3

r13 � ⊕
� 0 1

⊕ 3
2

2

r02 � ⊕
� 1

2
3
2

⊕ 1 2

r01 � ⊕
� 0 1

2

⊕ 1 3
2

r23 � ⊕
� 0 1

2

⊕ 1 3
2

(b) DCOP model of the traffic light synchronization

problem.

Figure 2.4: An traffic light synchronization problem. (a) The traffic light synchroniza-

tion problem: there are four crossings with an square connection. (b) The DCOP model:

each crossing has an associated variable that models the feasible plans for the crossing.

sensors s1 and s2 in order to avoid redundant measurements and minimise energy con-
sumption. Figure 2.3(b) shows a DCOP model of the problem. The variables represent
sensors and each variable’s domain is composed of sensor’s actions (to turn on or off).
Unary relations stand for sensors costs, e.g. unary relation r0 encodes a reward of 1

2
for sensor x0 to turn on. Binary relations stand for sensors dependencies, relation r01
encodes the rewards for the joint configurations of sensors s0 and s1.

As argued in chapter 1 for the specific case of environmental monitoring, this kind

of sensor networks are typically composed of a large number of small-sized battery-

operated sensors equipped with limited data processing and communication capabilities

and hence, coordination to the optimal is in general not affordable under such severe

conditions. Moreover, information gathering is a domain that allows to select among

different sensor positions or formations to trade-off quality versus cost.

2.3.3 Traffic light control
Consider the problem of synchronizing traffic lights in a city. Synchronization here

means that adjacent traffic lights will be coordinated so that vehicles can traverse an

arterial in one traffic direction, keeping a specific speed, without stopping. Each traffic

light has a library of plans, each allowing the synchronization in different traffic direc-

tion. The specific objective of the scenario is to find the best signal plan configuration

for the traffic lights.

This problem of traffic light synchronisation is formalized in (Junges and Bazzan, 2008)

as a DCOP Φ = 〈A,X ,D,R〉 such that:

• X = {x1, . . . , xn} and A = {a1, . . . , an} are the sets of variables/agents, where

n is the number of crossings;

© CSIC © del autor o autores / Todos los derechos reservados

2.3. Motivating domains 19

• D = {d1, . . . , dn} is the domain of the variables, representing the possible signal

plans for each crossing agent;

• R = {r1,1, . . . , rn,n} is the set of relations among the variables, each relation

has a reward for a given pair of traffic plans of the two adjacent crossings. The

reward that two agents receive to execute two plans in neighboring crossings is

calculated depending on: (i) the degree in which these two plans synchronize;

and (ii) the degree agents are coping with the volume of vehicles in that direction

(fraction of vehicles in that lane). Notice that whereas (i) is fixed (ii) vary with

the traffic conditions.

Example 2.3.3.1 (Traffic light control.). See figure 2.4(a) for an example of traffic light
control problem with four crossing with a square connection. Figure 2.4(b) shows the
DCOP model for this problem. The variables represent crossing, and each one has as
domain the possible plans for the traffic lights in this crossing. Relations link crossing
variables that need to be synchronised. ⊕ means that plan is synchronized and agrees
with the direction of higher traffic volume. � means that plan is synchronized in a
direction other than that of higher traffic volume. For example, by means of relation
r13 when the first and third crossing are synchronized in the direction of higher traffic
volume receive a reward of 2, whereas when only the third crossing is synchronised in
that direction the reward is 1.

As discussed in chapter 1, traffic control is an example of a domain where rewards vary

continuously but where the structure of dependencies among (crossing) agents is known

and fixed and hence, can be exploited on coordination to trade-off quality versus cost.

2.3.4 Task allocation in distributed scenarios
In a major disaster, such as earthquakes or terrorist attacks, rescue agents are required to

perform a number of rescue tasks (i.e. rescuing civilians or extinguishing fires) in dif-

ferent parts of the affected area. Each task requires a given level of effort and may have

to be performed by a certain deadline (otherwise, humans can die or some infrastruc-

tures be devastated). In order to complete as many tasks as possible by their deadline,

agents need to form teams or coalitions of multiple responders. This is because no sin-

gle agent will have all the resources needed to perform a task (i.e. save all the victims

or extinguish the fires). Hence, it is critical that these processes of coalition formation

and management are effectively enacted through coordination.

The problem of coordination of emergency responders in disaster management can be

conveniently framed as a DCOP (Macarthur et al., 2010; Ramchurn et al., 2010). In-

deed, there are many ways in which we can formalise this task allocation problem as a

DCOP, depending on what we choose to represent with variables and how we define the

relations among them. We detail in the following one possible way to cast this problem

to a DCOP model.

Consider a disaster management scenario with a set of rescue agents a1, . . . , an and a

set of rescue tasks to be performed denoted as t1, . . . , tm. Each rescue agent ai creates

for each task tj ∈ Ti that it can execute a local binary variable xi
j that models if ai is

assigned (xi
j = 1) or not (xi

j = 0) to task tj . Then ai connects all variables xi
j from

Copia gratuita. Personal free copy http://libros.csic.es

20 Chapter 2. Problem definition

a0

a1
a2

t0

t1

t2

(a) Traffic light synchronization problem.

x0
0 x0

1

a1 a2

a0

x2
2 x2

1x1
0 x1

2

rx0
0x

0
1

rx2
1x

2
2

rx1
0x

1
2

Intra-hard relations among

variables of the same agent.

rxi
jx

i
k

0 1

0 0 0

1 0 ∞

rx0
0x

1
0

0 1

0 0 3
2

1 1 2

rx0
1x

2
1

0 1

0 0 1

1 1 1

rx1
2x

2
2

0 1

0 0 1
2

1 1
2

3

(b) DCOP model of the traffic light synchronization problem.

Figure 2.5: An task allocation problem. (a) The task allocation problem: there are three

rescue agents and three fires. (b) The DCOP model.

its local problem with a relation rai
that ensures that ai is only allocated to one task,

assigning an infinite cost to non-feasible combinations. Finally, each rescue task tj cre-

ates a relation rtj that connects all variables xi
j encoding its degree of accomplishment

for each combination of agents assigned to it.

Example 2.3.4.1 (Task allocation problem). We give an example environment in figure
2.5(a), which contains three rescue agents, and three tasks which they must complete
(in this case, fires to be extinguished). Figure 2.5(b) shows a DCOP model of the
problem. Each rescue agent creates one variable for rescue task it can participate to.
For example, rescue agent a0 creates two variables x0

0,x0
1 corresponding to the two

fires t0, t1 it can contribute to extinguish. Variable x0
0 it is linked to variable x1

0 through
relation rx0

0x
1
0
. Thus, relation rx0

0x
1
0

encodes the level of accomplishment of task t0
depending if a0 and/or a1 are assigned to it. In many domains, the synergies among
agents are not additive and thus we need to consider the effect together which can be

© CSIC © del autor o autores / Todos los derechos reservados

2.3. Motivating domains 21

greater or lower than their individual contributions. Observe that in figure 2.5(b) the
reward table of rx0

0x
1
0

that if a0 and a1 are assigned to task t0 their receive a joint
reward of 2.

As discussed in chapter 1, disaster management is clearly one of the domains where

agents cannot afford the risk that their coordination degrades below a certain level due to

the human impact and structural factor it can have. Additionally, optimal coordination

is too time consuming in this continuously changing domain with strict time deadlines

and communications restrictions (communications can be overloaded or affected by the

same disaster).

Having described these motivating domains, the rest of the book focus on developing

frameworks and algorithms that allow to coordinate populations of agents by modelling

the coordination problem as a distributed constraint optimisation problem (DCOP).

Copia gratuita. Personal free copy http://libros.csic.es

© CSIC © del autor o autores / Todos los derechos reservados

Chapter 3

Related work

This chapter gives an overview of the state-of-the-art in DCOP algorithms and places

the contributions of this book with the existing related work.

Focusing on the problem of providing efficient algorithms that can provide quality guar-

antees, next, in sections 3.1 and 3.2 we review existing DCOP algorithms classifying

them on complete and incomplete algorithms respectively. We further classify DCOP

algorithms based on the approach they follow to solve a DCOP. As to complete algo-

rithms, we classify them on fully decentralised approaches, search and dynamic pro-

gramming, and partially centralised approaches. As to incomplete DCOP algorithms,

we classify them on decision-based, in which agents coordinate based on exchanging

their local decisions, and GDL-based, in which agents coordinate exchanging utilities

following GDL update rules. Afterwards, in section 3.3 we outline some active lines

of work in the DCOP literature that are complementary but beyond the scope of this

book. Finally in section 3.4 we summarize the limitations of the state-of-the-art DCOP

algorithms to overcome the challenges listed in chapter 1.

3.1 Complete DCOP algorithms

As mentioned in chapter 1, complete DCOP algorithms are guaranteed to find an opti-

mal solution for a DCOP, and are suitable for domains in which agents can afford the

complexity of optimality. Given that, the challenge of designing complete DCOP algo-

rithms consist in their efficiency, namely the amount of communication, computation,

and parallelism required by agents at run-time.

Next, in section 3.1.1 we review complete fully decentralised DCOP algorithms, namely

algorithms where each agent operates totally decentralised dealing only with local in-

formation. Then, in section 3.1.2, we review an alternative approach to maximising ef-

ficiency based on the partial centralisation of the DCOP problem in some single agent.

23

Copia gratuita. Personal free copy http://libros.csic.es

24 Chapter 3. Related work

Approximate Guarantees
Time Specificity

Design Run Problem-
independent

Per-Class Per-
Instance

ADOPT1 � �
BnB-ADOPT1 � �
A-DPOP � �
DSA

MGM-1

Max-Sum

Bounded Max-Sum � �
MGM/SCA-{2,3} � � �
k- DALO � � �
t- DALO � � �

Agent’s quality guarantees

System designer’s quality guarantees
1 ADOPT and BnB-ADOPT here refer to the bounded-error approximation extensions of

the respective complete algorithms.

Table 3.1: Quality assessment landscape for incomplete DCOP algorithms. Guaran-

tees are characterised based on two dimensions: time at which they are available and

specificity.

3.1.1 Fully decentralised approaches

State-of-the-art complete algorithms to solve DCOPs adopt two main techniques: dy-

namic programming and search. Even though both approaches have an exponentially

increasing coordination overhead, due to optimality guarantees, they differ on the nature

of such overhead. Search algorithms require linear-size messages, but an exponential

number of messages. Dynamic programming algorithms only require a linear number

of messages, but their complexity lies on the message size, which may be very large.

Table 3.2 depicts DCOP algorithms landscape where algorithms are classified based on

the quality assessment they provide over their solutions (vertical axis) and the approach

they follow to solve DCOPs (upper and lower horizontal axes). Observe that search

and dynamic programming are included as approaches in the upper horizontal axis for

complete algorithms.

Search algorithms

DCOP search algorithms use search strategies to search for an optimal solution. The ad-

vantage of search algorithms is that they require polynomial memory. Their downside

is that they may produce a very large number of small messages, resulting in large com-

munication overheads. Although several search DCOP algorithms have been proposed

in the literature (SSB (Hirayama and Yokoo, 1997), NCBB (Chechetka and Sycara,

© CSIC © del autor o autores / Todos los derechos reservados

3.1. Complete DCOP algorithms 25

Dynamic
Programming

Partial
Centralisation Search Based

C
o

m
p

le
te

DPOP

PC-DPOP

DCPOP OptAPO

ADOPT

BnB-ADOPT

In
co

m
p

le
te

A
p

p
ro

x
im

at
e S
y

st
em

D
es

ig
n

er

MGM/SCA-{2,3}

k-DALO
k-size guarantees

t-DALO
t-distance guarantees

A
g

en
t

Bounded

Max-Sum

N
o

g
u

ar
an

te
e

Max-Sum DSA/MGM-1

GDL-based Decision-based

Table 3.2: DCOP algorithms landscape. DCOP algorithms are classified based on the

quality assessment they provide over their solutions (vertical axis) and the approach

they follow to solve DCOPs (upper and lower horizontal axes).

2006), AFB (Gershman et al., 2009), ADOPT (Modi et al., 2005)), possibly ADOPT

along with its extensions are the most representative ones (Maheswaran et al., 2004b;

Ali et al., 2005; Silaghi and Yokoo, 2006; Gutierrez and Meseguer, 2010). In what fol-

lows we review the key ideas behind ADOPT operation, and the problem representation

it uses to solve DCOP problems.

ADOPT’s popularity stems from being the first decentralized search DCOP algorithm

that allows to operate asynchronously. ADOPT compiles a DCOP into a pseudotree

structure (Freuder and Quinn, 1985), which it uses as a hierarchy to communicate value

and cost messages. In the worst-case, the number of messages exchanged in ADOPT

is exponential to the depth of the selected pseudotree. Since finding the pseudotree

with minimal depth is NP-Hard (Dechter, 2003), in practice, ADOPT-based approaches

rely on greedy heuristics (Modi et al., 2005; Chechetka and Sycara, 2005) to assess a

Copia gratuita. Personal free copy http://libros.csic.es

26 Chapter 3. Related work

low-depth pseudotree.

Each agent in ADOPT maintains lower and upper bounds for the subtree rooted at its

node. These are computed by exchanging messages with agent’s neighbours in the

pseudotree. ADOPT agents exchange three kinds of messages: cost messages, which

are propagated up the tree, and threshold and value messages, which are propagated

down. Value message contain the variable assignment selected by an agent using best-

first search by assigning the value with smaller lower bound. Each ADOPT agent op-

erates asynchronously by changing its variable’s values whenever it detects that has

smaller lower bounds, although they are not guaranteed to be better. Abandoning par-

tial solutions before proving their suboptimality makes agents revisit several times some

of the previously explored partial solutions. As a solution, a backtracking threshold is

used for reducing the need for backtracking while maintaining a low memory profile.

Another important characteristic of ADOPT, not shared with other search algorithms,

is the option of running as a bounded complete algorithm, allowing users to specify

an absolute error bound, prior to the algorithm’s execution. The advantage of running

ADOPT as a bounded incomplete algorithm is that it is more likely to find solutions

for which it provides problem-independent guarantees faster, providing a way to trade-

off solution quality versus cost. Table 3.1 characterise the quality guarantees provided

by incomplete DCOP algorithms, including the bounded ADOPT version that provides

problem-independent guarantees at design time. However, observe that these guaran-

tees do not satisfy the requirements listed in chapter 1 neither for agents not for the sys-

tem designer. On the one hand, agents can not use these guarantees to bound the quality

of their solution at runtime because they apply on the solution reached on convergence

and there is no guarantee or bound on the computation time or communication over-

head required to achieve such convergence. On the other hand, since this bound does

not allow to exploit any characteristic of the problem, the trade-off that can execute the

system designer is limited and very likely to be inaccurate.

A recent extension of ADOPT is BnB-ADOPT (Yeoh et al., 2010), which is based on

the same message passing and communication framework of ADOPT, but changes the

best-first search strategy for a depth-first branch-and-bound search. Although having

the same worst-case complexity, exponential to the number of agents, BnB-ADOPT

has been shown to provide optimal solutions up to one order of magnitude faster than

ADOPT. Another advantage of BnB-ADOPT with respect to ADOPT is that it allows

to specify a user relative error bound, instead of an absolute bound. As mentioned in

section 2.2, usually relative error bound give a more intuitive idea of the magnitude of

the error of a solution. As summarised in table 3.1, BnB-ADOPT provides problem-

independent guarantees at design time, and likewise ADOPT bounded version, does not

satisfy the requirements listed neither for agents nor for the system designer.

Table 3.2 includes ADOPT and BnB-ADOPT in the DCOP landscape as search based

complete DCOP algorithms.

Dynamic Programming algorithms

As to dynamic programming approaches, the Dynamic Programming Optimization Pro-

tocol (DPOP) (Petcu and Faltings, 2005b) was the first algorithm based on dynamic

programming to perform variable elimination on a pseudotree in a distributed fash-

© CSIC © del autor o autores / Todos los derechos reservados

3.1. Complete DCOP algorithms 27

ion. Hence, as ADOPT-like search algorithms, DPOP agents distributedly compile the

DCOP into a pseudotree structure.

DPOP operates in two main phases. During the first phase, each agent propagates

messages that contain information about its rewards up to the tree by joining messages

from children and its local rewards. During the second phase, each agent chooses an

assignment for its variable by joining the assignments from its parent and propagates

them down to the tree.

The number of messages sent between agents is only linear in the number of agents

and the complexity of DPOP depends on the size of the largest computation and mes-

sage exchanged during the second phase. This complexity directly corresponds to the

induced width of the pseudotree (Petcu and Faltings, 2005b). Since finding the mini-

mum induced width pseudotree is NP-Hard, DCOP efficiency relies on using distributed

heuristics to generate low-width pseudotrees (Petcu, 2007).

Many extensions have been defined to DPOP with the aim of providing different trade-

offs (e.g. MB-DPOP (message-size vs memory), M-DPOP (extensions to consider self-

interested agents)). One of this extensions, A-DPOP (Petcu and Faltings, 2005a), con-

sists in a parametrized approximation that provides a trade-off between solution quality

and computation complexity, similarly to ADOPT bounded complete approximations.

A-DPOP allows user to specify a user relative error bound on the solution value, and

tries to reduce the computation and communication overhead as much as possible to

find a solution that is guaranteed to be within such bound. Similarly, it allows user

to specify the computation/communication overhead and tries to find the solution with

highest relative error bound under these restrictions. Table 3.1 includes A-DPOP as

incomplete DCOP algorithm that provides problem-independent guarantees at design

time. However, likewise ADOPT and BnB-ADOPT bounded versions, these guaran-

tees do not satisfy the requirements neither for agent not for the system designer.

Because the complexity of all these DPOP-like algorithms relies on finding a good

problem representation, in (Atlas and Decker, 2007) Atlas and Decker provide a gen-

eralization of DPOP, the Distributed Cross-edged Pseudotree Optimization Procedure

(DCPOP) by using a cross-edge tree representation of the problem. Their experimental

results show that using a cross-edge tree representation leads to important benefits in

terms of efficiency with respect to pseudotrees. Table 3.2 shows DPOP and DCPOP

(which subsumes DPOP) in the DCOP landscape as complete dynamic programming

algorithms.

3.1.2 Partially centralized approaches
Instead of providing a new technique to solve DCOPs, partial centralisation consists

in exploring the gap between centralized and distributed techniques and their effects

on efficiency. Some argue that fully decentralized algorithms often require excessive

amounts of communication when applied to complex problems (Davin and Modi, 2005;

Petcu et al., 2007; Mailler and Lesser, 2006). OptAPO (Optimal Asynchronous Partial

Overlay)(Mailler and Lesser, 2006) is the first algorithm that uses a dynamic, partial

centralization.

OptAPO agents dynamically discover difficult subproblems, namely parts of the global

problem with strong dependencies across agents. It centralises these subproblems by

Copia gratuita. Personal free copy http://libros.csic.es

28 Chapter 3. Related work

introducing the role of a mediator. When an agent acts as a mediator, it computes a so-

lution for a part of the overall subproblem, using any current state-of-the-art centralised

solver, and recommends value changes to agents that depend on the mediator. An Op-

tAPO agent retains its autonomy by either having the possibility of refusing solutions

posed by a mediator or taking over as mediator itself if it does not agree with a proposed

solution.

The advantage, and novelty, of OptAPO consists in allowing agents to explore the level

of centralisation more appropriate to the problem in a dynamic way. The downside of

this approach is that depending on the difficulty of the problem, it can lead to several

mediators centralizing most of the problem and carrying out most of the computation in

a redundant way. In these cases OptAPO shows a poor scalability with respect to fully

decentralised approaches (Davin and Modi, 2005; Petcu et al., 2007). Furthermore,

the asynchronous and dynamic nature of the centralisation process makes impossible

to theoretically characterize the complexity of this approach depending on the problem

structure.

Finally, this idea of partial centralisation has also been explored by Petcu and Falt-

ings in (Petcu et al., 2007) by formulating PC-DPOP, a hybrid algorithm that extends

DPOP to trade-off the number of messages versus partial centralisation. Therefore, ta-

ble 3.2 includes OptAPO as a partially centralised complete algorithm and PC-DPOP as

an hybrid complete algorithm between partially centralised and dynamic programming

approaches.

3.2 Incomplete DCOP algorithms
As discussed in chapter 1, there are resource-bounded domains for which complete

DCOP algorithms are simply unaffordable. Incomplete DCOP algorithms represent a

good alternative in these domains because they sacrifice optimality to obtain fast any-

time solutions. Typically, incomplete DCOP algorithms have involved loosing some

quality guarantees.

We classify incomplete DCOP algorithms in two groups based on their operations:

decision-based and GDL-based. The first category stand for algorithms in which in-

dividual or a group of agents coordinate their decisions based on the decisions of their

neighbours. The second category corresponds to algorithms based on the Generalized

Distributive Law (Aji and McEliece, 2000), a general framework that has been success-

fully applied to many areas in computer science and information theory. In contrast

with decision-based, in GDL-algorithms agents coordinate by exchanging the utilities

to take some decision instead of decisions themselves.

3.2.1 Decision-based algorithms
The key idea behind decision-based algorithms is that a group of agents optimize their

joint decision given the decisions of their neighbours.

As we can observe in table 3.2 the Distributed Stochastic Algorithm (DSA) (Fitzpatrick

and Meertens, 2002) and the Maximum Gain Message (MGM) (Maheswaran et al.,

2004a) algorithms fall in this category as decision-based algorithms that do not provide

© CSIC © del autor o autores / Todos los derechos reservados

3.2. Incomplete DCOP algorithms 29

any guarantee on their solutions. Both MGM and DSA have very similar operation

in which each agent optimize their decision individually, in groups of a single agent.

As to MGM, each agent acts deterministically by choosing at each iteration the value

for its variable that maximizes its reward given the values chosen by its neighbours

at the last iteration. DSA differs from MGM on introducing a stochastic element in

the agent decision process. Thus, an agent decides randomly whether to change its

current decision for one with better reward. In general, stochastic approaches reduce

the number of messages exchanged but not always improve the quality of the solution

reached on convergence (Pearce et al., 2008).

MGM and DSA algorithms are limited by their ability to aggregate information about

their neighbours because they restrict to local (agent) optimisations. Therefore, a nat-

ural extension consists in considering algorithms that coordinate more than one agent

instead of focusing on individuals. That is the approximation explored by the k-size

(Maheswaran et al., 2004a) algorithms, which operates by optimising groups of k
agents, and t-distance (Kiekintveld et al., 2010) algorithms, which operates by opti-

mising groups of agents in a distance t from a central agent. The first k-size optimal

algorithms in the literature were: (i) MGM-2 and MGM-3, extensions of the MGM-1

algorithm to consider groups of 2 and 3 agents; and (ii) SCA-2 and SCA-3 algorithms,

2- and 3-size optimal stochastic algorithms based on DSA (Pearce et al., 2008).

Later, in Kiekintveld et al. proposed DALO (Kiekintveld et al., 2010) an asynchronous

local search algorithm that allows either k-size (k-DALO) or t-distance solutions (t-
DALO) for arbitrary values of t and k. Their empirical results showed that: (i) k-

DALO outperforms MGM and DSA when looking for size optimal solutions of the

same size; and (ii) exploring t-distance as alternative criterion to characterise groups

leads to significant empirical benefits in some problem settings.

A distinctive property of k-size and t-distance optimal algorithms is that they are the

only incomplete DCOP algorithms that can provide quality guarantees such that sat-

isfy the requirements for the system designer, namely they are problem-independent

and per-class guarantees assessed at design time. First, the work of Pearce and Tambe

(Pearce and Tambe, 2007) and later of Kienkintveld et al.(Kiekintveld et al., 2010)

defined problem-independent quality guarantees for solutions of k-size and t-distance

optimal algorithms respectively. Second, in the same work, authors extended these

guarantees to consider the structure of agent’s dependencies (per-structure quality guar-

antees). As argued in chapter 1, these per-structure quality guarantees not only help to

determine the appropriate algorithm considering the problem structure, but also to se-

lect an appropriate graph structure to model the problem. Finally, the work of Bowring

et al. (Bowring et al., 2008) extended k-size optimal guarantees to exploit the char-

acteristics of the rewards (per-reward quality guarantees). Concretely, they show how

to compute tighter guarantees by assuming a ratio between the least minimum reward

to the maximum reward among relations. To the best of our knowledge, these per-

reward quality guarantees have only been defined over the solutions returned by k-size

algorithms, and not extended to those of t-distance algorithms. In summary, table 3.1

classifies MGM/SCA-{2,3}, k-DALO, and t-DALO, as algorithms that return system

designer’s quality guarantees (green rows) namely problem-independent and per-class

guarantees assessed at design time. Table 3.2 also includes these algorithms in the

Copia gratuita. Personal free copy http://libros.csic.es

30 Chapter 3. Related work

DCOP landscape as decision-based incomplete DCOP algorithms that provide system

designer’s guarantees, concretely k-size guarantees and t-distance guarantees.

3.2.2 GDL-based algorithms
The Generalized Distributive Law (GDL) (Aji and McEliece, 2000) is a general mes-

sage passing algorithm synthesis of the work in many fields such as information theory,

signal processing or statistics. It includes as special cases Viterbi’s (Viterbi, 1967),

Pearl’s belief propagation (Pearl, 1988), or Shafer-Shenoy (Shafer and Shenoy, 1990)

algorithms among others. In GDL approaches, agents operate by exchanging the infor-

mation related to set their variables to particular states.

The first GDL-based algorithm formulated in the DCOP community was the Max-Sum

algorithm (Farinelli et al., 2008), an application of the well-known Loopy Belief Prop-

agation (Pearl, 1988) or Max-Product algorithms (Aji and McEliece, 2000), though

applied to the problem of maximizing the social welfare in Multi-Agent coordination.

Therefore, in contrast with decision-based algorithms, in Max-Sum agents operate by

exchanging the utilities to take some decision, instead of the decision themselves.

Max-Sum stands for the iteratively, approximate version of GDL. It runs over the

DCOP constraint graph instead of compiling the problem into another representation

over which GDL can guarantee optimality (at expenses of increasing their cost). As a

result, Max-Sum is an incomplete algorithm that is guaranteed to converge to the opti-

mum in acyclic constraint graphs, but with no guarantees of convergence and solution

quality on general graphs. However, the solution that Max-Sum returns on convergence

has been characterized to be neighborhood maximum, rather than a simple local maxi-

mum (Weiss, 2000), which makes expect solutions of more quality than those of local

optimal algorithms.

On the one hand, the popularity of Max-Sum stems from its good empirical perfor-

mance. Several works have reported good empirical results on DCOP datasets by

benchmarking it against other state-of-the-art DCOP algorithms (Kok and Vlassis, 2006;

Farinelli et al., 2008; Rogers et al., 2011). These results are not surprising given the

empirical results reported for the iterative approximate version of GDL in other areas

(Murphy et al., 1999; Frey et al., 2001b,a). On the other hand, its downside lies in that

its behaviour is not well understood due to the lack of quality guarantees, only defined

in very restricted cases.

To overcome this lack of quality guarantees, Farinelli et al. propose in (Farinelli et al.,

2009) a bounded version of Max-Sum based on exploiting its optimality on acyclic

constraint graphs. Following this idea, given a DCOP, bounded Max-Sum runs over an

induced tree of its constraint graph. This induced tree is distributedly built by agents

by ignoring dependencies between the relations and variables that have less impact on

solution quality guarantee. Then, agents run Max-Sum on this induced tree obtaining

the optimal solution for this approximate problem representation. By considering the

particular rewards of the ignored edges and running Max-Sum over the induced tree,

bounded Max-Sum allows quality guarantees by bounding the error of its solution. As

summarised in table 3.1, these quality guarantees are per-instance quality guarantees

that agents can use over their solution at runtime (unlike bounded ADOPT approaches

and A-DPOP bounded Max-Sum is guarantee to converge in a linear number of opera-

© CSIC © del autor o autores / Todos los derechos reservados

3.3. Beyond the scope of this book 31

tions). Hence, bounded Max-Sum quality guarantees satisfy the requirements of agents

to trade-off quality versus cost at runtime.

Table 3.2 includes both Max-Sum and bounded Max-Sum algorithms as GDL-approaches

in the DCOP landscape. As to quality guarantees, Max-Sum falls in the category of

algorithms that can not provide any guarantee over their solutions whereas bounded

Max-Sum returns agent’s quality guarantees.

3.3 Beyond the scope of this book

Distributed Constraint Optimisation is a very active area of research that has led to

multiple parallel lines of work. On the one hand, many works have focused on extend-

ing the original DCOP formulation to consider uncertainty (Taylor et al., 2010; Tambe

et al., 2005; Laut and Faltings, 2009), continuous variables (Voice et al., 2010; Stranders

et al., 2009a), multi-objective optimization (Bowring et al., 2006), privacy (Greenstadt,

2009), self-interested agents (Petcu et al., 2008), or adaptation on dynamic environ-

ments (Sultanik et al., 2009; Khanna et al., 2009). On the other hand, further research

has focused on optimizing existing algorithms for particular problems domains, such

as Fast Max-Sum (Macarthur et al., 2010), which optimizes Max-Sum algorithm for

distributed task allocation or LA-DPOP (Scerri et al., 2005), which uses a token-based

approach similar to DSA to minimize communication in distributed task allocation with

high overlapping team functionality.

In contrast, the contributions presented in this work are formulated over the standard

DCOP formulation, as introduced in chapter 1, without tailoring to any specific domain.

Hence, although the above-mentioned works are beyond the scope of this book, our

contributions to the design of efficient DCOP algorithms with quality guarantees are

likely to provide them with useful insights for further extensions.

3.4 Limitations of the current approaches

In this section we analyse which are the limitations and drawbacks of the current ap-

proaches on providing efficient DCOP algorithms with quality guarantees.

3.4.1 On exploring efficient problem representations for optimal
DCOP solving

The efficiency of DPOP-like dynamic programming and ADOPT-like search approaches

highly depends on finding a good problem representation. As reviewed in section 3.1,

the space of representations explored by both approaches is the space of pseudotrees.

The work of Atlas and Decker on extending DPOP algorithm to handle cross-edge

trees, a generalisation of pseudotrees, opens a new avenue of research, namely how to

improve the efficiency of complete algorithms by exploiting more general problem rep-

resentations. However, there are some fundamental questions that remain open and that

must explored to progress this line of work, namely:

Copia gratuita. Personal free copy http://libros.csic.es

32 Chapter 3. Related work

• Is there any further problem representation that can be exploit by complete ap-

proaches?

• Can we theoretically or/and empirically characterize the potential improvement

to explore such problem representation?

In chapter 4 we contribute to answer these questions for the particular case of the dy-

namic programming DCOP algorithms. Concretely, we formulate Action-GDL a novel

complete DCOP algorithm that generalises DPOP and DCPOP, unifying them under

the GDL framework, by handling a more general problem representation, based on a

junction tree.

3.4.2 On assessing agents’ quality guarantees
Notice that in table 3.1 the only incomplete DCOP algorithm that can provide quality

guarantees such that satisfy the requirements of agents, as listed in chapter 1, is the

bounded Max-Sum algorithm. Hence, we identify a clear need for developing new

DCOP approximations that can provide agent’s quality guarantees, that as argued in

chapter 1 reduce the uncertainty from an agent perspective.

This work addresses this issue on chapter 5, by proposing a new family of incomplete

DCOP algorithm that provide agent’s quality guarantees based on a novel approach, the

so-called Divide-and-Coordinate approach.

3.4.3 On characterising local optimal solutions that allow system
designer’s quality guarantees

As shown in table 3.1, the only incomplete DCOP algorithms that provide guarantees

such that satisfy system designer’s requirements are k-size optimal (k-DALO, MGM-

{2,3}) and t-distance optimal (t-DALO) algorithms. These quality guarantees are those

defined by k-size and t-distance optimality over k-size and t-distance local optimal

solutions respectively.

k-size and t-distance optimality establish an important research direction by defining

algorithmic-independent approximate guarantees for two classes of DCOP local op-

tima, namely those characterised by size or distance criteria. However, the inability

of current approaches to assess quality guarantees for a larger set of optima defined

over any arbitrary criteria has limited so far their impact and applicability of these ap-

proaches.

This limitation poses some fundamental questions that must be explored to progress

this line of work, namely:

• Can we define analogous approximate quality guarantees for a larger set of local

optima, namely optima defined over any arbitrary criteria?

• Does a better criteria (beyond size and distance) exist that offer better guarantees,

faster algorithms or more fine-grained control of the trade-off?

This work addresses both questions in chapter 6 by defining region optimality, a general

framework that defines system designer’s quality guarantees for solutions using any

arbitrary criteria, beyond k-size and t-distance optimality.

© CSIC © del autor o autores / Todos los derechos reservados

3.4. Limitations of the current approaches 33

3.4.4 Quality guarantees for the Max-Sum algorithm
When looking at table 3.1, we observe that DSA, MGM-1 and Max-Sum are algorithms

that lack any quality guarantee over their solutions. DSA and MGM-1 has been char-

acterised in the k-size optimality framework as 1-size algorithms. Thus, since the op-

timality of their solutions is restricted to individual agents, it is not surprising that they

lack of quality guarantees. However, that is not the case of the Max-Sum algorithm.

As argued in section 3.2, solutions achieved by Max-Sum on convergence are known to

be a neighbourhood maximum rather than a simple local maximum. These theoretical

results are consistent with the good empirical performance of Max-Sum. Therefore,

this lack of quality guarantees hinters the characterisation of the kind of problems for

which we can expect such good performance from those in which Max-Sum converge

to much worse solutions. Hence, to overcome this limitation we need to address the

following question:

• Can we take advantage of the characterisation of Max-Sum solutions on conver-

gence as neighborhood maximum to provide guarantees on their quality?

In chapter 7, we address this question by defining system designer’s quality guarantees

for Max-Sum solutions.

Copia gratuita. Personal free copy http://libros.csic.es

© CSIC © del autor o autores / Todos los derechos reservados

Chapter 4

Action-GDL: Extending GDL to
solve DCOPs

In this chapter we face the problem of designing efficient, complete DCOP algorithms

for domains with enough resources to search for optimal coordination. As analysed in

section 1.2, the challenge in these domains is how to design efficient, complete DCOP

algorithms, namely algorithms that minimize the communication/computation required

by agents at runtime.

To achieve that purpose we propose a novel, complete DCOP algorithm, the so-called

Action-GDL. Action-GDL is an extension to the Generalized Distributive Law (GDL)

algorithm (Aji and McEliece, 2000), a general message-passing algorithm that has

been inadvertently used by different communities under different names (e.g. Viterbi’s

(Viterbi, 1967), Pearl’s belief propagation (Pearl, 1988), or Shafer-Shenoy (Shafer and

Shenoy, 1990) algorithms). In particular, in this chapter we observe that this is also the

case for the Cluster Tree Elimination algorithm in the constraint community (Dechter,

2003).

Then, we show how Action-GDL advances the state-of-the-art of complete DCOP al-

gorithms from an analytical and from an empirical perspective.

From an analytical perspective, we relate Action-GDL with existing complete DCOP

algorithms in the literature by showing that it generalizes DPOP (Petcu and Faltings,

2005b) and DCPOP (Atlas and Decker, 2007). By doing so, we provide a unifying

theory for dynamic programming DCOP algorithms based on GDL. These algorithms

include optimal DCOP algorithms, such as DPOP and DCPOP, as well as incomplete

DCOP algorithms such as Max-Sum (Farinelli et al., 2008). Moreover, this unifying

perspective provided by Action-GDL builds a bridge with a wealth of theoretical results

for GDL from which the DCOP community may benefit.

From a pragmatical perspective, we show that Action-GDL allows to solve DCOPs

more efficiently by exploiting an extended set of problem representations based on junc-

tion trees. First, we characterise when Action-GDL can outperform DPOP by moving

from pseudotrees, used by DPOP, to junction trees. Second, we show empirical evi-

dence of the benefits in terms of efficiency that Action-GDL can provide with respect

35

Copia gratuita. Personal free copy http://libros.csic.es

36 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

to DCPOP, and by extension of DPOP.

This chapter is organized as follows. Section 4.1 introduces some notation used through-

out the rest of the chapter. Section 4.2 describes some background on GDL, junction

trees, and their relation with the Cluster Tree Elimination algorithm. Section 4.3 intro-

duces Action-GDL, assesses its complexity and defines a distributed algorithm to map

a DCOP into a distributed junction tree. Section 4.4 proves that DPOP and DCPOP are

particular cases of Action-GDL. Section 4.5 theoretically characterises when Action-

GDL can outperform DPOP and formulates a distributed post-processing heuristic to

optimize junction trees. Section 4.6 compares the efficiency of Action-GDL with DPOP

and DCPOP. Finally, section 4.7 draws some concluding remarks.

4.1 Notation
Next, we define the functions and operators that we shall employ henceforth through

the rest of the chapter. For the sake of simplicity we assume binary utility relations

involving two variables, although all the results in the chapter are valid for any arity.

Definition 2 (Scope). The scope function returns the domain variables of a given set of
relations. Ex: Scope({r12}) = {x1, x2}, Scope({r12, r24}) = {x1, x2, x4}.

Definition 3 (Complementary variables). Given a set of variables V ∈ X and a relation
r, we define the complementary variables of V by r as the set of variables in r that are
not in V . Formally, V̄ r = Scope(r) \ V .

Definition 4 (Utility message). A message from agent xi to agent xj is a utility message
μij(V) over V ⊆ X , if the information sent is a relation over V .

Definition 5 (Assignment). Given a set of variables V ∈ X , an assignment σ over V
sets a value to each variable xk ∈ V and sets free the remaining variables. Given
V ′ ⊂ V , we note by σV ′ the projection of σ to V ′, that is, the assignment that sets
the same value as σ for the variables in V ′. Ex: V = {x1, x3}, σ an assignment over
V with σ(x1) = 1, σ(x3) = 0. x2 and x4 are free in σ. If V ′ = {x1} we have that
σV ′(x1) = 1. x2, x3 and x4 are free in σV ′ .

Definition 6 (Value message). A message from agent xi to agent xj is a value message
σij(V) over V ⊆ X if the information sent is an assignment over V .

Definition 7 (Join). Let r, s be two relations, Scope({r, s}) = {xk1
, . . . , xkm

} be
their joint scope and Dr⊗s their joint domain space. The combination of r and s (noted
r ⊗ s) is a utility relation over Scope({r, s}) such that (r ⊗ s)(d) = r(dr) + s(ds) for
all d ∈ Dr⊗s, where dr ∈ Dr and ds ∈ Ds are the projections of d over the domains
of relations r and s respectively. Ex: (r12 ⊗ r24)(0, 1, 0) = r12(0, 1)+ r24(1, 0). Thus,
the join operator is a combination operator that joins the knowledge represented by two
relations into a single one by adding their values.

Definition 8 (Summarization). The summarization operator of relation r over a set of
variables V returns a relation over V such that (

⊕
V

r)(dV) = max
d∈DV̄ r

r(dV , d).

© CSIC © del autor o autores / Todos los derechos reservados

4.2. Background: The Generalized Distributive Law 37

Ex:(
⊕
{x2}

r12)(0) = max
d1∈D1

r12(d1, 0) and (
⊕
{x2}

r12)(1) = max
d1∈D1

r12(d1, 1). Notice that

we can employ the summarization operator by specifying the variables to eliminate
from a relation as follows

⊕
\V

r =
⊕
V̄ r

r =
⊕

Scope(r)\V
r. The summarization operator

sums up the utility that a relation contains over a set of variables.

Definition 9 (Slice). The slice of a relation r by an assignment σ over V is a utility
relation over DV̄ r such that (�

σ
r)(dV̄ r) = r(dV , dV̄ r) where dV ∈ DV contains the

values set by σ to the variables in V . Ex: V = {x2}, σ(x2) = 1 then (�
σ
r12)(0) =

r12(0, 1) and (�
σ
r12)(1) = r12(1, 1).

4.2 Background: The Generalized Distributive Law
GDL (Aji and McEliece, 2000) is a general message-passing algorithm that exploits

the way a global function factors into a combination of local functions to compute the

objective function in an efficient manner. The importance of the GDL framework stems

from unifying a family of techniques (e.g. Viterbi’s (Viterbi, 1967), Pearl’s belief prop-

agation (Pearl, 1988), or Shafer-Shenoy (Shafer and Shenoy, 1990) algorithms to name

a few), which have been widely used in different areas for a wide range of applications

(e.g. by information theory to decode error correcting codes (MacKay, 2003) and by

probabilistic inference to find the maximum a posteriori assignment in Markov Random

Fields (Jensen and Jensen, 1994)).

GDL is defined over two binary operations that form a commutative semi-ring. In our

case, since we are concerned with the problem of maximizing a utility function, such

operations are addition and maximization.

The GDL algorithm has different versions, depending on the problem representation

used. When applied directly over the global objective function, GDL is an iteratively

and approximate algorithm, also known as Max-Sum or Loopy Belief Propagation.

In contrast, when the objective function is compiled into a junction tree (Jensen and

Jensen, 1994) GDL is a complete algorithm that ensures optimality and convergence.

In this chapter we focus on the second case.

For this reason, before describing GDL operation, we start with an overview of junction

trees in the next section.

4.2.1 Junction trees

In this section we introduce junction trees. For extended reviews on junction trees, refer

to (Jensen and Jensen, 1994; Bishop, 2007).

Definition 10. A junction tree (JT) is a tree of cliques that can be represented as a
tuple 〈X , C,S,Ψ〉 where:

• X = {x1, . . . , xn} is a set of variables.

Copia gratuita. Personal free copy http://libros.csic.es

38 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

• C = {C1, . . . , Cm} is a set of cliques, where each clique Ci is a subset of variables
Ci ⊆ X

• S is a set of separators, where each separator sij is an edge between clique Ci
and Cj containing their intersection, namely sij = Ci ∩ Cj; and

• Ψ = {ψ1, . . . , ψm} is a set of potentials, one per clique, where potential ψi is a
function assigned to clique Ci .

Furthermore, the following properties must hold:

• Single-connectedness. Separators create exactly one path between each pair of
cliques.

• Covering. Each potential domain is a subset of the clique to which it is assigned,
namely Scope(ψi) ⊆ Ci.

• Running intersection. If a variable xi is in two cliques Ci and Cj , then it must
also be in all cliques on the (unique) path between Ci and Cj .

C1
{x1, x2, x3} ψ1(x1, x3)

C2
{x1, x2}

ψ2(x1, x2)

C3
{x2, x3, x4}

ψ3(x2, x3, x4)

s12 = {x1, x2} s23 = {x2, x3}

Figure 4.1: Example of junction tree.

Example 4.2.1.1 (junction tree). Figure 4.1 shows a junction tree whose circles stand
for cliques, labelled with the variables each one contains, and edges (between cliques)
stand for separators. Thus, for example, C1 contains variables x1, x2, x3; C3 contains
variables x2, x3, x4; and their separator is composed of their intersection, namely vari-
ables x2 and x3. Observe that the covering property holds. For example, clique C2
contains variables x1, x2 because the domain of its potential, Ψ2, is composed of these
variables. Notice also that the running intersection property holds. For example, vari-
able x2, which is included in cliques C2 and C3, is also in C1, which is on the path
between them.

© CSIC © del autor o autores / Todos los derechos reservados

4.2. Background: The Generalized Distributive Law 39

C1
{x1, x2, x3} 2© K̄1=ψ1+μ21+μ31

C2
{x1, x2}

4© K̄2=ψ2+μ12

C3
{x2, x3, x4}

4© K̄3=ψ3+μ13

1©
μ 2

1
−−→

1©μ
3
1

←−−
←−−μ 12

3©
−−→μ

1
3

3©
Figure 4.2: Messages exchanged and operations performed during the GDL execution

over the junction tree of figure 4.1.

Likewise variables in DCOP, we assume that the variables in a JT are defined over

domains D1, . . . ,Dn. Moreover, DCi
stands for de domain of clique Ci, namely the

joint domain space of Ci’ variables.

Now, we proceed in the next section to detail the operation of GDL algorithm over

junction trees, as the one exemplified in figure 4.1.

4.2.2 GDL operation

The purpose of GDL is that cliques distributedly compute some objective function that

is factored among them. With that goal GDL defines a message-passing phase for

cliques to exchange information about their variables. To illustrate the way GDL op-

erates, consider the following example. Say that our goal is to distributedly maximise

some objective function f(x1, x2, x3, x4) = ψ1(x1, x3)+ψ2(x1, x2)+ψ3(x2, x3, x4),
such that ψ1, ψ2 and ψ3 are set as potentials in the directed junction tree of figure 4.1.

Then, since the junction tree is directed, messages are sent in two different message-

passing phases:

(i) up the tree so that each clique sends a message to its clique parent after receiving

messages from all its children; and

(ii) down the tree so that each clique sends a message to its children after receiving a

message from its parent.

Example 4.2.2.1 (GDL execution). Table 4.1 shows a trace of the operation of GDL
over the junction tree in figure 4.1 specifying the operations realised at each step. Fig-
ure 4.2 depicts the same execution by drawing the messages and operations over the
junction tree, where circled numbers stand for steps. At step 1, C3 = {x2, x3, x4} sends

Copia gratuita. Personal free copy http://libros.csic.es

40 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

Step Message/local knowledge (K̄)
1. μ21(x1, x2) =

⊕
{x1,x2} ψ2(x1, x2)

1. μ31(x2, x3) =
⊕

{x2,x3} ψ3(x2, x3, x4)

2. K̄1(x1, x2, x3) = ψ1(x1, x3)⊗ μ21(x1, x2)⊗ μ31(x2, x3)
3. μ12(x1, x2) =

⊕
{x1,x2}[ψ1(x1, x3)⊗ μ31(x2, x3)]

3. μ13(x2, x3) =
⊕

{x2,x3}[ψ1(x1, x3)⊗ μ21(x1, x2)]

4. K̄2(x1, x2) = ψ2(x1, x2)⊗ μ12(x1, x2)
4. K̄3(x2, x3, x4) = ψ3(x2, x3, x4)⊗ μ13(x2, x3)

Table 4.1: Trace of GDL over the junction tree of figure 4.1.

a message μ31 to C1 = {x1, x2, x3} with the values of its local function, ψ3, after ’fil-
tering out’ the variables that the cliques do not share in the separator, namely x4. At
step 1 also, C2 performs an analogous operation to send a message μ21 to C1. At step
2, after C1 receives its children’s local functions for its variables (x1, x3), it combines
them into K̄1. K̄1 is a function that stands for C1 knowledge over its variables. At that
point, since C1 has received messages from all its children, K̄1 has complete knowledge
about its variables. Then, at step 3, C1 sends messages back to its children that contain
the combination (join operation) of its local function, ψ1, with other children messages.
Thus, C2 receives a message from C1 that contains the potential ψ1 combined with μ31,
whereas C3 receives the potential ψ1 combined with μ21. Finally, at step 4, C2 can
compute K̄2 while C3 can compute K̄3.

Once the message-passing phase of GDL is over, each clique Ci has complete knowl-

edge of the global objective function for the variables in the clique, encoded by means

of function K̄i. Now each clique can locally compute the assignment of variables that

maximises the objective function. However, such local computations do not guaran-

tee that cliques agree on their assignments. This is the case when several assignments

maximise the objective function.

Formal description

In what follows we generalise the example above to provide a more formal description

of GDL that will help formalising the operations that Action-GDL requires. For the

sake of simplicity, we restrict our description to the max-sum commutative semi-ring.

Notice though that GDL applies to a larger variety of semi-rings. We refer the interested

reader to (Aji and McEliece, 2000) for an excellent discussion on this issue.

Firstly, the knowledge of a clique Ci results from the combination of its local function

with each of the messages received from its neighbours. For instance, in table 4.1 (step

2) the knowledge of clique C1 is assessed as the combination of its potential, Ψ1, with

the messages received from its neighbours C2 and C3. More formally, the knowledge of

a clique Ci is defined as a knowledge relation K̄i : DCi → R. Initially, K̄i is set to be

© CSIC © del autor o autores / Todos los derechos reservados

4.2. Background: The Generalized Distributive Law 41

the local potential ψi, but when K̄i is updated, GDL uses the following rule:

K̄i = ψi ⊗

⎡⎣ ⊗
Ck∈ N(Ci)

μki

⎤⎦ (4.1)

where N(Ci) is the set of adjacent cliques to Ci in the junction tree.

Secondly, notice that if two cliques Ci and Cj are connected by a separator sij , the

message from Ci to Cj is an utility message μij over variables in sij . Initially all μij

messages are set to 0. For instance, in table 4.1 (step 3) the message μ13 that clique C1
exchanges with C3 is a relation over the variables in separator s13 = {x2, x3}. When

a clique Ci sends a message to Cj , it combines its local knowledge with all messages it

has received from its neighbours other than Cj , and transmits the result to Cj . Thus, C1
assesses μ13 as the combination of its potential, Ψ1, with the message received from C2.

Following (Aji and McEliece, 2000), we can regard a junction tree as a communication

network where an edge from Ci and Cj is a transmission line that ”filters out” depen-

dence (by summarization in our case) on all variables but those common to Ci and Cj .

When a message μij is updated, the following rule applies:

μij =
⊕
sij

⎡⎣ψi ⊗
⊗

Ck∈N(Ci)

μki

⎤⎦ (4.2)

To summarise, equations 4.1 and 4.2 are the basis of GDL. While equation 4.2 helps

a clique assess messages to send to its neighbours, equation 4.1 allows to compute the

objective function at a particular clique.

Consider two special cases regarding the application of GDL (Aji and McEliece, 2000):

the single-vertex problem, when the goal is to compute the objective function at a single

clique, and the all-vertices problem, when the goal is to compute the objective function

at all cliques. For instance, consider the trace in figure 4.1. At step 2, the single-vertex

problem for clique C1 is solved, whereas at step 4 the all-vertices problem is solved

because all cliques can assess the objective function.

As mentioned above, GDL is a synthesis of the work in many fields. More concretely, it

generalises Viterbi’s (Viterbi, 1967), Pearl’s belief propagation (Pearl, 1988), or Shafer-

Shenoy (Shafer and Shenoy, 1990) algorithms among others. In the next section, we

observe that it is also the case of the Cluster Tree Elimination (CTE) algorithm de-

scribed in (Dechter, 2003), a message-passing algorithm that can help solve several

automated reasoning tasks over a tree decomposition.

4.2.3 Relationship with the Cluster Tree Elimination algorithm

Now we turn our attention to the Cluster Tree Elimination (CTE) algorithm described

in (Dechter, 2003) to compare it with GDL. CTE is a message-passing algorithm that

can help solve several automated reasoning tasks (e.g. constraint satisfaction, most

probable explanation in a belief network, etc) over a tree decomposition. It is a complete

algorithm, with exponential complexity in time and space (Kask et al., 2005).

Copia gratuita. Personal free copy http://libros.csic.es

42 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

The operation of CTE is the same as GDL to solve the all-vertices problem, namely to

assess the objective function at each clique. In fact, CTE employs equations 4.1 and 4.2

to assess the knowledge in a cluster and the messages to send between cliques respec-

tively. More concretely, the original description of CTE is equivalent to the fully serial
version of GDL (Aji and McEliece, 2000): a clique sends a message to a neighbour

when, for the first time, it has received messages from all of its other neighbours, and

computes its knowledge when, for the first time, it has received messages from all its

neighbours.

4.3 The Action-GDL Algorithm
In this section we introduce Action-GDL, a specialization of the GDL algorithm in (Aji

and McEliece, 2000) to efficiently solve DCOPs. Firstly, in section 4.3.1, we show

how to extend GDL to efficiently solve DCOPs, namely to allow individual agents

to calculate the variable assignment that maximizes the DCOP objective function of

equation 2.1. Next, section 4.3.2 details a formal analysis of the complexity of Action-

GDL. Finally, in section 4.3.3, we define an algorithm to distributedly compile a DCOP

into a junction tree.

4.3.1 Extending GDL to solve DCOPs
Recall that our goal is to efficiently solve DCOPs as formalised in section 2.1. There-

fore, the capability of distributedly computing an objective function,1 as provided by

GDL, is not enough. We need to go one step beyond GDL to allow agents to individ-

ually assign values to local variables such that these values are a joint assignment that

maximizes the DCOP objective function. At this aim, Action-GDL extends GDL to

efficiently infer such optimal assignment.

Consider a DCOP whose objective function is compiled into a junction tree. For exam-

ple, the junction tree of figure 4.1 encodes the objective function of the DCOP repre-

sented in figure 4.3(a) by setting the set of potentials Ψ = {ψ1, ψ2, ψ3} as ψ1 = r13,

ψ2 = r12, and ψ3 = r23 ⊗ r34.

According to the description of GDL above, when a clique has received messages from

all its neighbors, it counts on all the information related to its variables. Thus, it can

compute its objective function. Thereafter, the clique would be able to find the optimal

assignment for its variables provided that it is aware of its parent clique decisions (vari-

ables’ assignments) and can set the rest of clique’s variables according to them. Once

the clique finds the optimal assignment for its variables, it can directly propagate its

assignment down the tree. Notice that there is no need for propagating utility messages

down the tree (unlike GDL when solving the all-vertices problem) because everything

that is required for a child to find its optimal assignment is its parent’s assignments.

Therefore, when solving a DCOP, after the first message-passing phase of GDL (up the

tree) is over, the second message-passing phase of GDL (down the tree) is no longer

necessary. Instead, we require a second message-passing phase for cliques to exchange

1In fact, each clique ends up in GDL with a summarization of the global objective function over its

variables.

© CSIC © del autor o autores / Todos los derechos reservados

4.3. The Action-GDL Algorithm 43

x1

x2

x3 x4

r
1
2

r 1
3

r34

r
2
4

(a) DCOP constraint graph

C1
{x1, x2, x3}

2© K̂1=ψ1+μ21+μ31

3© (x∗
1,x

∗
2,x

∗
3)=

arg max
{x1,x2,x3}

K̂1

C2
{x1, x2}

5© K̂2=ψ2(σ12)

C3
{x2, x3, x4}

5© K̂3=ψ3(x4;σ13)

6© x∗
4=arg max

{x4}
K̂3

1©μ 21−−→

1©μ
3
1

←−−

←−σ 1
2

4©

−→σ
1
3

4©

(b) Action-GDL execution when solving DCOP (a).

Figure 4.3: Example of (a) DCOP constraint graph; and (b) the execution of Action-

GDL over the junction tree of figure 4.1 when encoding (a).

value assignments down the tree, which is precisely the extension that Action-GDL

introduces. Therefore, Action-GDL runs two phases:

(i) a utility propagation phase in which each agent exchanges utility messages for

each of its cliques up the tree; and

(ii) a value propagation phase in which each agent exchanges value messages for

each of its cliques down the tree.

Unlike GDL, messages exchanged down the tree are not utility messages. This leads to

savings in communication, since utility messages are space-exponential in the separator

size, whereas the size of a value messages is linear. Moreover, it is relevant to notice

that the value propagation phase ensures that whenever multiple optimal joint decisions

are feasible, cliques converge to the very same joint decision, namely to the very same

solution of a DCOP.

Example 4.3.1.1 (Action-GDL execution). Table 4.2 displays a trace of Action-GDL
operations over the junction tree in figure 4.1. Figure 4.3(b) depicts the same execution
by drawing the messages and operations over the junction tree, where circled numbers
stand for operations. Observe that the operations performed during the utility propa-
gation phase (steps 1-2) are equivalent to the operations performed in the first phase of
GDL (steps 1-2). In contrast, at step 3 the root clique C1 initiates the value propagation
phase and assesses the optimal value for x1, x2 and x3 differing from that point on from
the GDL execution. At step 4, C1 propagates its optimal values down the tree through
value messages to cliques C2 and C3. At step 5, C2 and C3 receive the values of {x1, x2}

Copia gratuita. Personal free copy http://libros.csic.es

44 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

Step Messages/local knowledge K̂
1. μ21(x1, x2) =

⊕
{x1,x2} ψ2(x1, x2)

1. μ31(x2, x3) =
⊕

{x2,x3} ψ3(x2, x3, x4)

2. K̂1(x1, x2, x3) = ψ1(x1, x3)⊗ μ21(x1, x2)⊗ μ31(x2, x3)

3. (x∗
1, x

∗
2, x

∗
3) = arg max{x1,x2,x3} K̂1

4. σ12(x1, x2) = (x∗
1, x

∗
2)

4. σ13(x2, x3) = (x∗
2, x

∗
3)

5. K̂2 = �
σ12

ψ2(x1, x2)

5. K̂3(x4) = �
σ13

ψ3(x2, x3, x4)

6. x∗
4 = arg max{x4} K̂3

Table 4.2: Trace of Action-GDL over the junction tree of Fig. 4.1

and {x2, x3} respectively. At step 6, C3 infers the remaining variable x4 by using its
parent optimal values (x∗

2, x
∗
3).

Algorithm 1 outlines Action-GDL. For simplicity, we have assumed that each agent xi

is assigned a single clique Ci. Given a junction tree 〈X , C,S,Ψ〉, each clique Ci starts

with a tuple 〈Cp, Chi, ψi, Si〉, where Cp ∈ C stands for its parent, Chi ⊆ 2C stands

for its children, and Si ∈ S stands for the separators relating clique Ci to its adjacent

cliques.

During the utility propagation phase (lines 1-10), cliques exchange utility messages.

The initial knowledge for each clique is its potential (line 2). Each clique waits until

receiving a utility message from each of its children cliques (lines 3-4). These messages

contain a utility relation over the variables shared by both cliques (their separator) and

are sent by children cliques. For example, in the junction tree of figure 4.3(b), clique

C1 waits until receiving utility messages from cliques C2 and C3, containing relations

over variables in their respective separators, namely {x1, x2} and {x2, x3}. Every time

a clique receives a new utility message, it incorporates it (by using the join operator) to

its local knowledge (line 5). After combining utility messages from all the children of a

clique, if the clique has a parent (line 7), it summarizes that part of its local knowledge

(using the summarization operator) that is of interest to its parent (by means of a utility

relation over its separator). Thus, clique C3 summarizes its potential over variables

{x2, x3} (filtering out x4), which are the variables of interest to its clique parent C1.

After that, the result of the summarisation is sent to its parent (line 9).

During the value propagation phase (lines 11-22), cliques compute the optimal values

for their variables and exchange value messages, namely decisions. Given a clique,

it waits until receiving a value message (containing assignments) for all variables in

common (in the separator) with its parent (line 12-14). Thus, in the junction tree of

figure 4.3(b), cliques C2 and C3 wait until receiving a value message from its parent C1
containing the optimal values for variables in their respective separators, namely x∗

1, x
∗
2

and x∗
2, x

∗
3. At that point, the clique has received all the knowledge, in form of utility

(from children) and value (from the parent) messages, required to compute the objec-

© CSIC © del autor o autores / Todos los derechos reservados

4.3. The Action-GDL Algorithm 45

Algorithm 1 Action-GDL(〈X , C,S,Ψ〉)
Each clique Ci starts with 〈Cp, Chi, ψi,Si〉 and runs:

1: Phase I: UTILITY Propagation
2: K̂i = ψi;
3: for all Cj ∈ Chi do
4: Wait for utility message μji from Cj
5: K̂i = K̂i ⊗ μji;
6: end for
7: if Ci is not the tree’s root then
8: Let sip ∈ Si be the separator between Ci and its parent Cp

9: Send μip =
⊕
sip

K̂i to Cp

10: end if
11: Phase II: VALUE propagation
12: if Ci is not the tree’s root then
13: Wait for a value message σpi from Cp
14: K̂i = �

σpi

K̂i; /*Slice K̂i with the value message*/

15: end if
16: x∗

i = arg max
d∈DScope(K̂i)

K̂i(d); /*Assess best values for unassigned local variables*/

17: x∗ = x∗
i ∪ σpi; /*Put together the assessed value and the message received*/

18: for all Cj ∈ Chi do
19: Let σij = x∗

sij ; /*Project over separator*/

20: Send σij to Cj
21: end for
22: return d∗;

tive function related to its variables. The clique slices its knowledge by incorporating

the already inferred decisions (line 15), and computes the optimal values for the rest of

its variables (line 17). For instance, clique C3 slices its knowledge by incorporating the

values x∗
2, x

∗
3 inferred by C1, and computes the optimal value of its only remaining vari-

able x4. Once a clique finds the optimal assignment for its variables, it can propagate

it down the tree (lines 19-22). Notice however that a clique only propagates variable

assignments required by its children cliques, namely assignments for variables in their

separator.

To summarize, according to algorithm 1, the knowledge of a clique Ci at the end of an

Action-GDL run is:

K̂i = �
σpi

⎡⎣ψi ⊗
⊗

Cj∈Chi

μji

⎤⎦ (4.3)

Observe that in contrast with GDL, which computes the knowledge of a clique as the

combination of utility messages received from all neighbours (see equation 4.3), the

Copia gratuita. Personal free copy http://libros.csic.es

46 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

knowledge of a clique in Action-GDL contains only the combination of utility messages

from children whereas the value message from the clique parent is used to slice this

knowledge by fixing the values of the already inferred variables.

4.3.2 Computation and communication complexity
In this section, we discuss the computational and communication complexity of Action-

GDL (Algorithm 1). As we show next, we can readily assess Action-GDL complexity

from cliques’ and separators’ sizes of a junction tree.

Communication complexity

Communication complexity is measured in terms of the number and the size of the

messages exchanged during the execution of the algorithm.

Action-GDL requires a number of messages linear in the number of edges in the junc-

tion tree because agents exchange one value message and one utility message per sepa-

rator. The communication complexity lies in the size of utility messages, which is the

number of variables of the separator (size(μij) ∈ O(
∏

xk∈sij
|Dk|)), because the size

of value messages is linear (size(σij) ∈ O(
∑

xk∈sij
log(|Dk|))).

Computation complexity

Computation complexity is measured in terms of memory space and number of opera-

tions required during the execution of the algorithm.

The local memory required by each clique Ci depends on the size of the received mes-

sages, which for utility messages is exponential to the number of variables in the sep-

arators, and on the size of its local knowledge Ki, which is exponential to the number

of variables in the clique. Regarding the computation required by each clique to build

messages and find assignments, it also scales with the number of variables in the clique.

In more detail, the operations required by a clique Ci are the following:

• the combination of children messages into the local knowledge (lines 3-6) re-

quires
∏

xk∈Ci
|Dk| operations, and hence, is exponential to the number of vari-

ables in the clique.

• the summarization of the local knowledge over a separator to compute a utility

message (line 9) requires
∏

xk∈Ci
|Dk| operations, and hence, it is exponential to

the number of variables in the clique.

• the slice of knowledge to incorporate optimal assignments from its parent along

with assessment of the remaining variables (lines 12-16) require
∏

xk∈Ci\sip |Dk|
operations2 and hence, it is bounded by the number of variables in the clique.

Therefore, the communication and computation complexity of Action-GDL are dom-

inated by the size of the largest clique and the larger separator in the junction tree.

Moreover, because it is known that the size of the largest clique in the best junction tree

2sip stands for the parent’s separators

© CSIC © del autor o autores / Todos los derechos reservados

4.3. The Action-GDL Algorithm 47

is equal to the treewidth (plus one) (Jensen and Jensen, 1994; Bishop, 2007), the com-

putational complexity of Action-GDL is also bounded by the treewidth of the DCOP

constraint graph.

4.3.3 Distributed Junction Tree Generator
As explained in section 4.3.1 when detailing Action-GDL operation, Action-GDL runs

over a junction tree where cliques are assigned to agents. Then, we shall refer to such

junction tree as Distributed Junction Tree (DJT). In a Distributed Junction Tree each

agent ai is assigned cliques for its variables whose potential is composed of relations

that ai knows. Recall that, as defined in chapter 2, in a DCOP the relations known by

an agent are those that include any of its variables.

For example consider the DCOP in figure 4.3(a) with the following assignment of vari-

ables to agents: x1 to a1, x2 to a2 and x3, x4 to a3. When we compiled the objective

function of this DCOP into the junction tree of figure 4.3(b) we created three cliques,

one for each agent. Additionally, the potential of each clique Ci is composed only of

relations that the owner agent ai knows. Thus, ψ1 is composed of r13 known by a1 as

owner of x1, ψ2 of r12 known by a2 as owner of x2 and ψ3 is composed of the combi-

nation of r34 and r24 known by a3 as owner of x3,x4. Hence the junction tree of figure

4.3(b) is a distributed junction tree for the DCOP of figure 4.3(a).

However, that is not always the case. Indeed, it has been argued Petcu (2007) that tra-

ditional triangulation-based methods to compile junction trees3, are not suitable when

applied to problems that are distributed by nature because they produce junction trees

disregarding the structure of the problem. Following any of these methods, we can cre-

ate a clique Ci with a potential ψi composed of the combination of r13, r34 and r24.

Thus, in this case, ψi contains a set of relations that are not known by any single agent

in the DCOP and hence, it can not be included in any distributed junction tree.

To overcome this limitation, here we propose an alternative algorithm, the Distributed

Junction Tree Generator (DJTG), which allows agents to compile a DCOP into dis-

tributed junction tree by exchanging a linear number of messages. The resultant dis-

tributed junction tree can be readily fed into, and hence solved by, Action-GDL. The

DJTG algorithm builds on an existing distributed method for building a junction tree

Paskin et al. (2005) that, unlike traditional triangulation methods, is based on directly

ensuring the running intersection property (RIP) over the problem. Recall that the RIP

(defined in section 10) ensures that if a variable xi is in two cliques Ci and Cj then it

is also in all the cliques in the path between them. The DJTG algorithm redefines this

method in the context of DCOPs.

The DJTG algorithm captures the distribution of a DCOP because each agent:

(i) creates its own cliques related to its variables, leading to an explicit relationship

agent-to-clique; and

(ii) restricts the potential of its clique to the relation that it knows.

The DJTG algorithm receives as input a set of relations distributed among agents and

a spanning tree. The distribution of these relations is defined by the distribution of

3We refer to triangulation methods based on the one proposed in Jensen and Jensen (1994)

Copia gratuita. Personal free copy http://libros.csic.es

48 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

a1

a2 a3

r12

r13

r34 ⊗ r24

(a) Distribution of relations the

DCOP in figure 4.3(a) and span-

ning tree (input of DJTG).

C1
{x1, x3} ψ1(x1, x3) = r13

C2
{x1, x2}

ψ2(x1, x2) = r12

C3
{x2, x3, x4}

ψ3(x2, x3, x4) = r34 ⊗ r24

s12 = {} s23 = {}

(b) DJTG execution (preprocessing phase).

C1
{x1, x2, x3}

2© C1=C1∪{x2}
s12={x1,x2}
s13={x2,x3}

C2
{x1 x2}

4© s21={x1, x2}

C3
{x2, x3, x4}

4© s31={x2, x3}

1©
{x

1
,x
2
}

−−−
−−→

1©{x
2
x
3
x
4 }

←−−−−−−−

←−
−−
−−
−−
−−
−

{x
1
x 2

x 3
x 4
}

3©

−−−−−−−→

{x
1
x
2
x
3 }

3©

(c) DJTG execution (RIP phase).

Figure 4.4: Example of DJTG execution.

the specific problem domain (distribution of knowledge and decisions among agents).

Figure 4.4(a) shows a spanning tree over the set of relations of the DCOP constraint

graph of figure 4.3(a). It considers the following assignment of variables to agents: x1

to a1, x2 to a2 and x3, x4 to a3. Observe that r13 is assigned to a1 and linked to r12,

assigned to agent a2; and to the combination of r34 and r24, assigned to a3.

Formally, the input of the DJTG algorithm is a tuple 〈A,X , R, κ, ST 〉, where: A is a

set of agents; X is a set of variables; R is a set of relations; κ is a function that maps

agents to a set of relations; and ST a spanning tree defined over the relations in R.

Then, the DJTG algorithm runs two phases:

(i) a pre-processing phase where agents are organized into an initial tree-like struc-

ture; followed by

(ii) a message-passing phase that calculates the unique set of minimal cliques that

© CSIC © del autor o autores / Todos los derechos reservados

4.3. The Action-GDL Algorithm 49

Step DJTG Trace Step DJTG Trace
P. Ψ1 = r13, C1 = Scope(Ψ1) 2. s12 = C1 ∩ ϕ21

P. Ψ2 = r12, C2 = Scope(Ψ2) 2. s13 = C1 ∩ ϕ31

P. Ψ3 = r34 ⊗ r24, C2 = Scope(Ψ3) 3. ϕ12 = Scope(Ψ1) ∪ ϕ31

1. ϕ21 = Scope(Ψ1) 3. ϕ13 = Scope(Ψ1) ∪ ϕ21

1. ϕ31 = Scope(Ψ3) 4. s21 = C2 ∩ ϕ12

2. C1 = C1 ∪ {ϕ21 ∩ ϕ31} 4. s31 = C3 ∩ ϕ13

Table 4.3: Trace of DJTG over the junction tree of figure 4.1.

satisfy the RIP for the pre-processing structure.

During the pre-processing phase, each agent ai creates a clique Ci for each of its as-

signed relations , r ∈ κ(ai), setting the clique’s potential ψi to r. Figure 4.4(b) shows

the initial junction tree structure produced during the DJTG preprocessing phase over

the input depicted in figure 4.4(a). Agent a1 creates clique C1, agent a2 creates clique

C2, and agent a3 creates clique C3. Table 4.3 details the operations performed during

this pre-processing phase (tagged as step P.). Cliques are initially set to their poten-

tial domain, namely Ci = Scope(ψi), in order to readily ensure the covering property.

Thus, clique C1 is initially set to {x1, x3}, which are the variables in the scope of its

potential, uniquely composed of relation r13.

Moreover, for every two relations rVi , rVj connected in the ST , agents create a separa-

tor sij linking their corresponding cliques Ci and Cj . Thus, in figure 4.4(b), cliques C1
and C2 are connected as their relations r13 and r12 in the ST . Notice that the structure

shown in figure 4.4(b) does not satisfy the RIP property: variable x2 is included in C2
and C3 but not in C1 which is in the path between them.

The second phase of DJTG is responsible for ensuring the RIP. During that phase, each

agent exchanges for each one of its cliques, Ci, reachability messages with agents re-

lated to Ci’s neighbours that contain the set of reachable variables from Ci. Figure 4.4(c)

shows the messages exchanged, with the set of reachable variables, and the operations

performed during this stage, where circled numbers stand for the execution step. Table

4.3 details the operations performed at each step of the execution.

The set of reachable variables from a clique Ci to Cj , namely ϕij , is calculated as the

union of: (i) Ci’s potential domain; and (ii) the variables reachable from Ci’s neighbours

other than Cj’s. Thus, at step 1, agent a2 sends a message to agent a1 for clique C2 that

contains its potential domain {x1, x2}, namely the variables that can be reached from

clique C2. At step 3, agent a1 sends a message to agent a2 for clique C1 that contains

variables {x1, x2, x3, x4}, namely the variables that can be reached from clique C1.

These variables are the result of the union of C1’s potential domain, namely (x1, x3),
with the reachable variables from C3, namely {x2, x3, x4}. Formally, a reachability

message ϕij from Ci to Cj is assessed as:

ϕij = Scope(Ψi) ∪

⎡⎢⎢⎣ ⋃
Ck∈N(Ci)

k �=j

ϕki

⎤⎥⎥⎦ (4.4)

Copia gratuita. Personal free copy http://libros.csic.es

50 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

Once an agent receives, for a given clique, reachability messages from all its neigh-

bours, it redefines its clique by adding variables that are in more than one reachability
message and assesses the separators with its neighbours. Formally, upon reception of

all reachability messages for a clique Ci, its new variables can be computed as follows:

Ci = Ci ∪

⎡⎢⎢⎣ ⋃
Cj ,Ck∈N(Ci)

j �=k

ϕji ∩ ϕki

⎤⎥⎥⎦ (4.5)

For instance, in figure 4.4(c) agent a1 receives two reachability messages for clique C1:

one with {x1, x2} from clique C2 associated to a2; and another one with {x2, x3, x4}
from clique C3 associated to a3. Since both messages contain x2, agent a1 redefines C1
to also include x2.

After computing cliques, it is straightforward for agents to assess separators (see def-

inition 10). Thus, an agent ai computes the separator between its clique Ci and its

neighbour Cj ∈ N(Ci) as the intersection between Ci and the reachability message re-

ceived from Cj , namely sij = Ci ∩ϕji. At step 4, in figure 4.4(c), agent a3 assesses the

separator between its clique C3 and its neighbor C1 as {x2, x3}. Variables in this sep-

arator are the results of the intersection of C3, namely {x2, x3, x4}, with the reachable

variables from C1, namely {x1, x2, x3}.

As a result, the final junction tree built by agents in figure 4.4(c) is equivalent to the

valid junction tree in figure 4.3(b), satisfying the RIP. Hence, we have shown that from

a DCOP, agents can distributedly compute a distributed junction tree using a linear

number of messages.

Finding a good distributed junction tree

Given a set of n relations, there are nn−2 different spanning trees over them. For each

one we can compile the corresponding distributed junction tree with the DJTG algo-

rithm. It is known from Jensen and Jensen (1994) that finding the optimal junction tree

is NP-hard, so it is reasonable to wonder what we can do to find good spanning trees

to use as input for the DJTG algorithm. However, it turns out that existing heuristics

proposed in the literature for DCOPs and distributed junction tree construction can be

expressed, explicitly or implicitly, as a set of relations connected by a spanning tree

that we can use as input of the DJTG. On the one hand, there are heuristics (Paskin

et al., 2005) that directly assess a spanning tree defined over relations and we can read-

ily exploit them. On the other hand, sections 4.4.1 and 4.4.2 below show how to take

advantage of the heuristics proposed for pseudotrees (Petcu, 2007; Atlas and Decker,

2007) and cross-edge trees (Atlas and Decker, 2007) to create efficient distributed junc-

tion trees.

4.4 Generality of Action-GDL
In the previous section we have presented Action-GDL. In this section we show the gen-

erality of Action-GDL by showing that it unifies two state-of-the-art dynamic program-

© CSIC © del autor o autores / Todos los derechos reservados

4.4. Generality of Action-GDL 51

ming optimal DCOP algorithms that are based on GDL: DPOP (Petcu and Faltings,

2005b) and DCPOP (Atlas and Decker, 2007).

4.4.1 Action-GDL generalizes DPOP

In this section we prove that DPOP is a particular case of Action-GDL when it is exe-

cuted under certain junction trees. We say that two distributed algorithms are equivalent

if (i) agents perform the same computation and (ii) agents exchange the same messages.

First, we give an overview of the DPOP algorithm in section 4.4.1. Next we prove that

Action-GDL generalizes DPOP by: (1) providing a mapping from pseudotrees (input

of DPOP) to junction trees (section 4.4.1); and (2) proving that given any pseudotree,

the execution of DPOP is equivalent to the execution of Action-GDL over the junction

tree produced by our mapping for the pseudotree (section 4.4.1).

Overviewing DPOP

DPOP (Petcu and Faltings, 2005b) is a complete state-of-the-art dynamic programming

algorithm to solve DCOPs. DPOP compiles a DCOP in a pseudotree (PT), namely a

rooted tree with the same variables as the DCOP and the property that adjacent nodes

from the DCOP constraint graph fall in the same branch of the tree.

Figure 4.5(b) shows a pseudotree for the constraint graph in figure 4.5(a). A pseu-

dotree of a constraint graph has two kinds of edges: tree-edges (boldfaced lines); and

pseudoedges (dashed lines). These edges stand for two relationships between variables:

(1) parent/children for variables connected through an edge (e.g. in figure 4.5(b) x2

is the parent of x3); (2) pseudoparent/pseudochildren for variables connected through

a pseudoedge (e.g. x4 is a pseudochild of x2). Therefore, we can represent a pseu-

dotree as a pair 〈P, PP 〉, where P and PP are functions that map each variable to its

parent and pseudoparents, respectively. We obtain functions Ch and PCh, which re-

turn a variable’s children and pseudochildrens respectively, from the functions above as

Ch(xi) = {xj ∈ A|P (xj) = xi} and PCh(xi) = {xj ∈ A|xi ∈ PP (xj)}.

Thus, when running DPOP, agents start with a pre-processing phase, to generate a pseu-

dotree by running a distributed Depth First Search (DFS) algorithm guided by some

heuristic. Then, given a pseudotree, DPOP has two message-passing phases: (1) to

exchange utilities about variables; and (2) to propagate values of variables inferred. Al-

gorithm 2 shows these two phases in terms of the operators introduced in section 4.1.

Such encoding will ease the comparison with Action-GDL in section 4.4.1.

In DPOP the initial knowledge of an agent xi, namely K0
i , is set to the combination of

some unary relation involving xi and of some binary relations linking xi with one of

its parent or pseudoparent variables. Thus, in figure 4.5(b) the knowledge of agent x4

(K0
4) is initially composed of relations r24 and r34 (no unary relation in that case).

During the first message-passing phase, the utility propagation phase (lines 1-9), each

agent xi receives utility messages from all its children variables. The utility message

that agent xi exchanges with the agent related to its parent variable, xp, is the summa-

rization of its current knowledge filtering out xi (line 8). Formally:

Copia gratuita. Personal free copy http://libros.csic.es

52 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

x1

x2

x3 x4

r
1
2

r 2
3

r34

r
2
4

(a) DCOP constraint graph.

x2

x1r12 x3 r23

x4

r34 ⊗ r24

(b) Pseudotree PT .

C2
{x2} ψ2 = {}

C1
{x1, x2} ψ1 = r12

C3
{x2, x3} ψ3 = r23

C4
{x2, x3, x4}

ψ4 = r34 ⊗ r24

s12 = {x2} s23 = {x2}

s34 = {x2, x3}

(c) Junction tree JT = γ(Φ, PT).

Figure 4.5: Example of constraint graph, a pseudotree and its equivalent junction tree.

μip =
⊕
\xi

⎡⎣K0
i ⊗

⊗
xj∈Ch(xi)

μji

⎤⎦ (4.6)

During the second message-passing phase, the value propagation phase (lines 10-19),

each agent xi receives a value message (σpi) from the agent assigned to its parent vari-

© CSIC © del autor o autores / Todos los derechos reservados

4.4. Generality of Action-GDL 53

Algorithm 2 DPOP(〈X ,D,R〉,〈P, PP 〉)
Each agent xi ∈ X , receives 〈Pi, PPi,K0

i 〉 where K0
i = ri ⊗

⊗
xk∈{P (xi)}∪PP (xi)

rik and

runs:

1: Phase I: UTILITY Propagation
2: Ki = K0

i ;

3: for all xj ∈ Ch(xi) do
4: Wait for the utility message μji from xj

5: Ki = Ki ⊗ μji;

6: end for
7: if xi is not the tree’s root, let xp = P (xi) then
8: Send μip =

⊕
\xi

Ki to xp

9: end if
10: Phase II: VALUE propagation
11: if xi is not the tree’s root, let xp = P (xi) then
12: Wait for a value message σpi from xp

13: Ki = �
σpi

Ki; /*Slice Ki with the value message*/

14: end if
15: x∗

i = arg max
di∈Di

Ki(di); /* Assess best value for xi */

16: x∗ = x∗
i ∪ σpi; /* Put together the assessed value and the message received. */

17: for all xj ∈ Ch(xi) do
18: Send σij = x∗

Scope(μji)
to xj /* Send to xj the variables he is interested in */

19: end for
20: return d∗i ;

able, xp. That value message contains assignments for all variables in the domain of

the utility message (μip) that agent xi has sent to xp in the previous phase. Once agent

xi has received the value message from its parent xp, agent xi restricts its knowledge

by incorporating the assigned variables (line 13).

Then, agent xi assesses the value of xi as the one that maximizes its local knowledge

(line 15) and completes it with the value message received from its parent (line 16).

Thereafter, agent xi propagates to every children of xi a value message with the values

assigned to already decided variables that it is interested in (lines 17-19) 4.

To summarize, from algorithm 2 we obtain that the knowledge of agent xi at the end of

a DPOP execution is:

Ki = �
σpi

⎡⎣K0
i ⊗

⊗
xj∈Ch(xi)

μji

⎤⎦ (4.7)

4When looking at lines 17-19, recall that x∗
Scope(μji)

stands for the values to be assigned to the variables

in the domain of the utility message μji.

Copia gratuita. Personal free copy http://libros.csic.es

54 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

Mapping pseudotrees to junction trees

Before proving the equivalence of Action-GDL and DPOP, in this section we define a

mapping that builds a junction tree from a pseudotree. First of all, we offer the intuitions

behind our mapping. In general, we propose to map each pseudotree to a junction tree

with as many cliques as nodes in the pseudotree. In fact, for each node in a pseudotree

we require its counterpart as a clique in the junction tree to be produced by the mapping.

Hereafter, we consider the variables to include in each clique. For each node in the

pseudotree, its clique in the junction tree must contain: (1) the node’s variable; (2) the

variables expected by the node’s parents/pseudoparents up in the pseudotree; and (3)

the variables that the node’s children need to forward up the pseudotree.

We will refer to the node’s variable and the second set of variables as the directly related
variables (DRV), and to the third set of variables as the inherited related variables
(IRV). Hence, given a node xi in a pseudotree, we can readily define the variables of its

clique by wrapping up directly and inherited related variables as follows:

Ci = DRV (xi) ∪ IRV (xi) (4.8)

On the one hand, the directly related variables of a node include its variable, its parents’

and its pseudoparents’. Formally:

Definition 11. Given a variable xi in a pseudotree, its directly related variables are:

DRV (xi) = {xi} ∪ {P (xi)} ∪ PP (xi) (4.9)

Thus, the directed related variables of variable x4 in the pseudotree of figure 4.5(b) are

defined as {x2, x3, x4}, where x2 stands for its pseudoparent, x3 for its parent and x4

for its own variable.

On the other hand, the inherited related variables of a node include the variables that its

children must send up the tree after eliminating their own variables. Formally:

Definition 12. Given a variable xi in a pseudotree, its inherited related variables are:

IRV (xi) =
⋃

xj∈Ch(xi)

Cj\{xj} (4.10)

Observe that the only variable that a node can remove from a clique’s child is its child

variable. Notice also that the definition of inherited related variables leads to a recursive

definition of cliques and that the set of inherited related variables is empty for leaf

nodes.

Thus, the set of inherited related variables of the leaf variable x4 in the pseudotree of

figure 4.5(b) is empty. Then we can assess its clique, C4, following equation 4.8, as

directly its set of directed related variables {x2, x3, x4}. Once clique C4 is assessed

we can recursively compute the set of inherited related variables of x3 composed of

variables in C4 excluding x4, namely {x2, x3}.

Once obtained cliques’ variables, we can assess the potentials and separators complet-

ing the definition of a junction tree. Thus, finally the mapping γ below allows us to

build a junction tree from a pseudotree.

© CSIC © del autor o autores / Todos los derechos reservados

4.4. Generality of Action-GDL 55

Definition 13 (γ). Let γ be a function that given a DCOP Φ = 〈X ,D,R〉 and a pseu-
dotree PT = 〈P, PP 〉 maps them to a junction tree γ(Φ, PT) = 〈X , C,S,Ψ〉, where:

1. The set of variables X is the same as in PT .

2. The set of cliques C = {C1, . . . , C|X|} contains one clique per variable in PT .
The clique Ci contains all the variables directly or inherited related to variable
xi as defined by expression 4.8.

3. The set of potentials Ψ contains one potential associated to each clique. Each
clique potential ψi is the combination of: (i) a unary relation ri that involves
the clique decision variable xi; and (ii) the binary relations that link xi with its
parent or one of its pseudoparents. Formally:

ψi = ri ⊗

⎡⎣ ⊗
xj∈{P (xi)}∪PP (xi)

rij

⎤⎦ (4.11)

4. The set of separators S contains one separator sij per pair of cliques Ci and
Cj such that xj is parent of xi in the PT . By definition of junction tree, each
separator sij contains the intersection of its cliques (sij = Ci ∩ Cj).

Figure 4.5(b) shows a pseudotree PT over the DCOP of figure 4.5(a) while figure 4.5(c)

shows the junction tree γ(Φ, PT). Observe that mapping γ creates four cliques, one

per each variable in the PT and that clique’s potentials are assessed following equation

4.11. Thus, the potential of C4 is composed of the combination of the relation between

x4 and its parent x3, namely r34, and its pseudoparent x2, namely r24 (no unary relation

in this case). Cliques are build recursively by means of equation 4.8. Say now that

we have already generated clique C4, corresponding to variable x4, and we intend to

generate clique C4, corresponding to variable x3. Following equation 4.9, the set of

DRV of x3 is {x2, x3} and, following equation 4.10, its set of IRV is composed of

C4, excluding x4. Hence C3 = {x2, x3}.

Computing mapping γ with the DJTG algorithm

Here we detail how the DJTG algorithm introduced in section 4.3.3 allows agents to

distributedly compute mapping γ(Φ, PT). Recall that the DJTG algorithm receives as

an input a set of relations distributed among agents and an spanning tree over them.

Hence, given a DCOP Φ and a pseudotree PT , agents can compute mapping γ(Φ, PT)
by executing the DJTG algorithm setting the input 〈A,X ,R, κ, ST 〉 as:

• the set of agents A and variables X are set as in Φ;

• the set of relations is set as R = {ψ1, . . . , ψn} where ψi is defined as in equation

4.11;

• κ maps each agent ai to ψi (κ(ai) = ψi);

Copia gratuita. Personal free copy http://libros.csic.es

56 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

• the spanning tree ST links each pair of relations such that xj is parent of xi in

the PT .

Hence, executing the DJTG algorithm based on the pseudotree in figure 4.5(b) over

the DCOP of figure 4.5(a), results on the DJT shown in figure 4.5(c). By doing so,

the DJTG algorithm not only allows to compute mapping γ in a distributed way but

also to take advantage of any heuristic defined to generate good pseudotrees in order to

generate equivalent good junction trees.

Proving equivalence

The previously introduced mapping (γ) builds a junction tree from each pseudotree.

In the remaining of the section we prove that running DPOP over that pseudotree is

equivalent to running Action-GDL over the junction tree resulting from applying γ to

the pseudotree. First we state (lemma 1) that both the computation performed and the

messages exchanged during the utility propagation phase are the same. After that, we

state (lemma 2) that the messages exchanged during the value propagation phase are

also the same. Finally we combine these two lemmas to prove our main result (theorem

1). For the sake of clarity, in what follows we provide an sketch of the proof for lemmas

1 and 2. Fully detailed proofs are provided in appendix A.

Lemma 1. Given a DCOP Φ and a pseudotree PT , the computation performed and the
messages exchanged during the utility phase of DPOP (Φ, PT) and Action-GDL(γ(Φ,
PT)) are the same.

Sketch of the proof.

Proof. We prove the lemma by induction on the depth of the agent in the PT . Both

in the base and induction cases, we can prove that: (i) the set of variables handled

by agents in both algorithms are the same; and (ii) the domain of the utility messages

send by agents in DPOP after eliminating its corresponding variable coincides with

separators in Action-GDL. By induction the utility messages received by each agent in

both algorithms are the same. This fact along with (i) and (ii) forces that the compu-

tation performed and messages exchanged during this phase by each agent must be the

same.

Lemma 2. Given a DCOP Φ and a pseudotree PT the value assigned by each agent
to its variable and the messages exchanged during the value propagation phase of
DPOP (Φ, PT) and Action-GDL(γ(Φ, PT)) are the same.

Sketch of the proof.

Proof. We prove the lemma by induction on the depth of the PT . The base case is

trivial since there is only one variable in the PT and both algorithms compute the same

value for it. In the induction case we can split our PT into the root and a set of PT s

of smaller depth. Then: (i) it is easy to see that the root agent acts equivalently in

DPOP and in Action-GDL; and (ii) we can apply the induction hypothesis to the PT s

of smaller depth. Our result comes from (i) and (ii).

© CSIC © del autor o autores / Todos los derechos reservados

4.4. Generality of Action-GDL 57

Lemmas 1 and 2 combined prove the main result of this section:

Theorem 1. Given a DCOP Φ and a pseudotree PT , the execution of DPOP(Φ,PT)
is equivalent to Action-GDL(γ(Φ, PT)).

Proof.

Proof. Since both algorithms are only composed of an utility phase and a value propa-

gation phase, the result follows directly from lemmas 1 and 2.

As discussed in section 4.4.1, computing mapping γ can be done efficiently and dis-

tributedly by means of the DJTG algorithm. Then, theorem 1 proves that Action-GDL

can be at least as efficient as DPOP in any DCOP (by mimicking its behavior).

4.4.2 Action-GDL generalizes DCPOP
In this section we prove that Action-GDL can be at least as efficient as DCPOP in any

DCOP by producing equivalent executions. First, we overview the DCPOP algorithm in

section 4.4.2. Next we prove that Action-GDL can produce DCPOP-equivalent execu-

tions by: (1) providing a mapping from cross-edged trees (input of DCPOP) to junction

trees (section 4.4.2); and (2) proving that given any cross-edged tree, the execution of

DCPOP over this cross-edged tree is equivalent to the execution of Action-GDL over

the junction tree produced by our mapping (section 4.4.2).

Overviewing DCPOP

DCPOP (Atlas and Decker, 2007) is a generalization of DPOP based on an extension of

pseudotrees, namely cross-edged trees. A cross-edged tree (CT) is a pseudotree with

the addition of cross-edges (dotted line). Figure 4.6(b) shows a cross-edged tree for

the constraint graph in figure 4.6(a). A cross-edge is an edge from node xi to node xj

that is above xi but not in the path from xi to the root. Thus, besides the parent and

pseudoparent relationships, a cross-edged tree adds a new type of relationship: branch-

parent/branch-children for variables connected through a cross-edge (for instance, from

x3 to x4 in figure 4.6(b)). Therefore, we can represent a cross-edged tree as a tuple

〈P, PP,BP 〉, where P , PP , and BP are functions that map each variable to its parent,

pseudoparents and branchparents respectively. We obtain function BCh, which returns

a variable’s branch-children, as BCh(xi) = {xj ∈ A|BP (xj) = xi}.

Thus, when running DCPOP, agents start with a pre-processing phase to generate a

cross-edged tree by running a distributed Best-First Search (BFS) algorithm guided by

some heuristic. Then, likewise DPOP, DCPOP has two main phases: to have agents

exchange utilities, and to have agents propagate values.

Algorithm 3 shows the phases of DCPOP once a cross-edged tree is generated in terms

of the operators introduced in section 4.1. Notice that the algorithm splits the original

utility propagation phase in (Atlas and Decker, 2007) into two phases: to propagate

branch information and to propagate utility information. This encoding aims at easing

the comparison with both DPOP and Action-GDL.

Copia gratuita. Personal free copy http://libros.csic.es

58 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

x1

x2

x3 x4

x5

r
1
2

r 2
3

r
2
4

r 4
5

r 1
3

r
3
5

(a) DCOP constraint graph.

x1

x2

x3 x4

x5

B
r 5

(b) Cross-edge tree.

C1
{x1} ψ1 = {}

C2
{x1, x2, x5}ψ2 = r12

C3
{x1, x2,
x3, x5}

ψ3 = r13 ⊗ r23
C4

{x2, x4, x5}ψ4 = r24 ⊗ r45

C5
{x3, x5}ψ5 = r35

s12={x1}

s23={x1,x2,x4} s24={x2,x5}

s35={x3,x5}

(c) Junction tree JT = γCT (Φ, CT).

Figure 4.6: Example of constraint graph, cross-edged pseudotree and equivalent junc-

tion tree.

In DCPOP the initial knowledge of an agent xi (K0
i), besides being composed of

some unary relation involving xi and binary relations linking xi with one of its par-

ent/pseudoparent variables, also contains binary relations linking xi with its branch-

© CSIC © del autor o autores / Todos los derechos reservados

4.4. Generality of Action-GDL 59

Algorithm 3 DCPOP(〈X ,D,R〉,〈P, PP,BP 〉)
Agent xi ∈ X receives 〈P (xi),PP (xi),BP (xi),K0

i 〉 where K0
i = ri ⊗⊗

xk∈{P (xi)}∪PP (xi)

rik ⊗
⊗

xk∈BCh(xi)

rik and runs:

1: Phase I: Branch information propagation
2: Bri = 〈i, |BP (xi)|+ 1, 1〉; /*Create branch information for own variable*/

3: Send Bri to all BP (xi)
4: for all xk ∈ BCh(xi) do
5: Wait for branch information Brk from xk

6: 〈Bri,MV 〉 = mergeBranches(Bri, Brk)
7: end for
8: Phase II: UTILITY Propagation
9: Ki = K0

i ;

10: for all xj ∈ Ch(xi) do
11: Wait for utility message 〈μji, Brj〉 from xj

12: Ki = Ki ⊗ μji;

13: 〈Bri,MV 〉 = mergeBranches(Bri, Brj)
14: end for
15: if xi is not the tree’s root, let xp = P (xi) then
16: Send 〈μip =

⊕
\MV

Ki, Bri〉 to xp

17: end if
18: Phase III: VALUE propagation
19: if xi is not the tree’s root, let xp = P (xi) then
20: Wait for a value message σpi from xp

21: Ki = �
σpi

Ki; /*Slice Ki with the value message*/

22: end if
23: x∗

MV = arg max
d∈DMV

Ki(d); /* Assess best value for merged variables */

24: x∗ = x∗
MV ∪ σpi; /* Put together the assessed values and the message received. */

25: for all xj ∈ Ch(xi) do
26: Send σij = x∗

Scope(μji)
to xj /* Send to xj the variables he is interested in */

27: end for
28: return x∗;

children variables. Thus, in figure 4.6(b) the knowledge of agent x4 is initially com-

posed of relations r24 (shared with its parent) and r45 (shared with branch-child).

The main operational difference between DPOP and DCPOP has to do with the mechan-

ics that DCPOP incorporates to deal with cross edges during utility propagation. That

is because, in DCPOP, a branch-child variable xi is not eliminated at its node, instead

it is eliminated in some node up the tree, at the so-called merge point of xi. Thus, in

DCPOP, each branch-child xi starts by sending branch information to its branch-parents

to calculate the merge point of xi (lines 2-3). The branch information for a variable xi

contains its identifier, the number of branches of xi and the number of merged branches

Copia gratuita. Personal free copy http://libros.csic.es

60 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

(initially set to 1). After that, each xi receives and merges branch information from its

branch-children (lines 4-7). Next, during the utility propagation phase (lines 8-17), each

xi receives utility messages from all its children variables and combines them with its

local knowledge in the very same way as in DPOP. However, in DCPOP, these messages

also contain branch information of branch-children variables. Therefore, xi merges all

branches with the same originator by adding up the number of merged branches and

assesses the set of variables for which it is merge point (MV), namely variables for

which the number of merged branches equals the total number of branches (line 13). At

the end of this phase, xi exchanges a message with its parent xp (line 16) that contains

a utility message that summarizes its current knowledge after filtering out MV and the

merged branch information.

Regarding the second message-passing phase, the value propagation phase (lines 18-

27), notice that each agent’s behaviour is similar as in DPOP with the difference that

instead of assessing its own variable, each node xi assesses all variables in MV .

Mapping cross-edged trees into junction trees

Before proving the equivalence of Action-GDL and DCPOP, in this section we define

a mapping that builds a junction tree from a cross-edged tree. First of all, we offer the

intuitions behind our mapping from a cross-edged tree to a junction tree. In general,

we propose to map each cross-edged tree to a junction tree with as many cliques as

nodes in the cross-edged tree. For each node in a cross-edged tree CT , its clique in

the corresponding junction tree must contain: (1) the node’s variable; (2) the variables

expected by the node’s parents/pseudoparents up the CT ; (3) the variables that the

node’s children need to forward up the CT ; (4) the variables that the node’s branch-

children need to forward up the CT .

Therefore, notice that the mapping is very similar to mapping γ described in sec-

tion 4.4.1. The difference lies in the addition of point (4) above involving variables

of branch-children and on the set of variables in point (3), which is extended.

Analogously to the approach followed in section 4.4.1, given a node xi in a cross-

edged tree, we can readily define the variables of its clique by wrapping up directly and

inherited related variables (see equation 4.8). However, we must extend both sets.

Firstly, the set of directly related variables in equation 4.9 is extended to include the

variables that the node’s branch-children need to forward the tree. Formally:

Definition 14. Given a variable xi in a cross-edged tree CT , its directly related vari-
ables are:

DRV (xi) = {xi} ∪ {P (xi)} ∪ PP (xi) ∪BCh(xi) (4.12)

Following equation above, the directed related variables of x4 in the cross-edged tree

of figure 4.6(b) are {x2, x4, x5} where x2 stands for its parent, x4 for its variable and

x5 for its branchchild.

On the other hand, the inherited related variables of a node include the variables that

each child must send up the tree after eliminating: (i) those that have already been

merged (either by the child or below); and (ii) the child’s own variable if it has not

branch-parents. Formally:

© CSIC © del autor o autores / Todos los derechos reservados

4.4. Generality of Action-GDL 61

Definition 15. Given a variable xi in a cross-edged tree CT , its inherited related
variables are:

IRV (xi) =
⋃

xj∈Ch(xi)

Cj\Removable(xj) (4.13)

where Removable(xj) = {xk|xk ∈ Cj , xk �= xj , xk and all xl ∈ BP (xk) are descendants of xj}∪
{xj |BP (xj) = ∅}.

Note that the difference between the definition of IRV for a cross-edged tree (equa-

tion 4.13) and a pseudotree (equation 4.10) lies in the set of removable variables (the

variables that the node’s children don’t need to forward up the tree). Thus, the set of

removable variables of a clique Ci in a pseudotree is uniquely composed of variable xi,

while in a cross-edged tree is composed of variables whose merge point is Ci (which

includes xi in case it has not branch-parents).

Say now that we have already generated clique C5 = {x3, x5} in figure 4.6(b) corre-

sponding to variable x5. Then, by equation 4.13, the set of inherited related variables of

its parent x3 is composed of C5, but unlike happens in a pseudotree, we can not exclude

x5 because it has a branchparent (x4) up to x3 in the tree. Hence, IRV (x3) = {x3, x5}
in this case.

Next, we formulate function γCT , which defines the mapping from cross-edged trees

to junction trees by providing definitions for potentials and separators in addition to

cliques.

Definition 16 (γCT). Let γCT be a function that maps a DCOP Φ = 〈X ,D,R〉 and a
cross-edged tree CT = 〈P, PP,BP 〉 into a junction tree γCT (Φ, CT) = 〈X , C,S,Ψ〉,
where:

• the set of variables X is the same as in CT .

• the set of cliques C = {C1, . . . , C|X|} contains one clique per variable in CT .
Clique Ci contains all the variables directly or inherited related to variable xi.

• the set of potentials Ψ contains one potential per clique. Each clique potential
ψi is the combination of: (i) a unary relation ri that involves the clique decision
variable xi; (ii) the binary relations that link xi with its parent and pseudopar-
ents; and (iii) the binary relations that link xi with its branch-children. Formally:

ψi = ri ⊗

⎡⎣ ⊗
xj∈{P (xi)}∪PP (xi)

rij

⎤⎦⊗

⎡⎣ ⊗
xj∈BCh(xi)

rij

⎤⎦ (4.14)

• the set of separators S contains one separator sij = Ci ∩ Cj per pair of cliques
Ci, Cj such that xj is parent of xi in CT .

Figure 4.6(b) shows a cross-edged tree CT over the DCOP Φ of figure 4.6(a) while

figure 4.6(c) shows the junction tree γCT (Φ, CT). Observe that mapping γCT creates

Copia gratuita. Personal free copy http://libros.csic.es

62 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

one clique per variable in the CT and that cliques’ potentials are assessed following

equation 4.14. Thus, the potential of C4 is composed of the combination of the relation

with its parent x2, namely r24, and the relation with its branch-child x5, namely r45.

The example also illustrates how merge points are naturally captured by their corre-

sponding cliques. Notice that x2 in the cross-edged tree is the merge point for variable

x5. Say now that we have already generated clique C2 corresponding to variable x2

and we intend to generate C1 for variable x1. Following equation 4.12, the set of DRV
of x1 is uniquely composed of x1. Next, we apply equation 4.13 to assess the set of

IRV of x1, which in figure 4.6(c) is composed of C2 = {x1, x2, x5} excluding the set

of removable variables at x2. The set of removable variables at x2 includes x2 itself

because it has not branch-parents, and x5 because both x5 and its branch-parent x4 are

descendants of x2. Hence C1 = {x1}.

In general, if a variable xi in a cross-edged tree is the merge point for another vari-

able xj , our mapping guarantees that Ci eliminates variable xj . Therefore, because

variables’ merge points are explicitly represented, the junction tree produced by our

mapping saves both the computing and sending of branch information.

Computing mapping γCT with the DJTG algorithm

Here we detail how the DJTG algorithm introduced in section 4.3.3 allows agents

to distributedly compute mapping γCT (Φ, CT). Recall that the DJTG algorithm re-

ceives as an input a set of relations distributed among agents and an spanning tree over

them. Hence, given a DCOP Φ and a cross-edge tree CT , agents can compute mapping

γCT (Φ, CT) by executing the DJTG algorithm with the input 〈A,X ,R, κ, ST 〉 where:

• the set of agents A and variables X are set as in Φ;

• the set of relations is set as R = {ψ1, . . . , ψn} where psii is defined as in equa-

tion 4.14;

• κ maps each agent ai to ψi (κ(ai) = ψi);

• the spanning tree ST links each pair of relations such that xj is parent of xi in

the CT .

Hence, executing the DJTG algorithm based on the cross-edge tree in figure 4.6(b)

over the DCOP of figure 4.6(a), results on the distributed junction tree shown in figure

4.6(c). By doing so, the DJTG algorithm not only allows to compute mapping γCT in

a distributed way but also to take advantage of any heuristic defined to generate good

cross-edge trees in order to generate equivalent good junction trees.

Proving equivalence

Analogously to the equivalence analysis involving Action-GDL and DPOP, in this sec-

tion we analyse the relationship between DCPOP and Action-GDL. We argue that run-

ning DCPOP over a cross-edged tree is equivalent to running Action-GDL over its

(as produced by mapping γCT) junction tree whenever the computing and sending of

© CSIC © del autor o autores / Todos los derechos reservados

4.5. Characterizing Action-GDL usefulness 63

branch information is disregarded. As argued above, such information is not required

because in a junction tree the merging points of variables are explicitly represented.

Under this assumption, we obtain analogous equivalence results to those obtained for

DPOP in section 4.4.1.

Lemma 3. Given a DCOP Φ and a cross-edged tree CT , the computation performed
and the messages exchanged during the utility phase of DCPOP(Φ, CT) and Action-
GDL(γCT (Φ, CT)) are the same disregarding the computing and sending of branch
information.

Lemma 4. Given a DCOP Φ and a cross-edged tree CT the value assigned by each
agent to its variable and the messages exchanged during the value propagation phase
of DCPOP(Φ, CT) and Action-GDL(γCT (Φ, CT)) are the same.

We can build the proof for lemmas 3 and 4 following the same approach as used on

proving lemmas 1 and 2 in section 4.4.1. Here we only comment on the intuitions

behind these proofs.

Regarding lemma 3, if there are no cross-edges, DCPOP behaves like DPOP. If there

are cross-edges, branch-children variables are eliminated on their merge points, namely

on the lowest variables in the cross-edged tree that are between them and the root and

between their branch-parents and the root. As argued above, Action-GDL does not

require branch information because merge points are explicitly represented in cliques

and separators of the junction tree generated by mapping γCT . Thus, in the junction tree

γCT (Φ, CT), the set of variables whose merge point is xi are the variables in Ci that are

not in the separator with its parent sip. Hence, if we focus on comparing the computing

and sending of utility information as well as on the computing of local knowledge, we

observe that the utility phase of DCPOP(Φ, CT) and Action-GDL(γCT (Φ, CT)) are

the same.

Regarding lemma 4, since variables assessed at some node xi are the set of variables

for which xi is a merge point which lemma 3 states that are correctly captured by our

mapping γCT , it is rather straightforward that lemma 4 holds.

The combination of lemmas 3 and 4 leads to the following equivalence theorem:

Theorem 2. Given a DCOP Φ and a cross-edged tree CT , the execution of DCPOP(Φ, CT)
is equivalent to Action-GDL(γCT (Φ, CT)) disregarding the computing and sending of
branch information.

Likewise mapping γ, since in section 4.4.2 we have shown that computing of mapping

γCT can be done efficiently and distributedly by means of the DJTG algorithm, we can

consider the overhead of computing the mapping negligible with respect to the time

of solving the DCOP. Therefore, theorem 2 proves that Action-GDL can be at least as

efficient as DCPOP in any DCOP.

4.5 Characterizing Action-GDL usefulness
From theorems 1 and 2 we conclude that we can obtain no benefit from using DPOP and

DCPOP over Action-GDL. Now the question is: can Action-GDL improve DPOP/DCPOP

Copia gratuita. Personal free copy http://libros.csic.es

64 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

in terms of (i) the computational/communication needs required from the agents or (ii)

the degree of parallelism when solving a DCOP?

Next, in section 4.5.1 we provide some theoretical results that help answer the first

question with respect to DPOP. Moreover, from these theoretical results we obtain

some insights regarding how to exploit the space of junction trees effectively. Thus,

in section 4.5.2 we propose a postprocessing of junction trees to improve the compu-

tation, communication and degree of parallelism of a junction tree. In section 4.6 we

empirically show that such postprocessing helps Action-GDL significantly outperform

DCPOP over the best cross-edged tree/pseudotree generated out of multiple heuristics.

4.5.1 Theoretical improvements with respect to DPOP
In this section we provide theoretical results showing in which cases Action-GDL can

outperform DPOP in terms of communication and computation.

Action-GDL provides significant savings in computation over DPOP when pseu-
dotrees are generated by edge-traversal heuristics

In (Atlas and Decker, 2007) Atlas and Decker show by means of an example that there

exists DCOP instances for which a cross-edged tree significantly outperforms all pos-

sible pseudotrees based on edge-traversal heuristics. Because, by theorem 2, Action-

GDL execution is equivalent to DCPOP execution when it runs over a γCT mapping

JT , Action-GDL can also benefit from this result with respect to DPOP.

Action-GDL provides no significant savings in computation for unrestricted pseu-
dotrees

In this subsection we prove that for any DCOP, given a junction tree, we can always

construct a pseudotree so that the amount of computation for DPOP is of the same

order of magnitude than that of Action-GDL.

Lemma 5. Given a DCOP Φ and a junction tree, algorithm 4 computes a pseudotree
such that the computational requirements of DPOP are of the same order of magnitude
than those of Action-GDL (the size of the largest table to be maximized is the same)

Proof. First we have to ensure that the tree constructed by algorithm 4 is a pseudotree,

that is, we have to check that adjacent nodes in the constraint graph fall in the same

branch of the tree. Let xi and xj be two adjacent nodes in the constraint graph. By

virtue of the covering property, there should be a node of the JT that contains both xi

and xj . If this is the highest node where both xi and xj appear then they will be placed

in a chain and hence they will be in the same branch of the tree (lines 9-10). Otherwise,

assume without loss of generality that xi appears in a node in a different branch. By the

running intersection property, xi must appear also in the root of the subtree containing

these two nodes. By construction, the branch for xj will never be inserted into PT
before the appearance of xi. Hence, both xi and xj appear in the same branch (the one

that has xi as root) (line 13-15). Then, our main claim can be proven by induction on the

number of variables of JT . If there is a single variable both algorithms are equivalent

© CSIC © del autor o autores / Todos los derechos reservados

4.5. Characterizing Action-GDL usefulness 65

Algorithm 4 JT2PT(JT)
1: Ck = Find the largest clique in JT
2: JT ′ = JT rooted at the agent responsible for Ck
3: T = GenerateSpanningTree(JT ′, ∅);
4: PT = Construct the PT corresponding to T ;

5: return PT
6:

7: function GenerateSpanningTree(JT ,V)

8: Ck = getRoot(JT) /*Let Ck be the root of JT */

9: Scope(Ck)\V = {x1, . . . , xm} /*Establish an order among the variables in Ck not

in V */

10: T = {(xi, xi+1)|1 ≤ i < m} /*Include into T a chain linking variables in Ck not

in V */

11: for all JTi ∈ Subtree(JT, Ck)/*For each subtree of JT , one for each child of Ck*/

do
12: Ti = GenerateSpanningTree(JTi, V ∪ Scope(Ck))
13: if Scope(T) ∩ Scope(JTi) �= ∅ then
14: j = max{k|1 ≤ k < m and xk ∈ JTi} /*Find JTi variable with lowest

position in T*/

15: else
16: j = m
17: end if
18: T = T ∪ Ti ∪ {xj , Root(Ti)}/* Include Ti into T by linking its root as a child

of xj */

19: end for
20: return T ;

and hence our result holds. If JT has more than one variable then the computational

requirements to run DPOP in the subset of PT composed by the variables of the largest

clique (appearing as a chain hanging from the root of the PT) are of O(dm) (where m
is the size of the clique and d is the highest cardinality of any variable in the clique). By

induction hypothesis this is also the case in each of the subpseudotrees hanging from

variables in the largest clique. It is easy to see that the size of the largest table to be

maximized for Action-GDL is also O(dm)

This result does not mean that the processing of Action-GDL and DPOP will be the

same but ensures that the improvement that we can expect from Action-GDL cannot be

very large. However, there is no mention on the amount of messages exchanged. In

fact, our next result proves that Action-GDL can effectively improve on that.

Action-GDL can severely reduce communication complexity

In this subsection we show that there are DCOPs for which Action-GDL severely re-

duces the amount of communication with respect to DPOP. Concretely, we prove that

Copia gratuita. Personal free copy http://libros.csic.es

66 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

when the DCOP is composed of a single utility relation involving all variables5, the

amount of communication required grows linearly with the number of variables for

Action-GDL using the best junction tree and grows exponentially for DPOP with any

pseudotree.

C1
{x1, . . . , xn}

Ψ1 = r(x1, . . . , xn)

C2
{}

Ψ2 = {}

. . . Cn
{}

Ψn = {}

Figure 4.7: Best junction tree.

Lemma 6. Given a DCOP Φ = 〈X = {x1, . . . , xn},D,R = {r}〉 such that Scope(r) =
X , the amount of communication required to run Action-GDL using the junction tree
depicted in figure 4.7 grows linearly in the number of variables.

Proof. In the utility propagation phase x2, . . . , xn send empty messages to x1. Then

x1 computes the overall solution and distributes the decisions to x2, . . . , xn in the value

propagation phase, exchanging n− 1 messages, the largest of them being of size log d,

where d = maxi |Di|. Hence the amount of communication is O(n log d).

Lemma 7. Given a DCOP Φ = 〈X = {x1, . . . , xn},D,R = {r}〉 such that Scope(r) =
X , the amount of communication required for DPOP independently of the pseudotree
grows exponentially in the number of variables.

Proof. First note that the only possible structure for a pseudotree is a chain, because

otherwise adjacent vertices in the graph will appear in different branches (since all

vertices are adjacent). There are as many pseudotrees as variable orderings. Assume

without loss of generality that the ordering places x1 in the root, then x2 as its child

and so on until xn as a single leave. DPOP places the relation r in xn. The execution

starts maximizing r with respect to xn. The computed relation is sent to xn−1 which

maximizes it with respect to xn−1 and the process continues that way until it reaches

x1. Then the best value for x1 is computed and sent to x2 where the best value for

x2 is computed and sent to x3 together with the optimal value for x1 and the process

continues that way until it reaches xn. The algorithm exchanges n−1 utility messages,

the largest of them of size dn−1 and n−1 value messages, the largest of them of size∑n−1
i=1 log |Di|. Hence, the overall amount of communication is O(dn).

5Note that the relation containing all variables does not result from any partial centralization of the algo-

rithm, instead it is formulated like this in the original DCOP.

© CSIC © del autor o autores / Todos los derechos reservados

4.5. Characterizing Action-GDL usefulness 67

Lemmas 6 and 7 prove that Action-GDL can severely improve DPOP communication

complexity. Furthermore, it suggests that for more complex graphs, the improvement

could be related to the treewidth of the constraint graph.

4.5.2 Postprocessing junction trees
Taking inspiration on lemmas 6 and 7, we propose to postprocess the junction tree

constructed by the γCT mapping to reduce the amount of computation, the sizes of

messages and the degree of parallelism. Firstly, in order to reduce the amount of com-

putation and the size of messages we propose to exchange two connected cliques in

the junction tree, namely Ci and its parent Cp, following the transformation depicted in

figure 4.8(a), whenever the set of variables in Cp is a subset of Ci. Formally:

Cp ⊆ Ci (4.15)

After swapping parent for child, the child takes its parent’s children but keeping also its

own children as depicted on the right hand side of figure 4.8(a). The intuition behind

the transformation is straightforward. Since the structure in figure 4.7 is the best one for

processing a clique with Action-GDL, whenever there is a clique whose variables are

included into one of its children, we can think of swapping parent for child. Figure 6

(a)(b) depict the two transformations carried out by our postprocessing over the junction

tree in figure 4.5(c). The first transformation only swaps C4 and C3 without involving

any deeper change. The second transformation entails a more profound rearrangement

because in order to swap C4 for C2, C4 must keep C3 as a child.

Notice that if we start from a valid junction tree, the resulting junction tree after this

transformation still satisfies the running intersection property (RIP) without increasing

any clique. Furthermore, it is likely that cliques can be reduced after the swap by

deleting some variables not longer necessary to ensure the RIP. Concretely, after the

transformation clique Cp can be restricted to deal only with variables in the scope of

its potential, that is Scope(ψp), thus reducing the amount of computation and size of

messages for Cp. That is because after a swap, Cp is always a leaf node so it will not

have to enlarge its clique to carry variables to satisfy the RIP. Thus, in the example of

figure 4.8(c), as a consequence of the change of position, C2 can delete x2 from its set

of variables.

To summarise, our postprocessing performs a postorder tree traversal of the JT com-

puted by γCT , applying the transformation depicted in figure 4.8(a) whenever the con-

dition in equation 4.15 holds. Hence, its distributed implementation is direct (Santoro,

2006).

Secondly, after the postorder traversal, we select the root of the junction tree that max-

imises the degree of parallelism (the maximum amount of sequential computation re-

quired by agents when running Action-GDL). This last step is important because al-

though changing the root of a JT does not change the amount of computation nor of

messages exchanged, it can modify its degree of parallelism.

Observe that the resulting junction tree in figure 4.8(c) reduces communication, com-

putation, and improves parallelism with respect to the original junction tree in figure

4.5(c).

Copia gratuita. Personal free copy http://libros.csic.es

68 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

Cp

C1 . . . Ci . . . Cn

C
i,1

. . . C
i,m

Ci

C1 . . . Cp . . . Cn Ci,1 . . . Ci,m

(a) Transforming a junction tree by clique swap.

C2
{x2} ψ2 = {}

C1
{x1, x2}

ψ1 = r12

C3
{x2, x3} ψ3 = r23

C4
{x2, x3, x4}ψ4 = r34 ⊗ r24

s12 = {x2} s23 = {x2}

s34 = {x2, x3}

(b) C4 swapped for C3.

C2
{}

ψ2 = {}

C1
{x1, x2}

ψ1 = r12

C3
{x2, x3}

ψ3 = r23

C4
{x2, x3, x4}ψ4 = r34 ⊗ r24

s14 = {x2}s24 = {} s34 = {x2, x3}

(c) C4 swapped for C2.

Figure 4.8: (a) Postorder transformation and (b,c) transformations of the junction tree

in figure 4.5(c).

Postprocessing complexity

In what follows we assess the complexity of the postprocess methods described above.

Firstly, in the postorder tree traversal the information exchanged is O(n2) (each node

that swaps exchanges messages with all its neighbours) and the overall computation

is O(n2) where n is the number of variables in the DCOP. Secondly, to distributedly

select the root of the pseudotree, agents can execute a distributed leader election algo-

rithm (Barbosa, 1996) which information exchanged and overall computation is O(n).
Therefore we can conclude that: (1) the postprocessing can be computed distributedly,

and; (2) the overhead introduced is not significant with respect to the costs of solving

the DCOP.

4.6 Empirical evaluation

In this section we aim at providing evidence that using Action-GDL instead of DCPOP

(or DPOP) is useful from a practical point of view. In (Atlas and Decker, 2007) Atlas

and Decker provide empirical evidence of the significant improvements that DCPOP

can obtain when compared to DPOP. Since ActionGDL generalizes DCPOP, it can also

benefit from the same improvements with respect to DPOP. Thus, in our experiments,

© CSIC © del autor o autores / Todos los derechos reservados

4.6. Empirical evaluation 69

we directly compare Action-GDL with DCPOP.

4.6.1 Measures of interest
Following the definition of efficiency discussed in chapter 1 for complete DCOP algo-

rithms, we are interested in comparing DCPOP and Action-GDL regarding the amount

of communication, computation, and parallelism required in an experimental scenario.

Since we have proved that Action-GDL is a generalization of DCPOP, the metrics de-

fined below for Action-GDL can be readily used for DCPOP.

Computation. The amount of computation at node i is assessed as the sum

of the product of the domains’ cardinality of variables in its clique, MCi =∏
xk∈Ci

|Dk|. The total amount of computation is
∑n

i=1 MCi.

Communication. The size of a utility message μij is
∏

xk∈sij
|Dk|. As noted in

(Atlas and Decker, 2007), most communications in DCPOP are utility messages.

This is also true for Action-GDL. Hence, we have disregarded value messages in

our comparison because they only add a small constant factor. As with computa-

tion, we assess the overall amount of communication by adding the size of every

message.

Parallelism. Since both DCPOP and Action-GDL are distributed algorithms, we

are also interested in the degree of parallelism that we can obtain in its processing.

Following (Atlas and Decker, 2007), we measure the degree of parallelism using

the maximum path cost (MPC) that measures the maximum amount of sequential

computation to perform. The maximum path cost for a given junction tree is

defined as MPC = maxi
∑

Cj∈Pi
MCj where Pi is the path from the root of

the junction tree to clique Ci.

4.6.2 Experimental design and results
In the experiments we use four heuristics to generate DCPOP cross-edged trees: (1)

DFS-MCN (Depth-First Search Maximum Connected Node) heuristic (Petcu, 2007),

which generates pseudotrees; and (2) BFS-MCN (Best-First Search Maximum Con-

nected Node), BFS-LCN (BFS Less Connected Node) and BFS-A-B (BFS Ancestors\
Branch-parents\Branch-children rule) heuristics (Atlas and Decker, 2007) that generate

cross-edged trees.

For DCPOP we chose the best cross-edged tree produced by these heuristics. These

pseudotrees/cross-edged trees are subsequently input to the γCT mapping to generate

junction trees which are further postprocessed as explained in section 4.5.2 to obtain

the input for Action-GDL. For Action-GDL we chose the best junction tree produced

by this post-processing.

We empirically compare DCPOP with Action-GDL by plotting the average of the per-

centual improvement of ActionGDL with respect to DCPOP for each metric. We assess

the percentual improvement as P = (A−D)
(A+D) · 200, where A is the value of the chosen

metric for ActionGDL and D for DCPOP.

Copia gratuita. Personal free copy http://libros.csic.es

70 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

Scenario Meetings # Var. # Dom Den. Comp. Comm. MPC
A/1 8 23 9 1.9 2.3% 22.6% 5.6%
B/2 10 26 9 1.8 9.2% 134.2% 3.0%
C/3 12 71 9 1.7 2.8% 28.0% 31%
D/4 12 72 9 1.7 2.3% 23.0% 21.4%

Table 4.4: Results for the different scenarios of the meeting scheduling dataset.

4.6.3 Generic DCOP instances
Our initial tests perform a comparison over randomly generated DCOPs with binary

variables. We analyse the differences between DCPOP and Action-GDL as we increase

the number of constraints as well as the number of variables. Thus, we characterize

each scenario by a number of variables n and a constraint density d. For each scenario,

we generate 10.000 random problems. We have explored scenarios with n ranging from

10 to 100 in 10 steps increments and d ranging from 1 to 15 in 1 step increment.

Figure 4.9 summarizes our experimental results. Figure 4.9(a) shows the average of per-

cent improvement among tests as the constraint density increases. We observe that the

denser the DCOP, the larger the improvement of Action-GDL regarding communication

and computation with respect to DCPOP. Concretely, Action-GDL reduces communi-

cation up to around 85%. The amount of computation is not reduced so significantly,

though we still obtain average percent improvements of around 30%. We also mea-

sured the computation and communication improvement as in Atlas and Decker (2007)

in terms of the average of the difference in the number of dimensions. Using these

metrics the experiments show improvements up to 10 dimensions. With respect to the

improvement on computation and communication, the improvement on the degree of

parallelism behaves differently: observe that the MPC reaches the highest value, around

60%, when density is set to 4, and after that it smoothly decreases up to around 50%.

That result is explained because in denser DCOPs it is more likely that there is a single

clique with a larger number of dimensions than others. Then, this clique conditions

the MPC no matter the problem representation. The difference reported for these met-

rics between ActionGDL and DCPOP is statistically significant within a single value of

density (paired Student’s t-tests calculate p < 0.05) except for density 1.

Moreover, we also show in figure 4.9(b) the average of percent improvement as the

number of variables increases. We observe that Action-GDL reaches the higher com-

putation/communication improvement with respect to DCPOP, around 80% and 30%
respectively, in medium size DCOPs (with 30-40 variables). As the number of variables

increases the average of improvements tend to around 70% and 28% on respectively. In

terms of the average of the difference in the number of dimensions, these results implies

an improvement of up to 16 dimensions. With regard to the degree of parallelism, we

observe that MPC increases with the number of variables up to 55%. We run paired Stu-

dent’s t-tests and the difference between the metrics between ActionGDL and DCPOP

is statistically significant within a single value of variables (p < 0.05) .

To sum up, the cost of solving random DCOPs is significantly reduced respect to

DCPOP when running Action-GDL over the postprocessed junction trees mapped from

© CSIC © del autor o autores / Todos los derechos reservados

4.6. Empirical evaluation 71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Constraint density

0

10

20

30

40

50

60

70

80

90
A

v
e
ra

g
e
 p

e
rc

e
n
ta

g
e
 o

f
im

p
ro

v
e
m

e
n
t

Computation

Communication

MPC

(a) Average percentual improvement

as constraint density increases

10 20 30 40 50 60 70 80 90 100
Number of variables

0

10

20

30

40

50

60

70

80

90

A
v
e
ra

g
e
 p

e
rc

e
n
ta

g
e
 o

f
im

p
ro

v
e
m

e
n
t

Computation

Communication

MPC

(b) Average percentual improvement

as the number of variables increases

Figure 4.9: Action-GDL improvement over DCPOP in computation, communication

and MPC

Copia gratuita. Personal free copy http://libros.csic.es

72 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

best cross-edged trees. Next we show that such improvement is specially significant for

dense problems.

4.6.4 Meeting scheduling dataset
Besides the generic DCOP tests, we also run additional tests on a meeting scheduling

dataset, a common problem used by the DCOP community. Concretely, we use the

meeting scheduling dataset from (Maheswaran et al., 2004b), publicly available in (Yin,

2008). This dataset is composed of four scenarios (labeled as A/1,B/2,C/3 and D/4),

which correspond to four different topologies, with 30 different instances per scenario.

Table 4.6.3 shows the results for the meeting scheduling dataset as well as the char-

acteristics of each scenario (the number of variables/constraints, the cardinality of the

variables’ domain, etc). All scenarios are composed of sparse problems with a con-

straint density lower than 2. The results obtained in the meeting scheduling dataset are

in line with those obtained for generic DCOPs for similar scale and density and are also

statistically significant (p < 0.05 for all paired Student’s t-tests). Firstly, the MPC is

around 3−10% in small scenarios (8-10 variables) and around 20−30% for larger sce-

narios (70 variables). Thus, as shown in figure 4.9(b) for random instances, the MPC

increases with the number of variables. With regard to the improvement on computa-

tion, it is less than 10% in all scenarios, with similar values to those shown in figure

4.9(a) when density is set to 2. Finally, the improvements on communication are, in

most scenarios, close to those reported in figure 4.9(a) for random instances of density

2, with average percent improvements of around 20− 30%. However, in scenario C/3
we obtain a much higher average percentual improvement. Therefore, although one can

characterize the average improvement given the density and the scale of the problem,

we observe that the topology of the constraint graph is also an important factor. In

particular, our results showed that the communication improvement on some structured

topologies is significantly larger than on random ones.

4.7 Conclusions
In this chapter we provided solutions to overcome the limitations of complete dynamic

programming DCOP algorithms discussed in chapter 3. Along this line, the main contri-

bution of this chapter was Action-GDL, a novel complete DCOP algorithm that exploits

a distributed junction tree representation of the DCOP. Action-GDL was formulated as

an extension to the GDL framework to solve DCOPs efficiently, reducing the required

communication (the number and size of messages) and computation. In what follows

we list the solutions provided by Action-GDL to the open questions listed in section

3.4 regarding the limitations of complete DCOP approaches to exploit more general

problem representations.

Firstly, we showed the generality of Action-GDL by proving that it generalises DPOP

and DCPOP. With this aim, we provided two mappings that connect the spaces of prob-

lem representations used by these algorithms: (i) a mapping from pseudotrees (used by

DPOP) to junction trees; and (ii) a mapping from cross-edge trees (used by DCPOP) to

junction trees.

© CSIC © del autor o autores / Todos los derechos reservados

4.7. Conclusions 73

Secondly, we theoretically and empirically characterise the potential benefits from us-

ing junction trees with Action-GDL instead of pseudotrees or cross-edged trees. On

the one hand, we provide some theoretical results that prove that using junction trees

instead of pseudotrees leads to significant benefits in terms of computation and commu-

nication. In particular, we observed that Action-GDL: (i) provides significant savings

in computation over DPOP when pseudotrees are generated by edge-traversal heuris-

tics; (ii) provides no significant savings in computation for unrestricted pseudotrees;

and (iii) can severely reduce communication complexity. On the other hand, we char-

acterise the empirical benefits of Action-GDL with respect to DCPOP. With this aim

we propose a novel distributed heuristic to post-process junction trees. Finally, we em-

pirically show that Action-GDL significantly outperforms DCPOP when running over

the junction trees that results from post-processing the best cross-edged pseudotrees

DCPOP can operate on. Concretely, we observed that our distributed post-processing

heuristic allows Action-GDL to outperform DCPOP by: (i) decreasing communication

(up to around 85%); (ii) reducing computation (up to around 30%); and (iii) increasing

parallelism (up to around 60%).

Thirdly, we argue that several analytical benefits stem from the generality of the GDL

framework. In particular, by exploiting this generality, Action-GDL may benefit from:

(i) connections with well-known algorithms used in other communities (e.g. Viterbi’s

(Viterbi, 1967), Pearl’s belief propagation (Pearl, 1988)); and (ii) a wealth of theoretical

results for GDL over junction trees (Aji and McEliece, 2000). Specifically in the DCOP

community, we show how Action-GDL builds a bridge between dynamic programming

DCOP algorithms (DPOP and DCPOP) and some incomplete DCOP algorithms also

based in GDL, namely Max-Sum and Bounded Max-Sum.

Figure 4.5 shows the resultant DCOP landscape after incorporating the aforementioned

contributions of this chapter. Observe that now this landscape includes Action-GDL

which subsumes DPOP and DCPOP algorithms by handling distributed junction trees.

Moreover, all the dynamic programming complete algorithms are unified under the

GDL-framework establishing connections with the GDL-based incomplete algorithms,

max-sum and bounded max-sum.

In this chapter we focused on optimal dynamic programming approaches (on the upper

left-side of the DCOP landscape of figure 4.5) and dealt with the problem of designing

efficient complete DCOP algorithms by means of exploiting more general problem rep-

resentations. However, as argued in chapter 1, optimal approaches typically do not scale

to large systems or apply to domains with very limited resources. Therefore, with the

aim of providing solutions for these domains, in the following chapters we focus on the

complementary challenge of designing incomplete algorithms with quality guarantees.

Copia gratuita. Personal free copy http://libros.csic.es

74 Chapter 4. Action-GDL: Extending GDL to solve DCOPs

GDL-based Partial
Centralisation Search Based

C
o

m
p

le
te

DPOP

PC-DPOP

DCPOP

Action-GDL OptAPO

ADOPT

BnB-ADOPT

In
co

m
p

le
te

A
p

p
ro

x
im

at
e S
y

st
em

D
es

ig
n

er

MGM/SCA-{2,3}

k-DALO
k-size guarantees

t-DALO
t-distance guarantees

A
g

en
t

Bounded

Max-Sum

N
o

g
u

ar
an

te
e

Max-Sum DSA/MGM-1

GDL-based Decision-based

Table 4.5: DCOP algorithms landscape after Action-GDL. Contributions of this chapter

are highlighted in bold/blue. DCOP algorithms are classified based on the quality as-

sessment they provide over their solutions (vertical axis) and the approach they follow

to solve DCOPs (upper and lower horizontal axes).

© CSIC © del autor o autores / Todos los derechos reservados

Chapter 5

Divide-and-Coordinate

Complete algorithms, such as the Action-GDL algorithm proposed in chapter 4, have

the advantage of returning the global optimal solution. However, the cost of this com-

pleteness often limits their applicability to actual-world domains. To address domains

where scalability and efficiency are of primary importance, this chapter describes a new

family of incomplete DCOP algorithms that can return fast bounded solutions.

The main contribution of this chapter is a new family of incomplete DCOP algorithms

that uses a novel approach, the Divide and Coordinate (DaC) approach, to solve DCOPs.

Solutions assessed by the DaC approach come with per-instance quality guarantees. As

discussed in chapter 1, agents can use to trade-off quality versus cost and/or reduce

their uncertainty with respect to the quality of the solution they are executing at run

time. The key idea behind DaC is to divide DCOP into subproblems that can be solved

independently by each agent with the goal of finding a division in which agent’s local

solutions agree. With the aim of getting closer to such agreement, DaC agents: (i) co-

ordinate by exchanging information about their local subproblems; and (ii) update their

subproblems based on that information creating a new division of the DCOP. Hence,

the DaC approach leads to different DaC algorithms depending on: (i) the information

exchanged; and (ii) how agents update their subproblems based on such information.

This chapter formulates two DaC algorithms: DaCSA and EU-DaC. In DaCSA agents

coordinate by exchanging the most basic local information that allow them to identify

the conflicts on assignments: their local solutions. To improve DaCSA performance,

we propose EU-DaC where agents coordinate by exchanging the utilities of their local

assignments instead of only the solutions. We benchmark these DaC algorithms with

other state-of-the-art DCOP algorithms to compare solution qualities and tightness of

DaC quality guarantees.

This chapter is structured as follows. Section 5.1 formalises the Divide-and-Coordinate
approach. Next, section 5.2 introduces a generic DaC algorithm that founds the differ-

ent realisations of the DaC approach. Section 5.3 describes the formal foundations of

DaCSA along with the algorithmic details of its particular realisation of the generic

DaC algorithm. Section 5.4 introduces EU-DaC along similar lines. Finally, section

6.3 details an empirical evaluation of the DaC algorithms, and section 5.6 summarises

this chapter contributions and draws some conclusions.

75

Copia gratuita. Personal free copy http://libros.csic.es

76 Chapter 5. Divide-and-Coordinate

x2 x1 x3

a2 a1 a3

Optimal solution: x∗ = {x1 = 1,x2 = 0,x3 = 0}, global reward: R(x∗) = 15

r3
0 0

1 -2

r13 0 1

0 0 10

1 10 10

r1
0 0

1 -5

r12 0 1

0 0 10

1 10 10

r2
0 0

1 -10

Figure 5.1: Example of a DCOP.

5.1 Divide-and-Coordinate framework

With the aim of providing a bounded, approximate algorithm for DCOPs, in this section

we define the divide-and-coordinate (DaC) approach. First, in section 5.1.1 we describe

the operation of the Divide-and-Coordinate approach through examples and general

intuitions. Then, in section 5.1.2 we detail the formal foundations and proofs for that

approach.

5.1.1 Divide-and-Coordinate: the approach

DaC agents aim to solve a DCOP by exploiting the concept of agreement. Figure 5.1

shows a binary DCOP of three variables in which each agent chooses values for its

variables from {0, 1}. Each relation shows its rewards in a table. Thus, agent a3 has a

reward of -2 to set its variable x3 to 1, and each pair of agents has a reward of 10 to set

to 1 at least one of their variables. Following the DCOP model introduced in Chapter

2, relation r12 is known by agent a1, which controls variable x1, and agent a2, which

controls variable x2. Likewise, relation r1 is only known by agent a1, which controls

variable x1. It is easy to see that the optimal solution of DCOP in figure 5.1 (x∗) is

obtained by setting x1 to 1 and the rest of variables to 0, with a global reward R(x∗) of

15.

The key idea behind the DaC approach is the following: since solving a DCOP is NP-

Hard, we can think of dividing this intractable problem into simpler subproblems that

can be individually solved by each agent. Figure 5.2(a) shows the subproblems created

by agents when dividing the DCOP in figure 5.1 as well as the local solutions obtained

when individually solving these subproblems. Each agent uses its local relations to

create its subproblem. For instance, the local problem of agent a1 is composed of its

local relation r1 over its variable x1 and all binary relations shared with its neighbours

(r12, r23). For instance, in figure 5.2(a), a1 and a2 take one half each of relation r12. In

this way, agents never double-count rewards.

When solving individual subproblems, agents may assign different values to their shared

variables, thus causing conflicts between assignments. For instance, as shown by the

© CSIC © del autor o autores / Todos los derechos reservados

5.1. Divide-and-Coordinate framework 77

x2 x1

x∗,2 = {x∗,2
1 = 1,x∗,2

2 = 0}
R2(x∗,2) = 5

r212 0 1

0 0 5

1 5 5

r22
0 0

1 -10

Subproblem a2

x2

x1

x3

x∗,1 = {x∗,1
1 = 0,x∗,1

2 = 1,x∗,1
3 = 1}

R1(x∗,1) = 10

r113 0 1

0 0 5

1 5 5

r11
0 0

1 -5

r112 0 1

0 0 5

1 5 5

Subproblem a1

x1 x3

x∗,3 = {x∗,3
1 = 1,x∗,3

3 = 0}
R3(x∗,3) = 5

r33
0 0

1 -2

r313 0 1

0 0 5

1 5 5

Subproblem a3

(a) Initial division

a2 a1 a3

η21 η31
η12 η13

(b) DaC coordinate stage.

x2 x1

r212 0 1

0 0 5

1 5 5

+Δ12

Δ2
1

r22
0 0
1 −10

+
�2

0 0
1 3

Subproblem a2

x2
x1

x3

r113 0 1

0 0 5

1 5 5

−Δ13

Δ1
2

0 0
1 −3

Δ1
3

r11
0 0
1 −5

+ �1

r112 0 1

0 0 5

1 5 5

- Δ12

Subproblem a1

x1 x3
r33
0 0

1 -2

+ �3Δ3
1

r313 0 1

0 0 5

1 5 5

+ Δ13

Subproblem a3

(c) New subproblems (division) after the divide stage.

x2 x1

x∗,2 = {x∗,2
1 = 1,x∗,2

2 = 0}

R2(x∗,2) = 5

r212 0 1

0 0 5

1 5 5

r22
0 0

1 -7

r21
0 2.5

1 0

Subproblem a2

x2
x1

x3

x∗,1 = {x∗,1
1 = 1,x∗,1

2 = 0,x∗,1
3 = 0}

R1(x∗,1) = 5

r113 0 1

0 0 5

1 5 5

r12
0 0

1 -3

r11
0 -3.5

1 -5
r13
0 0

1 -1

r112 0 1

0 0 5

1 5 5

Subproblem a1

x1 x3

x∗,3 = {x∗,3
1 = 1,x∗,3

3 = 0}

R3(x∗,3) = 5

r31
0 1

1 0

r33
0 0

1 -1

r313 0 1

0 0 5

1 5 5

Subproblem a3

(d) Division with agreement.

Figure 5.2: Trace of DaC over the DCOP in figure 5.1.

Copia gratuita. Personal free copy http://libros.csic.es

78 Chapter 5. Divide-and-Coordinate

local assignments in figure 5.2(a), agent a1 conflicts with a2 and a3 on the value of

x1 (compare x∗,1 with x∗,2 and x∗,3). Thereafter, each agent proceeds to coordinate,

during the so-called coordinate stage, by exchanging information about the conflicts

on the assignments of the shared variables with its neighbours. For instance, in figure

5.2(a), a1 will exchange information about its conflict over x1 with a2 and a3. Agents

subsequently employ information on disagreements to jointly update their subproblems,

during the divide stage, to move closer and closer to an agreement. Hence, agent a1 will

use the information exchanged about its conflicts over x1 with a2 and a3 to update its

subproblem. At any point in time, the DaC framework requires subproblems to be a di-
vision of the original DCOP: combining the relations splitted in different subproblems

produces the original relations. Therefore, the DCOP rewards are never lost or double

counted among agents. As we formally prove in the next section, if all agents reach

an agreement on a joint solution when optimizing their local subproblems, then this

solution stands for the optimal DCOP solution. For instance, figure 5.2(d) shows an ex-

ample of a division of the DCOP in figure 5.1 into three subproblems whose individual

solutions agree on the assignment x1 = 1, x2 = 0, x3 = 0, which is the optimal as-

signment of the DCOP in figure 5.1. DaC agents iteratively divide and coordinate until

finding a division in which they agree on their solutions to their individual subproblems.

In summary, the agents running a DaC algorithm explore the space of divisions of a

DCOP by repeating both stages until finding an agreement:

• a divide stage, in which each agent: (i) updates its local subproblem by employing

the information about neighbouring subproblems gathered via coordination; and

(ii) solves its updated local subproblem, computing its local optimal solution.

• a coordinate stage, in which each agent exchanges coordination information with

its neighbours about their conflicts.

As discussed above, an important feature of the DaC approach is the requirement that

the local subproblems at each divide stage compose the original DCOP. In the next sec-

tion, we formally define what we understand by a valid division of a DCOP. Moreover,

we also set the foundations of DaC by: (i) showing that local suproblems can be used

to bound optimal solutions; and (ii) proving that DaC agreements stand for optimal

solutions.

5.1.2 Divide-and-Coordinate: formal foundations
In this section we formalise the concept of valid division and its value and the two prop-

erties that relate the value of a division with the solution of the global DCOP problem.

The DaC framework requires that any division of a DCOP into local subproblems can

be merged to recover the original relations. In such case, we say that the subproblems

are a valid division of the DCOP, which we formalise as follows.

Definition 17 (Valid division). Given a DCOP Φ, a set of m subproblems {Φs =
{X s,Ds,Rs}|s = 1, . . . ,m} is a valid division of Φ if its objective function, R, can be
rewritten as the sum of the objective functions of the individual subproblems, namely:

R(d) = R1(d1) + . . .+Rm(dm) (5.1)

© CSIC © del autor o autores / Todos los derechos reservados

5.1. Divide-and-Coordinate framework 79

where Rs is the objective function for subproblem Φs, and ds is the projection of d over
X s, namely the variables of Φs.

For example, in figure 5.2(a) the set of subproblems created by agents during the divide
stage are a valid division of the original DCOP with objective R iff: R(x1, x2, x3) =
R1(x1, x2, x3) + R2(x1, x2) + R3(x1, x3). It is easy to check that combining the

relations splitted in different subproblems composes the original relations in the DCOP

in figure 5.1.

When creating a division we are interested on dividing the problem into simpler sub-

problems that are computationally tractable, and hence, can be solved by individual

agents. For completeness, next we formalise a set of divisions for which a binary

DCOP is divided into tree structure subproblems, and therefore they are computation-

ally tractable (Petcu and Faltings, 2005b). .

Definition 18 (Tractable Division). Let Φ = 〈X ,D,R〉 be a binary DCOP. We de-
fine a tractable division of Φ as a division {Φ1, . . . ,Φm}, where m = |X |, and each
subproblem Φi = {X i,Di,Ri} is defined as:

X i = {xi} ∪ {xj ∀xj ∈ N(xi)}, (5.2)

Di = DX i , and (5.3)

Ri = {rii = αi · ri} ∪ {rij = (1− αi) · rj ∀xj ∈ N(xi)} ∪
{riij = αij · rij ∀rji ∈ R} ∪ {riji = (1− αij) · rji ∀rji ∈ R} (5.4)

where N(xi) stands for variable xi’s neighbours in the constraint graph and αij , αi

are a real constant 0 ≤ αi, αij ≤ 1.

For example, in figure 5.2(a) the set of subproblems created by agents during the di-
vide stage corresponds to a tractable division as described above when setting αij =
1
2 ∀rji ∈ R and αi = 1 ∀ri ∈ R. In the tractable division above each subproblem Φi

is defined over variable xi and its neighbours N(xi). Thus, a1’s subproblem is com-

posed of its variable x1 and the variables of a2, x2, and a3, x3 Moreover, Φi is assigned

the full unary relationship for variable xi, and a αij portion of every binary relation

involving xi and a neighbour xj . Hence, a1’s subproblem includes the unary relation

over its variable x1 and one half of the binary relations shared with a2, 1
2 · r12, and a3,

1
2 · r13.

Given a valid division of a DCOP we assess its value as follows.

Definition 19 (Value of a division). Given a division {Φs|s = 1, . . . ,m} of a DCOP
Φ, the value of the division is the sum of solutions of individual subproblems, namely:

m∑
s=1

Rs(x∗,s),

where x∗,s stands for the local optimal solution of subproblem Φs, namely the assign-
ment that maximises Rs.

Copia gratuita. Personal free copy http://libros.csic.es

80 Chapter 5. Divide-and-Coordinate

In figure 5.2(a) the value of the division is 20 after adding: 5 (a2’ local optimum), 10

(a1’ local optimum), and 5 (a3’ local optimum).

Given the definitions of division and its value, we are ready to state two propositions

that relate the value of a valid division with the value of the optimal solution.

Proposition 3. Given a DCOP Φ with objective function R, the value of a division
{Φs|s = 1, . . . ,m} of Φ is an upper bound on the value of its optimal solution, namely
R(x∗) ≤ R1(x∗,1) + . . .+Rm(x∗,m).

Proof. We prove this by contradiction. Assume that there is an assignment d ∈ D
whose value is greater for Φ than the value for some division Φ1, . . . ,Φm of Φ, that

is (R(d) = R1(d1) + . . . + Rm(dm)) > R1(x∗,1) + . . . + Rm(x∗,m). This implies

a contradiction since at least some function Rs ∈ {R1, . . . , Rm} evaluated at ds (the

projection of d over the variables in Φs) should be greater than the value of its optimal

solution Rs(x∗,s).

Proposition 3 states that the value of any DCOP division is an upper bound, namely ub,
on the value of its optimal solution. In figure 5.2(a) the value of the division, 20, is

greater than 15, the value of the optimum of the corresponding DCOP in figure 5.1.

Proposition 4. Given a DCOP Φ and a division {Φs|s = 1 . . .m}, if the solutions of
all individual subproblems assign the very same value to each variable in X , then this
assignment is the optimal solution of Φ. In this case, the upper bound, ub, of proposition
3 is met with equality, R(x∗) = R1(x∗,1) + . . .+Rm(x∗,m).

Proof. Assume that the optimal solutions x∗,1 . . . x∗,m of the individual subproblems

of a division {Φs|s = 1 . . .m} of Φ assign the same value to each variable in X . Let

d = x∗,1 ∩ . . . ∩ x∗,m be the values that individual subproblems assign to variables in

X . By proposition 3, we know that the value of any DCOP solution cannot be greater

than the value of any of its divisions. Thus, the value of any other solution d′ ∈ D of Φ
is lower than the value of d, and hence d is the optimal solution of Φ.

Figure 5.2(d) depicts a valid division of the DCOP in figure 5.1 in which all subprob-

lems assign the very same value to each variable. Notice that the value of this division,

15, is equal to the value of the optimal solution in figure 5.1. Moreover, the joint so-

lution on which agents agree, namely on setting x1 to 1 and x2, x3 to 0, stands for its

optimal solution.

The DaC approach founds on propositions 3 and 4. On the one hand, they motivate

that DaC agents explore the space of divisions of a DCOP to find the one on which

individual subproblems agree. As stated by proposition 4, such joint solution is an

optimal solution. Moreover, it motivates that, in case of conflicts, agents exploit their

local solutions to generate solutions as close to an agreement (to the optimum) as they

can. We shall refer to such solutions as candidate solutions. For example, in the division

of figure 5.2(a), agent a1 can decide to set its variable x1 to 1 because its two neighbours

a2 and a3 agree on such assignment, although a1 does not (sets x1 to 0). In such case,

a candidate solution xCad is composed from individual assignments: agent a1 sets x1

to 1, agent a2 sets x2 to 0, and agent a3 sets x3 to 0. On the other hand, the upper

© CSIC © del autor o autores / Todos los derechos reservados

5.2. A generic DaC algorithm 81

bound ub of proposition 3 allows agents to provide per-instance quality guarantees over

their (candidate) solutions. As stated by proposition 3, the value of any solution, and

in particular of any candidate solution xCad, is bounded by the value of any division.

Thus, agents can assess a relative error bound δ for any xCad as
R(xCad)

ub . In figure

5.2(a), agents would bound the error of a candidate solution, xCad, with the value of

the division, 20, assessing a relative error bound of δ = (15/20).

DaC operations Description
Information exchange selection of information to exchange with neighbours

about local subproblem.

Subproblem update Local update of subproblem based on utilities ex-

changed with neighbours.

Candidate solutions
generation

Generation of candidate solutions close to an agree-

ment as possible.

Table 5.1: Fundamental operations of the DaC framework.

Observe that the DaC framework does not constraint some fundamental operations such

as how agents: (i) assess the information exchanged during the coordinate stage; (ii) use

such information to update their subproblems during the divide stage; and (iii) generate

candidate solutions. Particular implementations of these operations lead to different

DaC algorithms. Table 5.1 summarises the fundamental operations that characterise the

family of DaC algorithms. Next, in section 5.2, we propose a generic DaC algorithm,

a DCOP incomplete algorithm that formalises the main DaC approach described in this

section based on such operations.

5.2 A generic DaC algorithm
In this section we define a generic DaC algorithm that formalises the main operations

of any DaC algorithm. Algorithm 5 outlines the pseudocode for the algorithm whose

operation is divided into five stages: initialization, divide, coordinate, update bounded

anytime solution, and termination. In what follows we detail each of these phases using

the trace in figure 5.2 of a run over the DCOP of figure 5.1.

Initialization (lines 1-2). During the initialization phase agents create an initial divi-

sion of the original DCOP into subproblems. Here we propose to start as ini-

tial division, the tractable division defined in section 5.1.2 when setting αij =
1
2 ∀rji ∈ R and αi = 1 ∀ri ∈ R
Thus, each DaC agent employs equations 5.2- 5.4 to create its initial tractable

subproblem Φi (createInitialSubproblem function, line 2 in Alg. 5). Figure

5.2(a) shows the three initial subproblems (Φ1,Φ2,Φ3) created by agents for

the DCOP in figure 5.1. Thus, for instance, agent a1 creates its local problem

Φ1 = 〈X 1,D1,R1〉 for its variable x1, where: (1) X 1 = {x1, x2, x3} is com-

posed of x1 and its neighbours in the constraint graph; (2) D1 is the joint domain

space for the variables in X 1; and (3) R1 contains r1, the unary relation for x1,

Copia gratuita. Personal free copy http://libros.csic.es

82 Chapter 5. Divide-and-Coordinate

and a half of each binary relation involving x1, namely 1
2 · r13 and 1

2 · r23.

Divide (lines 4-7) . During the divide stage, each agent: (i) updates its local problem

(updateSubproblem function, line 6); and (ii) subsequently solves it (solveSub-
problem function, line 7). As explained in section 5.1, DaC agents must update

their subproblem, by exchanging local utilities, such that the resulting subprob-

lems after the update are still a valid division of the DCOP. Thus, any update of

utilities in one subproblem during the divide stage, need to be counterbalanced

by other subproblems in order to keep a valid division. As example, observe the

valid division with agreement in figure 5.2(d). In this division agent a1 have mod-

ified its local utility for variable x2 with respect to the initial division of figure

5.2(a). Thus, a1 has incorporated by means of relation r12 a fraction of the cost to

set x2 to 1, r12(x2 = 1) = −3. Moreover, this update has been counterbalanced

by a2 which has modified its local relation over x2, r22 , changing accordingly its

utility to set x2 to 1 from -10 to -7. In DaC we formalise these updates and the

corresponding counterbalances of utilities by introducing a set of utility relations

that we shall refer to as coordination relations. Hence, to update its local sub-

problem, each agent ai assesses a set of coordination relations, namely {Δ}i,
based on the information exchanged with its neighbours when coordinating. The

set of coordination relations {Δ}i is composed of:

• a unary relation Δi
j for each of the variables of its neighbours xj ∈ N(xi).

Δi
j quantifies how much agent ai must change its utility for xj to agree with

aj’s assignment.

• a binary relation Δij for each of the variables of its neighbours xj ∈ N(xi).
Δij quantifies how much agent ai must change its utility for the joint as-

signment of its variable, xi, and the neighbour’s variable, xj , to agree with

aj’s assignment.

• a unary relation �i for its own variable xi to counterbalance the utility

updates of its neighbours. Hence, �i = −∑xj∈N(xi)
Δj

i .

Figure 5.2(c) shows the coordination relations assessed for each agent’s subprob-

lem. Thus, a1 assesses a coordination relation over x2, Δ1
2, to quantify the change

of utility in its local subproblem to agree with a2. Thus, Δ1
2(x2 = 1) = −3. Sim-

ilarly, a2 assesses a coordination relation �2 to counterbalance the utility update

of a1. Thus, �2(x2 = 1) = 3.

Each agent ai uses these coordination relations to update its local subproblem Φi

(in updateSubproblem function, line 6 in Alg. 5), namely Φi = 〈X i,Di,Ri ∪

© CSIC © del autor o autores / Todos los derechos reservados

5.2. A generic DaC algorithm 83

{Δ}i〉. Thus, the objective function of the updated subproblem is defined as:

Ri(d) = rii(di) +�i(di)

+
∑

xj∈N(xi)

Δi
j(dj)

+
∑

riij∈Ri

(riij(di, dj)−Δij(di, dj))

+
∑

riji∈Ri

(riji(dj , di) + Δji(dj , di))

(5.5)

where d is an element of the joint domain space DX i and di, dj are the values

assigned by d to xi and xj variables respectively.

Figure 5.2(c) shows the resultant agents’ subproblems after updating from the ini-

tial division of figure 5.2(a). Agent a2 includes: (i) a unary coordination relation

�2 over its variable x2; (ii) a unary coordination relation Δ2
1 over its neighbour’s

variable x1; and (iii) a binary coordination relation Δ12, over its variable x2 and

its neighbour’s variable x1.

Agent update coordination relations at each divide stage. The

updateCoordinationRelations function (line 5) specifies how each agent

ai uses the information gathered from its neighbours to assess its coordination re-

lations ({Δ}i). As specified in table 5.1 the local update of subproblems varies

among different DaC algorithms. Consequently, the implementation of the

updateCoordinationRelations function (line 5) is left unconstrained.

After updating subproblems, each agent ai solves its new subproblem Φi to ob-

tain its local optimal solution (x∗,i) along with its value (Ri(x∗,i)) (function

solveSubproblem, line 6). For binary DCOPs, initial subproblems created dur-

ing the initialization step are acyclic. Because equation 5.5 does not change the

graph structure a subproblem, all subproblems remain acyclic after the update.

Thus, agents’ local subproblems in both the initial division of figure 5.2(a) and

after the updating in figure 5.2(c) are acyclic. To solve its acyclic subproblem

each agent can use any of the existing solvers in the literature, like for example

the Action-GDL algorithm introduced in chapter 4, which allows to optimally

solve a subproblem in linear time.

Coordinate (lines 8-12). Recall that each DaC agent updates its coordination relations

in each divide stage with the aim of overcoming the conflicts with their neigh-

bours. However, to rationally update their subproblems, agents need informa-

tion about their neighbours local’s subproblems. This information is exchanged

among agents during the coordinate stage. During a coordinate stage, each agent

ai exchanges a coordination message ηij , with each one of its neighbours xj

regarding the variables they share.

Coordination messages contain this information about agents’ local subproblems.

Then, each agent uses these coordination messages to update its coordination re-

lations during the next divide stage. Figure 5.2(b) shows the messages exchanged

Copia gratuita. Personal free copy http://libros.csic.es

84 Chapter 5. Divide-and-Coordinate

Algorithm 5 DaC(Φ)

Each agent ai runs:

1: δ ← 0; xDaC
i , xCad

i ← ∅; {Δ}i ← ∅
2: Φ0

i ← createInitialSubproblem();
3: repeat
4: /* Divide stage */
5: {Δ}i ←updateCoordinationRelations();
6: Φi ← updateSubproblem(Φi, {Δ}i);
7: (x∗,i, Ri(x∗,i)) ← solveSubproblem(Φi);
8: /* Coordinate stage */
9: for xj ∈ Neighbours(xi) do

10: ηij ← wrapCoordinationInfo();

11: ηji ← exchangeCoordinationInfo(ηij);

12: end for
13: /*Update bounded anytime solution*/
14: xCad

i ← generateCandidateSolution();
15: if betterBoundOrSolutionAvailable({η}) then
16: Update (δ, xDaC

i) if applies

17: end if
18: until termination condition satisfied

19: return 〈xDaC
i , δ〉

during the coordinate stage for the initial division in figure 5.2(a). Thus, agent

a1 will send two coordination messages, one to agent a2, namely η12, and one

to agent a3, namely η13. Thus, after the initial division of figure 5.2(a), agent a1
needs to exchange some local information (e.g. its local solution) with a2 that

allows them to detect their conflict over x2 and to assess the utilities to exchange

in order to overcome such conflict.

Recall that, as summarised in table 5.1, the information that agents exchange

about their conflicts is not specified by the DaC framework. Thus,

wrapCoordinationInfo function (line 10) assessing a coordination mes-

sage ηij (from ai to aj) is since each DaC algorithm must provide its particular

implementation.

Update bounded anytime solutions (lines 13-17). During this stage, each agent as-

sesses the required information to be able to return a bounded anytime solutions.

To return a bounded anytime solution each agent must: (i) generate a candidate
solution; and (ii) assess the value of the candidate solution and the bound of

proposition 3 (section 5.1.2). On the one hand, as explained in section 5.1.2,

agents generate, during each divide and coordinate iteration, a candidate solu-

tion as close to the agreement as they can by exploiting agents’ local solutions.

Hence, after each coordinate stage, each agent ai generates a candidate solution

for its variable xi (xCad
i at line 14) considering its neighbours’ solutions. In that

way, the candidate solution xCad
i does not have to be the same as x∗,i

i , the value

© CSIC © del autor o autores / Todos los derechos reservados

5.2. A generic DaC algorithm 85

a2

{#1, xCad
2 = 0}

a1

{#1, xCad
1 = 1}

{#1, ub = 20}

a3

{#1, xCad
3 = 0}

{#1, xCad
2 =0}

{#1, ub=5}
−→

{#1, xCad
3 =0}

{#1, ub=5}
←−

{ ←−
#1, xCad

1 =1} { −→
#1, xCad

1 =1}

(a) Information exchanged during the 1st coordination stage.

{#1, xCad
2 = 0}

{#1, ub = 20}
{#1, xCad

1 = 1}
{#1, ub = 20}

{#1, R(xCad) = 15}

{#1, xCad
3 = 0}

{#1, ub = 20}

{#2, xCad
2 }

{#2, ub=R2(x∗,2)}
{#1, R(xCad)=5}

−→

{#2, xCad
3 }

{#2, ub= R2(x∗,3)}
{#1, R(xCad)=5}

←−
←−

{#2, xCad
1 }

{#1, ub=20}

−→
{#2, xCad

1 }
{#1, ub=20}

(b) Information exchanged during the 2nd coordination stage.

{xDaC
2 = 0, δ = 15

20} {xDaC
1 = 1, δ = 15

20} {xDaC
3 = 0, δ = 15

20}

{#3,xCad
2 }

{#3,ub=R2(x∗,2)}
{#2,R({xCad})=R2({xCad}2)}−→

{3,xCad
3 }

{#3,ub=R3(x∗,3)}
{#2,R(xCad)=R3({xCad}3)}−→

←−
{#3,xCad

1 }
{#2,ub}

{#1,R(xCad)=15}

−→
{#3,xCad

1 }
{#2,ub}

{#1,R(xCad)=15}

(c) Information exchanged during the 3rd coordination stage.

Figure 5.3: Information exchanged between agents to update their bounded anytime

solutions during the three coordination stages that follow the division stage of figure

5.2(a). # stands for the iteration number of the corresponding information.

that maximises ai’s subproblem. Thus, when ai exchanges messages with its

neighbours to coordinate, it also includes the candidate solution for variable xi.

Figure 5.3(a) shows the candidate solutions exchanged for the initial division of

figure 5.2(a). For instance, a2 sends xCad
2 = 0 to a1 at the first iteration.

An agent can use different strategies to generate its candidate solutions. Indeed,

as summarised in table 5.1, the DaC framework does not specify the particular

strategy that agents use to generate candidate solutions. Hence, the

generateCandidateSolution function (line 14) is defined a general method.

In what follows we propose two strategies to generate candidate solutions:

• Majority rule. Each agent ai selects as a candidate solution for its variable

xi the value on which most agents agree. Following this strategy, for the

initial division in figure 5.2(a), agent a1 would select xCad
1 = 1 because

both a2 and a3 assigned 1 to x1, despite a1’s optimal solution being x∗
1 = 0.

Copia gratuita. Personal free copy http://libros.csic.es

86 Chapter 5. Divide-and-Coordinate

• Conditioned majority rule. Each agent ai selects as a candidate solution

for xi the value on which most agents agree when setting the remaining vari-

ables of their subproblems to the previous candidate solution. Recall that,

during the divide stage each agent ai calculates its subproblem’s local so-

lution. Besides that, when using the conditioned majority rule, it also com-

putes for each variable xj ∈ X i the value that maximises Ri after setting

each variable xk ∈ X i, k �= i k �= j to xCad
k . Then, agents exchange these

alternative optimal solutions to generate the candidate solution on which

most agents agree.

On the other hand, to bound the error of the candidate solution, agents need to

assess: (i) the value of the candidate solution, R(xCad) ; and (ii) the value of

the division. Agents need to coordinate to assess these values because each agent

ai, at each iteration, only knows the value of its local solution Ri(x∗,i) and the

local value for the candidate solution Ri({xCad}i), where {xCad}i contains the

candidate solution for xi, namely xCad
i , and the candidate solutions for each of

its neighbouring variables xj , namely xCad
j .

Thus, agents need a distributed protocol that allows them to calculate these aggre-

gations of data and synchronize their bound and anytime solution updates. There

are multiple (Zivan, 2008; Katsutoshi Hirayama, 2009) protocols available in the

literature to perform this task. We chose the one detailed in Zivan (2008) because

it requires only small (linear) additional space per agent and no additional mes-

sages (agents use the coordination messages to propagate information). In what

follows we detail the implementation of this protocol.

In this protocol, agents are initially arranged on a directed tree. For example, fig-

ure 5.3 (a) shows a directed tree arrangement for the DCOP subproblems of figure

5.2(a), where agent a1 is the root node with children a2 and a3. For each value to

be aggregated, each agent: (i) receives some data from its children; (ii) aggregates

these data and sends the results to its parent; (iii) receives the aggregated value

from its parent; and finally (iv) relays this value to its children. These operations,

which are interleaved with the DaC coordination messages, introduce little com-

putation overhead. Figure 5.3 (a)-(c) shows the information exchanged between

agents in figure 5.2(a) for this protocol. During the first round in figure 5.3(a),

a2 and a3 start the aggregation process to calculate the upper bound ub by prop-

agating their local optimal values for the initial division, namely R2(x∗,2) = 5
and R3(x∗,3) = 5, to a1. Next, during the second round in figure 5.3(b), a2 and

a3, calculate their local values for the candidate solution, namely R2(xCad) = 5
and R3(xCad) = 5, and send these data to its parent a1. Agent a1 aggregates

the upper bound received from a2 and a3 for the first iteration together with the

value of its local solution R1(x∗,1) = 10. Then, as a root, a1 sends the value

of the upper bound ub = 20 to its children. Finally, in the third round in figure

5.3(c), agent a1 aggregates the values of the candidate solutions from a2 and a3
along with its local value for its candidate solution, namely RCad({x}Cad

i) = 5.

Then, as a root agent, a1 sends the value of this aggregation R(xCad) = 15 back

to its children a2 and a3. At this point, all agents have received the information

© CSIC © del autor o autores / Todos los derechos reservados

5.3. DaCSA: Divide and Coordinate Subgradient Algorithm 87

related to the aggregated data of the first iteration. When all agents have received

the information related to the aggregated data for an iteration (e.g the value of the

bound and of the candidate solution), they use it to update the bound (lines 14-

16) and the anytime solution (lines 17-19), if applies. Because the aggregation

process needs some message cycles to complete, agents will not have the actual

anytime solution during the first DaC iterations. Thus, during this initial phase,

agents simply return the latest generated candidate solution without giving any

guarantee on its quality. Thus, each agent ai updates the bounded anytime solu-

tion xDaC
i for its variable xi as well as the value of the bound δ = R(xDaC)

ub . In

figure 5.3(c), agent a1 updates the DaC solution for its variable to xDaC
1 = 1 and

its bound to δ = 15
20 .

Notice that the time and space requirements for each agent are linear to the height

of the chosen tree.

Termination conditions (line 18). At each iteration of the algorithm, each agent checks

if some termination condition is satisfied. Typical termination conditions for DaC

are: (i) the bounded anytime solution has enough quality (or it is the optimal); or

(ii) the number of current iterations exceeds a maximum.

In summary, the generic DaC algorithm introduced above establishes a novel family of

DCOP incomplete algorithms that can return solutions with per-instance quality guaran-

tees. Regarding its communication complexity, at each iteration of the algorithm, each

agent exchanges a message with each one of its neighbours in the constraint graph.

Therefore, the number of messages exchanged per iteration is 2 · |E|, where E is the set

of edges of the constraint graph. The size of these messages depends on the information

exchanged about the agent’s conflicts and, therefore, it will depend on the realisation

that each DaC algorithm does of the wrapCoordinationInfo function. The data

to calculate bounds and evaluate candidate configurations is linear to the height of the

communication tree. Regarding its computational complexity, each agent at each iter-

ation: (i) updates the coordination relations; (ii) creates its own subproblem in parallel

with the rest of agents; and (iii) solves a tree structure subproblem. Steps (ii) and (iii)

are common for all DaC algorithms and require a number of operations linear to the

size of the local relations. In contrast, step (i) depends on the particular realisation that

each DaC algorithm does of the function updateCoordinationRelations.

In the next sections we introduce two particular DaC algorithms, particular realisations

of the generic DaC algorithm that explore different information and strategies to reach

an agreement.

5.3 DaCSA: Divide and Coordinate Subgradient Algo-
rithm

In this section we formulate the so-called Divide And Coordinate Subgradient Al-

gorithm (DaCSA), a particular computational realisation of the DaC approach where

agents: (i) coordinate by exchanging their local solutions as information about their

Copia gratuita. Personal free copy http://libros.csic.es

88 Chapter 5. Divide-and-Coordinate

conflicts; and (ii) in case of conflict, exchange utilities for their local solutions with a

neighbour. DaCSA has its formal foundations on Lagrangian dual decompositions and

subgradient methods (Bertsekas, 2007). Next, in section 5.3.1 we provide the formal

foundations of DaCSA, while in section 5.3.2, we provide its algorithmic details.

5.3.1 Formal foundations

To build a computational realization of the DaC approach to solve a DCOP we must

define: (i) what information agents exchange about local subproblems during the coor-
dinate step; and (ii) how to use that information to create, at each divide step, a valid

tractable division whose subproblems’ solutions are closer to an agreement. With this

aim we propose to use Lagrangian dual decomposition along with subgradient methods,

both well-known techniques in optimization with strong theoretical properties (refer to

(Bertsekas, 2007), section 6.4).

Let Φ be a binary DCOP. To apply duality we need to formalize Φ as a binary linear

program (LP). Let {Φi|i = 1 . . .m} be an initial division of Φ as defined in section

5.2 by equations 5.2-5.4. Then, for each subproblem Φi we define the following binary

variables:

• xi
j;l, that takes on value 1 when variable xj in subproblem Φi takes on value l.

• xi
ij;kl, that takes on value 1 when variables xi,xj in subproblem Φi take on values

k and l respectively.

Formally, the set of binary variables of subproblem Φi is given by:

Xi
LP ={xi

i;k : ∀k ∈ Di} ∪ {xi
j;l : ∀xj ∈ N(xi) ∀l ∈ Dj}∪

{xi
ij;kl : ∀riij ∈ Ri ∀k ∈ Di ∀l ∈ Dj} ∪ {xi

ji;lk : ∀riji ∈ Ri ∀l ∈ Dj ∀k ∈ Di}

With this set of variables we can express the objective function for subproblem Φi as:

Ri
LP (X

i
LP) =

∑
k∈Di

xi
i;k · rii(k) +

∑
riij∈Ri

∑
k∈Di

∑
l∈Dj

xi
ij;kl · riij(k, l)

+
∑

riji∈Ri

∑
l∈Dj

∑
k∈Di

xi
ji;lk · riji(l, k)

Then, solving Φ amounts to solving the following LP:

max
{Xi

LP }

|X |∑
i=1

RiLP (Xi
LP) (5.6)

© CSIC © del autor o autores / Todos los derechos reservados

5.3. DaCSA: Divide and Coordinate Subgradient Algorithm 89

subject to the following constraints (∀i ∈ {1, . . . , |X |}):

(C1) A unique value is assigned to each variable:
∑

k∈Di

xii;k = 1 ∀xi ∈ X i

∑

k∈Di

∑

l∈Dj

xiij;kl = 1 ∀riij ∈ Ri

∑

l∈Dj

∑

k∈Di

xiji;lk = 1 ∀riji ∈ Ri

(5.7)

(C2) A variable is assigned the very same value in all relations:

∀riij ∈ Ri : xi
i;k =

∑
l∈Dj

xi
ij;kl ∀k ∈ Di, xi

j;l =
∑
k∈Di

xi
ij;kl ∀l ∈ Dj

∀riji ∈ Ri : xi
i;k =

∑
l∈Dj

xi
ji;lk ∀k ∈ Di, xi

j;l =
∑
k∈Di

xi
ji;lk ∀l ∈ Dj

(5.8)

(C3) Subproblems agree on variables’ values:

xj
i;k = xi

i;k ∀xj ∈ N(xi) ∀k ∈ Di

xj
ij;kl = xi

ij;kl ∀rij ∈ Ri ∀k ∈ Di ∀l ∈ Dj
(5.9)

Notice that the sets of constraints (C1) and (C2) ensure consistency in assignments in-

side each subproblem, whereas the set of constraints (C3) ensures consistency between

subproblems. Then, solving Φ amounts to solving the following Lagrangian dual prob-

lem:

min
{λ}

max
{Xi

LP }
RDUAL({Xi

LP }; {λ}) = min
{λ}

|X |∑
i=1

max
Xi

LP

Ri
DUAL(X

i
LP ; {λ}) (5.10)

where the objective function Ri
DUAL corresponding to subproblem Φi is defined as:

Ri
DUAL(X

i
LP ; {λ}) =

∑
k∈Di

xi
i;k · (rii(k)−

∑
xj∈N(xi)

λj
i;k)

+
∑

xj∈N(xi)

∑
l∈Dj

xi
j;l · λi

j;l

+
∑

riij∈Ri

xi
ij;kl · (riij(k, l)− λij;kl)

+
∑

riji∈Ri

xi
ji;kl · (riji(k, l) + λji;kl)

(5.11)

subject to the set of constraints (C1) and (C2).

Thus, given set of Lagrange multipliers, each agent ai can solve its subproblem inde-

pendently, by maximising the Ri
DUAL objective function. Moreover, subproblems gen-

erated by equation 5.11 conform a valid division of the original DCOP. Hence, proposi-

tions 3 and 4 apply to the subproblems that compose the dual problem of equation 5.10

so that: (i) if all subproblems agree on the value of shared variables then these values

Copia gratuita. Personal free copy http://libros.csic.es

90 Chapter 5. Divide-and-Coordinate

are the DCOP solution; and (ii) the sum of the value of the solutions of individual sub-

problems provides a bound on the quality of the solution of the original problem. Fur-

thermore, there is a direct correspondence between the dual function of a subproblem

Φi, Ri
DUAL, and the updated objective function of subproblem Φi, Ri, as introduced in

section 5.2 (equation 5.5) for the generic DaC algorithm. Concretely, there is a direct

correspondence between both equations when using the following mapping between

coordination relations and Lagrange multipliers:

Δj
i (k) = λi

j;k ∀k ∈ Dj

Δij(k, l) = λij;kl ∀k ∈ Di∀l ∈ Dj

Δji(k, l) = λji;kl ∀k ∈ Dj∀l ∈ Di

(5.12)

Thus, in DaCSA the coordination relations used to update subproblems by the

updateSubproblem function (algorithm 5) correspond to the Lagrange multipliers,

as stated by the mapping in equation 5.12.

An important issue on the dual formulation is how to assess Lagrange multipliers that

minimize equation 5.10, namely the violation of constraints, to bring solutions of dual

subproblems to an agreement. With that purpose, we use the subgradient method (Bert-

sekas, 2007), an iterative method that allows to update Lagrange multipliers at each

iteration in parallel from the solutions of neighbouring subproblems. According to sub-

gradient methods, the set of Lagrange multipliers {λ} is updated using the subgradient

of the Lagrangian dual problem in equation 5.10. The subgradient of the dual problem

is a vector with one component for each λj
i;k, λij;kl ∈ {λ}. The component of the

subgradient related to a Lagrange multiplier λ ∈ {λ} can be assessed as the expres-

sion that multiplies λ in equations 5.11 when evaluated at RDUAL optimal solution.

Hence, following the subgradient method, Lagrange multipliers in each subproblem Φi

are updated as 1:

λj
i;k ← λj

i;k − ε · (x∗,j
i;k − x∗,i

i;k) ∀k ∈ Di

λi
j;l ← λi

j;l − ε · (x∗,i
j;l − x∗,j

j;l) ∀l ∈ Dj

λij;kl ← λij;kl − ε · (x∗,j
ij;kl − x∗,i

ij;kl) ∀k ∈ Di ∀l ∈ Dj

λji;kl ← λji;kl − ε · (x∗,i
ji;kl − x∗,i

ji;kl) ∀k ∈ Dj ∀l ∈ Di

(5.13)

where x∗,i
i;k is the optimal assignment for variable xi

i;k in subproblem Φi and ε is a

positive real step-size.

Equations in 5.13 help us realise the divide and coordinate stages of the DaC approach.

On the one hand, regarding the divide stage, equations in 5.13 and 5.12 realise the

updateCoordinationRelations function in the general DaC algorithm (algo-

rithm 5) with the assessment of the coordination relations, the Lagrange multipliers.

Following equations in 5.13, the value of a Lagrange multiplier is modified whenever

subproblems conflict on the value assigned to a variable, and it remains unchanged

if they agree. This can be interpreted as an attempt to reduce disagreement between

subproblems. Moreover, the update of Lagrange multipliers considers a step-size ε (a

positive real value) that weights the impact of disagreements on updates. The larger the

1Each Lagrange multiplier is initially set to 0.

© CSIC © del autor o autores / Todos los derechos reservados

5.3. DaCSA: Divide and Coordinate Subgradient Algorithm 91

Algorithm Information exchange Subproblem update
DaCSA Local optimal

solutions

When a neighbour disagrees on the optimal

value of a variable give away some utility in

favour of such value to convince him.

EU-DaC Max-marginals When the max-marginal of a neighbour is dif-

ferent from the own max-marginal, exchange

utilities to get closer max-marginals.

Table 5.2: Different computational realisations of the fundamental DaC operations.

value of ε, the higher the impact of disagreements on Lagrange multipliers. Different

types of step-size rules have been proposed for subgradient methods, each one with dif-

ferent guarantees and convergence rate results (refer to Bertsekas (2007), section 6.3.1

subgradient methods). On the other hand, regarding the coordinate stage, equations in

5.13 and 5.12 determine which coordination information is needed to update the La-

grange multipliers of a subproblem Φi, namely the local solution of each neighbour

subproblem Φj over their shared variables.

In summary, this section defines the formal foundations of DaCSA that provide a par-

ticular realisation of the DaC fundamental operations summarised in table 5.1, namely:

(i) the information agents exchange with its neighbours about its local subproblem; and

(ii) how to update subproblems based on such information. Hence, as summarised in

table 5.2, each DaCSA agent ai: (i) coordinates by exchanging its local solutions with

its neighbours; and (ii) in case of conflict with a neighbour aj , gives away some utility

for its local solution to aj .

5.3.2 DaCSA algorithm
This section details how DaCSA realises the divide and coordinate stages of the generic

DaC algorithm introduced in section 5.2. Hence, next we describe the particular reali-

sations of DaCSA for the updateCoordinationSubproblem and the

wrapCoordinationInfo procedures of algorithm 5. To illustrate the operation of

DaCSA, we describe the trace of a run over the DCOP in figure 5.1 as depicted in figure

5.4.

Agents start with the initial division shown in figure 5.2(a). Because no coordination in-

formation is available, agents proceed to solve their initial subproblems without adding

any coordination relation. Thus, figure 5.2(a) depicts these initial local solutions as-

sessed by agents for their initial subproblems as well as their values. According to the

DaC approach, agents’ solutions may disagree after a divide stage, as it is the case in

figure 5.2(a). Thus, agent a1 disagrees with a2 and a3 on the optimal configuration of

all their shared variables, namely x1,x2 and x1,x3 respectively.

Then, DaCSA agents proceed to coordinate. Function 6 outlines DaCSA’s implementa-

tion of the wrapCoordinationInfo function. Following function 6, each DaCSA

agent ai exchanges with each one of its neighbours aj a message ηij that containing

the local solutions for common variables, namely x∗,i
i and x∗,i

j . Figure 5.4(a) shows

the coordination messages that agents exchange for the initial division of figure 5.2(a).

Copia gratuita. Personal free copy http://libros.csic.es

92 Chapter 5. Divide-and-Coordinate

Function 6 wrapCoordinationInfo(x∗,i
i , x∗,i

j)

1: ηij = 〈xi,∗
i , xi,∗

j 〉;
2: return ηij ;

Function 7 updateCoordinationRelations(Φi, {η}i)
Agent ai runs:

1: ε ← calculateStepsize();

2: for xj ∈ N (xi) do
3: for ∀dj ∈ Dj /*For each value of xj*/ do
4: /*Update the coordination relation for the neighbour variable*/

5: Δi
j(dj) = Δi

j(dj) + ε · (
[
ηji.x

∗,j
j = dj

]
−
[
x∗,i
j = dj

]
)

6: end for
7: for ∀di ∈ Di /*For each value of xi*/ do
8: /*Update the coordination (balancing) relation for its own variable*/

9: �i
i(di) = �i

i(di) + ε · (
[
ηji.x

∗,j
i = di

]
−
[
x∗,i
i = di

]
)

10: end for
11: end for
12: /*Update binary coordination relations */

13: for rij ∈ R do
14: for ∀dij ∈ Dij /*For each value of xi, xj*/ do
15: Δij(dij) = Δij(dij)− ε · (

[
ηji.〈x∗,j

i , x∗,j
j 〉 = dij

]
−
[
〈x∗,i

i , x∗,i
j 〉 = dij

]
)

16: end for
17: end for
18: for rji ∈ R do
19: for ∀dji ∈ Dji /*For each value of xi, xj*/ do
20: Δji(dij) = Δji(dij) + ε · (

[
ηji.〈xj,∗

i , xj,∗
j 〉 = dij

]
−
[
〈xi,∗

i , xi,∗
j 〉 = dij

]
)

21: end for
22: end for
23: return {Δ}i;

Thus, agent a1 sends a message to a2 with assignments {x∗,1
1 = 0, x∗,1

2 = 1}, and a

message to a3 with assignments {x∗,1
1 = 0, x∗,1

3 = 1}.

After that exchange, agents proceed to update coordination relations by means of the

updateCoordinationRelations function, whose pseudocode is given in func-

tion 7. Thus, according to function 7 each agent assesses the Lagrange multipliers

updates of equation 5.13, but in terms of the coordination relations by using the map-

ping in equation 5.12. Operation [·] stands for a function that returns 0 if the equality

inside is false [false] = 0 and return 1 otherwise, [true] = 1. Following procedure

7, each agent ai starts by calculating the step-size ε for that iteration according to the

chosen step-size rule (line 1).

Next, each agent ai uses the assignments received from each of its neighbours aj in the

© CSIC © del autor o autores / Todos los derechos reservados

5.3. DaCSA: Divide and Coordinate Subgradient Algorithm 93

coordination message ηji, along with its local assignments, to update the coordination

relations (lines 2-22). Figure 5.4(b) shows the coordination relations assessed by agents

for the initial division in figure 5.2(a) after coordination.

On the one hand, each agent ai updates for each of the variables of its neighbours

xj ∈ N(xi) the value of its coordination relation Δi
j . This quantifies how much agent

ai must change its utility for xj to agree with aj’s solution (lines 3-6). Each agent ai
updates the value of coordination relation Δi

j over xj when ai’s optimal solution differs

from aj’s by: (i) increasing the utility for aj’s solution x∗,j
j by ε; and (ii) decreasing the

utility for its own solution x∗,i
j by ε. For instance, in figure 5.4(b), a2 will modify its

utility for x1 to agree with a1’s solution. Thus, since a2’s optimal solution for x1 is 1,

whereas a1’s optimal solution is 0, a2 increases Δ2
1(0) and decreases Δ2

1(1) by ε. In that

way, a2 decreases the utility for its current x1 optimal solution, whereas increments its

utility for a1’s optimal solution getting closer to the agreement. In a similar way, each

agent ai updates the coordination relation over its variable xi, �i, to counterbalance

the utility updates of its neighbours (lines 7-10). Thus, in figure 5.4(b), a1 decreases

the utility for its variable x1 when it is set to its optimal solution 0, whereas increases

the utility for x1 set to 1 in order to counterbalance the updates of a2 and a3. On the

other hand, each agent ai updates for each of its relations rij , rji ∈ Ri the value of

coordination relation Δi
ji (or −Δi

ji if j < i) (lines 12-22). Each agent ai updates the

value of coordination relation Δi
ji when it disagrees with aj on the joint solution of

variables xi and xj by: (i) increasing aj’s solution for xi, xj by ε; and (ii) decreasing

the value of its own solution for xi, xj by ε. Thus, in figure 5.4(b), agent a2 uses the

assignments received from a1 for their common variables, namely {x∗,1
1 = 0, x∗,1

2 = 1}
to update coordination relation Δ2

12 trying to decrease the disagreement with a1. Since

both agents agree that joint configurations {x1 = 0, x2 = 0} and {x1 = 1, x2 = 0} are

not optimal, the value of the coordination relation for these configurations (Δ2
12(0, 0),

Δ2
12(1, 1)) remain unchanged. In contrast, agent a2 increases the value Δ2

12(0, 1) in

favour of a1’s optimal solution and decreases Δ2
12(1, 0) in detriment of its own optimal

solution.

Finally, each agent ai uses its coordination relations to update its local subproblem

as specified by the updateSubproblem function in the generic DaC algorithm (line 6,

algorithm 5). Thus, for instance, in figure 5.4(b), the new set of relations R2 created by

a2 is composed of: (1) the unary relation r2 along with a �2 coordination relation to

coordinate the x2 assignments with a1; (2) binary relation r212 along with a coordination

relation Δ12 to coordinate the {x1, x2} assignments with a1; and (4) a coordination

relation Δ2
1 to coordinate the x1 assignments with a1. Thereafter, each agent ai solves

its new subproblem to obtain its optimal local solution, x∗,i, along with its value R(x∗
i)

(line 6, algorithm 5). For instance, figure 5.4(b) shows the local solutions and values

computed by each agent when setting ε = 1. As a result, observe that agent a1 and a3
change their assignments with respect to the first iteration: agent a1 sets its variable x1

to 1, and variables x2, x3 to 0, whereas agent a3 sets its variable x3 to 1, and variable x1

to 0. Observe that as a result of these changes, agent a1 know agrees on the assignments

of the shared variables with agent a2. Moreover, the sum of utilities of subproblems’

solutions for this division, 2 + 11 + 6 = 19, is lower than those for the initial division,

5+10+5 = 20. Since the sum of utilities of subproblems’ solutions is an upper bound

Copia gratuita. Personal free copy http://libros.csic.es

94 Chapter 5. Divide-and-Coordinate

a2 a1 a3

η21 = (x∗,2
1 = 1, x∗,2

2 = 0) η31 = (x∗,3
1 = 1, x∗,3

3 = 0)

η12 = (x∗,1
1 = 0, x∗,1

2 = 1) η13 = (x∗,1
1 = 0, x∗,1

3 = 1)

(a) DaCSA coordinate stage.

x2 x1

x∗,2 = {x∗,2
1 = 1,x∗,2

2 = 0}
ε = 1,R2(x∗,2) = 2

r12 +Δ12 0 1

0 0 5 + ε
1 5 - ε 5

Δ2
1

0 ε
1 −ε

r2 +�2

0 0 − ε
1 −10 + ε

x2
x1

x3

x∗,1 = {x∗,1
1 = 1,x∗,1

2 = 0,x∗,1
3 = 0}

ε = 1,R1(x∗,1) = 11

r13 −Δ13 0 1

0 0 5 - ε
1 5 + ε 5

Δ1
2

0 ε
1 −ε

Δ1
3

0 ε
1 −ε

r1 +�1

0 0− 2ε
1 −5 + 2ε

r12 - Δ12 0 1

0 0 5 - ε
1 5 + ε 5

x1 x3

x∗,3 = {x∗,3
1 = 0,x∗,3

3 = 1}
ε = 1,R3(x∗,3) = 6

r3 +�3

0 0 - ε
1 -2 + ε

Δ3
1

0 ε
1 -ε

r13 +Δ13 0 1

0 0 5 + ε
1 5 - ε 5

(b) New subproblems after DaCSA divide stage when setting an stepsize ε to 1.

Figure 5.4: Trace of DaCSA over the DCOP initial division of figure 5.2(a).

on the quality of the optimal optimal solution, the agents obtain during this divide stage

a tighter bound and new assignments closer to an agreement.

At the end of each iteration, the agents check if some termination condition is satisfied

(line 18, algorithm 5). In figure 5.4(b), because after the first iteration agent a1 still

disagrees with agent a3, agents would proceed to execute a new iteration of the DaCSA

algorithm.

5.3.3 Complexity analysis

We can directly assess the complexity of DaCSA from the complexity of the generic

DaC algorithm and from the particular DaCSA implementations of the wrapCoordina-
tionInfo and updateCoordinationRelations functions. DaCSA realises the wrapCoor-
dinationInfo procedure by assessing a message from ai to aj that contains the assign-

ments for their shared variables. Therefore, the size of the coordination messages is

logarithmic in the domain of variables. Moreover, each agent updates the coordination

relations requiring a number of operations linear to the size of the local relations. As

a result, DaCSA is a low-overhead algorithm because agents exchange a linear number

of messages of linear size and perform a linear number of operations.

© CSIC © del autor o autores / Todos los derechos reservados

5.4. EU-DaC: Egalitarian Utilities Divide And Coordinate algorithm 95

5.4 EU-DaC: Egalitarian Utilities Divide And Coordi-
nate algorithm

Several works (Farinelli et al., 2008; Wainwright et al., 2005) have shown that agents

obtain better solutions when they explicitly communicate the utilities of their assign-

ments instead of their preferred assignments. Along this line, here we propose the

so-called Egalitarian Utilities Divide and Coordinate algorithm (EU-DaC), a DaC algo-

rithm that has agents coordinate by exchanging the utilities of their variables’ assign-

ments. The rationale behind EU-DaC is the following: if agents agree on the utilities

of their shared variables, then they agree on their local assignments2. According to the

DaC framework, this implies that agents have found a DCOP solution.

Next, section 5.4.1 provides the formal foundations of EU-DaC while in section 5.4.2

we provide its algorithmic details.

5.4.1 Formal foundations
Max-marginals have been widely used in the literature to compute marginal probabil-

ities and most probable configurations in graphical models (Wainwright and Jordan,

2008; Aji and McEliece, 2000; Farinelli et al., 2008). A max-marginal utility function

of a DCOP over a variable summarises the total dependency of the DCOP over such

variable. More formally, a max-marginal utility function U i
j : Dj → � encodes for

each possible value of xj , l ∈ Dj , the maximum reward of Φi when xj is set to l:

U i
j(l) = max

d∈DXi\xj

Ri(l; d) (5.14)

In figure 5.5 the max-marginal utilities of subproblem Φ2 (depicted on the left of the

figure) for variable x2 (U2
2) are computed as:

U2
2 (0) = max

d1∈D1

r1(d1) + r12(d1, 0) + r2(0) = 5

U2
2 (1) = max

d1∈D1

r1(d1) + r12(d1, 1) + r2(1) =
8

3

Hence, subproblem Φ2 has a local max-marginal utility of 5 when setting variable x2

to 0, and a local max-marginal utility of 8
3 when setting it to 1.

We define the optimum of a max-marginal U i
j as the value for xj that maximises it.

Formally,

x∗,Ui

j = arg max
l∈Dj

U i
j(l) (5.15)

If x∗,Ui

j is the unique value that maximises U i
j , then we say that the max-marginal has

a unique optimum. In figure 5.5 the max-marginal of agent a2 for its variable x2 has a

unique optimum, namely x2 = 0.

Next, we define the condition of max-marginal agreement in a DCOP division.

2This statement is subject to the absence of utility ties: different variable assignments have different utility

values.

Copia gratuita. Personal free copy http://libros.csic.es

96 Chapter 5. Divide-and-Coordinate

x2 x1

U2
1 (x1 = 0) = 8

3
, U2

1 (x1 = 1) = 5

U2
2 (x2 = 0) = 5, U2

2 (x2 = 1) = 8
3

R2(x∗,2) = 5

r12 0 1

0 0 5

1 5 5

r2
0 5

1 0

r1
0 − 7

3

1 -5

x2
x1

x3

U1
1 (x1 = 0) = 8

3
, U1

1 (x1 = 1) = 5

U1
2 (x2 = 0) = 5, U1

2 (x2 = 1) = 8
3

U1
3 (x3 = 0) = 5, U1

3 (x3 = 1) = 4

R1(x∗,1) = 5

r13 0 1

0 0 5

1 5 5

r2
0 -5

1 -10

r1
0 11

3

1 0
r3
0 0

1 -1

r12 0 1

0 0 5

1 5 5

x1 x3

U3
1 (x1 = 0) = 8

3
, U3

1 (x1 = 1) = 5

U3
3 (x3 = 0) = 5, U3

3 (x3 = 1) = 4

R3(x∗,3) = 5

r1
0 - 43
1 0

r3
0 0

1 -1

r13 0 1

0 0 5

1 5 5

Figure 5.5: Division with max-marginals agreement for the DCOP of figure 5.1.

Definition 20. Two subproblems Φs and Φm agree on their max-marginals when for
each of its shared variables xi ∈ X s ∩ Xm the max-marginals of Φs and Φm over xi

assign the same utility for all possible values of xi. Formally,

Us
i (k) = Um

i (k) ∀xi ∈ X s ∩ Xm, ∀k ∈ Di (5.16)

In figure 5.5 subproblem Φ1 and Φ2 agree on their max-marginals because the max-

marginals over each of its shared variables, namely x1 and x2, assign the same utility

for each of the values of x1 and x2.

Proposition 5. Given a DCOP Φ and a division {Φs|s = 1 . . .m}, if each pair of
subproblems agree on their max-marginals and each max-marginal has a unique opti-
mum, then the solution of all individual subproblem agree on assigning the same value
to each variable xi ∈ X , namely x∗

i . In this case, the value of x∗
i is equal to the value

of the unique optimum that maximises the max-marginal of each subproblem.

Proof. We prove this by contradiction. Assume that there are two subproblems Φs and

Φm such that they agree on their max-marginals over a variable xi and for which the

optimal value of Φs for xi, x
∗,s
i , and Φm, x∗,m

i , differ (x∗,s
i �= x∗,m

i). Because in

proposition 5 each max-marginal is required to have unique optimum it implies that for

Φm, Um
i (x∗,m

i) > Um
i (x∗,s

i) and for Φs, Us
i (x

∗,s
i) > Us

i (x
∗,m
i). This leads to a con-

tradiction because if Φs and Φm agree on their max-marginals Us
i (k) = Um

i (k), ∀k ∈
Di.

The EU-DaC approach founds on proposition 5. Agents to search for a division whose

subproblems agree on max-marginals. Figure 5.5 shows a division of the DCOP in

figure 5.1 in which agents agree on their max-marginals, where the unique optimum of

each max-marginal is boldfaced. Thus, the unique optimum of x1 in max-marginals

Us=1...3
1 is 1, of x2 in max-marginals Us=1,2

2 is 0, and of x3 in max-marginals Us=1,3
3 is

0. Observe that these assignments are the optimal values of the variables in the DCOP

of figure 5.1.

Notice that, a division in which subproblems agree on their max-marginals subproblems

agree on their individual solutions, the other way around is not true. Figure 5.2(d) shows

© CSIC © del autor o autores / Todos los derechos reservados

5.4. EU-DaC: Egalitarian Utilities Divide And Coordinate algorithm 97

an example of a division but subproblems agree on their local solutions, whereas their

max-marginals differ. For example, the value of a1’s max-marginal to set x1 to 0 is

U1
1 (0) = 2.5, whereas the value of a3’s max-marginal is U3

1 (0) = 5. Hence, EU-DaC

will converge under two different conditions, namely when it finds a division: (i) whose

subproblems max-marginals agree; or (ii) whose subproblems’ solutions agree.

Based on proposition 5, the goal of each EU-DaC agent when updating its individ-

ual subproblem is to converge on the max-marginal utilities of its neighbours regard-

ing their shared variables. Hence, proposition 5 helps us to realise the divide stage

by updating the coordination relations based on the differences between subproblems’

max-marginals. On the one hand, given a division {Φi|i = 1, . . . , |X |}, each agent ai
updates for each of its neighbours’ variables xj ∈ N(xi) a coordination relation �i

j

that quantifies how much utility is required to agree with aj’s max-marginal. Formally:

�i
j(l) = �i

j(l) + ρ ·
(
U j
j (l)− U i

j(l)
)

∀l ∈ Dj (5.17)

where ρ ∈ [0, 1] is a damping parameter that weighs the magnitude of the change

over the subproblem. On the other hand, each agent ai assesses a coordination relation

for its own variable xi to counterbalance the utility updates of its neighbours, namely

�i(k) = �i(k) +
∑

xj∈X i,j �=i �i
j(k) ∀k ∈ Di.

Finally, regarding the coordinate stage, equation 5.17 defines which coordination in-

formation is needed to update the coordination relations of a subproblem Φs, namely

the local max-marginals of each neighbour subproblem Φm over each of their shared

variables.

In summary, we defined the particular EU-DaC implementations of the two fundamen-

tal DaC operations, namely: (i) what information agents exchange about their conflicts;

and (ii) how to update subproblems based on such information. Hence, each EU-DaC

agent ai: (i) coordinates by exchanging the individual max-marginals of each of its

shared variable with its neighbours; and (ii) when max-marginals differ, exchanges

utilities with its neighbours to bring their max-marginals closer.

5.4.2 EU-DaC algorithm
In this section we detail how EU-DaC realises the coordinate and divide stages of

the generic DaC algorithm introduced in section 5.2 based on the formal foundations

established in the section above. Next, we describe how EU-DaC implements the

updateCoordinationRelations and the wrapCoordinationInfo func-

tions of the generic DaC algorithm. To illustrate the operation of the EU-DaC algorithm

we describe the trace of a run over the DCOP in figure 2.1 depicted in figure 5.6.

Agents start with the initial division shown in figure 5.2(a). Similarly to DaCSA at

this initial divide stage no coordination information is available, so agents proceed to

solve their initial subproblems without adding any coordination relation. Figure 5.2(a)

depicts the initial local solutions calculated by agents for their initial subproblems as

well as the value of such solutions. However, in EU-DaC, each agent ai also needs

to assess the max-marginals over each variable in X i. It is convenient then to use a

solver such as the Max-Sum algorithm (Farinelli et al., 2008), which returns, in addition

to the optimal solution and its value, the max-marginal utilities over single variables

Copia gratuita. Personal free copy http://libros.csic.es

98 Chapter 5. Divide-and-Coordinate

a2 a1 a3

η21 = [U2
1 (x1=0)=0, U2

1 (x1=1)=5
U2
2 (x2=0)=5, U2

2 (x2=1)=−5
] η31 = [U

3
1 (x1=0)=3, U3

1 (x1=1)=5,
U3
3 (x3=0)=5, U3

3 (x3=1)=3
]

η12 = [U
1
1 (x1=0)=10, U1

1 (x1=1)=5
U1
2 (x2=0)=5, U1

2 (x2=1)=10
] η13 = [U

1
1 (x1=0)=10, U1

1 (x1=1)=5,
U1
3 (x3=0)=5, U1

3 (x3=1)=10
]

(a) EUDaC coordinate stage.

x2 x1

x∗,2 = {x∗
1 = 1,x∗

2 = 0}
ρ = 1

4 ,R
2(x∗,2) = 5

r12 0 1

0 0 5

1 5 5

Δ2
1

0 10 · ρ
1 0

r2 +�2

0 0 + 0
1 −10 + 15 · ρ

x2
x1

x3

x∗,1 = {x∗
1 = 1,x∗

2 = 0,x∗
3 = 0}

ρ = 1
4 ,R

1(x∗,1) = 5

r13 0 1

0 0 5

1 5 5

Δ1
2

0 0
1 −15 · ρ

Δ1
3

0 0
1 −7 · ρ

r1 +�1

0 0− 17 · ρ
1 −5 + 0

r12 0 1

0 0 5

1 5 5

x1 x3

x∗,3 = {x∗
1 = 0,x∗

3 = 1}
ρ = 1

4 ,R
3(x∗,3) = 6.5

r3 +�3

0 0

1 -2 + 7·ρ

Δ3
1

0 7·ρ
1 0

r13 0 1

0 0 5

1 5 5

(e) New subproblems after EU-DaC divide stage and solutions obtained using a damping parameter ρ = 1
4

.

Figure 5.6: Trace of EU-DaC over the DCOP initial division of figure 5.2(a).

without any additional cost. Recall in figure 5.2(a) after the initial divide stage , agent

a1 disagrees with a2 and a3 on the optimal value of all their shared variables, namely

x1, x2 and x1, x3 respectively.

Thus, EU-DaC agents proceed to coordinate. Function 8 implementation of the EU-

DaC realisation of the wrapCoordinationInfo function. Following function 8,

each EU-DaC agent ai exchanges a message ηij with each one of its neighbours aj
that contains the max-marginals for their common variables, namely U i

i and U i
j . Figure

5.6(a) shows the coordination messages exchanged between EU-DaC agents during the

coordination stage. For instance, agent a2 sends to a1 a message containing the max-

marginal utilities for their shared variables for its initial subproblem in figure 5.2(a),

namely x1 (U2
1) and x2 (U2

2 (0)). Concretely, agent a2 assesses its local max-marginals

for its variable x2 as:

U2
2 (0) = max

d1∈D1

r1(d1) + r12(d1, 0) + r2(0) = 5

U2
2 (1) = max

d1∈D1

r1(d1) + r12(d1, 1) + r2(1) = −5

Hence, agent a2 reports its coordinate message to a1, a local max-marginal utility of 5
when setting its variable x2 to 0 (U2

2 (0) = 5), and a local max-marginal utility of −5
when setting it to 1 (U2

2 (1) = −5).

Once received the coordination messages from its neighbours, each EU-DaC agent as-

sesses its coordination relations ({�i} and {�i}) by executing the

updateCoordinationRelation function. Function 9 outlines the pseudocode of

the EU-DaC implementation of updateCoordinationRelation function. Fol-

lowing function 9, each agent ai starts by calculating the damping parameter ρ for that

© CSIC © del autor o autores / Todos los derechos reservados

5.4. EU-DaC: Egalitarian Utilities Divide And Coordinate algorithm 99

iteration (line 1). Next, each agent ai uses the max-marginals received from each of

its neighbours ai in the coordination message ηij , along with its local max-marginals,

to update the coordination relations (lines 2-11). Figure 5.6(b) shows the coordina-

tion parameters assessed by EU-DaC agents for the initial division in figure 5.2(a) after

coordination. Notice that, unlike DaCSA, EU-DaC agents coordinate using only coor-

dination relations defined over single variables.

Function 8 wrapCoordinationInfo({U}i)
1: ηij = 〈U i

i ,U i
j〉;

2: return ηij ;

Function 9 updateCoordinationRelations(Φi, {η}i)
Each agent ai runs:

1: ρ ← calculateDampingParameter();

2: for xj ∈ N (xi) do
3: for ∀dj ∈ Dj /*For each value of xj*/ do
4: /*Assess coordination relation for neighbour variable*/

5: Δi
j(dj) = Δi

j(dj) + ρ ·
(
ηji. U j

j (dj)− U i
j(dj)

)
6: end for
7: for ∀di ∈ Di /*For each value of xi*/ do
8: /*Assess a coordination (balancing) relation for its own variable*/

9: �i
i(di) = �i

i(di) + ρ ·
(
ηji. U j

i (di)− U i
i (di)

)
10: end for
11: end for
12: return {Δ}i;

On the one hand, each agent ai updates for each of the variables of its neighbours

xj ∈ N(xi) the value of the coordination relation (Δi
j) that quantifies how much agent

ai must change its utility for xj to agree with aj’s max-marginal. For instance, in figure

5.6(b), a1 will modify its utility for x2 to agree with a2’s max-marginal. An agent ai
assesses Δi

j as as the difference between the value of the aj’ max-marginal and the

value of ai local max-marginal, damped by parameter ρ (lines 3-6). In figure 5.6(b), a1
obtains Δ1

2(0) = 0 and Δ1
2(1) = −15. These values indicate that whereas the utility for

a1’s assignment (x2 = 1) should be decreased, the utility for a2’s assignment (x2 = 0)

should remain the same because both a1 and a2 receive the same utility to set x2 = 0.

Notice that applying such utility changes would bring a1’s utilities closer to a2’s for

variable x2.

On the other hand, each agent ai assesses the coordination relation for its own vari-

able xi to counterbalance the utility updates of its neighbours (lines 7-10). In figure

5.6(b), agent a1 must counterbalance the updates that its neighbours (a2 and a3) make

to approach a1’s assignment through their coordination relations (Δ2
1 and Δ3

1).

Then, each agent uses its coordination relations to update its local subproblem in the

updateSubproblem function (line 6, algorithm 5). In figure 5.6(b), a1 updates its

Copia gratuita. Personal free copy http://libros.csic.es

100 Chapter 5. Divide-and-Coordinate

subproblem by adding �1
1 for variable x1, �1

2 for variables x2, and �1
3 for variable x3.

Thereafter, each agent ai solves its new subproblem to obtain its optimal local solution,

x,i, along with its value R(x,i) . Figure 5.6(b) shows the local solutions and its values

computed by agents when setting ρ = 0.5. Likewise DaCSA, agents a1 and a3 change

their assignments with respect to the first iteration: agent a1 sets its variable x1 to 1

and variables x2, x3 to 0. Likewise agent a3 sets its variable x3 to 1 and variable x1

to 0. Thus, as a result agents get closer to an agreement because now agent a1 agrees

on the assignments of the shared variables with agent a2. Moreover, all agents obtain

lower utilities for their new assignments (compare the values of R1(x∗,1), R2(x∗,2)
and R3(x∗,3) with those in figure 5.2(a)). The sum of the utilities of subproblems

solutions for this division, 5 + 5 + 6.5 = 16.5, is lower than that obtained for the

initial division and those obtained for DaCSA in section 5.3. Since the sum of utilities

of subproblems’ solutions is an upper bound on the quality of the optimal solution,

agents obtain a tighter bound than those obtained in DaCSA after the first iteration. At

the end of each iteration, agents check if some termination condition is satisfied (line

18, algorithm 5). In addition to the termination conditions listed for the generic DaC

algorithm, EU-DaC also terminates when the max-marginal utilities are equal across

agents because their subproblems will not change when updating after that point. Thus,

unlike DaCSA, agents running EU-DaC can detect convergence even when they have

not found the optimal solution.

5.4.3 Complexity analysis

We can directly assess the complexity of EU-DaC from the complexity of the generic

DaC algorithm and from the particular EU-DaC implementations of the wrapCoordi-
nationInfo and updateCoordinationRelations functions. EU-DaC implements the wrap-
CoordinationInfo function by assessing a message from ai to aj that contains the max-

marginals for each of their shared variables. Therefore, the size of the coordination

messages is linear to the domain of variables. Moreover, in EU-DaC each agent up-

dates the coordination parameters requiring a number of operations linear in the size of

the local relations. As a result, EU-DaC is a low-overhead algorithm because agents

exchange a linear number of messages of linear size and performs a linear number of

operations.

5.5 Empirical evaluation

In this section we provide an empirical evaluation of the two DaC algorithms proposed

in this chapter: DaCSA and EU-DaC. We also provide an illustration of the tightness of

the per-instance quality guarantees of DaC algorithms on DCOP problems. Firstly, we

explain the details of our experimental setup in section 5.5.1. Secondly, we analyze our

empirical results in section 6.3.4.

© CSIC © del autor o autores / Todos los derechos reservados

5.5. Empirical evaluation 101

5.5.1 Empirical settings

Problem generation

We perform our comparison over randomly generated DCOP problems with binary vari-

ables. The process of generating a DCOP is divided in two steps. Firstly, we generate a

constraint graph, and afterwards we generate values for each of the relationships in the

constraint graph. Several results in agent research have found that the network topology

has a significant effect when solving a distributed problem (e.g. emergence of social

conventions (Pujol et al., 2005) or organizational adaptation (Gaston and DesJardins,

2005)). In our experiments we analyze three network topology alternatives:

Small-world. Many real-world networks, such a as food chains, electric power grids

or social influence networks show the small-world effect (Mark, 2003), that is,

the distance between any two nodes in the network is very small. We generate

constraint graphs that show the small-world effect using the model proposed in

(Newman and Watts, 1999). The graphs are created by starting from a ring and

adding a small number of random edges. In particular, for each node we use a

probability p = 0.3 of adding a new random edge.

Regular grids. The constraint graphs are rectangular grid where each agent is con-

nected to its four closer neighbors.

Random networks. The constraint graphs are created by randomly adding three links

for each variable.

Once a constraint graph is generated, we must assess its constraints’ values. We are

interested in evaluating our algorithms in the presence of strong dependencies among

the values of variables. At this aim, we generate constraint values by following an

Ising model (Baxter, 1982). Ising models have been widely used in statistical physics.

Following an Ising model, the weight of each binary relation rij , is determined by first

sampling a value κij from a uniform distribution U [−β, β] and then assigning

rij(xi, xj) =

{
κij xi = xj

−κij xi �= xj

Note that the constraint pushes both variables to be similar when κij is positive and

forces them to be different when κij is negative. The β parameter controls the average

strength of interactions. In our experiments we set β to 1.6. The weight for each unary

constraint ri is determined by sampling κi from a uniform distribution U [−0.05, 0.05]
and then assigning ri(0) = κi and ri(1) = −κi.

Algorithm’s parameters

In what follows we provide details on the particular parameters selected for the each of

the benchmarked algorithms in these experiments:

Copia gratuita. Personal free copy http://libros.csic.es

102 Chapter 5. Divide-and-Coordinate

DaC algorithms. For each DaC algorithm we must specify the strategy used by agents

to generate candidate solutions at each pair of divide and coordinate stages. We

use the two strategies proposed in section 5.2. At each iteration, each agent gen-

erates two candidate solutions for its variable: (1) the assignment in which more

agents agree on (S1); and (2) the assignment in which more agents agree on when

the remaining variables in its subproblem are given by the assignments selected

by the candidate solution in the previous iteration (S2). Then we set the parame-

ters specific for each DaC algorithm as follows:

DaCSA. For DaCSA we use the same step-size at each iteration t as follows:

ε =
1 +m

t+m
· R(xDaC)− ub

(
∑

λ∈{λ}(λt − λt−1)2)2
(5.18)

where m = 5, ub is the lowest upper bound calculated by agents up to

that execution point and R(xDaC) is the value of the DaCSA anytime so-

lution. The intuition behind this formula is that the information transferred

between agents for each constraint (ε) gets larger when the distance between

the value of the best solution found so far and the bound grows, namely,

when the algorithm is far from the optimal solution. Furthermore, it also

gets larger when the level of disagreement among agents is smaller (there

are fewer constraints among which we have to share the load). Each agent

instantiates the bound, the value of the anytime configuration and the sum of

Lagrange multipliers in equation 5.18 with the values of the last known di-
vide and coordinate stages. At an early stage in the execution, when agents

do not know yet the value of these parameters, they use a constant step-size

ε = 0.001/
√
t.

EU-DaC. For EU-DaC we set the value of the damping parameter ρ to 0.5.

DSA. For DSA, reviewed in chapter 2, we use an activation probability p = 0.7, a value

that is reported to work well in (Zhang et al., 2005). Since DSA usually converges

in a small number of iterations to get a fair comparison we restart it every time it

converges keeping the best configuration among all converged solutions.

MGM. For MGM-{2,3}3, reviewed in chapter 2, we set the probability q of being an

offerer to 0.9, a value that is shown to reach the highest average solution quality

by the experiments reported in (Maheswaran et al., 2004a).

Measures

We compare these algorithms based on the solution obtained in a number of message

cycles. The number of message cycles is a commonly used measure for algorithm ef-

ficiency in the DCOP literature (Pearce and Tambe, 2007; Modi et al., 2005; Mailler

and Lesser, 2004). It is specially adequate to our case because all the algorithms bench-

marked are low-overhead algorithms.

3For MGM-{2,3} we use the code provided in http://teamcore.usc.edu/dcop/

© CSIC © del autor o autores / Todos los derechos reservados

5.5. Empirical evaluation 103

To normalize plots, we compare algorithms based on the percent gain. We assess the

percent gain of an algorithm A with respect to an algorithm B at iteration t as 100 ·
(qA−qB

qB
), where qA is the value of the solution of A algorithm and qB is the value

of the solution of B algorithm. Notice that positive values of the percent gain of an

algorithm A with respect to an algorithm B stand for positive gains of algorithm A (the

higher stand for better).

5.5.2 Results
In this section, we benchmark DaC algorithms against other state-of-the-art DCOP in-

complete algorithms in terms of its solution quality and the quality of their bounds.

First, we benchmark DaCSA against Max-sum (Farinelli et al., 2008) and DSA (Zhang

et al., 2005), two state-of-the-art DCOP algorithms, that as reviewed in Chapter 3, can

not provide any quality guarantee over their solutions. Second, we compare the quality

of the solutions and the tightness of the bounds of EU-DaC and DaCSA with MGM

algorithms (Maheswaran et al., 2004a; Katagishi and Pearce, 2007), that as reviewed in

Chapter 3, are algorithms that provide system designer’s quality guarantees.

Comparing DaCSA with DSA and Max-Sum

In this section we analyse the results obtained when benchmarking DaCSA against the

Max-sum and DSA algorithms.

As to the solution quality, figures 5.7 (a) (c) and (e) show the results for 20 agents (25

in the regular grid) on a small-world, regular grid, and random structure respectively.

Each graph shows the mean among 25 problem instances of the percent gain of DaCSA

with respect to Max-sum (MS) and DSA when varying the number of message cycles

(mcs) up to 300. We also plotted the percent loss of DaCSA against the bound to have

an idea of the accuracy of the bound. Over more realistic topologies (small world and

regular grids) we observe that DaCSA outperforms Max-Sum and DSA. Concretely,

at 50 message cycles, in small-world topologies, DaCSA gets a mean percent gain of

around 10% with respect DSA and Max-sum. For regular grids, at 50 message cycles,

the mean percent gain of DaCSA with respect to DSA and Max-sum is around 10% and

20% respectively. In both topologies, the gain with respect Max-sum remains nearly

unchanged but the gain with respect to DSA is reduced although it never gets negative

along the 300 messages cycles. However, in random instances DaCSA performs slightly

worse and, although it gets better results than Max-sum (it gets a mean gain of 20% at 50

message cycles) it is unable to outperform DSA. The same conclusions (although more

significant) hold for figures 5.7 (b), (d), and (f), as the number of variables increases to

40 (49 in the regular grid case). Hence, the network topology seems to be a key factor

for DaCSA’s performance.

Regarding the quality of the bound returned by DaCSA, table 5.3 shows the mean of

the approximation ratios and its variance on different topologies.

The bound provided by DaCSA on realistic topologies is very accurate. The mean loss

of DaCSA with respect to the bound is around 12% (approximation ratio of 1.17) in

small-world and around 23% (approximation ratio of 1.32) in regular grids. The bound

provided by DaCSA over random networks is less accurate.

Copia gratuita. Personal free copy http://libros.csic.es

104 Chapter 5. Divide-and-Coordinate

gain w.r.t. Max-Sum gain w.r.t. DSA loss w.r.t. DaCSA bound

50 100 150 200 250 300

−30

−20

−10

0

10

message cycles

p
e
r
c
e
n
t

g
a
i
n

(a) Small world 20 variables

50 100 150 200 250 300
−40

−20

0

20

message cycles

p
e
r
c
e
n
t

g
a
i
n

(b) Small world 40 variables

50 100 150 200 250 300
−40

−20

0

20

message cycles

p
e
r
c
e
n
t

g
a
i
n

(c) Regular grid 25 variables

50 100 150 200 250 300
−40

−20

0

20

message cycles

p
e
r
c
e
n
t

g
a
i
n

(d) Regular grid 49 variables

50 100 150 200 250 300

−40

−20

0

20

message cycles

p
e
r
c
e
n
t

g
a
i
n

(e) Random 20 variables

50 100 150 200 250 300

−40

−20

0

message cycles

p
e
r
c
e
n
t

g
a
i
n

(f) Random 40 variables

Figure 5.7: Graphs showing the percent gain of DaCSA with respect to MS and DSA

and the percent loss with respect to the DaCSA bound vs the number of message cycles

on agent networks with different topologies and scales.

Topology Vars Message cycles
50 mcs 100 mcs 300 mcs

Small-world
v20 1.17± 0.004 1.13± 0.002 1.12± 0.002
v40 1.22± 0.004 1.14± 0.002 1.10± 0.002

Regular grids
v25 1.32± 0.006 1.28± 0.006 1.26± 0.004
v49 1.41± 0.004 1.33± 0.003 1.29± 0.003

Random
v20 1.77± 0.007 1.76± 0.007 1.75± 0.007
v40 1.96± 0.007 1.95± 0.012 1.88± 0.008

Table 5.3: Mean of approximation ratios on different topologies calculated from

DaCSA solutions and bounds

© CSIC © del autor o autores / Todos los derechos reservados

5.5. Empirical evaluation 105

These empirical results show the potential of DaCSA because it provides good solutions

on realistic topologies. Moreover, the results also show that the approximation ratio

that the algorithm provides in this kind of problems is significant. However, DaCSA

provides worse solutions on randomly structured problems.

Comparing EU-DaC with DaCSA and MGM algorithms

In this section we analyse the results obtained when benchmarking EU-DaC and DaCSA

against MGM-{2,3} algorithms. Next, some comments over the quality guarantees pro-

vided by each algorithm are in place. Recall that, although both DaC algorithms and

MGM algorithms can provide quality guarantees, following the approximate quality

guarantees classification introduced in Chapter 1, these quality guarantees are of dif-

ferent nature. On the one hand, the quality guarantees of DaC algorithm (EU-DaC

and DaCSA) are per-instance that can used from an agent perspective: agents assesses

a the percent bound over the best candidate solution valuated so far. On the other

hand, MGM quality guarantees are defined as per-structure class or problem indepen-

dent guarantees that can be used from a system designer perspective and that are definer

over the k-optimal solutions that MGM achieve on convergence. In our experiments we

plot the tight k-optimal graph-based quality guarantees (Pearce and Tambe, 2007) that

use knowledge of the problem graph structure and for which agents need to solve linear

problem to assess them.

Regarding solution quality, figures 5.9 (a), (b) and (c) show the results for 100 agent

networks on small-world, regular grid and random topologies respectively. Each graph

shows the mean over 25 instances of the percent gain of EU-DaC respect to DaCSA

and MGM-{2,3}. First, observe that in all experimented topologies EU-DaC outper-

forms DaCSA, the other DaC algorithm. Thus, results show that when agents explicitly

communicate their max-marginal utilities instead of their local solutions they obtain re-

sults closer to an agreement. Observe that while EU-DaC obtains higher gains (around

40-60%) on structured topologies (small-world and regular grids), as the number of

message cycles increases, these gains reduce to around 10%. In contrast, as to random

networks, the gains of EU-DaC with respect to DaCSA are initially lower (around 30%)

but remain more constant as the number of message cycles increases.

Secondly, when comparing with MGM algorithms, we observe that EU-DaC outper-

forms MGM-2 in all the scenarios and the same applies to MGM-3 on structured

topologies. The gains of EU-DaC with respect to MGM-{2,3} are lower than respect

to DaCSA (around 5 − 10%). As to random topologies, EU-DaC even obtains sligth

losses with respect to MGM-3 in the long run. Thus, we can conclude that EU-DaC

is very competitive when compared with MGM-{2,3} getting similar results and even

outperforming them on some problem topologies.

Regarding bound quality, in figure 5.8 we compare the quality guarantees of EU-DaC

with those of DaCSA and MGM-{2,3} by plotting the percent bound quality of their

solutions when varying the number of message cycles. We assess the percent bound

quality of an algorithm A as 100 · qA
ubA

where qA is the value of the solution of A al-

gorithm and ubA is an upper bound on the value of the optimal solution. Intuitively, a

percent bound quality P indicates that the anytime solution has at least a P percent of

the quality of the optimal. Figure 5.8 shows the mean of percent bound qualities pro-

Copia gratuita. Personal free copy http://libros.csic.es

106 Chapter 5. Divide-and-Coordinate

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

 message cycles

b
o
u
n
d

g
u
a
r
a
n
t
e
e

(a) Small world 100 variables

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

 message cycles

b
o
u
n
d

g
u
a
r
a
n
t
e
e

(b) Regular grids 100 variables

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

 message cycles

b
o
u
n
d

g
u
a
r
a
n
t
e
e

(c) Random 100 variables

Figure 5.8: Percent bound qualities of EU-DaC, DaCSA and k={2,3} optimal over

different topologies

vided by DaC algorithms (EU-DaC and DaCSA) and MGM-{2,3} graph-based guar-

antees of over their converged after convergence on the different topologies. Firstly, we

observe that DaC bounds are significantly more accurate than k-optimal bounds. While

EU-DaC gets bounds around 55-85% (depending on the topology), 2- and 3-optimal

bounds never go above 15% and 30% respectively in any scenario. Secondly, results

© CSIC © del autor o autores / Todos los derechos reservados

5.5. Empirical evaluation 107

Topology %Conv. Conv. mcs
MGM-2

Small-World 100% 36.8± 22.4
Regular grid 100% 44.8± 24.7
Random 100% 74.8± 64.6

MGM-3
Small-World 80% 139.6± 74.7
Regular grid 40% 192.5± 75.3
Random 40% 181.3± 79.3

Table 5.4: Percentage of instances in which MGM algorithms converged in less than

300 mcs (%Conv.) and the mean number of mcs required (Conv. mcs).

show bounds provided by EU-DaC are always higher (around 5-10%) than those pro-

vided by DaCSA. It is not surprising since DaC algorithms use the quality of the best

solution, which is higher for EU-DaC, to assess the bound.

In addition to its accuracy, it is also important when agents can start providing quality

guarantees over their solutions. DaC agents require an initial number of iterations to

distributedly assess the bound. These initial delays are illustrated in figure 5.8 when

plotting DaC quality guarantees. In contrast, MGM algorithms can only provide qual-

ity guarantees on convergence. Figure 5.8 (d) shows a table with the percentage of

instances in which MGM algorithms converged in less than 300 mcs and the mean

number of mcs required. Observe that MGM-2 converges in all instances although the

number of message cycles required to converge vary depending on the problem and

the topology. As to MGM-3, however, the percentage of converged instances is quite

low, particularly for regular grids and random topologies: MGM-3 fails to converge in

more than half of the instances. Thus, for many instances, MGM-3 can not provide the

3-optimal bounds plotted in figure 5.8. Moreover, convergence requires a large number

of message cycles.

In summary, results in this section show how EU-DaC outperforms DaCSA in all ex-

perimented scenarios, confirming the intuition that coordinating by exchanging utilities

for assignments instead of preferred assignments leads to solutions of higher quality.

Regarding k-optimal MGM algorithms, results also show that EU-DaC solution qual-

ity is similar to MGM-{2,3} algorithms. However, as to the bound quality, EU-DaC

bounds, and in general DaC bounds, are significantly more accurate than 2- and 3- size

optimal bounds, and, therefore, more meaningful for agents at run time. These results

are on the line of what is discussed in chapter 1 that the more specific the quality guar-

antees the tighter they are likely to be. Moreover, they support the need, argued also

in Chapter 1 for a broader concept of approximate quality guarantees that satisfy the

different requirements derived from different perspectives, namely from the agents (as

DaC quality guarantees) and from the system designer (as k-optimal guarantees).

Copia gratuita. Personal free copy http://libros.csic.es

108 Chapter 5. Divide-and-Coordinate

50 100 150 200 250 300
−10

0

10

20

30

40

50

60

 message cycles

p
e
r
c
e
n
t

g
a
i
n

(a) Small world 100 variables

50 100 150 200 250 300
−10

0

10

20

30

40

50

60

 message cycles

p
e
r
c
e
n
t

g
a
i
n

(b) Regular grids 100 variables

50 100 150 200 250 300
−10

0

10

20

30

40

50

60

 message cycles

p
e
r
c
e
n
t

g
a
i
n

(c) Random 100 variables

Figure 5.9: Percent gain of EU-DaC with respect to DaCSA, MGM-{2,3} over different

topologies.

5.6 Conclusions

In this chapter we have contributed to overcome the limitations of incomplete DCOP

algorithms on providing quality guarantees from an agent prespective as identified in

chapter 3. Along this line, the main contribution of this chapter was the formalisation

© CSIC © del autor o autores / Todos los derechos reservados

5.6. Conclusions 109

of the DaC approach, a novel approach to solve DCOPs that provide agents’ quality

guarantees. Hence, according to DaC agents aim to solve DCOPs by searching for a di-

vision into subproblems such that individual subproblems agree on their solutions. DaC

agents iteratively search through this space of divisions by: (i) exchanging information

about their conflicts; (ii) updating their subproblems by exchanging utilities with their

neighbours at the aim of reaching an agreement.

We explained how the DaC approach leads to different DaC algorithms depending on:

(i) what information is exchanged about local subproblems; and (ii) which strategy

agents follow to update them. Thus, the second contribution of this chapter is the

formalisation of two different DaC algorithms: DaCSA and EU-DaC. Regarding the

information exchanged, DaCSA agents exchange local solutions, whereas EU-DaC ex-

change max-marginals. Regarding the strategy used to update subproblems, a DaCSA

agent exchanges some utility for its local solution when those differ, whereas an EU-

DaC agent exchanges utilities to get closer max-marginals. Empirical results show that

EU-DaC obtains better solutions than DaCSA. This supports the hypothesis that co-

ordinating by exchanging utilities instead of optimal solutions leads to higher quality

solutions.

Both DaC algorithms allow agents to provide anytime solutions with per-instance qual-

ity guarantees while using little local computation and local communication. More-

over, empirical results show how DaC algorithms leads (on average) to better solutions

than other state-of-the-art DCOP algorithms that can not provide any quality guarantee

over their solutions, namely DSA or Max-sum. Empirical results also show that when

benchmarked against k-optimal MGM algorithms, EU-DaC solution quality is similar

to MGM-{2,3} algorithms, whereas EU-DaC quality guarantees, and in general DaC

guarantees, are much tighter and, therefore, more meaningful for agents at run time.

Hence, we can conclude that that the more the specificity of the quality guarantees, the

tighter they are likely to be.

Figure 5.5 shows the resultant DCOP landscape after incorporating the aforementioned

contributions of this chapter. Observe that now the landscape includes DaC as a novel

approach to solve DCOPs. Moreover, the inclusion of the DaCSA and EU-DaC algo-

rithms extends the DCOP incomplete algorithms that can provide guarantees from an

agent perspective (so far uniquely occupied by the bounded Max-Sum algorithm).

This chapter defined a family of DCOP incomplete algorithms that provide approximate

quality guarantees from an agent perspective. However, as discussed in chapter 1 there

is also the need of algorithms that can provide approximate quality guarantees from a

system designer perspective. Empirical results provided in this chapter show that k-size

optimal MGM algorithms are competitive with EU-DaC in terms of solution quality

whereas providing quality guarantees, complementary to DaC guarantees, that satisfy

the requirements for the system designer. Therefore, in the next chapter we focus on

generalising these k-size optimal quality guarantees, together with the algorithms that

return k-size optimal solutions, focusing on DCOP incomplete algorithms that provide

system designer’ quality guarantees.

Copia gratuita. Personal free copy http://libros.csic.es

110 Chapter 5. Divide-and-Coordinate

Dynamic
Programming

Partial
Centralisation Search Based

C
o

m
p

le
te

DPOP

PC-DPOP

DCPOP OptAPO

ADOPT

BnB-ADOPT

In
co

m
p

le
te

A
p

p
ro

x
im

at
e S
y

st
em

D
es

ig
n

er

MGM/SCA-{2,3}

k-DALO
k-size guarantees

t-DALO
t-distance guarantees

A
g

en
t

Bounded

Max-Sum

EU-DaC
DaCSA

D
aC

gu
ar

an
te

es

N
o

g
u

ar
an

te
e

Max-Sum DSA/MGM-1

GDL-based Decision-based Divide-and-Coordinate

Table 5.5: DCOP algorithms landscape after Divide-and-Coordinate. Contributions of

this chapter are highlighted in blue/bold. DCOP algorithms are classified based on the

quality assessment they provide over their solutions (vertical axis) and the approach

they follow to solve DCOPs (upper and lower horizontal axes).

© CSIC © del autor o autores / Todos los derechos reservados

Chapter 6

Region Optimality

The family of DaC algorithms proposed in chapter 5 provides quality guarantees that

are suitable to be used by agents, at runtime. In contrast, in this chapter we focus

on incomplete DCOP algorithms that provide approximate system designer’s quality

guarantees.

To achieve that purpose we start from the k-size and t-distance optimal frameworks

(Pearce and Tambe, 2007; Kiekintveld et al., 2010), the only DCOP frameworks that

provide quality guarantees such that fulfill the system designer’s requirements. Thus,

k-size and t-distance define quality guarantees over their solutions at design time that

apply: (i) to any problem (problem-independent guarantees); or (ii) to problems with a

particular graph structure (per-structure guarantees). Size and distance optimality differ

on the criteria to define local optimality. On the one hand, k-size optimality defines

guarantees for solutions that cannot be improved by any group of k or fewer agents

changing their decision. On the other hand, t-distance optimality defines guarantees for

solutions that can not be improved by any group of agents distance at most t from a

central agent changing their decision.

Although k-size and t-distance are the criteria explored so far in the literature, it is

reasonable to wonder whether there are further local optimality criteria that can lead to

better solution qualities while providing quality guarantees. In this chapter we set the

foundations to explore this fundamental research question. First of all, we generalise

the k-size and t-distance optimal frameworks to introduce region optimality, a flexible

framework that provides quality guarantees for local optima in regions characterised by

any arbitrary criterion. To achieve that purpose, we show how to compute problem-

independent and per-structure guarantees for any region optima. Finally, we show how

to extend these region optimal quality guarantees to exploit a-priori knowledge of the

reward structure along the lines of the work in (Bowring et al., 2008) for k-size optima.

As a second contribution, this chapter shows how region optimality allows us to explore

the space of local optimality criteria (beyond size and distance) looking for those criteria

that lead to better solution qualities. First, we propose a novel criterion to define regions,

the so-called size-bounded-distance criterion, which we design to overcome the main

drawbacks of size and distance optimality. Secondly, we extend the DALO algorithm

proposed in (Kiekintveld et al., 2010) for k-size and t-distance optimal solutions to

111

Copia gratuita. Personal free copy http://libros.csic.es

112 Chapter 6. Region Optimality

x0 x1

x2 x3

(a)

x0 x1

x2 x3

x0 x1

x2 x3

x0 x1

x2 x3

x0 x1

x2 x3

x0 x1

x2 x3

x0 x1

x2 x3

(b)

x0 x1

x2 x3

x0 x1

x2 x3

x0 x1

x2 x3

x0 x1

x2 x3

(c)

Figure 6.1: Example of (a) a DCOP graph, (b) its 2-size region and (c) its 3-size region.

compute region optimal solutions. Finally, we benchmark the average performance of

the generic region optimal algorithm when using the different region optima criteria

proposed.

This chapter is organised as follows. Section 6.1 provides some background on the k-

size and t-distance optimal frameworks. Section 6.2 introduces the notion of region

optimal solution and the mechanisms for computing problem-independent and per-

structure region optimal quality guarantees. Moreover, it also proves that the region

optimality framework generalises both k-size and t-distance optimality. Section 6.3 in-

troduces a new local optimality criterion, the so-called size-bounded distance criterion,

and empirically compares it with respect to k-size and t-distance. Section 6.4 extends

region optimality guarantees to exploit a-priori knowledge of the reward structure of

the problem, if available. Finally, Section 6.5 draws conclusions and summarises the

contributions of this chapter.

6.1 Background: size and distance optimality
As discussed in chapter 3, an important approach to incomplete DCOP algorithms fo-

cuses on coordinating the decisions of local groups of agents, instead of having each

agent make an individual choice. So far two important local optimality criteria that

establish how to group agents to coordinate their decisions have been explored: k-size

(Pearce and Tambe, 2007) and t-distance (Kiekintveld et al., 2010) optimality.

An assignment xk is a k-size optimum when no group of k or fewer agents can im-

prove its reward R(xk) by simultaneously changing their variable assignments. On the

other hand, t-distance optimality defines locality based on a group of surrounding nodes

within a fixed distance t of a central node. For instance, figures 6.2(b) and 6.2(c) depict

the groups of agents at distance 1 and 2 respectively for each agent in the DCOP in

figure 6.2(a). Likewise k-size optimality, a t-distance optimum occurs when no group

of t-distance agents can improve its reward.

A key property of k-size and t-distance optimality is that they are the only DCOP

frameworks that can provide worst-case guarantees on the solution quality of k-size

© CSIC © del autor o autores / Todos los derechos reservados

6.1. Background: size and distance optimality 113

x0 x1 x2

x3 x4 x5

(a)

x0 x1 x2

x3 x4 x5

(1)

x0 x1 x2

x3 x4 x5

(2)

x0 x1 x2

x3 x4 x5

(3)

x0 x1 x2

x3 x4 x5

(4)

x0 x1 x2

x3 x4 x5

(5)

x0 x1 x2

x3 x4 x5

(6)

(b)

x0 x1 x2

x3 x4 x5

(1)

x0 x1 x2

x3 x4 x5

(2)

x0 x1 x2

x3 x4 x5

(3)

x0 x1 x2

x3 x4 x5

(4)

x0 x1 x2

x3 x4 x5

(5)

x0 x1 x2

x3 x4 x5

(6)

(c)

Figure 6.2: Example of (a) a DCOP graph, (b) its 1-distance region and (c) its 2-distance

region.

and t-distance optimal solutions exploiting different levels of knowledge of the partic-

ular problem instance(s). Hence, k-size and t-distance optimal quality guarantees are

problem-independent and per-class quality guarantees assessed at design time that can

be used for the system designer to trade-off quality versus cost.

Both k-size and t-distance optimality have explored different mechanisms for comput-

ing bounds. Firstly, both k-size and t-distance optimality provide means for computing

bounds independently of the problem instance (Pearce and Tambe, 2007; Kiekintveld

et al., 2010), disregarding the graph structure and reward structure. Secondly, knowl-

edge of a problem instance can be used to obtain tighter guarantees. One way is to

exploit the knowledge about the graph structure of the DCOP (e.g. star, ring) (Pearce

and Tambe, 2007) defining per-structure quality guarantees. Another way is to exploit

the reward structure (Bowring et al., 2008) defining per-reward quality guarantees. We

can group such mechanisms based on their computational costs.

On the one hand, a tight bound on the quality of every k-size or t-distance optimum can

be computed using a linear program (LP) (Pearce and Tambe, 2007; Kiekintveld et al.,

2010). In this method, rewards on the relations in the DCOP are treated as variables in a

program whose goal is to minimise the quality guarantee. When the program is solved,

the decision variables are instantiated with the values that, if used as relation rewards,

would produce the DCOP whose local optimum has the lowest reward with respect to

the global optimal solution. For example, for k-size optimality and for a specific graph

structure, after running the program we obtain: (i) a quality guarantee δ for any k-size

optimal solution on any DCOP having the specific constraint graph; and (ii) a DCOP

having the specific constraint graph and a k-size optimal solution xk whose quality is

Copia gratuita. Personal free copy http://libros.csic.es

114 Chapter 6. Region Optimality

equal to the relative error bound 0 ≥ δ ≥ 1, namely R(xk) = δ ·R(x∗)
On the other hand, there are methods that are computationally cheaper and can compute

bounds in constant time (Pearce and Tambe, 2007; Kiekintveld et al., 2010). Despite

the computational savings of these methods, with respect to the LP-based approach, in

general tightness is not guaranteed.

Since k-size and t-distance optimal frameworks are algorithmic-independent, different

algorithms have been proposed in order to efficiently search for k-size and t-distance

optimal solutions. MGM-{2,3} algorithms (Maheswaran et al., 2004a; Katagishi and

Pearce, 2007) were the first k-size optimal algorithms that return 2-size and 3-size so-

lutions respectively. Then, the work in (Katagishi and Pearce, 2007) formulated KOPT,

a synchronous k-optimal algorithm that works for arbitrary settings of k. At the time

of writing, the leading k-size/t-distance optimal algorithm is DALO (Kiekintveld et al.,

2010), an asynchronous algorithm proposed to overcome the inefficiencies of KOPT

that can find either k-size or t-distance optimal solutions for arbitrary settings of k and

t. All these k-size/t-distance optimal algorithms proposed so far are decision-based:

agents inside a neighbourhood coordinate to locally optimise their joint decision by

considering any joint assignment that can improve their joint reward.

6.2 Generalizing size and distance optimality

In this section we generalize the concept of size and distance optimality to region opti-

mality, which allows us to characterize any local optimum in a region C characterized

by an arbitrary criterion. But before that, we analyse the commonalities between size

and distance optimality.

The difference between k-size and t-distance optimal algorithms is the criterion em-

ployed to generate groups, that we shall refer to as neighbourhoods: k-size optimality

creates neighbourhoods of a fixed size (k), whereas t-distance optimality creates per

each agent a neighbourhood that includes all other agents within a certain distance (t)
in the constraint graph. In both cases, we can regard a collection of neighbourhoods as

an exploration region, namely C, for either a k-size or t-distance optimal algorithm in

a constraint graph. For instance, in figure 6.2(b), we show the neighbourhoods in the

1-distance region of the DCOP in figure 6.2(a), where boldfaced nodes in the constraint

graph stand for variables included in the neighbourhood. Given some assignment x, we

say that it is optimal in a neighbourhood Cα ∈ C if its reward cannot be improved by

changing the values of some of the variables in the neighbourhood. For instance, the

first graph on the left in figure 6.2(b) represents a neighbourhood composed of variables

{x0, x1, x3}. An assignment x is optimal in that neighbourhood if any other assignment

that maintains the values of x2, x4 and x5 receives at most the same reward as x. Then,

we can claim optimality for x in a region C (noted as xC) whenever it is optimal in

each neighbourhood in the region. For instance, an assignment x will be optimal in the

region depicted in figure 6.2(c) if it is optimal in each of its neighbourhoods. Therefore,

in general, for both k-size and t-distance based optimality, we observe that:

• each criterion is based on the definition of a region over the constraint graph; and

© CSIC © del autor o autores / Todos los derechos reservados

6.2. Generalizing size and distance optimality 115

• given any assignment, checking for either k-size or t-distance optimality amounts

to checking for optimality in that region.

Although k-size and t-distance are the criteria explored so far in the literature, it is

reasonable to wonder whether there are further local optimality criteria that can lead to

better solution qualities while providing quality guarantees.

Hereafter we propose a general notion of region optimality, the so-called C-optimality,

and describe how to calculate bounds for a C-optimal assignment, namely an assignment

that is optimal in an arbitrary region C.

6.2.1 Region optimality
Next, we introduce the concepts of neighbourhood and region so that we can formally

define region optimality. After that, we analyse the way in which neighbourhoods relate

to each other by formalizing the idea that a larger neighbourhood covers a smaller one.

Formally, a neighbourhood is a subset of variables of X . For instance, figure 6.2(b)(1)

depicts a neighbourhood for the DCOP in figure 6.2(a) where boldfaced nodes in the

constraint graph stand for variables included in the neighbourhood, namely {x0, x1, x3}.

Given two assignments x and y, we define D(x, y) as the set containing the variables

whose values in x and y differ. Given a neighbourhood A, we say that x is a neighbour
of y in A iff x differs from y only in variables that are contained in A, thus D(x, y) ⊆ A.

For example, consider that the variables in the DCOP of figure 6.2(a) take their values

from {0, 1}. Then, given the solution x = {x0 = 0, x1 = 0, x2 = 1, x3 = 1, x4 =
1, x5 = 1} and y = {x0 = 1, x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1}, x is a

neighbour of y in the neighbourhood of figure 6.2(b)(1) because D(x, y) = {x0, x1} ⊆
{x0, x1, x3}.

Given some assignment x, we say that it is optimal in a neighbourhood A if its rewards

cannot be improved by changing the values of some of the variables in the neighbor-

hood. That is, for every assignment y such that x is a neighbour of y in A, we have

that R(x) ≥ R(y). Thus, an assignment x is optimal in the neighbourhood of figure

6.2(b)(1) if any other assignment that maintains the values of x2, x4, x5 as in x receives

at most the same reward as x.

A region C is a multi-set1 of subsets of X , namely a multi-set of neighbourhoods of X .

For instance, figure shows a region composed of six neighbourhoods (1)-(6). Given a

region C, we say that x is inside region C of y iff there is a neighborhood Cα ∈ C such

that x is neighbour of y in Cα.

An assignment x is C-optimal if it cannot be improved by any other assignment inside

region C of x. That is, for every assignment y inside region C of x, we have that

R(x) ≥ R(y). Thus, an assignment x in the region depicted in figure 6.2(b) if it is

optimal in each of its six neighborhoods.

Relations among neighbourhoods

Given two neighbourhoods A,B ⊆ X we say that B completely covers A if A ⊆ B.

We say that B does not cover A at all if A ∩ B = ∅. Otherwise, we say that B covers

1A multi-set is a generalisation of a set that can hold multiple instances of the very same element.

Copia gratuita. Personal free copy http://libros.csic.es

116 Chapter 6. Region Optimality

A partially.

As an example of these relations, consider neighbourhoods (1) and (4) in figure 6.2(b),

noted as A = {x0, x1, x3} and B = {x2, x4, x5} respectively, and neighbourhood (1)

in figure 6.2(c), noted as C = {x0, x1, x2, x3, x4}. Then, we have that A covers C
partially (it contains some variables in C) whereas C covers A completely (C contains

all variables in A). Moreover, A does not cover B at all and viceversa because these

neighbourhoods do not have any variable in common.

Then, we say that A ⊆ X is covered by C if there is a neighbourhood Cα ∈ C such that

Cα completely covers A. For example, neighbourhood (1) in figure 6.2(b) is covered by

the region of neighbourhoods in figure 6.2(c), because, among others, neighbourhood

(1) in this region covers it completely.

For each neighbourhood Cα we can classify each relation S in a DCOP into one of

three disjoint groups, depending on whether Cα covers S completely (T (Cα)), partially

(P (Cα)), or not at all (N(Cα)).

For each relation rV ∈ R we define:

• cc(rV , C) = |{Cα ∈ C s.t. V ⊆ Cα}|, that is, the number of neighbourhoods in

C that cover the domain of rV completely. In the 2-distance region C in figure

6.2(c), cc(r01, C) = 2 because neighborhoods (b)(1) and (b)(2) completely cover

{x0, x1}.

• nc(rV , C) = |{Cα ∈ C s.t. V ∩Cα = ∅}|, that is, the number of neighbourhoods

in C that do not cover the domain of rV at all. For example, in the 2-distance

region C in figure 6.2(c), nc(r01, C) = 2 because neighborhoods (b)(4) and (b)(5)

do not cover {x0, x1} at all.

• pc(rV , C) = |{Cα ∈ C s.t. V ⊆ Cα and V ∩ Cα �= ∅| that is, the number of

neighborhoods that partially cover the domain of rV . Alternatively, the number

of partial relations can also be defined in terms of the non-covered and the totally-

covered relations as pc(rV , C) = |C| − nc(rV , C) − cc(rV , C). Thus, in the 2-

distance region C in figure 6.2(c), pc(r01, C) = 2 because neighborhoods (b)(3)

and (b)(6) partially cover {x0, x1}.

6.2.2 Fine quality guarantees for region optima

After its formal definition, we are interested in providing a relative error bound on the

quality of any C-optimal assignment in a DCOP with non-negative rewards. We say

that we have a bound δ (being 0 < δ ≤ 1) when we can state that the quality of any

C-optimal assignment xC is larger than δ times the quality of the optimal assignment

x∗. Hence, we are interested in providing a bound δ such that for every xC we have

that
R(xC)
R(x∗) ≥ δ. For a given set of relations R, let xC

− be the C-optimal assignment with

smallest reward, then
R(xC

−)

R(x∗) provides a tight bound on the quality of any C-optimal

assignment for the specific rewards R.

We are interested in defining bounds that are independent of the particular reward values

of the DCOP. In that setting, a simple way to provide a bound on the quality is to directly

© CSIC © del autor o autores / Todos los derechos reservados

6.2. Generalizing size and distance optimality 117

search the space of reward values to find the set of rewards R∗ that minimizes
R∗(xC

−)

R∗(x∗) .

More formally, this can be encoded as:

Find R, xC and x∗ that

minimize
R(xC)
R(x∗)

subject to xC being a C-optimal for R

Based on the definition of region optimality in section 6.2.1, the condition of being

C-optimal can be expressed as: for each x inside region C, R(xC) ≥ R(x). How-

ever, instead of considering all assignments inside region C, given an assignment xC

we only consider the assignments such that the variables that deviate from xC take the

same value that they do in the optimal assignment x∗. If we restrict to this subset of

assignments, then each neighbourhood covers 2|C
α| assignments, one for each subset

of variables in the neighbourhood. Let 2C
α

stand for the set that contains all subsets

of neighbourhood Cα. Then, for each Ak ∈ 2C
α

we can define an assignment xαk

such that: (i) for every variable xi in a relation completely covered by Ak we have that

xαk
i = x∗

i ; and (ii) for every variable xi that is not covered at all by Ak we have that

xαk
i = xC

i . Then, we can write the value of xαk as :

R(xαk) =
∑

r∈T (Ak)

r(x∗) +
∑

r∈P (Ak)

r(xαk) +
∑

r∈N(Ak)

r(xαk), (6.1)

where T (Ak) is the set of completely covered relations, P (Ak) stands for the set of

partially covered relations and N(Ak) stands for the set of relations not covered at all.

Now, we say that xC is C-optimal if it fulfils:

R(xC) ≥
∑

r∈T (Ak)

r(x∗) +
∑

r∈P (Ak)

r(xαk) +
∑

r∈N(Ak)

r(xC) ∀Ak ∈ {2Cαk |Cαk ∈ C} (6.2)

By setting partially covered relations to the minimum possible reward (that is to 0 as-

suming non-negative rewards), equation 6.2 results in:

R(xC) ≥
∑

r∈T (Ak)

r(x∗) +
∑

r∈N(Ak)

r(xC) ∀Ak ∈ {2Cαk |Cαk ∈ C} (6.3)

Given the definition of C-optimality in equation 6.3, we can proceed on specifying the

linear programming formulation of the initial problem. First, we assume without loss

of generality, that xC
− = 〈0, . . . , 0〉 and x∗ = 〈1, . . . , 1〉, where 0 and 1 stand for the

first and second value in each variable domain. Second, we create two real positive

variables for each relation r ∈ R, one representing r(xC), noted as zr, and another

one representing r(x∗), noted as yr. Third, to obtain a linear program (LP) we can

normalize the rewards of the optimal solution to add up to one (
∑

r∈R yr = 1) to turn it

into a linear program. Fourth, we add all the constraints from equation 6.3 to guarantee

the optimality of xC .

Applying these transformations, we can simplify the initial program into the following

LP with z and y being vectors of positive real numbers:

Copia gratuita. Personal free copy http://libros.csic.es

118 Chapter 6. Region Optimality

x0 x1

x2 x3

x2

x1

x3

x2

r01 0 1 . . .

0 1
3 0 0

1 0 1
3 0

. . . 0 0 0

x2

x0

r02 0 1 . . .

0 0 0 0

1 0 1
3 0

. . . 0 0 0

x3

x1

r23 0 1 . . .

0 0 0 0

1 0 0 0

. . . 0 0 0

r13 0 1 . . .

0 0 0 0

1 0 1
3 0

. . . 0 0 0

xC = 〈x0 = 0, x1 = 0, x3 = 0, x4 = 0〉

R(xC) = 1
3

x∗ = 〈x0 = 1, x1 = 1, x3 = 1, x4 = 1〉

R(x∗) = 1

Figure 6.3: Example of a DCOP for which the fine 2-size region optimal bound δ = 1
3

that applies to the 2-size optimal solution xC with respect to the optimal x∗ is tight.

minimize
∑

r∈R zr
subject to∑

r∈R yr = 1

and for each neighbourhood Ak ∈ {2Cαk |Cαk ∈ C} covered by C subject to∑
r∈R zr ≥∑r∈T (Ak) yr +

∑
r∈N(Ak) zr

where recall that T (Ak) contains the relations completely covered by Ak, and N(Ak)
the relations that are not covered by Ak at all.

As an example, we turn back to figure 6.1 to assess the LP region optimal bound for the

2-size region in figure 6.1(b). In this case, we assume xC
− = 〈x0 = 0, x1 = 0, x2 =

0, x3 = 0〉 and x∗ = 〈x0 = 1, x1 = 1, x2 = 1, x3 = 1〉, where 0 and 1 stand for the first

and second value in each variable domain. First, we create the real variables, two for

each of the four relations. Thus, given the relation r01 we create two real variables: one

representing the value of xC
−, zr23 , and one representing the value of x∗, yr01 . Finally,

to guarantee the optimality of xC , we add six constraints, one for each neighbourhood

that compose the 2-size region depicted in figure 6.1(b). Thus, for the neighborhood

depicted on the left of figure 6.1(b) (composed of variables x0, x1), we impose via c0

that the value of xC
− is greater than the sum of the values of totally covered relations

for x∗ (yr01) plus the values of non-covered relations for xC
− (zr23). The resulting LP

formulation is:

minimize zr01 + zr13 + zr23 + zr02
subject to

© CSIC © del autor o autores / Todos los derechos reservados

6.2. Generalizing size and distance optimality 119

yr01 + yr13 + yr23 + yr02 = 1
and subject to:

(c0) zr01 + zr13 + zr23 + zr02 ≥ yr01 + zr23
(c1) zr01 + zr13 + zr23 + zr02 ≥ yr02 + zr13
(c2) zr01 + zr13 + zr23 + zr02 ≥ 0
(c3) zr01 + zr13 + zr23 + zr02 ≥ 0
(c4) zr01 + zr13 + zr23 + zr02 ≥ yr13 + zr02
(c5) zr01 + zr13 + zr23 + zr02 ≥ yr23 + zr01

After solving this LP, δ =
∑

r∈R zr is a tight bound on the quality of a C-optimal

solution for the graph structure represented by R. Thus, by solving the LP for the 2-

size optimal region in figure 6.1(b) we obtain bound δ = 1
3 . Moreover, we can use the

values of the instantiated real variables, corresponding to the relations’ rewards for xC
−

and x∗, to generate DCOPs for which the assessed bound is tight. Figure 6.2.2 shows

a DCOP with a reward structure for which the 2-size region optimal bound δ = 1
3

obtained for the constraint graph in figure 6.1(a) is tight. It is easy to see that value

of the 2-size optimal xC
− = 〈0, 0, 0, 0〉 is 1/3, higher than the value of any assignment

inside the 2-size region, whereas the value of the optimal assignment x∗ = 〈1, 1, 1, 1〉
is 1.

Let M be the number of variables of the largest neighbourhood in C. The LP uses 2 · |R|
variables and O(2M · |C|) constraints, and hence it is solvable in time polynomial in |R|
and in 2M · |C|.

6.2.3 Coarse quality guarantees for region optima
The computational complexity of the previous LP can be high as the number of relations

|R|, the number of neighbourhoods |C| or its size M grows. In this section we show

that we can compute a bound in time O(|R||C|). Furthermore, the result will prove as

a very valuable tool for future theoretical developments. As a counterpart, we lose the

tightness of the bound.

Proposition 6. Let 〈X ,D,R〉 be a DCOP with non-negative rewards and C a region.
If xC is a C-optimal assignment then

R(xC) ≥ cc∗
|C| − nc∗

R(x∗) (6.4)

where cc∗ = minr∈R cc(r, C), nc∗ = minr∈R nc(r, C), and x∗ is the optimal assign-
ment.

The proof for proposition 6 is a generalization of the one in Pearce and Tambe (2007)

for k-optimality.

Proof. For every Cα ∈ C, consider an assignment xα such that xα
i = xC

i if xi �∈ Cα

and xα
i = x∗

i if xi ∈ Cα. Since xC is C-optimal, for all Cα ∈ C, R(xC) ≥ R(xα)
holds, and hence

R(xC) ≥
∑

Cα∈C R(x
α)

|C| . (6.5)

Copia gratuita. Personal free copy http://libros.csic.es

120 Chapter 6. Region Optimality

Now for each xα, we have that R(xα) =
∑

r∈R r(xα).
We can split the sum into completely covered (T (Cα)), partially covered (P (Cα)), or

not covered at all (N(Cα)) relations, having R(xα) =
∑

r∈T (Cα) r(x
α) +

∑
r∈P (Cα)

r(xα) +
∑

r∈N(Cα) r(x
α).

Then, by setting partially covered relations to the minimum possible reward (0 assum-

ing non-negative rewards), R(xα) ≥ ∑
r∈T (Cα) r(x

α) +
∑

r∈N(Cα) r(x
α). Now, by

definition of xα, for every variable xi in a relation completely covered by Cα we have

that xα
i = x∗

i , and for every variable xi in a relation not covered at all by Cα we have

that xα
i = xC

i . Hence, R(xα) ≥ ∑
r∈T (Cα) r(x

∗) +
∑

r∈N(Cα) r(x
C). To assess a

bound, after substituting this inequality in equation 6.5, we have that

R(xC) ≥

∑
Cα∈C

∑
r∈T (Cα)

r(x∗) +
∑

Cα∈C

∑
r∈N(Cα)

r(xC)

|C| . (6.6)

We need to express the numerator in terms of R(xC) and R(x∗). Grouping the sum

by relations and reminding that cc∗ = minr∈R cc(r, C), the term on the left can be

expressed as: ∑
Cα∈C

∑
r∈T (Cα)

r(x∗) =
∑
r∈R

cc(r, C) · r(x∗) ≥

≥
∑
r∈R

cc∗ · r(x∗) = cc∗
∑
r∈R

r(x∗) = cc∗ ·R(x∗).

Furthermore, recalling that nc∗ = minr∈R nc(r, C), we can do the same with the right

term: ∑
Cα∈C

∑
r∈N(Cα)

r(xC) =
∑
r∈R

nc(r, C) · r(xC) ≥

≥
∑
r∈R

nc∗ · r(xC) = nc∗
∑
r∈R

r(xC) = nc∗ ·R(xC).

After substituting these two results in equation 6.5 and rearranging terms, we obtain

equation 6.4.

Proposition 6 directly provides a simple algorithm to compute a bound. Given a re-

gion C and a graph structure, we can directly assess cc∗ and nc∗ by computing cc(r, C)
and nc(r, C) for each relation r ∈ R and taking the minimum. This will take time

O(|R||C|), that is linear in the number of relations of the DCOP and linear in the num-

ber of neighbourhoods in the region.

As an example, now we turn back to figure 6.2 to assess the bounds for a C-optimal

assignment using equation 6.4. First, we assess the bound for the 1-distance region

C1 in figure 6.2(b). Given the relation r01, we assess the number of neighbourhoods

that completely cover {x0, x1} as cc(r01, C1) = 2 (the two first neighbourhoods on the

left-hand side) and the number of neighbourhoods that do not cover {x0, x1} at all as

nc(r01, C1) = 2 (the fourth and fifth neighbourhoods). After repeating the process for

the rest of relations in the constraint graph, we obtain that cc∗ = 2 and nc∗ = 2, and

© CSIC © del autor o autores / Todos los derechos reservados

6.2. Generalizing size and distance optimality 121

hence cc∗
|C1|−nc∗

= 2
6−2 = 1

2 . Notice that this leads to a better bound that the one we

obtain following the result in (Kiekintveld et al., 2010), since m+t−1
n = 1

3 . This is

due to the fact that we are computing the bound specifically for this graph structure,

whilst the bounds provided in (Kiekintveld et al., 2010) are independent of the graph

structure. If now we consider the 2-distance region C2 in figure 6.2(c), we obtain that
cc∗

|C2|−nc∗
= 4

6−0 = 2
3 . Again, this leads to a better bound than the one reported in

(Kiekintveld et al., 2010) since m+t−1
n = 1

2 .

Note that the bounds provided as example are tight. However, despite of these exam-

ples, the bound assessed by proposition 6 is not guaranteed to be tight and can return

worse bounds than the fine bounds computed by means of the LP. As example, con-

sider the 2-size region C2 in figure 6.1(b) for which, in section 6.2.2, we assessed the

C-optimal as δ = 1
3 . In this case, we obtain that cc∗

|C2|−nc∗
= 1

6−1 = 1
5 (each relation is

totally covered and non-covered by one single neighborhood). Thus, this fine bound is

not tight.

Both the LP and proposition 6 assess bounds that depend on the graph structure, the

so-called per-structure class guarantees in chapter 1, but are independent of the specific

reward values. We can always use them to assess bounds independently of the graph

structure, assessing problem-independent guarantees, by computing the bound for the

complete graph, since any other structure is a particular case of the complete graph with

some rewards set to zero.

In the next two sections we show that the constant-time problem-independent bounds

provided for size and distance optimality in (Kiekintveld et al., 2010; Pearce and Tambe,

2007) are particular cases of proposition 6.

6.2.4 Size-optimal bounds as a specific case of region optimal bounds

Now we present the main result in (Pearce and Tambe, 2007) as a specific case of

region optimality. Recall that an assignment is k-size optimal if it can not be improved

by changing the value of any group of size k or fewer variables.

Proposition 7. Let 〈X ,D,R〉 be a DCOP with non-negative rewards and m the maxi-
mum relation arity. Then, for any k-size optimal assignment xk:

R(xk) ≥
(|X |−m

k−m

)(|X |
k

)
−
(|X |−m

k

)R(x∗) (6.7)

Proof. This result is just a specific case of our general result where we take as region all

subsets of size k, that is C = {Cα ⊆ X | |Cα| = k}. The number of neighbourhoods in

the region is |C| =
(|X |

k

)
. The number of neighbourhoods in C that completely cover rV

is cc(rV , C) =
(|X |−|V |

k−|V |
)
, where |V | stands for the cardinality of V (take the variables

in r plus k − |V | variables out of the remaining |X | − |V |). Because cc(rV , C) reaches

the minimum value with the maximum value of |V |, cc∗ =
(|X |−m

k−m

)
. The number

of neighbourhoods in C that do not cover rV at all is nc(rV , C) =
(|X |−|V |

k

)
(take k

variables out of the remaining |X | − |V | variables). Because nc(rV , C) reaches the

Copia gratuita. Personal free copy http://libros.csic.es

122 Chapter 6. Region Optimality

minimum value with the maximum value of |V |, nc∗ =
(|X |−m

k

)
. Finally, we obtain

equation 6.7 by using |X |, cc∗ and nc∗ in equation 6.4, and simplifying.

6.2.5 Distance-optimal bounds as a specific case of region optimal
bounds

Now we present the main result in (Kiekintveld et al., 2010) as a specific case of C-

optimality. First, let us notice that the bound in (Kiekintveld et al., 2010) can be more

easily proved if the DCOP constraint graph is assumed to be connected. After that, we

will see that the bound can be improved in the case that the DCOP constraint graph

is composed of a set of connected components. Consider a connected DCOP with

n variables, minimum constraint arity m, non-negative rewards, and globally optimal

assignment x∗. It is easy to see that whenever m + t − 1 > n, the length of the

shortest path between any two nodes is smaller than t, and hence any t-distance optimal

assignment will in fact be globally optimal.

Proposition 8. Let 〈X ,D,R〉 be a connected DCOP with non-negative rewards. Then,
whenever m+t−1 ≤ n, we can bound the quality of any t-distance optimal assignment
xt as

R(xt) ≥ (m+ t− 1)

n
R(x∗) (6.8)

Proof. This result is just a specific case of our general result where we take as region

the t-distance neighbourhoods for each variable x ∈ X , that is C = {Ωt(x)| x ∈ X}.
The number of neighbourhoods in the region is |C| = n. Next, we show that for every

relation r, we have that the number of neighbourhoods in C that completely cover r,

cc(r, C) is at least m + t − 1. The only variables that do not have r in their t-distance

neighbourhood are those variables that are at distance t or more from every variable in

r. If no such variable exist, then cc(r, C) = n > m + t − 1. Otherwise, let x′ be one

of these variables. There is a shortest path connecting x′ to its closest variable in r (say

x). The path must have length at least t, that is x, x1, . . . , xt−1, . . . , x
′. Now, it is clear

that r is in the t-distance neighbourhood of the t − 1 variables {x1, . . . , xt−1}. Note

that since we are taking the shortest path to any variable in r, no xi can be in r. Since

r is also in the t-distance neighbourhood of every variable in r and there can be no

intersection between r and {x1, . . . , xt−1}, we have cc(r, C) = |r|+ t−1 ≥ m+ t−1.
Hence cc∗ ≥ m + t − 1. By definition, nc∗ ≥ 0. Finally, we obtain equation 6.8 by

using |C|, cc∗ and nc∗ in equation 6.4, and simplifying.

In case the DCOP is not connected, we can obtain a better bound by simply applying

the bound previously stated for each connected component and taking the minimum.

That is R(xt) ≥ (m+t−1)
n∗

R(x∗), where n∗ is the number of elements of the largest

connected component, which is always smaller than n.

6.3 Empirical Evaluation
In this section we show how we can benefit from the larger space of criteria for defin-

ing regions provided by region optimality. We start by analyzing the regions generated

© CSIC © del autor o autores / Todos los derechos reservados

6.3. Empirical Evaluation 123

by k-size and t-distance on DCOPs with different structures, to conclude that k-size

generates a potentially huge number of neighborhoods of limited size and t-distance

generates a limited number of potentially huge neighborhoods. To keep under control

the amount and size of neighborhoods we introduce a new type of regions, namely

size-bounded distance regions, which include a limited number of limited size neigh-

borhoods. Finally, we empirically show that algorithms for approximate DCOP solving

can benefit from using size-bounded distance regions.

We start by analyzing k-size and t-distance regions in section 6.3.1, to motivate the

introduction of size-bounded distance regions in section 6.3.2. The DALO algorithm

was proposed in (Kiekintveld et al., 2010) to find either k-size or t-distance optimal

solutions. In section 6.3.3 we show how we can extend it to find an optimal in any

region C. Finally, in section 6.3.4 we compare the performance of size, distance and

size-bounded distance regions on DCOPs with different graph structures using DALO.

6.3.1 Analysis of size and distance regions
We are interested in analyzing the regions generated by k-size and t-distance on DCOPs

with different structures. More concretely, we want to assess the number of different

neighbourhoods as well as the size (number of variables) for each neighbourhood, since

both parameters strongly influence the amount of computation needed to obtain a k-size,

t-distance optimum. The worst case time for checking optimality in a neighbourhood is

exponential in its number of variables. Furthermore, if an agent has to consider a large

number of neighbourhoods, it will have to share its time among them. Hence, in terms

of computational effort, it is of interest to find regions that have a limited number of

neighbourhoods of limited size.

According to k-size optimality, the size is limited by k but the number of neighbour-

hoods grows as
(|X|

k

)
, which can turn out prohibitively large.

Random Scale-free NPLA
MaxS # MaxS # MaxS #

K5 5 167 5 963 5 11366

T1 10 1 27 1 63 1

T2 38 1 82 1 99 1

S5 5 3 5 3 5 10

Table 6.1: Statistics for regions generated by K5, T1, T2 and S5 criteria for 100 agents.

MaxS stands for the maximum size of a neighbourhood and # for the average number

of neighbourhoods per agent.

Following t-distance optimality, the number of neighbourhoods is O(|X |), but the size

of the neighbourhoods is not limited. For example, the 1-distance region of a com-

plete graph contains a single neighbourhood with all the variables in the problem, and

hence finding a 1-distance optimum in a complete graph is as hard as finding a global

optimum.

For a more detailed empirical analysis, we have computed statistics of the maximum

neighbourhood size in a region (MaxS) and the number of neighbourhoods per agent

Copia gratuita. Personal free copy http://libros.csic.es

124 Chapter 6. Region Optimality

x0 x1 x2

x3 x4 x5

(a)

x0 x1 x2

x3 x4 x5

(b)

x0 x1 x2

x3 x4 x5

(c)

x0 x1 x2

x3 x4 x5

(d)

x0 x1 x2

x3 x4 x5

(e)

x0 x1 x2

x3 x4 x5

(f)

x0 x1 x2

x3 x4 x5

(g)

Figure 6.4: Example of (a) a DCOP graph, and (b)-(g) the set neighbourhoods for the

5-size-distance bounded region.

(#) over randomly generated constraint graphs. We have used three different types

of graph structures: G(n,M) random graphs (Bollobas, 2001), Barabasi-Albert (BA)

scale-free graphs (Barabasi and Albert, 1999), and non-linear preferential attachment

(NLPA) graphs based on the BA model, but with a larger emphasis on many nodes hav-

ing fewer connections. All the graphs have 100 nodes with a density of four, meaning

that on average each node has four neighbours. We compare the results of three differ-

ent criteria: 5-size (K5)2, 1-distance (T1) and 2-distance (T2). The first three rows in

table 6.1 present the averages over 50 DCOPs of the maximum neighbourhood size in

a region (MaxS) and the number of neighborhoods per agent (#) for each criteria and

each type of graphs. From these statistics we observe that T1 and T2 distance criteria

result in very large neighbourhoods, especially on scale-free and NLPA graphs due to

the presence of hub agents with a large number of neighbours. We also observe that K5

criterion generates a large number of neighbourhoods, specially in scale-free and NLPA

networks due to the presence of hub nodes (e.g. the average number of neighbourhoods

per agent in NLPA graphs is 11366).

From this analysis we can conclude that k-size generates a potentially huge number of

neighborhoods of limited size and t-distance generates a limited number of potentially

huge neighborhoods. To overcome this, we introduce a new type of regions, namely

size-bounded distance regions, which include a limited number of bounded size neigh-

borhoods.

6.3.2 Size-bounded distance optimality

Our aim at formulating the size-bounded distance criterion is to provide an alternative

trade-off to size and distance, being more aware of the complexity of the regions they

generate.

Let T (xi, xj) be the distance between two variables in the constraint graph. Let Ωt(xi) =
{xi|T (xi, xj) ≤ t} be the t-distance neighbourhood centered on variable xi. Then, the

2As in (Kiekintveld et al., 2010; Pearce and Tambe, 2007) neighbourhoods of 5 variables that are not

connected in the graph are discarded.

© CSIC © del autor o autores / Todos los derechos reservados

6.3. Empirical Evaluation 125

s-size-bounded-distance neighbourhood is the largest t-distance region whose number

of variables does not exceed the limit s. Formally, let t(xi) = max {t s.t. |Ωt(xi)| ≤
s} be the largest value for t such that |Ωt(xi)| ≤ s. The s-size-bounded-distance neigh-

bourhood centered on variable xi is defined as Φs(xi) = Ωt(xi)(xi).
For instance figure 6.4 (b)-(g) depicts 5-size-bounded distance neighbourhoods for

agents x0 to x5 for the DCOP in figure 6.4 (a). Observe that agents can end explor-

ing different distance levels in their neighbourhoods as a result of bounding their size

to s. In our example, agents x0, x2, x3 and x5 explore their 2-distance neighbour-

hood with size 5 (figures 6.4 (b)(d)(e)(g)), whereas agents x1 and x4 are restricted to

1-distance neighbourhood with size 4 (figures 6.4 (c)(f)).

Now, the s−size-bounded distance region includes the s-size-bounded-distance neigh-

bourhood of each agent xi ∈ X . Moreover, in order to ensure that all relations are

covered, the s-size-bounded-distance region also includes a neighbourhood for every

edge in the graph.

Note that in size-bounded distance optimality both the number of neighbourhoods and

their size are limited. Now we can go back to table 6.5, to compare the number of re-

gions and its size with the state-of-the-art criteria. In the last row we show the averages

over 50 constraint graphs of the maximum neighbourhood size in a region (MaxS) and

the number of neighbourhoods per agent (#) for 5-size-bounded-distance optimality

(S5) for each type of graph. We observe that S5 is the only criterion that manages to

keep the size of the region limited (to 5 agents) together with a reasonable number of

neighbourhoods per agent (between 3 and 10 depending on the graph structure).

6.3.3 DALO for region optimality
The DALO algorithm is an asynchronous algorithm that starts with a random initial

assignment and monotonically increases the solution quality by independently optimiz-

ing in each of the neighbourhoods that are created. As described in (Kiekintveld et al.,

2010), DALO has three phases: initialization, optimization, and implementation.

During the initialization phase, agents distributedly create a set of neighbourhoods and

assign each neighbourhood to a leader agent (the central node to minimize commu-

nication), which will be in charge of its optimization. After initialization, agents run

in parallel the optimization and implementation phases for each assigned neighbour-

hood until stabilization.3 During the optimization phase, each leader agent optimises

by searching for a joint assignment of the variables in its neighborhoods that improves

their reward. After optimizing, the leader agent runs the implementation phase trying

to implement the new joint assignment found. Because neighbourhoods are optimised

in parallel and a variable can appear in multiple neighbourhoods, the DALO implemen-

tation phase uses an asynchronous protocol based on a standard lock/commit pattern to

ensure stability during implementation.

To use DALO with an arbitrary region C, we focused on the initialization phase to mod-

ify how agents create the groups over which they optimise. Concretely, to allow DALO

to search for a C-optimal, during the initialization phase agents will distributedly gener-

ate the neighbourhoods in region C. For example, to use DALO in the s-size-bounded

3Stabilization is detected in DALO when no change applies after some number of iterations.

Copia gratuita. Personal free copy http://libros.csic.es

126 Chapter 6. Region Optimality

distance region, each agent will iterate through various t-distance neighbourhoods by

broadcasting at distance t, to determine the largest t-distance neighbourhood whose

size does not exceed the threshold s.

After initialization, for the specific C region, the optimization and implementation

phases are ran as specified in (Kiekintveld et al., 2010), independently of the region

they use.

6.3.4 Empirical results
In this section we compare the results obtained by DALO using four different criteria: 5-

size (K5), 1-distance (T1), 2-distance (T2), and 5-size bounded distance (S5) criteria.

We ran similar experimental settings to Kiekintveld et al. (Kiekintveld et al., 2010).

We measured the performance of the extension of the DALO algorithm4 described in

section 6.3.3 when running over each one of the regions generated by the four criteria

described above. Thus, we tested DALO for the four criteria over the different types of

graphs described in section 6.3.1. All the graphs have 100 nodes, each one with density

4, meaning that on average each node has 4 neighbours. Moreover, variables’ domain

size is 10, and rewards are integers sampled from a distribution U [0, 10000].
Besides graph types, we also considered different Computation/Communication Ratios
(CCR) (Kiekintveld et al., 2010). The CCR setting defines the number of constraint

assignments that may be evaluated at each communication step. For example, CCR =
0.01 allows each node to process up to 100 checks during a time step. We vary the

setting of CCR in our experiments to test DALO in two settings with different relative

cost for sending messages and computation, namely CCR = 0.01 and CCR = 0.1. In

general, the larger the value of CCR, the higher the computation cost. Notice that, with

respect to the experimental settings in (Kiekintveld et al., 2010), we discarded using

CCR = 0. The rationale is that if CCR = 0, communication is infinitely more costly

than computation, and hence the best strategy is computing the optimal by means of a

fully centralized algorithm.

Figures 6.5 (a)-(f) plot the normalized solution quality of each algorithm along global

time for each graph structure and CCR metric. The normalized solution quality is com-

puted by: (1) subtracting the initial reward, as assessed by DALO for a given criterion,

from the reward at a given global time; and (2) dividing the result by the best known

reward obtained by DALO out of the four criteria. All results are averaged over 25 sam-

ple instances. In what follows, we compare the four criteria along two dimensions: (1)

the final normalised solution quality; and (2) the convergence speed required to reach a

good solution quality.

Regarding solution quality, the results vary depending on the value of CCR and the

graph structure. On the one hand, in scenarios where computation is more costly

(CCR = 0.1), overall S5 outperforms the rest of criteria. Although T1 is very compet-

itive and its solution quality comes very close to that of S5 over random and scale free

graphs, S5 significantly outperforms T1 on NLPA graphs. Moreover, both S5 and T1
largely outperform K5. The reason for the poor performance of K5 is that it generated

neighbourhoods of fixed size. On the other hand, in scenarios where computation is

4We used the DALO code provided by the authors in http://teamcore.usc.edu/dcop/.

© CSIC © del autor o autores / Todos los derechos reservados

6.3. Empirical Evaluation 127

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

NLPA Graphs, CCR 0.01

K 5
T 2
T 1
S 5

(a)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Random Graphs, CCR 0.01

K 5
T 2
T 1
S 5

(b)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Scale-free Graphs, CCR 0.01

K 5
T 2
T 1
S 5

(c)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

NLPA Graphs, CCR 0.1

K 5
T 2
T 1
S 5

(d)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Random Graphs, CCR 0.1

K 5
T 2
T 1
S 5

(e)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Scale-free Graphs, CCR 0.1

K 5
T 2
T 1
S 5

(f)

Figure 6.5: Experimental results comparing DALO for K5, T1, T2 and S5 regions.

cheaper (CCR = 0.01), the differences of final solution qualities between S5, T1, and

K5 are not significant. There is an aspect though that deserves special attention. Notice

that for all the test cases, the performance of DALO over T2 regions is much worse

than the performance over the regions generated by the rest of criteria. We can explain

this result by analysing the complexity of T2 regions as shown in table 6.1. Thus, we

observe that T2 generates very large neighbourhoods that can not be optimised within

the maximum global time (1000 global time steps). The solution quality degradation

Copia gratuita. Personal free copy http://libros.csic.es

128 Chapter 6. Region Optimality

when handling T2 regions is particularly significant on scale-free and NLPA graphs

because the criterion generates neighbourhoods whose size is close to the size of the

original problem (99 variables on average in NLPA graphs).

Regarding convergence speed, S5 regions help DALO converge to a high solution qual-

ity faster than the rest of regions. Likewise our analysis about solution quality above, T1
is again competitive with respect to S5, though S5 largely outperforms T1 on NLPA

graphs. This is because, as observed in (Kiekintveld et al., 2010), NLPA graphs are

characterized by large hub nodes with many connections that results in large neigh-

bourhoods that take long for agents to optimise. Regarding K5, convergence speed is

slower than that of S5 and T1 because each leader in DALO coordinates a neighbour-

hood of size 5, whereas the neighbourhoods for S5 and T1 may be smaller.

To summarise, our experimental results show that criteria that produce regions with

large number of neighbourhoods or/and large neighbourhood sizes are not guaranteed to

outperform criteria that produce less complex regions. In fact, overall the size-bounded

distance criterion proposed in section 6.3.2 was able to outperform the rest of criteria

by limiting the complexity of the regions that it generates.

6.4 Per-reward region optimal bounds

Sections 6.2.2 and 6.2.3 define two different mechanisms that assess bounds on any C
optimum, independently of the DCOP rewards. As shown in (Bowring et al., 2008)

for the particular case of k-size optimality, one can provide tighter bounds by assuming

some reward structure. Along this line, this section shows how to extend region optimal

bounds to exploit information about the reward structure of the problem, if available.

Concretely, in the next sections we show how to tighten the region optimal bounds

provided by the mechanisms in sections 6.2.2 and 6.2.3 by assuming:

• a ratio between the least minimum reward to the maximum reward among con-

straints, the so-called minimum fraction reward (section 6.4.1); and

• the knowledge of the minimum and maximum rewards per relation, the so-called

extreme relations rewards (section 6.4.2).

Finally, section 6.4.3 characterises the gain on tightness obtained when exploiting the

knowledge about these different reward structures.

6.4.1 Exploiting the minimum fraction reward

In this section we show how to tighten fine or coarse region optimal bounds defined in

section 6.2 when we know that the minimum reward is a certain factor β (0 < β ≤ 1)

of the maximum reward of any relation. Thus, this refinement is a generalization of the

improvements in tightness for k-size optimal bounds proposed in (Bowring et al., 2008)

to apply them to any C optimum.

© CSIC © del autor o autores / Todos los derechos reservados

6.4. Per-reward region optimal bounds 129

Extending fine region optimal guarantees to exploit knowledge about the minimum
fraction reward

First, we show that assuming a minimum fraction reward β we can tighten the fine

quality guarantees obtained by means of the mechanism described in section 6.2.2. In

order to obtain a tighter bound, we employ the set of partially covered relations.

Thus, instead of setting the values of all relations in the set of partially covered relations

P (Ak) to 0 as we did in equation 6.3, we can now exploit the knowledge that r(xαk) ≥
β · r(x∗). Then, for all Ak ∈ {2Cαk |Cαk ∈ C}, equation 6.2 can be rewritten as:∑

r∈R
r(xC) ≥

∑
r∈T (Cα)

r(x∗) +
∑

r∈P (Cα)

β · r(x∗) +
∑

r∈N(Cα)

r(xC) (6.9)

Notice that this is the only change we need incorporate the knowledge about the min-

imum fraction reward. Hence, from equation 6.9 we can also build an LP, following

analogous operations as the ones detailed in section 6.2.2 and with the same number of

variables. As an example, we turn back to figure 6.1 to assess the fine region optimal

bound for the 2-size region depicted in figure 6.1(b) when assuming a minimum frac-

tion reward β. With respect to the LP formulation in section 6.2.2 that is independent of

the problem rewards, the right hand side of each constraint is modified to add the real

variables related to the values of x∗ for the partially covered relations multiplied by β.

This results in the following LP formulation:

minimize zr01 + zr13 + zr23 + zr02
subject to

yr01 + yr13 + yr23 + yr02 = 1
and subject to:

zr01 + zr13 + zr23 + zr02 ≥ yr01 + β · (yr13 + yr02) + zr23
zr01 + zr13 + zr23 + zr02 ≥ yr02 + β · (yr01 + yr23) + zr13
zr01 + zr13 + zr23 + zr02 ≥ β · (yr01 + yr13 + yr23 + yr02)
zr01 + zr13 + zr23 + zr02 ≥ β · (yr01 + yr13 + yr23 + yr02)
zr01 + zr13 + zr23 + zr02 ≥ yr13 + β · (yr01 + yr23) + zr02
zr01 + zr13 + zr23 + zr02 ≥ yr23 + β · (yr13 + yr02) + zr01

The solution of the LP is a tight bound on the quality of a region optimum for the graph

structure represented by R and rewards with a minimum fraction reward of β. Thus, by

solving the above LP with β set to 1
2 we assess a region optimal bound δ = 2/3. Notice

that this per-reward bound is significantly higher than the bound assessed in section

6.2.2. Table 6.2 shows the fine per-minimum fraction reward for two reward structures

with β = 1
2 . Observe that the fine per-minimum fraction reward bound for these reward

structures, δ = 2/3, doubles the fine reward-independent bound, δ = 1/3.

Extending coarse region optimal guarantees to exploit knowledge of the minimum
fraction reward

Now, we show that assuming a minimum fraction reward β we can also improve the

coarse region optimal bounds introduced in section 6.2.3. Recall that each relation

Copia gratuita. Personal free copy http://libros.csic.es

130 Chapter 6. Region Optimality

Reward- Minimum Per Extreme

inde- Fraction Rewards

pendent Reward

Reward Structure F
in

e

C
o

ar
se

β F
in

e

C
o

ar
se

L U F
in

e

C
o

ar
se

x0 x1

x2 x3

r02 0 1

0 2 2

1 2 4

r12 0 1

0 4 2

1 2 4

r23 0 1

0 2 2

1 2 2

r13 0 1

0 2 2

1 2 4

1
3

1
5

1
2

2
3

3
5

8 16 2
3

3
5

x0 x1

x2 x3

r02 0 1

0 2 2

1 2 4

r01 0 1

0 4 3

1 3 4

r23 0 1

0 2 2

1 2 2

r13 0 1

0 3 3

1 2 4

1
3

1
5

1
2

2
3

3
5

10 16 3
4

7
10

Table 6.2: Comparison of independent reward, per minimum fraction and per extreme

reward bounds for the 2-size region of the DCOP constraint graph in figure 6.1(a) under

different reward structure assumptions.

r ∈ R, the number of neighbourhoods in region C that partially cover relation r are

defined as pc(r, C) = |C| − nc(r, C)− cc(r, C). Then, the following proposition shows

how to exploit the minimum fraction reward along with the partially covered relations

to obtain a bound tighter than the one in equation 6.4.

Proposition 9. Let 〈X ,D,R〉 be a DCOP, C a region and β the minimum fraction
reward. If xC is a C optimum, then:

R(xC) ≥
(

cc∗
|C| − nc∗

+ β
pc∗

|C| − nc∗

)
R(x∗), (6.10)

where cc∗ = minr∈R cc(r, C), nc∗ = minr∈R nc(r, C), pc∗ = minr∈R pc(r, C), and
x∗ is the optimal assignment.

The proof for proposition 9 is analogous to the one for the general bound of equation

6.4 formulated in section 6.2.3, but without disregarding partially covered relations. For

the sake of readability, the proof is provided in Appendix B.

Proposition 9 directly provides a simple algorithm to compute a bound. Given a region

C and a graph structure, we can directly assess cc∗, pc∗ and nc∗ by computing cc(r, C),
pc(r, C), and nc(r, C) for each relation r ∈ R and taking the minimum. This will take

time O(|R||C|), which is linear in the number of relations of the DCOP and linear in the

© CSIC © del autor o autores / Todos los derechos reservados

6.4. Per-reward region optimal bounds 131

number of neighbourhoods in the region. As an example, now we turn back to figure 6.1

to assess the bound for the 2-size region C2 in figure 6.1(b) when assuming a minimum

fraction reward β = 1
2 . Table 6.2 shows two reward structures for the DCOP constraint

graph of figure 6.1(a) in which β = 1
2 . Given the relation r01 we assess the number of

neighbourhoods that completely cover {x0, x1} as cc(r01, C2) = 1 (the first neighbour-

hood), the number of neighbourhoods that partially cover {x0, x1} as pc(r01, C2) = 4
(from the second to the fifth neighborhoods) and the number of neighbourhoods that do

not cover {x0, x1} at all as nc(r01, C2) = 1 (the sixth neighbourhood). After repeating

the process for the rest of relations in the constraint graph, we obtain that cc∗ = 1,

pc∗ = 4 and nc∗ = 1, and hence cc∗
|C|−nc∗

+ β pc∗
|C|−nc∗

= 1
6−1 + 1

2 · 4
6−1 = 3

5 . As

summarised in table 6.2 this leads to a significant improvement with respect to δ = 1
3

and δ = 1
5 , the fine and coarse bound assessed in section 6.2.3 independently of the

rewards. However, this bound is not tight either because it is lower than δ = 2
3 , the

per-reward fine bound assessed by means of the LP.

6.4.2 Exploiting the extreme relation rewards
In this section we show how to tighten any region optimal bound computed indepen-

dently of the rewards by assuming a minimum and maximum rewards for each relation

rV ∈ R, namely lrV = mindV ∈DV
rV (dV) and urV = maxdV ∈DV

rV (dV) respec-

tively.

Proposition 10. Let 〈X ,D,R〉 be a DCOP, C a region and δ a region optimal bound
independent of the rewards. If xC is a C-optimal assignment then:

R(xC) ≥ 1

U
((U − L) · δ + L) · R(x∗) (6.11)

where U =
∑

r∈R ur, L =
∑

r∈R lr.

Proof of proposition 10 is provided in Appendix B.

Proposition 10 directly provides a constant-time method to tighten any region optimal

bound δ that has been computed independently of the rewards by assuming that the

extreme values of relations are known. Because proposition 10 does not make any

assumption about how bound δ is calculated other than it is independent of the DCOP

rewards, this improvement applies to both: (i) the fine region optimal bound introduced

in section 6.2.2; and (ii) the coarse region optimal bounds introduced in section 6.2.3.

As an example, we turn back to table 6.2 to assess the per extreme reward bounds for

the two reward structures of the DCOP in figure 6.1(a). As summarised in this table, the

fine and coarse independent reward bounds assessed in section are δ = 1
3 and δ = 1/5

respectively.

Next, using equation 6.11 we compute the per-extreme rewards bounds for these two

reward structures.

First, consider the reward structure in the first row of table 6.2 in which each relation

of the DCOP in figure 6.1(a) has a minimum reward of 2 and a maximum reward of

4. Thus, U = 16 and L = 8. Using now equation 6.11 with the fine bound δ = 1
3

we obtain δ = 1/16 · ((16− 8) · 1/3 + 8) = 2/3. In a similar way, using equation

Copia gratuita. Personal free copy http://libros.csic.es

132 Chapter 6. Region Optimality

6.11 with the coarse bound δ = 1/5 we obtain δ = 1/16 · ((16 − 8) · 1
5 + 8) = 3/5.

Observe that the bounds we obtain by using knowledge on extreme relations rewards

are the same as the bounds obtained using the minimum fraction reward.

Now, consider the reward structure in the second row of table 6.2 in which the DCOP

in figure 6.1(a) has two relations with a minimum reward of 2 and a maximum of 4,

and two relations with a minimum reward of 3 and a maximum of 4. Thus, U =
16 and L = 10. Using now equation 6.11 with the fine bound δ = 1

3 we obtain

1/16 · ((16 − 10) · 1/3 + 10) = 3/4. Similarly, using equation 6.11 with the coarse

bound δ = 1/5 we obtain 1/16 · ((16 − 10) · 1
5 + 10) = 7/10. Observe that in this

second scenario, exploiting the knowledge about the extreme rewards of relations leads

to higher bounds than exploiting the knowledge about the minimum fraction reward.

6.4.3 Comparing per-reward region optimal bounds
Since the more knowledge we exploit from a problem the tighter the quality guarantees,

the per-reward region optimal guarantees proposed in the sections above are expected

to be tighter than bounds defined in section 6.2. Furthermore, because not all the as-

sumptions over the reward structure have the same level of specificity, exploiting the

knowledge about the extreme rewards per relation is also expected to lead to tighter

quality guarantees than only assuming a ratio between them.

Hence, with the aim of illustrating the tightness of region optimal quality guarantees

depending on the knowledge degree about the reward structure, we produce: (i) em-

pirical results that show the average-case improvement of fine region optimal bounds;

and (ii) theoretical results that characterise the relations between faster region optimal

bounds.

Comparing fine region optimal bounds

Figures 6.6(a)(b) show the values of fine region optimal bounds, calculated by means of

the LP, defined as a percentage of the optimal, for random DCOPs with 100 agents and

density 4 using as a criterion neighborhoods of size 3 and of distance 1 respectively. All

results are averaged over 50 sample instances. Because, intuitively, the gain obtained

by exploiting the knowledge about the extreme rewards per relation with respect to

the minimum fraction reward varies with the heterogeneity of the reward structure, we

generate DCOPs with two types of relations: (1) type 1, relations whose rewards are

integers drawn from a uniform distribution U [2500, 10000]; and (2) type 2, relations

whose rewards are integers drawn from a uniform distribution U [5000, 10000].
The dotted lines show the per-reward bounds when exploiting the the minimum fraction

reward. The dashed lines show the per-reward bounds when exploiting the knowledge

of the extreme relation rewards. The solid lines show the region optimal bounds as

presented in section 6.2.2, that apply to any reward structure. The x-axis represents the

fraction of type 2 relations with respect to type 1 relations. First of all, observe that, in-

dependently of the particular knowledge exploited, per-reward bounds are significantly

higher than the reward-independent bound. For example, in figure 6.6 (a) the reward

independent bound is around 12% whereas per-reward bounds are around 22% when us-

ing only type 1 relations (x-axis = 0) and around 60% when using only type 2 relations

© CSIC © del autor o autores / Todos los derechos reservados

6.4. Per-reward region optimal bounds 133

(b) 3-size bounds

(c) 1-distance bounds

Figure 6.6: Per-reward bounds on 100 agent random DCOPs with density 4 using as a

criterion: (a) size 3 and (b) distance 1.

(x-axis = 1). Moreover, it is worth noting that when all relations are of the same type,

independently of the knowledge exploited about the reward, both per-reward bounds are

very close. In contrast, in mixed instances, when both types of relations are present, the

graphs show that minimum fraction reward bounds can not improve the bound further

by taking advantage of type 2 relations. Indeed, when exploiting the minimum fraction

Copia gratuita. Personal free copy http://libros.csic.es

134 Chapter 6. Region Optimality

reward, we do not obtain a significant improvement with the introduction of relations

of type 2 until relations of type 1 disappear. In contrast, when exploiting knowledge

about extreme relation rewards, the bound progressively gets higher as the fraction of

relations of type 2 increases.

In summary, these results show that exploiting more knowledge about the reward struc-

ture helps obtain tighter bounds for a wide range of reward distributions, particularly

for heterogeneous distributions composed of rewards of different kinds.

Comparing coarse region optimal quality guarantees

On the one hand, notice that the coarse per-reward guarantees assessed by equations

6.10 and 6.11 are guaranteed to be greater than or, in the worst-case, equal to the fine

reward-independent guarantees assessed by means of equation 6.4.

On the other hand, we are interested in comparing per-reward coarse quality guarantees

when exploiting different assumptions over the reward structure. With this aim, next

we prove that coarse quality guarantees that exploit knowledge about extreme rewards

per relation are tighter than those exploiting the minimum fraction bound.

Proposition 11. Let 〈X ,D,R〉 be a DCOP, C a region, β the minimum fraction reward
and δ = cc∗

|C|−nc∗
, then

δ + β
pc∗

|C| − nc∗
≤ 1

U
((U − L) · δ + L) (6.12)

where U =
∑

r∈R ur, L =
∑

r∈R lr.

For the sake of readability, proof of proposition 11 is included in Appendix B.

Notice that the left handside of equation 6.12 corresponds to the coarse guarantees in

equation 6.10 that exploit the minimum fraction reward, whereas the right handside

corresponds to those in equation 6.11 that exploit extreme rewards per relation. There-

fore, the purpose of proposition 11 is to formally prove that exploiting more knowledge

about the reward structure, such as the extreme rewards per relation, helps obtain tighter

coarse bounds.

6.5 Conclusions
As discussed above, k-size and t-distance optimality allow to compute guarantees of lo-

cal optima in regions defined by size and distance respectively. This chapter overcomes

this limitation by defining region optimality, a flexible framework that provides quality

guarantees for optima in regions characterised by any arbitrary criterion.

With this aim, we contributed with: (i) a formal definition of region optimality, namely

of local optimality in some arbitrary region; and (ii) quality guarantees for region op-

timal solutions that exploit the knowledge about the graph structure, if available. Re-

garding quality guarantees, we defined two methods with different computational costs:

(i) a first one, based on solving an LP, that guarantees tightness; and (ii) a second one

that requires linear time but does not ensure tightness. Moreover, we proved that k-size

© CSIC © del autor o autores / Todos los derechos reservados

6.5. Conclusions 135

and t-distance optimality bounds (Pearce and Tambe, 2007; Kiekintveld et al., 2010)

are particular instances of region optimal bounds.

Our empirical results show that approximate DCOP solving can benefit from exploring

the larger space of criteria provided by region optimality. With that purpose, we for-

mulated C-DALO algorithm, which enables an empirical evaluation of the average-case

performance of different criteria.

Finally, in the last part of this chapter we show how to extend region optimal bounds to

exploit a-priori knowledge of the reward structure of the problem, if available. To that

end, we define reward-dependent bounds that can exploit as prior knowledge: (i) the

ratio between the least minimum reward to the maximum reward among relations (min-

imum fraction reward); (ii) the extreme (minimum and maximum) rewards per relation.

Empirical results show that exploiting knowledge about the reward structure leads to

significantly tighter region optimal quality guarantees. Moreover, we also show that

exploiting more detailed knowledge by assuming that extreme rewards per relation are

known, we obtain tighter guarantees than only assuming knowledge about a minimum

fraction reward.

Empirical results the average case performance of C-DALO when employing size-

bounded-distance criterion, leads to better solution qualities, outperforming k-size and

t-distance criteria.

Figure 6.3 shows the resulting DCOP landscape after incorporating the aforementioned

contributions of this chapter. Notice that the k-size optimal and t-distance optimal

approaches are now unified under the region optimality framework. Moreover, now the

landscape includes C-DALO as a generic region optimal algorithm that returns local

optima based on arbitrary criteria.

This chapter, with the extension of DALO algorithm to handle arbitrary criteria, proved

the existence of an efficient region optimal DCOP algorithm for the whole space of

criteria. However, given the algorithmic-independence of the region optimality frame-

work, it does not imply that there cannot exist other efficient region optimal algorithms.

Along this line, in the next chapter we employ the region optimal framework to provide

quality guarantees on the solutions returned by the Max-Sum algorithm.

Copia gratuita. Personal free copy http://libros.csic.es

136 Chapter 6. Region Optimality

Dynamic
Programming

Partial
Centralisation Search Based

C
o

m
p

le
te

DPOP

PC-DPOP

DCPOP OptAPO

ADOPT

BnB-ADOPT

In
co

m
p

le
te

A
p

p
ro

x
im

at
e S
y

st
em

D
es

ig
n

er MGM/SCA-{2,3}

C-DALO

region optimality

A
g

en
t

Bounded

Max-Sum

N
o

g
u

ar
an

te
e

Max-Sum DSA/MGM-1

GDL-based Decision-based

Table 6.3: DCOP algorithms landscape after region optimality. Contributions of this

chapter are highlighted in blue/bold. DCOP algorithms are classified based on the qual-

ity assessment they provide over their solutions (vertical axis) and the approach they

follow to solve DCOPs (upper and lower horizontal axes).

© CSIC © del autor o autores / Todos los derechos reservados

Chapter 7

Max-sum as a region optimal
algorithm

The region optimal framework presented in chapter 6 defines quality guarantees over

region optimal solutions, independently of the particular algorithm employed to find

them. Thus, region optimality is open to the usage of further algorithms besides C-

DALO. In this chapter we deal with this issue by proving region optimality as a valuable

tool to bound at design time, the solutions of one of the leading incomplete DCOP

algorithms, the Max-Sum algorithm.

As reviewed in chapter 3, Max-Sum corresponds to the iterative, approximate ver-

sion of GDL and hence, it is equivalent to the well-known Loopy Belief Propagation

(Pearl, 1988) or Max-Product (Aji and McEliece, 2000) algorithms. Therefore, unlike

C-DALO where agents optimize their decisions in groups, Max-Sum follows a GDL

approach in which individual agents exchange messages about the particular utility to

set their decisions variables to a particular state. Max-Sum algorithm is not restricted

to DCOP solving, and indeed, is one of the most popular techniques to find the most

likely joint variable assignment in graphical models, such as Markov Random Fields

(MRFs). Thus, in addition to Multi-Agent coordination, Max-Sum has been success-

fully applied to a wide variety of applications such as image understanding (Tappen

and Freeman, 2003), error correcting codes (Feldman et al., 2005) and protein folding

(Yanover and Weiss, 2002), to name a few. In all these domains, the popularity of Max-

sum stems for its good empirical performance on general MRFs (Aji et al., 1998; Frey

et al., 2001a,b; Weiss, 2000; Farinelli et al., 2008) although this behaviour is not well

understood because it comes with few theoretical guarantees.

Concretely, Max-Sum is known to be correct in acyclic and single-cycle graph struc-

tures (Weiss, 2000), although convergence is only guaranteed in the acyclic case. Re-

cently, some works have established that Max-Sum is guarantee to return the optimal

solution, if it converges, on graphical models corresponding to some specific problems,

namely: (i) weighted b-matching problems (Bayati et al., 2007; Sanghavi et al., 2007);

(ii) maximum weight independent set problems (Sanghavi et al., 2008); or (iii) prob-

lems whose equivalent NAND Markov random field (NMRF) is a perfect graph (Jebara,

137

Copia gratuita. Personal free copy http://libros.csic.es

138 Chapter 7. Max-sum as a region optimal algorithm

2009). For weighted b-matching problems with a bipartite structure, Huang and Jebara

(Huang and Jebara, 2007) establish that Max-Sum always converges to the optimum.

Despite the guarantees provided in these particular cases, for general problems little

is known on the quality of the solutions that Max-Sum achieves on convergence. To

the best of our knowledge, the only result in this line is the work of Wainwright et

al. (Wainwright et al., 2004) where, given any arbitrary MRF, authors derive an upper

bound on the absolute error of the Max-Sum solution. However, this bound is calculated

on Max-Sum convergence and depends on the particular problem instance. Hence, this

bound can not be used at design time. Moreover, it can neither be used by agents at

runtime. This is because Max-Sum is not guaranteed to converge in a linear number

of iterations (not even guaranteed to converge) and hence, this bound is not available

anytime during the Max-Sum execution.

Against this background, in this chapter we are the first to provide quality guarantees

for Max-Sum solutions on convergence in general settings at design time. To this end,

we define worst-case bounds on the quality of any Max-Sum solution, independently

of the problem. In addition to these problem-independent bounds, we also assess guar-

antees for a collection of specific graph structures whereas illustrating how to compute

guarantees for other graph structures.

Our results build upon two main components: (i) the characterization of any Max-Sum

solution as neighbourhood maximum in a specific region of the MRF, the so-called

Single Loops and Trees (SLT) region (Weiss and Freeman, 2001); and (ii) the worst-case

bounds on the quality of any region optimum provided by the region optimal framework

introduced in chapter 6. Therefore, the main contribution of this chapter is to combine

these two results to bound the quality of Max-Sum solutions applying the region optimal

framework to the region characterised in (Weiss and Freeman, 2001).

This chapter is organised as follows. Section 7.1 provides some background on the

Max-Sum algorithm and on the characterisation of any Max-Sum solution as a region

optimum. Next, sections 7.2 and 7.3 show how to define: (i) tight guarantees for Max-

Sum assuming any arbitrary graph structure (section 7.3); and (ii) coarse guarantees

that can be assessed on constant time for specific graph structures (section 7.2). Finally,

section 7.4 summarises the contributions of this chapter and draws some final remarks.

7.1 Background: the Max-Sum algorithm
This section offers an overview of the Max-Sum algorithm, complementary to the re-

view in chapter 3.

We start by describing the Max-Sum operation when searching for the MAP assignment

in graphical models, such as Markov Random Fields (MRFs). Afterwards, we review

the characterisation of a Max-Sum solution as a region optimum as detailed in (Weiss

and Freeman, 2001).

7.1.1 Max-Sum in Pairwise Markov Random Fields
Max-Sum is one of the most popular techniques to find the most likely joint variable

assignment in graphical models, namely the maximum a posteriori (MAP) assignment.

© CSIC © del autor o autores / Todos los derechos reservados

7.1. Background: the Max-Sum algorithm 139

In this chapter we formulate our contribution in terms of the MAP because it subsumes

DCOP. Hence, next we formalise the MAP over an MRF.

A discrete pairwise Markov Random Field (MRF) is an undirected graphical model

where each interaction is specified by a discrete potential function, defined on a single

variable or a pair of variables. The structure of an MRF defines a graph G = 〈X , E〉,
whose nodes X stand for discrete variables, and whose edges E represent interactions

between nodes. Then, a pairwise MRF contains a unary potential function Ψi for each

variable node xi ∈ X , and a pairwise potential function Ψij for each edge (i, j) ∈ E;

the joint probability distribution of the MRF assumes the following form:

P (d) =
1

Z

∏
xi∈X

Ψi(di)
∏

(i,j)∈E

Ψij(di, dj)

=
1

Z
exp

⎛⎝∑
xi∈X

θi(di) +
∑

(i,j)∈E

θij(di, dj)

⎞⎠
=

1

Z
exp (θ(d)),

(7.1)

where d is an element of the joint domain space D, di is the projection of d over xi, Z
is a normalization constant, and θi, θij stand for the logarithms of the strictly positive

potentials Ψi,Ψij .

Within this setting, the classical maximum a posteriori (MAP) corresponds to finding

the most likely configuration for the joint probability distribution P in equation 7.1. In

more formal terms, the most likely (MAP) configuration x∗ is given by:

xMAP �
= arg max

d∈D

⎡⎣ ∏
xi∈X

Ψi(di)
∏

(i,j)∈E

Ψij(di, dj)

⎤⎦
�
= arg max

d∈D

⎡⎣∑
xi∈X

θi(di) +
∑

(i,j)∈E

θij(di, dj)

⎤⎦ ,

(7.2)

where d is an element of the joint domain space D.

Note that the MAP configuration may not be unique, that is, there may be multiple

configurations that attain the maximum in equation 7.1. In this chapter we assume that:

(i) there is a unique MAP assignment (as assumed in (Weiss and Freeman, 2001)); and

(ii) all potentials θi and θij are non-negative.

Recall that, as described in chapter 2, solving a DCOP aims to assess a configuration

x∗ that maximises the DCOP utility function R. Therefore, observe that there is a the

straightforward mapping between finding a MAP in a probabilistic distribution P and

finding the optimal configuration x∗ in a DCOP. Concretely, when setting each unary

and binary potential θi and θij in distribution P as the DCOP relations ri and rij re-

spectively, both problems are equivalent, with exception of the distribution requirement

of DCOPs. Thus, throughout the rest of this chapter we will denote xMAP as x∗. As

explained in chapter 2, DCOP variables are assigned to agents, which are required to

assess their optimal values in a distributed way. However, as discussed in (Farinelli

Copia gratuita. Personal free copy http://libros.csic.es

140 Chapter 7. Max-sum as a region optimal algorithm

et al., 2008), Max-Sum is an iterative, local message passing algorithm, whose update

rules can be directly implemented in a distributed way.

Concretely, the standard update rules for Max-Sum to find the MAP assignment in a

discrete MRF as specified by equation 7.2 are the following:

μij(dj) = αij + max
di∈Di

⎡⎣θi(di) + θij(di, dj) +
∑

xk∈N(xi)\xj

μki(di)

⎤⎦ , (7.3)

bi(di) = θi(di) +
∑

xk∈N(xi)

μki(di), (7.4)

where αij is a normalization constant, and N(xi) returns the set of variables that are

connected to xi, μij is a message from xi to xj and bi is the approximation of max-

marginal over xi. At the first iteration all messages are initialised to constant functions1.

At each following iteration, each variable xi aggregates all incoming messages and

computes the belief bi, which is then used to obtain the Max-Sum assignment xMS =
{xMS

i |xi ∈ X} where xMS
i = argmaxdi∈Di

bi(di).
The convergence of Max-Sum is usually characterized considering fixed points for the

message update rules, i.e. when all the messages exchanged are equal to the last iter-

ation. With a slight abuse of notation, through the rest of this chapter we use xMS to

denote the Max-Sum assignment obtained on convergence and we will refer to it simply

as Max-Sum solution.

Now, the Max-Sum algorithm is known to be optimal over acyclic and single-cycle

graphs. Unfortunately, on general graphs the aggregation of messages flowing into

each variable only represents an approximate solution to the maximization problem.

Nonetheless, it is possible to characterise the solution obtained by Max-Sum as we

discuss below.

7.1.2 Region optimal characterisation of Max-Sum solutions
In (Weiss and Freeman, 2001), Weiss et al. characterize how well Max-Sum approx-

imates the MAP assignment. In particular, they find the conditions for a Max-Sum

solution xMS to be a region optimum, namely greater than all other assignments in a

specific large region around xMS . Weiss et al. introduce the notion of Single Loops and
Trees (SLT) region to characterise the assignments in such region.

Definition 21 (SLT region). An SLT-region of x in G includes all assignments x′ that
can be obtained from x by: (i) choosing an arbitrary subset V ⊆ X such that its
vertex-induced subgraph contains at most one cycle per connected component; (ii) as-
signing arbitrary values to the variables in V while keeping the assignment to the other
variables as in x.

Hence, we say that an assignment xSLT is SLT optimal if it is greater than any other

assignment in its SLT region. Finally, the main result in (Weiss and Freeman, 2001) is

1The constant used is the neutral value that depends on the nature of the problem. For example, for utility

maximisation the constant is 0 whereas for probabilistic settings is 1.

© CSIC © del autor o autores / Todos los derechos reservados

7.2. Fine Single Loops and Trees region optimal bounds 141

x0 x1

x2 x3

(a)

x0 x1

x2 x3

(b)

x0 x1

x2 x3

(c)

x0 x1

x2 x3

(d)

x0 x1

x2 x3

(e)

Figure 7.1: (a) 4-complete graph and (b)-(e) sets of variables covered by the SLT-region.

the characterisation of any Max-Sum solution as an SLT optimum. Figures 7.1(b)-(e)

illustrate examples of assignments in the SLT region in the complete graph of figure

7.1(a), here boldfaced nodes stand for variables that vary the assignment with respect

to xSLT .

In the next sections we use region optimality to bound Max-Sum solutions in the SLT

regions.

7.2 Fine Single Loops and Trees region optimal bounds

Since SLT is a region we can directly directly compute a fine region optimal bound on

any SLT optimum by means of the mechanism introduced in chapter 6 (section 6.2.2).

As explained in chapter 6, this problem can be transformed into an LP whose solu-

tion is a tight bound for any MRF with the specific graph structure G. However, as

argued in (Weiss and Freeman, 2001), in many graphs the SLT region is exponentially

large. Hence, the complexity of generating the LP is, in general, exponential to the

number of variables of the MRF. This complexity is not surprising since assessing all

the neighbourhoods in the SLT region requires generating all the vertex-induced trees

and vertex-induced single cycle graphs of G.

Although this method has the advantage of providing a tight bound for MRFs with any

arbitrary structure, it does not scale well with the size of MRFs. Nonetheless, in the next

section we show how to use the coarse method introduced in chapter 6 to bound Max-

Sum solutions for any MRF or for MRFs with particular structures. For example, we

can compute in constant time a bound for MRFs with a 2-D grid structure, even when,

as shown in (Weiss and Freeman, 2001), the SLT region in this case is exponential to

the number of variables in the MRF.

7.3 Coarse Single Loops and Trees region optimal bounds

In this section we show that by means of the coarse region optimal qualities introduced

in chapter 6 (section 6.2.3) we can assess SLT-bounds for MRFs with arbitrary and

specific structures in linear time.

The main idea is that by virtue of the characterization of any Max-Sum fixed point as-

signment as SLT-optimal, we can select any region C composed of a combination of

Copia gratuita. Personal free copy http://libros.csic.es

142 Chapter 7. Max-sum as a region optimal algorithm

single cycles and trees of our graph. Such region can be used to compute the corre-

sponding C-optimal bound by means of proposition 6 formulated in chapter 6.

We start by proving that coarse SLT region optimal bounds for a given graph apply

to its subgraphs. Then, we find that the bound for the complete graph is problem-

independent, and hence, it applies to any MRF independently of its graph structure and

parameters. Afterwards, we define bounds tighter than the problem-independent bound

for MRFs with specific structures.

7.3.1 Problem-independent Single Loops and Trees region optimal
bounds

Next we show that the coarse SLT region optimal bounds for a given graph can be

applied to any of its subgraphs.

Proposition 12. Let G = 〈X , E〉 be a graphical model and C the SLT region of G. Let
G′ = 〈X ′, E′〉 be a subgraph of G. Then the coarse region optimal bound defined in
chapter 6 for G, namely:

θ(xC) ≥ cc∗
|C| − nc∗

θ(x∗) (7.5)

where cc∗ = minS∈E cc(S, C), nc∗ = minS∈E nc(S, C), and x∗ is the MAP assign-
ment holds for any SLT optimal assignment in G′.

For the sake of readability, the proof for proposition 12 is omitted here, but can be

consulted in Appendix C. Next, we outline a sketch of the proof.

Sketch of the proof. We can compose a region C′ containing the same elements as C
but removing those variables which are not contained in X ′. Note that SLT-optimality

on G′ guarantees optimality in each element of C′. Observe that the bound obtained by

applying equation 6.4 to C′ is greater or equal than the bound obtained for C. Hence,

the bound for G applies also to G′.
A direct conclusion of proposition 12 is that any bound based on the SLT-region of a

complete graph of n variables can be directly applied to any subgraph of n or fewer

variables regardless of its structure. In what follows we assess the bound for a complete

graph.

Proposition 13. Let G = 〈X , E〉 be a complete MRF. For any Max-Sum solution xMS ,

θ(xMS) ≥ 1

|X | − 2
· θ(x∗). (7.6)

Proof. Let C be a region containing every possible combination of three variables in X .

Every set of three variables is part of the SLT-region because it can contain at most one

cycle. Then, the development in the proof of proposition 8 for k-size region optimality

given in chapter 6 (section 6.2.4) can be applied here for k = 3 to obtain equation

7.6.

Notice that any set of four variables in a complete graph has more than one cycle, and

hence it is not contained in the SLT region. Thus, the SLT-region of a complete graph

contains the same sets as the 3-size optimal region, and hence, any Max-Sum solution

in a complete graph is 3-size region optimal.

© CSIC © del autor o autores / Todos los derechos reservados

7.3. Coarse Single Loops and Trees region optimal bounds 143

0 20 40 60 80 100

Number of variables

0

20

40

60

80

100

P
e
rc

e
n
t

o
p
ti

m
a
l
(
θ
(x

M
S
)

θ
(x

∗

)
·
1
0
0
) 2D grid

Bipartite

Complete/Structure-independent

(a) Bounds on complete, bipartite and 2-D grid structures when
varying the number of variables.

3 10 20 30 40 50

Minimum number of variables in each cycle

30

40

50

60

70

80

90

100

P
e
rc

e
n
t

o
p
ti

m
a
l
(
θ
(x

M
S
)

θ
(x

∗

)
·
1
0
0
)

d=2

d=4

d=8

d=128

d=1024

(b) Bounds on MRFs with variable-disjoint cycles when vary-
ing the number of cycles (d) and their size (x-axis).

Figure 7.2: Percent SLT-region optimal bounds for Max-Sum solutions in MRF with

specific graph structures.

Corollary 1. For any MRF, any Max-Sum solution xMS satisfies equation 7.6.

Since any graph can be seen as a subgraph of the complete graph with the same number

of variables, the corollary is straightforward given propositions 12 and 13.

Figure 7.2(a) plots this problem-independent bound when varying the number of vari-

ables. Observe that it rapidly decreases with the number of variables and it is only

Copia gratuita. Personal free copy http://libros.csic.es

144 Chapter 7. Max-sum as a region optimal algorithm

x0

x1

x2

x3

x4

x5

(a)

x0

x1

x2

x3

x4

x5

(b)

x0

x1

x2

x3

x4

x5

(c)

x0

x1

x2

x3

x4

x5

(d)

x0

x1

x2

x3

x4

x5

(e)

x0

x1

x2

x3

x4

x5

(f)

x0

x1

x2

x3

x4

x5

(g)

x0

x1

x2

x3

x4

x5

(h)

x0

x1

x2

x3

x4

x5

(i)

x0

x1

x2

x3

x4

x5

(j)

x0

x1

x2

x3

x4

x5

(k)

x0

x1

x2

x3

x4

x5

(l)

x0

x1

x2

x3

x4

x5

(m)

x0

x1

x2

x3

x4

x5

(n)

x0

x1

x2

x3

x4

x5

(o)

x0

x1

x2

x3

x4

x5

(p)

Figure 7.3: Example of (a) a 3-3 bipartite graph and (b)-(p) sets of variables covered by

the SLT region.

significant on very small MRFs. In the next section, we show how to exploit the knowl-

edge of the structure of an MRF to improve the bound’s significance.

7.3.2 Per-structure coarse SLT region optimal bounds
In this section we show that for MRFs with specific structures, it is possible to pro-

vide bounds much tighter than the problem-independent bound provided by corollary

1. These structures include, but are not limited to, bipartite graphs, 2-D grids, and

variable-disjoint cycle graphs.

Bipartite graphs

We define the C-optimal bound of equation 7.5 for any Max-Sum fixed point assignment

in an n-m bipartite MRF. An n-m bipartite MRF is a graph whose vertexes can be

divided into two disjoint sets, one with n variables and another one with m variables,

such that the n variables in the first set are connected to the m variables in the second

set. Figure 7.3(a) depicts a 3-3 bipartite MRF.

Proposition 14. For any MRF with n-m bipartite structure where m ≥ n, and for any
Max-Sum solution xMS we have that:

θ(xMS) ≥ b(n,m) · θ(x∗) b(n,m) =

{
1
n m ≥ n+ 3

2
n+m−2 m < n+ 3

(7.7)

For the sake of readability, the proof for proposition 14 is omitted here, but can be

consulted in Appendix C. Next, we outline a sketch of the proof.

Proof. Let CA be a region including one out of the n variables and all of the m variables

(in figure 7.3, elements (n)-(p)). Since the elements of this region are trees, we can

guarantee optimality on them. The number of elements of the region is |CA| = n. It is

clear that each edge in the graph is completely covered by one of the elements of CA,

and hence cc∗ = 1. Furthermore, every edge is partially covered, since all of the m
variables are present in every element, and hence nc∗ = 0. Applying equation 6.4 gives

the bound 1/n.

© CSIC © del autor o autores / Todos los derechos reservados

7.3. Coarse Single Loops and Trees region optimal bounds 145

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

(a)

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

(b)

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

(c)

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

(d)

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

(e)

Figure 7.4: Example of (a) a 4-grid graph and (b)-(e) sets of variables covered by the

SLT-region.

Alternatively, we can define a region CB formed by taking sets of four variables, two

from each set. Since the elements of CB are single-cycle graphs (in figure 7.3, elements

(b)-(j)), we can guarantee optimality on them. Applying proposition 6, we obtain the

bound 2
n+m−2 . Observe that 2

n+m−2 > 1
n when m < n+3, and so equation 7.7 holds.

Example 7.3.2.1. Consider the 3-3 bipartite MRF of figure 7.3(a). Figures 7.3(b)-(j)
show the elements in the region CB composed of sets of four variables, two from each
side. Therefore |CB | is 9. Then, for any edge (i, j) ∈ E there are 4 sets in CB that
contain its two variables. For example, the edge that links the upper left variable (x0)
and the upper right variable (x3) is included in the subgraphs of figures 7.3(b), (c), (e)
and (f). Moreover, for any edge (i, j) ∈ E there is a single element in CB that does not
cover it at all. For example, the only graph that does not include neither x0 nor x3 is
the graph of figure 7.3(j). Thus, the bound is 4/(9− 1) = 1/2.

Figure 7.2(a) plots the bound of equation 7.7 for bipartite graphs when varying the

number of variables. Note that although, also in this case, the value of the bound rapidly

decreases with the number of variables, it is twice the value of the problem-independent

bound.

Two-dimensional (2-D) grids

Next, we define the C-optimal bound of equation 7.5 for any Max-Sum solution in a 2-

D grid MRF. An n-grid structure stands for a graph with n rows and n columns where

each variable has 4 neighbours. Figure 7.4 (a) depicts a 4-grid MRF.

Copia gratuita. Personal free copy http://libros.csic.es

146 Chapter 7. Max-sum as a region optimal algorithm

Proposition 15. For any MRF with an n grid structure where n is an even number, for
any Max-Sum solution xMS we have that

θ(xMS) ≥ n

3n− 4
· θ(x∗) (7.8)

Next, we outline a sketch of the proof for proposition 15. Details can be consulted in

Appendix C.

Proof. We can partition columns in pairs joining column 1 with column (n/2) + 1,

column 2 with column (n/2) + 2 and so on.

We can partition rows in the same way. Let C be a region where each element contains

the vertexes in a pair of rows at distance n
2 together with those in a pair of columns

at distance n
2 . Note that optimality is guaranteed in each Cα ∈ C because variables

in two non-consecutive rows and two non-consecutive columns create a single-cycle

graph. Since we take every possible combination, |C| = (n2)
2. Each edge is completely

covered by n
2 elements and hence cc∗ = n

2 . Finally, for each edge (i, j), there are

nc∗ = (n2 − 1)(n2 − 2) elements of C that do not cover {xi, xj} at all. Substituting

these values into equation 6.4 leads to equation 7.8.

Example 7.3.2.2. Consider the 4-grid MRF of figure 7.4 (a). Figures 7.4 (b)-(e) show
the vertex-induced subgraphs for each set of vertexes in the region C formed by the com-
bination of any pairs of rows in {(1, 3), (2, 4)} and pair of columns in {(1, 3), (2, 4)}.
Therefore |C| = 4. Then, for any edge (i, j) ∈ E there are 2 sets that contain its two
variables. For example, the edge that links the two first variables in the first row, namely
x0 and x1, is included in the subgraphs of figures (a) and (b). Moreover, for any edge
(i, j) ∈ E there is no set that contains no variable from {xi, xj}. Thus, the bound is
1/2.

Figure 7.2(a) plots the bound for 2-D grids when varying the number of variables. Note

that when compared with the bound for complete and bipartite structures, the bound for

2-D grids decreases smoothly and tends to stabilize as the number of variables increases.

In fact, observe that by equation 7.8, the bound for 2-D grids is never less that 1/3

independently of the grid size.

Variable-disjoint cycle graphs

In this section we assess a bound for MRFs composed of a set of variable-disjoint

cycles, namely of cycles that do not share any variable.

A common pattern shared by the bounds assessed so far is that they decrease as the

number of variables of an MRF grows. This section introduces an example showing

that there are specific structures for which we obtain high quality guarantees for large

MRFs.

Example 7.3.2.3. Consider the MRF composed of two variable-disjoint cycles of size
4 depicted in figure 7.5(a). To create the region, we remove each of the variables of the
first cycle, one at a time (see figures 7.5(b)-(e)). We act analogously with the second
cycle. Hence, C is composed of 8 elements. Just by counting we observe that each edge

© CSIC © del autor o autores / Todos los derechos reservados

7.4. Conclusions 147

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

(a)

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

(b)

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

(c)

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

(d)

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

(e)

Figure 7.5: (a) 2 variable-disjoint cycles MRF of size 4 and (b-e) sets of variables covered by

the SLT-region.

is completely covered 6 times, so cc∗ = 6. Since we are removing a single variable at
a time, nc∗ = 0. Hence, the bound for a Max-Sum solution in this MRF structure is
6/8 = 3/4.

The following result generalizes the previous example to MRFs containing d variable-

disjoint cycles of size larger than or equal to l.

Proposition 16. For any MRF such that every pair of cycles is variable-disjoint and
where there are at most d cycles of size l or larger, and for any Max-Sum solution xMS ,
we have that:

θ(xMS) ≥
(
1− 2(d− 1)

d · l

)
· θ(x∗) =

(l − 2) · d+ 2

l · d · θ(x∗). (7.9)

For the sake of readability, the proof is omitted here but can be consulted in Appendix C.

The proof generalizes the region explained in example 7.3.2.3 to any variable-disjoint

cycle MRF by defining a region that includes an element for every possible edge re-

moval from every cycle but one.

Equation 7.9 shows that the bound: (i) decreases with the number of cycles; and (ii)

increases as the maximum number of variables in each cycle grows. Figure 7.2(b) illus-

trates the relationship between the bound, the number of cycles (d), and the maximum

size of the cycles (l). The first thing we observe is that the size of the cycles has more

impact on the bound than the number of cycles. In fact, observe that by equation 7.9,

the bound for a variable-disjoint cycle graph with a maximum cycle size of l is at least
(l−2)

l , independently of the number of cycles. Thus, if the minimum size of a cycle

is 20, the quality for a fixed point is guaranteed to be at least 90%. Hence, quality

guarantees for Max-Sum solutions are good whenever: (i) the cycles in the MRF do not

share any variables; and (ii) the smallest cycle in the MRF is large. Therefore, our result

confirms and refines the recent results obtained for single-cycle MRFs (Weiss, 2000).

7.4 Conclusions
Although Max-Sum comes with no quality guarantees (neither from a designer not

from a agent perspective), it is one of the leading incomplete DCOP algorithms due to

its good empirical performance. This chapter overcomes this limitation by proving that

region optimality is a valuable tool to bound the quality of Max-Sum solutions.

Copia gratuita. Personal free copy http://libros.csic.es

148 Chapter 7. Max-sum as a region optimal algorithm

Thus, the region optimal framework allows us, for the first time, to assess worst-case

bounds on the quality of Max-Sum solutions for any problem (independent-problem

guarantees) and for arbitrary graph structures (per-structure guarantees). On the one

hand, we have proven that problem-independent guarantees rapidly decrease with the

number of variables. On the other hand, we identified new classes of graph structures,

besides acyclic and single-cycle, for which we can provide theoretical guarantees. As

an example, we defined significant bounds for two-dimensional grids and graphs com-

posed of variable-disjoint cycles. Concretely, we proved that:

• in two-dimensional grids Max-Sum solutions have at least 33% of the quality of

the optimum;

• in large variable-disjoint cycles, such that smaller cycle contains at least 20 vari-

ables, Max-Sum solutions have at least 90% of the quality of the optimum.

Therefore, results presented in this chapter shed some light on the relationship between

the quality of Max-Sum solutions and the graph structure of the model.

The quality guarantees we defined for Max-Sum are important for the DCOP com-

munity given the few DCOP algorithms, C-DALO and MGM-{2,3} algorithms, that

can actually provide system designer’s quality guarantees. Moreover, since Max-Sum

is widely employed to solve approximately the MAP problem in graphical models,

our contribution it is also of interest for many other research areas such as statistical

physics, computer vision or error-correcting coding theory (refer to (Wainwright and

Jordan, 2008) for a description of Max-Sum application in such areas).

Figure 7.1 shows the resultant DCOP landscape after incorporating the aforementioned

quality assessment for the Max-Sum algorithm. Notice that now, Max-Sum is included

in the category of algorithms that can provide system designer’s quality guarantees,

concretely region optimal quality guarantees.

© CSIC © del autor o autores / Todos los derechos reservados

7.4. Conclusions 149

Dynamic
Programming

Partial
Centralisation Search Based

C
o

m
p

le
te

DPOP

PC-DPOP

DCPOP OptAPO

ADOPT

BnB-ADOPT

In
co

m
p

le
te

A
p

p
ro

x
im

at
e S
y

st
em

D
es

ig
n

er

Max-Sum

R
eg

io
n

op
tim

al
gu

ar
an

te
es

MGM/SCA-{2,3}

C-DALO

A
g

en
t

Bounded

Max-Sum

N
o

g
u

ar
an

te
e

DSA/MGM-1

GDL-based Decision-based

Table 7.1: DCOP algorithms landscape after Max-Sum quality assessment. Contri-

butions of this chapter are highlighted in blue/bold. DCOP algorithms are classified

based on the quality assessment they provide over their solutions (vertical axis) and the

approach they follow to solve DCOPs (upper and lower horizontal axes).

Copia gratuita. Personal free copy http://libros.csic.es

© CSIC © del autor o autores / Todos los derechos reservados

Chapter 8

Conclusions and Future work

In this chapter, we draw some conclusions about the work developed in this work and

we show some paths open to future development.

8.1 Conclusions
In this book, we have investigated different approaches to overcome the challenges that

the problem of quality assessment under resource-boundedness poses on the design

of DCOP algorithms. With this purpose, we focused on exploring various efficiency-

related trade-offs along two dimensions: the level of required resources and the quality

assessment over solutions.

On the one hand, under resource-boundedness, the trade-off to be considered was cost

versus optimality. Some bounded optimization problems require complete algorithms

that make the most effective use of resources to find an optimal coordination, while

others require incomplete algorithms that can rapidly solve large-scale problems at the

cost of finding suboptimal solutions. One of the main contributions of this book was to

present algorithms in both categories:

(i) a complete DCOP algorithm: Action-GDL; and

(ii) three incomplete DCOP algorithms: DaCSA and EU-DaC, from the DaC family,

and C-DALO, a generic region optimal algorithm.

On the other hand, quality assessment was identified as fundamental to enable a rea-

soned trade-off between the solution’s quality and cost of incomplete algorithms and

between the quality and the characteristics of the problem. These trade-offs required

a broader concept of guarantees that include, in addition to optimality, approximate

guarantees from two perspectives: from agents and from a system designer perspective.

Thus, the second main contribution of this book consisted in providing two frameworks

for approximate guarantees:

(i) Divide-and-Coordinate, which defines a family of algorithms with agent’s quality

guarantees; and

151

Copia gratuita. Personal free copy http://libros.csic.es

152 Chapter 8. Conclusions and Future work

Approximate Guarantees
Time Specificity

Design Run Problem-
independent

Per-Class Per-
Instance

ADOPT1 � �
BnB-ADOPT1 � �
A-DPOP � �
DSA

MGM-1

Max-Sum � � �
Bounded Max-Sum �
MGM/SCA-{2,3} � � �
C-DALO � � �
DaCSA � �
EU-DaC � �

Agent’s quality guarantees

System designer’s quality guarantees
1 ADOPT and BnB-ADOPT here refer to the bounded-error approximation extensions of

the respective complete algorithms.

Table 8.1: Quality assessment landscape for incomplete DCOP algorithms after in-

cluding this book contributions (shown in bold). Guarantees are characterised based on

two dimensions: time at which they are available and specificity.

(ii) Region Optimality, which defines system designer’s quality guarantees for a class

of DCOP solutions.

As an additional benefit that stems from region optimality, and therefore contribution,

we were able to assess system designer’s quality guarantees for the Max-Sum solutions

on convergence. Table 8.1 shows the algorithms for which we provided approximate

quality guarantees based on these frameworks. As in chapter 2, quality guarantees are

classified along two dimensions: the time at which they are available and their speci-

ficity. For DaCSA and EU-DaC we assessed agent’s quality guarantees, namely runtime

per-instance guarantees. In contrast, for C-DALO and Max-Sum we assessed system

designer’s quality guarantees, namely design-time problem-independent and per-class

guarantees.

All these contributions are founded on exploiting the structure of DCOPs, to design effi-

cient DCOP algorithms that: (i) assess good solutions subject to the resources available;

and (ii) bound the quality of these solutions.

Figure 8.2 presents a comparative overview of the current DCOP landscape after in-

cluding this book contributions. Existing algorithms are shown together with the new

algorithms developed in this book (the latter ones are shown in bold).

With these contributions we were able to overcome the main limitations of the DCOP

literature when designing DCOP algorithms with quality guarantees. As discussed at

© CSIC © del autor o autores / Todos los derechos reservados

8.1. Conclusions 153

GDL-based Partial
Centralisation Search Based

C
o

m
p

le
te

DPOP

PC-DPOP

DCPOP

Action-GDL OptAPO

ADOPT

BnB-ADOPT

In
co

m
p

le
te

A
p

p
ro

x
im

at
e S
y

st
em

D
es

ig
n

er

Max-Sum

R
eg

io
n

op
tim

al
gu

ar
an

te
es

MGM/SCA-{2,3}

C-DALO

A
g

en
t

Bounded

Max-Sum

EU-DaC
DaCSA

D
aC

gu
ar

an
te

es

N
o

g
u

ar
an

te
e

DSA/MGM-1

GDL-based Decision-based Divide-and-Coordinate

Table 8.2: DCOP algorithms landscape after including this book contributions (in bold).

Contributions of this book are highlighted in bold/blue. DCOP algorithms are classified

based on the quality assessment they provide over their solutions (vertical axis) and the

approach they follow to solve DCOPs (upper and lower horizontal axes).

the end of chapter 3 (section 3.4), thus required to:

• explore efficient problem representations for optimal DCOP solving;

• design incomplete DCOP algorithms that assess agent’s quality guarantees;

• extend the set of local optimal solutions that allow system designer’s quality guar-

antees; and

• assess quality guarantees over Max-Sum solutions.

Below, we summarize in more detail the contributions of this book that fulfilled each of

the four requirements listed above.

Copia gratuita. Personal free copy http://libros.csic.es

154 Chapter 8. Conclusions and Future work

8.1.1 On exploring efficient problem representations for optimal
DCOP solving

As discussed in chapter 1, the most challenging characteristic to endow complete DCOP

algorithms with is efficiency. As reviewed in chapter 3, the efficiency of current state-

of-the-art complete DCOP algorithms highly depends on the problem representation

that, with exception of DCPOP (that exploits cross-edge trees), was limited to the space

of pseudotrees. Against this background, in chapter 3 (section 3.4), we formulated

some fundamental questions that must be explored in order to overcome the limitations

of optimal DCOP approaches to exploit more general problem representations, namely:

• Is there any further problem representation that can be exploit by complete ap-

proaches? Can we theoretically or/and empirically characterize the potential im-

provement to explore such problem representation?

Next, we recapitulate how this work, by means of the introduction of the Action-GDL

algorithm in chapter 4, set the foundations to explore these fundamental research ques-

tions.

To formulate Action-GDL, we start from the GDL algorithm and extended it to solve

DCOPs efficiently. Then, we showed that Action-GDL effectively reduces communi-

cation and computation with respect to GDL when solving DCOPs. Likewise GDL,

Action-GDL required the problem to be compiled into a junction tree structure. Thus,

we build on an existing distributed method for compiling junction trees in the literature

(Paskin et al., 2005) to allow agents in Action-GDL to distributedly compile a DCOP

into a junction tree.

In addition to the formulation of Action-GDL itself, we presented three sets of results

that explore the generality and efficiency of the junction tree representation.

The first set of results characterised the generality of Action-GDL, and by extension of

the junction tree representation. In particular, we provided two mappings that showed

that junction trees extend the two representations currently used in optimal DCOP solv-

ing: (i) a mapping from pseudotrees (used by DPOP and search-based approaches) to

junction trees; and (ii) a mapping from cross-edge trees (used by DCPOP) to junction

trees. Then, based on these two mappings, we proved that Action-GDL generalises

DPOP and DCPOP. By doing so we obtained a unifying theory for dynamic DCOP al-

gorithms based on GDL. The reader can observe that the DCOP landscape in figure 8.2

now includes Action-GDL as a complete DCOP algorithm that subsumes DPOP and

DCPOP.

The second set of results focused on characterising the efficiency of Action-GDL. On

the one hand, we provided theoretical results that prove that moving from the space

of pseudotrees (used by DPOP) to junction trees (used by Action-GDL) leads to sig-

nificant improvements in terms of computation and communication. In particular, we

observed that Action-GDL: (i) provides significant savings in computation over DPOP

when pseudotrees are generated by edge-traversal heuristics; (ii) provides no signifi-

cant savings in computation for unrestricted pseudotrees; and (iii) can severely reduce

communication complexity.

On the other hand, we ran experiments to assess the improvement of the Action-GDL

with respect to DCPOP. In order to obtain the maximum benefit from the junction

© CSIC © del autor o autores / Todos los derechos reservados

8.1. Conclusions 155

tree representation we formulated a novel distributed post-processing heuristic to op-

timize junction trees. Empirical results demonstrated that, by using this distributed

post-processing heuristic, Action-GDL can be more efficient than DCPOP when the

latter runs over the best cross-edge tree generated by state-of-the-art heuristics. These

results confirmed the improved efficiency of Action-GDL with respect to current dy-

namic programming algorithms, now subsumed under the GDL framework.

Thirdly, we argued that several analytical benefits stemmed from the generality of the

GDL framework. On the one hand, Action-GDL builds connections with a bunch of

well-known algorithms used in other communities such as Viterbi’s (Viterbi, 1967),

Pearl’s belief propagation (Pearl, 1988), or Shafer-Shenoy (Shafer and Shenoy, 1990)

algorithms, to name a few, and with a wealth of theoretical results for GDL over junction

trees (Aji and McEliece, 2000). In particular, in this work we observed that this is also

the case for the Cluster Tree Elimination algorithm (Dechter, 2003). On the other hand,

Action-GDL builds a bridge between dynamic programming DCOP algorithms, namely

DCOP and DCPOP, and the incomplete DCOP algorithms that also belong to the GDL

framework, namely Max-Sum and bounded Max-Sum. Notice that, as depicted in figure

8.2, DPOP, DCPOP, Max-Sum and Bounded Max-Sum algorithms are unified under the

same GDL-approach.

To summarise, the contributions in chapter 4 help overcome the current limitations of

complete DCOP algorithms to exploit more efficient problem representations are:

• Action-GDL, a complete GDL-based DCOP algorithm that exploits a junction

tree representation of the problem. Action-GDL builds upon:

– Extending GDL to solve DCOPs efficiently. Action-GDL is defined as an

extension to GDL to solve DCOPs efficiently, reducing communication and

computation.

– Distributed compilation of junction trees. We show agents can distribut-

edly compile a DCOP into a distributed junction tree.

• A mapping from the space of pseudotrees to junction trees.

• A mapping from the space of cross-edge trees to junction trees.

• A unifying theory for existing dynamic programming DCOP algorithms. We

showed that Action-GDL unifies the existing dynamic programming DCOP al-

gorithms under GDL by generalising DPOP and DCPOP.

• A distributed post-processing heuristic to optimize junction trees.

• Empirical and theoretical results that characterise the improvement in effi-
ciency of Action-GDL with respect to DPOP and DCPOP.

8.1.2 On assessing agent’s quality guarantees
The second main contribution of this book was providing the means of assessing qual-

ity guarantees that can be used by agents at runtime. As identified in chapter 3 (section

Copia gratuita. Personal free copy http://libros.csic.es

156 Chapter 8. Conclusions and Future work

3.4), with exception of the bounded Max-Sum algorithm, state-of-the-art DCOP algo-

rithms fail to satisfy requirements for agent’s quality guarantees, namely to be assessed

at runtime and over the particular problem instance (per-instance quality guarantees).

To overcome this limitation, we proposed a new family of DCOP incomplete algo-

rithms, the so-called Divide-and-Coordinate (DaC) family, which enlarges this limited

selection of algorithms.

The idea we explored in the DaC framework was to tackle the complexity of the prob-

lem by dividing it into simpler subproblems that are individually solved by each agent.

We formulated the foundations of the DaC framework by means of two important prop-

erties, namely:

• The sum of the values of agents’ local solutions, that we denoted as value of
a division, bounds the quality of the optimal DCOP solution. We showed how

agents can use this upper bound to return per-instance quality guarantees for their

anytime solutions, defining in that way the DaC quality guarantees.

• The agreement among subproblems’ local solutions stands for optimality. We

formally proved that if all agents reach an agreement on a joint solution when

optimizing their local subproblems, namely they assign the very same value to

each variable in the DCOP, such solution is the optimal one.

The DaC approach founds on these two properties to solve a DCOP by searching for

a division into subproblems such that subproblems’ local solutions agree on their as-

signments. Thus, intuitively, the DaC approach aims to solve DCOPs by exploiting the

concept of agreement.

Therefore, not only the DaC framework allows to assess per-instance quality guarantees

that can be used by agents at runtime, the so-called DaC quality guarantees, but also

defines a novel approach for DCOP solving. Figure 8.2 depicts the DCOP landscape

including these two contributions.

To make the DaC approach operative we described how agents explore the space of

divisions to find an agreement. To do that we defined an iterative process in which

agents iterate through two stages: divide and coordinate. Recall that when agents solve

their individual subproblems they may conflict by assigning different values to some

shared variables. In order to explore the space of divisions efficiently, we proposed that

agents exploit the information about their local solutions, along with their conflicts,

when creating a new division. Thus, during each divide stage: each agent exchanges

utilities with its neighbours to modify its local subproblem based on the exchanged

information, and solves it to assess a new optimal local solution. During a coordinate
stage agents exchange information about the conflicts on their local assignments.

The DaC framework allowed us as to define a novel family of incomplete DCOP algo-

rithms by means of exploring three fundamental DaC dimensions: (i) the information

agents exchange about their local subproblems; (ii) the local update of subproblems

based on the information exchanged; and (iii) generation of candidate solutions close

to an agreement as possible. Then, with the aim of exploring the space of DaC al-

gorithms we: (i) formulated a generic DaC algorithm that realised the main operation

of an incomplete DCOP algorithm when solving a DCOP by a DaC approach; and

© CSIC © del autor o autores / Todos los derechos reservados

8.1. Conclusions 157

(ii) formalised two DaC algorithms corresponding to two particular realisations of the

above-mentioned unconstrained dimensions.

We started by formulating DaCSA, a DaC algorithm, in which agents exchange the

most basic information: their local solutions. Then, as a strategy to reach an agreement,

we proposed to update subproblems to favour neighbours’ local solutions. To formalise

DaCSA we employed well-known optimization techniques such as Lagrangian Dual

Decomposition and subgradient methods.

To improve the performance of DaCSA and further explore the space of DaC algo-

rithms, we proposed a second DaC algorithm: EU-DaC. EU-DaC was motivated by the

intuition that the more information agents exchange, the more they get divisions closer

to an agreement. Based on this idea, agents explicitly communicate the utilities of their

assignments for their shared variables instead of their local solutions. To update sub-

problems, each agent exchanges utilities to compensate the difference with the utilities

of its neighbours regarding their shared variables.

The complexity analysis we provided for these DaC algorithms showed that they are

low-cost incomplete DCOP algorithms because during each iteration each agent: (i)

exchanges a linear number of messages of linear size; and (ii) performs a linear number

of operations.

Figure 8.2 depicts the inclusion of EU-DaC and DaCSA into the DCOP landscape to

overcome the limited availability of algorithms with guarantees from an agent perspec-

tive.

The DaCSA and EU-DaC algorithms were experimentally analyzed when solving DCOPs

that exhibit strong dependencies between agents’ actions. We observed that: (i) DaC

algorithms lead to better solutions on average than state-of-the-art DCOP algorithms

that do not provide quality guarantees over their solutions; (ii) DaC quality guarantees

are tight, and hence meaningful for agents at run time. Empirical results also demon-

strated that EU-DaC outperforms DaCSA, acting as a support for the hypothesis that

coordinating by exchanging the utilities of solutions instead of optimal solutions leads

to higher quality solutions. In addition, experiments emphasize the different nature of

quality guarantees, showing that system designer’s guarantees as those provided by k-

optimal algorithms, like MGM-{2,3}, are much looser than DaC quality guarantees,

and hence, less suitable to be used by agents at runtime. As to solution quality, both

approaches succeed in exploiting the problem structure to assess solutions of similar

quality.

To summarise, the contributions in this work regarding the assessment of agent’s quality

guarantees:

• Divide-and-Coordinate, a novel approach to solve DCOPs that allows to assess

agent’s quality guarantees.

• A generic DaC algorithm, a generic incomplete DCOP algorithm.

• DaCSA, the first DaC algorithm in which agents coordinate by exchanging their

solutions.

• EU-DaC, a second DaC algorithm that improves the performance of DaCSA by

allowing agents to communicate their solutions’ utilities.

Copia gratuita. Personal free copy http://libros.csic.es

158 Chapter 8. Conclusions and Future work

• An empirical evaluation of the efficiency of DaCSA and EU-DaC when solving

DCOPs and the accuracy of their guarantees.

8.1.3 On extending the set of local optimal solutions that allow sys-
tem designer’s quality guarantees

In what follows we summarise our contributions towards a general framework that over-

comes the current limitations on the characterisation of local optimal solutions that al-

low system designer’s quality guarantees.

As we analysed in chapter 2 (section 3.4), system designer’s quality guarantees in the

literature were limited to those provided by k-size and t-distance optimality over local

optima characterised by size and distance. Then, to progress in this line of work we

identified some fundamental questions that must be explored, namely:

(i) Can we define analogous approximate quality guarantees for a larger set of local

optima, namely optima defined over arbitrary criteria?

(ii) Does a better criterion (beyond size and distance) exist that offers better guaran-

tees, faster algorithms or more fine-grained control of the trade-off quality versus

cost?

We observe that the region optimality framework proposed in chapter 6 provided the

foundations to explore these two fundamental research questions.

To achieve that purpose, we started from the existing definitions of k-size and t-distance

optimal solutions and generalised them to the notion of region optimality. Intuitively,

we observed that both k-size and t-distance optimal solutions stand for DCOP assign-

ments whose value can not be improved by changing the decision of any group of

agents, what we called neighborhoods, in a region. Then, k-size and t-distance optimal-

ity differ on the criterion used to characterise the neighborhoods that compose regions:

k-size neighborhoods are characterised by size whereas t-distance neighborhoods are

characterised by distance to a central agent. We noticed that the set of neighbourhoods

that compose a region is of central importance to both frameworks because they deter-

mine the degree of dominance of the local optima, affecting in that way the definition of

the corresponding quality guarantees. In this work we generalised these two classes of

local optima by means of region optimal solutions, namely any local optimal solution

in regions composed of neighborhoods characterised by arbitrary criteria.

In addition to region optimality, we also defined guarantees on the solution quality of

any region optimal solution. As argued in chapter 1, system designer’s quality guaran-

tees, in addition to being assessed at design time, need to be general enough to apply to

any problem instance that agents can face when deployed at runtime. With this aim, we

provided region optimal guarantees that exploit different degrees of knowledge about

problems’ structure, namely:

• Problem-independent region optimal guarantees that apply to any problem;

• Per-structure region optimal guarantees that exploit knowledge about the graph

structure;

© CSIC © del autor o autores / Todos los derechos reservados

8.1. Conclusions 159

• Per-reward region optimal guarantees that exploit knowledge about the reward

structure;

To compute these region optimal quality guarantees we defined two mechanisms that

differ on their computational cost. The first mechanism directly searches the space of

problems to find a problem where the quality of the region optimum with respect to the

global optimum is minimized. The main drawback of this mechanism is that it requires

to generate and solve a linear program (LP) with a number of constraints exponential

to the number of variables in the largest neighbourhood in the region. Hence, the fine

mechanism guarantees tightness at the cost of worserning computational tractability.

The second mechanism, allows to assess coarse region optimal guarantees, in linear

time, though guarantees are in general not tight.

Finally, we proved that region-optimality generalises and unifies k-size optimality (Pearce

and Tambe, 2007) and t-distance optimality (Kiekintveld et al., 2010).

Figure 8.2 depicts how region optimality defines a new type of system designer’s quality

guarantees that unifies k-size and t-distance algorithms, namely MGM-{2,3} and C-

DALO.

With the formalisation of region optimality, a new dimension came into play. Indeed,

region optimality allows to explore the space of local optimality criteria (beyond size

and distance), looking for those that lead to better solution qualities. With the purpose

of effectively showing that such better criteria exist, we analyzed the regions gener-

ated by k-size and t-distance under different graph structures. From this analysis, we

concluded that the k-size criterion generates a potentially large number of neighbor-

hoods of limited size, and t-distance generates a limited number of potentially huge

neighborhoods. With the aim of keeping under control the number and size of neigh-

borhoods, we introduced a new criterion, the so-called size-bounded distance criterion,

which generates regions including a bounded number of limited-size neighborhoods.

Finally, we addressed the algorithm design challenge in region optimality by propos-

ing C-DALO, extension of DALO (Kiekintveld et al., 2010), which allows to search

for region optima characterised by arbitrary criteria. C-DALO operates following a

decision-based approach: agents optimize in parallel neighborhoods in the region until

reaching stability, and therefore a region optimal solution.

Table 8.1 shows the inclusion of C-DALO as an incomplete DCOP algorithm that can

provide agent’s quality guarantees, namely problem-independent and per-class quality

guarantees assessed at design time. Figure 8.2 shows the inclusion of C-DALO in the

DCOP landscape as a decision-based incomplete DCOP algorithm with region optimal

guarantees.

Experimental results over different problem structures demonstrated that the average-

case performance of C-DALO with size-bounded-distance regions leads to better solu-

tion qualities than when employing k-size or t-distance criteria.

To summarise, the contributions of this work related to extend the set of local optimal

solutions that allow system designer’s guarantees are:

• Region Optimality, a general framework that extends the class of DCOP so-

lutions for which we can provide system designer’s quality guarantees. Region

Optimality develops along two dimensions:

Copia gratuita. Personal free copy http://libros.csic.es

160 Chapter 8. Conclusions and Future work

– Characterisation of region optimal solutions.

– Region optimal quality guarantees, including per-structure region optimal

quality guarantees and per-reward quality guarantees.

• The size-bounded distance criterion, a novel criterion to characterise neighbor-

hoods that outperforms size and distance optimality.

• The C-DALO algorithm, an asynchronous region optimal algorithm that allows

to search for region optimal solutions in regions characterised by arbitrary crite-

ria.

8.1.4 Quality guarantees for the Max-Sum algorithm
As thoroughly discussed in chapter 3 (section 3.4), the main drawback of Max-Sum

algorithm stems from its lack of quality guarantees. To overcome this limitation we

proved quality guarantees for Max-Sum solutions building upon region optimality.

With this aim we employed the results provided by Weiss and Freeman in (Weiss and

Freeman, 2001), which that stated that any Max-Sum solution on convergence is guar-

anteed to be neighbourhood maximum in a region composed of all subsets of variables

whose vertex-induced subgraph contains at most one cycle, the so-called Single Loops

and Trees (SLT) region.

Based on this characterisation of Max-Sum solutions as region optimal, we proceeded

to assess region optimal bounds for the SLT region. First, we showed how to assess

tight quality guarantees for the SLT region by means of the fine mechanism. However,

the exponential size that the SLT region exhibits in many graphs makes the complexity

of generating the LP intractable, hence limiting the applicability of this mechanism to

small-size scenarios. Nevertheless, the fine mechanism has analytical benefits. For ex-

ample, it allows us to check the tightness of guarantees in small instances. Therefore, to

assess computationally tractable guarantees for Max-Sum we needed to restrict to the

faster mechanism. By means of the coarse mechanism we assessed region optimal qual-

ity guarantees for the SLT region that apply to Max-Sum solutions: (i) in any problem

(problem-independent guarantees); and (ii) in problems with specific graph structures

(per-structure quality guarantees).

As to the problem-independent quality guarantees, we observed that the quality guar-

anteed for the Max-Sum solution decreases rapidly with the size of the problem. More-

over, we found that, when no knowledge about the graph structure is exploited, the

SLT-region corresponds to the 3-size region, and hence that any Max-sum solution is

guaranteed to be at least 3-size region optimal.

As to per-structure quality guarantees, we showed that for problems with specific graph

structures, we can assess much tighter quality guarantees than the introduced problem-

independent guarantees. In particular, we defined SLT-region quality guarantees for

bipartite graphs, two-dimensional grids and variable-disjoint cycle graphs that are cal-

culated in constant time. For each of these graph structures, we analysed the relation-

ship between the quality guarantees and the graph structure. As a result of this analysis,

we identified new classes of graph structures for which the quality of max-sum solutions

is guaranteed to be close to the optimum.

© CSIC © del autor o autores / Todos los derechos reservados

8.2. Future work 161

Two major benefits, and therefore contributions, derive from the introduced quality as-

sessment over Max-Sum solutions. One the one hand, the provided quality guarantees

help to shed some light on the relationship between the quality of Max-Sum solutions

and the structure of the problem. We observed that these results are not only impor-

tant for the DCOP community, but also in many other areas such as statistical physics,

computer vision or error-correcting coding theory in which Max-Sum is used as an ap-

proximate inference algorithm. On the other hand, the characterisation of Max-Sum

as a region optimal algorithm emphasizes the algorithmic-independent characteristic

of the region optimal framework. As a result, the DCOP landscape in figure 8.2 now

includes Max-Sum as an algorithm for which we can assess region optimal guarantees.

To summarise, our contributions related to the quality guarantees of the Max-Sum al-

gorithm are:

• Max-Sum as a regional optimal algorithm. By virtue of the characterisation of

any Max-Sum solution as an SLT-region optimum, we proved region optimality

as a valuable tool to bound the quality of solutions to which converge the Max-

Sum algorithm. Our results build on:

– the characterisation of any Max-Sum solution as neighbourhood maximum

in a specific region of the MRF, the Single Loops and Trees (SLT) region

(Weiss and Freeman, 2001); and

– the region optimal quality guarantees, formalised in this work.

• Problem-independent SLT-region optimal guarantees for Max-Sum.

• Per-structure SLT-region optimal guarantees for Max-Sum, quality guaran-

tees for particular graph structures such as bipartite graphs, two-dimensional

grids and variable-disjoint cycle graph structures.

8.2 Future work
While this book has realised significant contributions on exploiting the structure of

problems to assess and bound multi-agent coordination, it also opens several paths to

future developments. Concretely, the following areas seem specially promising for fu-

ture work:

Exploiting the potential of the junction tree representation

As to the use of junction trees, we have only started to exploit its potential.

We do believe that we can exploit further theoretical and pragmatical tools derived

from using this representation along several dimensions. Firstly, since the efficiency of

Action-GDL depends on the underlying junction tree, investigating the potential exist-

ing junction trees heuristics (Cano and Moral, 1994; Amir, 2001; Flores et al., 2003)

in a distributed environment becomes an interesting strand of research. Secondly, since

junction tree based approaches, like CTE and Action-GDL, can eventually exchange

large messages, a parallel line of research consists in extending these algorithms to ex-

ploit, in addition to the graph structure, the reward structure. Particularly, it would be

Copia gratuita. Personal free copy http://libros.csic.es

162 Chapter 8. Conclusions and Future work

interesting to develop algorithms that reduce the size of messages by filtering out un-

necessary information, along the lines of the work in (Pujol et al., 2011). Thirdly, based

on our claiming that Action-GDL generalises DPOP, we consider that the multiple ex-

tensions to DPOP (Petcu, 2007) (e.g H-DPOP or MB-DPOP) might be generalised in

terms of Action-GDL. From the generalisation of these extensions, we can expect not

only an improvement of their efficiency due to the junction tree representation but also

theoretical benefits due to the connection with the GDL framework.

Recall that in this work we showed that by exploiting a more general problem repre-

sentation, Action-GDL generalises existing dynamic programming DCOP algorithms

improving their efficiency. However, this limitation on exploring more general problem

representations is also present in search algorithms, like ADOPT and its extensions.

Hence, as argued in (Yeoh et al., 2010), an open research area is to study how different

representations from pseudo-trees affect the efficiency of Adopt approaches. Along this

line, we believe that the theoretical and empirical results provided in this book about

the benefits of exploring junction tree in dynamic programming approaches can serve

as a basis and guide for analogous studies regarding ADOPT approaches.

Enhancing the DaC framework

As to the DaC framework, future work includes to study some unexplored aspects of

this framework to allow a broad applicability of the DaC algorithms. The most interest-

ing extension we envisage to DaC algorithms is to offer configurable trade-offs quality

versus computational cost. Recall that the two proposed DaC algorithms explore the

space of DCOP divisions restricted to subproblems with a particular graph structure

that makes them computationally tractable. Moreover, when an agent exchanges infor-

mation to coordinate with a neighbour, this information is restricted to its variable and

the neighbour’s variable. Therefore a natural extension to these algorithms amounts

to allowing agents: (i) to handle more complex subproblems (incrementing computa-

tion) and (ii) to exchange information about their disagreement on larger combinations

of shared variables (incrementing communication) to improve the quality of the DaC

solution. In that way, agents would be able to trade-off solution quality versus cost be-

cause solutions generated in larger subproblems and exchanging more information are

expected to be better. This poses the interesting problem of how agents select which

information to incorporate in their subproblems and in their coordination messages that

can decrease most their disagreement and lead to better solution qualities. At that point

we do believe we can take advantage of several related works in the literature that pro-

pose strategies to realise this decision problem that emergence on dynamic trade-offs.

Concretely several results are given in (Mailler and Lesser, 2004) for OptAPO in which

agents follow several heuristics to dynamically increase the size of their subproblems

as the problem solving unfolds or in (Petcu et al., 2007) for PC-DPOP, and extension to

DPOP, where clusters of high width are distributedly detected by agents and centralised.

Secondly, as to the design of new DaC algorithms, we have only partially explored the

dimensions that characterise the family of DaC algorithms. One path along which more

efficient DaC algorithms can be developed is by exploring novel strategies to update

subproblems or different information about their disagreement. Furthermore, since the

efficiency of DaC algorithms highly depends on how well agents exploit suproblems to

© CSIC © del autor o autores / Todos los derechos reservados

8.2. Future work 163

assess anytime (candidate) solutions, the design of strategies to generate these solutions

becomes an interesting strand of research. Although in this work we contributed with

two strategies, the majority rule and the conditioned majority rule, we do strongly be-

lieve that further strategies may exist and improve the efficiency of such algorithms. As

an example, we can take inspiration of the way in which agents take decisions in Op-

tAPO (Mailler and Lesser, 2004) where priorities ensure that the agents with the most

knowledge over variables gets to make the decisions over them.

On the design of new region optimal algorithms and criteria

The region optimality framework formulated in this work opens new research opportu-

nities to study the design of new local optimality criteria and of more efficient region

optimal algorithms. On the one hand, recall that region optimality allow us to: (i) define

region optimal quality guarantees whereas exploiting some characteristics of the prob-

lem; and (ii) assess the complexity of searching for any region optimal with C-DALO

algorithm. Hence, since a critical issue in region optimality is the choice of regions,

more than proposing new particular local optimality criteria what is needed is the de-

sign of techniques that allow us to explore the space of regions in search for regions

with limited complexity and high quality guarantees. On the other hand, another line of

further research opened by this book is the design of more efficient region optimal algo-

rithms, that for arbitrary or particular regions, outperform C-DALO. This would allow

agents to search in larger regions that lead to better local optima. In particular, in this

work we showed that it is the case of Max-Sum algorithm: an efficient region optimal

algorithm that allow agents to search for region optima in a particular large region of

the graph, the SLT region.

On the efficiency of region quality guarantees to predict and trade-off Max-Sum
performance

As discussed with detail in chapter 7, the theoretical guarantees provided in this book

can shed some light on the relationship between the structure of the problem and the

quality of the Max-Sum solutions on convergence. However, extensive experiments are

needed in order to analyse the effectiveness of these quality guarantees when character-

ising the performance or trading-off quality versus cost in Max-Sum.

On the one hand, we plan to perform experiments to determine if effectively problem

structures with higher quality guarantees lead to solutions of better quality. Moreover,

since quality guarantees provided over Max-Sum only exploit the graph structure of

the problem, further work also include to exploit the reward structure to assess more

accurate guarantees. For example, we can easily incorporate the reward-based quality

guarantees formulated in the region optimality framework, to characterise, in addition

to the graph structure, which reward structures lead to better Max-Sum performance.

On the other hand, since quality guarantees provided only apply to Max-Sum solutions

on convergence, the pragmatism of our bounds to predict Max-Sum performance is

also very tied to the open problem of the characterization of the sufficient conditions of

Max-Sum convergence, for which nowadays there are few theoretical results (Wiberg,

1996; Horn, 1999; Bayati et al., 2008).

Finally, we strongly believe that the quality guarantees provided in this work can be

Copia gratuita. Personal free copy http://libros.csic.es

164 Chapter 8. Conclusions and Future work

employed to study the problem of how to find a good set of regions in the Generalised

Belief Propagation (GBP) algorithm (Yedidia et al., 2000; Welling, 2004), a generali-

sation of the Max-Sum that allows to trade-off quality versus cost getting better perfor-

mance at expenses of incrementing the algorithm’ complexity. Concretely, we point out

that the quality guarantees defined over Max-Sum for particular structures can be used

to guide the clustering of variables in GBP to generate graph structures for which we

can provide high quality guarantees.

On the design of algorithms with hybrid quality guarantees

Although this book provided with important contributions on approximate quality as-

sessment in DCOPs, observe in table 8.1 that all algorithms proposed are designed to

assess one type of quality guarantees: agent’s guarantees or system designer’s guaran-

tees. Therefore, further research aims to analyse current approaches with the aim of

designing algorithms that can provide both: quality guarantees for the system designer

and quality guarantees for the agents at runtime.

Privacy aspects

Notice that we have not analysed privacy aspects of any of the algorithms proposed in

this work. This is not within the scope of this work since we were motivated by do-

mains, such as sensor networks or traffic control, in which distribution has reasons of

parallelism, communication costs or robustness. However, this lack of privacy analysis

can limit the applicability of our contributions to some domains, such as distributed

meeting scheduling, where privacy is the main issue. In this context, we strongly be-

lieve that the generality and well-theoretical characterisation of the different contribu-

tions presented in this book would allow to take advantage of some related works on

privacy analysis in the literature that can be easily be transfer to the proposed DCOP

algorithms. For example, we plan to take advantage for Action-GDL of the privacy-

versions formulated for GDL message passing algorithms (Kearns et al., 2008) and

for the region optimality framework of the privacy-analysis provided for the particular

criterion of k-size optimality (Greenstadt, 2009).

© CSIC © del autor o autores / Todos los derechos reservados

Appendix A

Action-GDL generality proofs

In this appendix we provide proofs for lemmas 1 and 2, formulated in section 4.4.1

(chapter 4). Prior to proving lemmas 1 and 2 we would like to demonstrate a lemma

and make two observations that will pave the way for these proofs.

Lemma 8. The definition of cliques appearing in equation 4.8 is equivalent to the
following recursive definition:

C′
i = DRV (xi) ∪

⎡⎣ ⋃
xk∈Ch(xi)

C′
k \ {xk}

⎤⎦ (A.1)

Proof. We prove the lemma by induction on the depth of variable xi. In the base case

we consider a variable xi whose depth is 1, a leaf in the pseudotree. Observe that in

that case both equations, eq. 4.8 and eq. A.1, define the xi clique as its directed related

variables DRV (xi).
Induction Step: Take a variable, xi, whose depth is n+1.

Then, by eq. A.1, xi clique is defined as:

C′
i = DRV (xi) ∪

⎡⎣ ⋃
xj∈Ch(xi)

C′
j \ {xj}

⎤⎦
By induction hypothesis we rewrite children cliques C′

j using eq.4.8:

C′
i = DRV (xi) ∪

⎡⎣ ⋃
xj∈Ch(xi)

[DRV (xj) ∪ IRV (xj)] \ {xj}

⎤⎦
After eliminating {xj} from directed and inherited related variables:

C′
i = DRV (xi) ∪

⎡⎣ ⋃
xj∈Ch(xi)

AP (xj) ∪ IRV (xj)

⎤⎦
165

Copia gratuita. Personal free copy http://libros.csic.es

166 Appendix A. Action-GDL generality proofs

Since P (xj) is already contained in DRV (xi) :

C′
i = DRV (xi) ∪

⎡⎣ ⋃
xj∈Ch(xi)

IRV (xj) ∪ PP (xj)

⎤⎦
Finally, by definition of inherited related variables (eq. 4.10):

C′
i = DRV (xi) ∪ IRV (xi)

Hence we have proved that both definitions, Ci (eq. 4.8) and C′
i (eq. A.1) are equivalent.

Observation 1. Observe that in mapping γ, the variables that compose a separator
sip between a node xi and its parent node xp contains all variables from clique Ci
excluding xi. Formally, by equation A.1:

sip = Ci ∩ Cp = Ci ∩

⎡⎣DRV (xp) ∪

⎡⎣ ⋃
xk∈Ch(xp)

Ck \ {xk}

⎤⎦⎤⎦
We can take Ci out of the union since xi is a child of xp:

sip = Ci ∩

⎡⎢⎢⎣DRV (xp) ∪ Ci \ {xi} ∪
⋃

xk∈Ch(xp)
k �=i

Ck \ {xk}

⎤⎥⎥⎦
Obvioulsy Ci \ {xi} ⊆ sip. Since xi it is not in DRV (xp) nor in any of the remaining
children cliques:

sip = Ci \ {xi} (A.2)

Observation 2. Considering what is stated by eq. A.2, we can reformulate the variables
that compose each clique Ci in a JT defined by mapping γ as the union of the directly
related variables of xi with the union of all variables in the separators between clique
Ci and each of its children. Formally

Ci = DRV (xi) ∪

⎡⎣ ⋃
xk∈Ch(xi)

Ck \ {xk}

⎤⎦ = DRV (xi) ∪

⎡⎣ ⋃
xk∈Ch(xi)

ski

⎤⎦
Notice variables from a separator ski can also be expressed as the domain of the utility
message μki sent through this separator. Hence, the equation above can be rewritten
as:

Ci = DRV (xi) ∪ [
⋃

xk∈Ch(xi)

Scope(μki)] (A.3)

© CSIC © del autor o autores / Todos los derechos reservados

167

Observation 3. Observe that given a pseudotree PT , the initial knowledge for DPOP
in any node (K0

i) is equivalent to the potential defined on clique Ci (namely ψi) by
mapping γ.

Observation 4. From the definition of K0
i = ri ⊗ [

⊗
xj∈AP (xi)

rij] we can conclude
that Scope(K0

i) = DRV (xi).

We are now ready to proceed with the proof of Lemma 1.

Proof

Proof. We prove Lemma 1 by showing that it is true for every variable xi. We do that

by induction on d, the depth of variable xi in the pseudotree PT .

Consider case d = 1 (xi is a leaf). During a DPOP execution, xi exchanges with its

parent xp the following utility message (see eq. 4.6):

μip =
⊕
\xi

[K0
i ⊗

⊗
xj∈Ch(xi)

μji] =
⊕
\xi

K0
i

where the second equality follows from xi being a leaf.

During the Action-GDL execution, clique Ci, related to variable xi, exchanges with its

clique parent Cp, related to variable xp, the following utility message (see eq. 4.2):

μip =
⊕
sip

[ψi ⊗
⊗

Cjadj Ci,j �=p

μji] =
⊕
sip

ψi =
⊕

Ci\{xi}
ψi

where the second equality stems from the fact that by definition of γ (point 4) Ci is

a leaf and the last equality follows from replacing sip by the expression obtained in

observation 1 (eq. A.2).

For both algorithms to exchange the same message when xi is a leaf, two conditions

must hold: (1) both messages must combine the same relations and (2) both messages

must summarize over the same variables. Point 1 is straightforward from observation 3.

Regarding point 2, on the one hand, the set of variables that the DPOP message sum-

marizes on is Scope(K0
i) \ {xi}. From observation 4 follows that the set of variables

that DPOP message summarizes on is DRV (xi) \ {xi}. On the other hand, the set

of variables that the Action-GDL message summarizes on is Ci \ {xi}. From eq. 4.8

we can conclude that since Ci is a leaf, Ci = DRV (xi) because it inherits no related

variables. Thus, the Action-GDL message also summarizes on DRV (xi) \ {xi} and

messages are equal in the base case (d = 1).

Assume that lemma 1 holds for all variables whose depth is less than or equal to n in

the pseudotree. Now consider variable xi whose depth is n+1. We consider the subtree

having xi as root, with all variables under xi in the pseudotree whose depth is at most

n. Since by induction both algorithms exchange the same utility messages for variables

in these subtrees whose depth is equal to or less than n, all the utility messages sent

by variables under xi are equal in both executions. Hence, we only have to prove that

lemma 1 holds for utility messages sent by xi.

Copia gratuita. Personal free copy http://libros.csic.es

168 Appendix A. Action-GDL generality proofs

During the execution of DPOP, variable xi exchanges with its parent xp the following

utility message (see eq. 4.6):

μip =
⊕
\xi

[K0
i ⊗

⊗
xj∈Ch(xi)

μji]

During Action-GDL execution clique Ci, related to variable xi, exchanges with its par-

ent clique Cp, related to variable xp, the following utility message (see eq. 4.2):

μip =
⊕
sip

[ψi

⊗
Cjadj Ci,j �=p

μji] =
⊕

Ci\{xi}
[ψi

⊗
Cjadj Ci,j �=p

μji]

where the second equality comes from replacing sip by the definition of separator in

eq. A.2.

Again, for messages exchanged in DPOP and Action-GDL executions to be equal two

conditions must hold: (1) both messages must combine same relations; and (2) both

messages must summarize over the same variables.

Point 1 is straightforward from observation 3 and the fact that by induction the utility

messages exchanged with their children are equal in both algorithms.

Now we will prove point 2. Firstly, observe that the set of variables that the DPOP

message summarizes on is composed of the union of the scope of K0
i excluding xi and

the scope of the utility messages exchanged with its children. From observation 4 the

set of variables that the DPOP message summarizes on is composed of {DRV (xi) ∪⋃
xj∈Ch(xi)

Scope(μji)}\{xi}. On the other hand, the set of variables that the Action-

GDL message summarizes on is composed of Ci excluding xi. Recall from equation

A.3 that Ci = DRV (xi) ∪
⋃

xk∈Ch(xi)
Scope(μki). Therefore, since by induction

messages exchanged for variables under xi are the same in both algorithms, messages

exchanged for xi are equal in both algorithms and lemma 1 holds.

Proof

Proof. We prove lemma 2 by showing that in both algorithms: (1) value messages

exchanged contain assignments for the same variables; and (2) agents infer the same

variables and assign the same values.

Firstly, the proof of (1) is quite straightforward given lemma 1. In DPOP, xi composes

a value message for each of its children, xj , with assignments for variables in the scope

of the utility message received from xj in the previous phase (line 18, algorithm 2). In

Action-GDL each clique Ci, related to variable xi, exchanges with each of its children

clique Cj , related to variable xj , a value message with assignments for variables in

their separator sij (line 19, algorithm 1). Recall that the scope of the utility message

exchanged in the utility phase between cliques Ci and Cj during Action-GDL execution

is equal to its separator sij (line 9, algorithm 1). Therefore, since by lemma 1 the

utility messages exchanged by both algorithms are equal, so are their scopes, and the

value messages exchanged during the value phase contain assignments for the same

variables.

© CSIC © del autor o autores / Todos los derechos reservados

169

Secondly, to prove (2) we have to show that the values of variables inferred at each

node (d∗) are equal in both algorithms. We recall that in both algorithms the values of

variables inferred by xi are:

d∗ = d∗i ∪ σpi

where σpi is the value message received from xi parent and d∗i is the assignment for

variables that maximizes its local knowledge, namely Ki and K̂i in DPOP and Action-

GDL respectively. The knowledge of a clique Ci, related to variable xi, in Action-GDL

is (see equation 4.3):

K̂i = �
σpi

[ψi ⊗
⊗

Cj∈Chi

μji],

and knowledge of xi in DPOP is (see equation 4.7) :

Ki = �
σpi

[K0
i ⊗

⊗
xj∈Ch(xj)

μji].

Thus, to prove that each xi infers the same set of variables with the very same value we

jointly prove that for every node xi: (1) the messages received from xi parent and (2)

their local knowledge are equal in both algorithms and (3) every messages σij sent from

xi to its children xj children are the same in both algorithms. We do that by induction

on l, the level of xi in the pseudotree (where root has level 1).

Consider case l = 1 (xi is the root, with no parent). Point 1 is trivially true since xi

has no parent. Point 2 is satisfied by inspection of the two local knowledge definitions

because (i) by observation 3, we have that K0
i = ψi; (ii) by lemma 1 the utility messages

exchanged in the utility phase are equal; and (iii) σpi = ∅ because xi is the root. Finally,

point 3, follows from noticing that since the knowledge is the same for both algorithms,

the values inferred are the same. Hence, since the scopes of the messages are the same

and what is send is just a portion of the inferred values, messages sent to children

coincide.

Assume that points (1), (2) and (3) hold for all variables whose level is smaller or equal

to n in the pseudotree. Now consider variable xi whose level is n+ 1. Applying (3) to

xi parent we find that the value messages received by xi from its parent, σpi, are equal

in both algorithms. Then the proof follows exactly the same reasoning than the case

l = 1, only introducing the value message received, which we have proven to be equal.

Hence both algorithms assign the same value to each variable and exchange the same

value messages.

Copia gratuita. Personal free copy http://libros.csic.es

© CSIC © del autor o autores / Todos los derechos reservados

Appendix B

Region Optimality proofs

In this appendix, we develop the proofs that appear in chapter 7 into further detail. We

present the proof of proposition 9 (section 6.4.1), proposition 10 (section 6.4.2) and

proposition 11 (section 6.4.3).

Proposition 9. Let 〈X ,D,R〉 be a DCOP, C a region and β the minimum fraction
reward. If xC is a C optimum, then:

R(xC) ≥
(

cc∗
|C| − nc∗

+ β
pc∗

|C| − nc∗

)
R(x∗),

where cc∗ = minr∈R cc(r, C), nc∗ = minr∈R nc(r, C), pc∗ = minr∈R pc(r, C), and
x∗ is the optimal assignment.

Proof. For every Cα ∈ C, consider an assignment xα such that: xα
i = xC

i if xi �∈ Cα,

and xα
i = x∗

i if xi ∈ Cα. Since xC is C-optimal, for all Cα ∈ C, R(xC) ≥ R(xα)
holds, and hence:

R(xC) ≥

∑
Cα∈C

(∑
r∈T (Cα)

r(x∗) +
∑

r∈N(Cα)

r(xC) +
∑

r∈P (Cα)

r(xα)

)
|C| . (B.1)

Using β we can express the third term in equation B.1 in terms of R(x∗) considering

that the knowledge for any relation r ∈ R satisfies r(xα) ≥ β · r(x∗). Therefore, the

following inequalities hold:∑
Cα∈C

∑
r∈P (Cα)

r(xα) ≥
∑
r∈R

pc(r, C) · β · r(x∗) ≥ pc∗ · β · R(x∗) (B.2)

From the proof of the general bound of equation 6.4 in section 6.2.3 we know that the

first and the second sets of relations of equation B.1 can be also expressed in terms

of R(xC) and R(x∗). Therefore, after substituting these results in equation B.1 and

rearranging terms, we obtain equation 6.10.

171

Copia gratuita. Personal free copy http://libros.csic.es

172 Appendix B. Region Optimality proofs

Proposition 10. Let 〈X ,D,R〉 be a DCOP,C a region and δ a region optimal bound
independent of the rewards. If xC is a C-optimal assignment then:

R(xC) ≥ 1

U
((U − L) · δ + L) · R(x∗)

where U =
∑

r∈R ur, L =
∑

r∈R lr.

Proof. Let R̂ be a distribution defined as R̂(x) = R(x) − L =
∑

r∈R(r(x) − lr).

Notice that the rewards of R̂ are non-negative because after subtracting the minimum

of each non-negative relation of R we obtain new relations in which the minimum value

is 0. Moreover, because the value of any assignment in R̂ is equal to the value in R
plus a constant, any C-optimal xC in R is also C-optimal in R̂. Thus, by definition of

C-optimal bounds the following inequality holds:

R̂(xC) ≥ δ · R̂(x∗) (B.3)

Then by expressing R̂ in terms of R and isolating R(xC) we obtain:

R(xC) ≥ δ · R(x∗) + (1− δ) · L (B.4)

Now multiplying and dividing the right equation side by R(x∗):

R(xC) ≥
(
δ · R(x∗) + (1− δ) · L

R(x∗)

)
· R(x∗) (B.5)

Since the bound provided by equation B.5 above increases as the value of the optimum,

R(x∗), decreases, we can get rid of R(x∗), which is in general unknown, by replacing

it with an upper bound. By definition, U is an upper bound of R(x∗). Hence, we can

substitute U for R(x∗) to obtain equation 6.11.

Proposition 11. Let 〈X ,D,R〉 be a DCOP, C a region, β the minimum fraction reward
and δ = cc∗

|C|−nc∗
, then

δ + β
pc∗

|C| − nc∗
≤ 1

U
((U − L) · δ + L)

where U =
∑

r∈R ur, L =
∑

r∈R lr.

Proof. After rearranging terms and simplifying, we obtain that equation 6.12 is equiv-

alent to:

pc∗ · β ≤ (|C| − nc∗ − cc∗) ·
L

U
(B.6)

First, from the definition of partial covering over any relation r ∈ R, pc(r, C) = |C| −
nc(r, C) − cc(r, C), we observe that pc(r, C) increases as nc(r, C) and cc(r, C) de-

crease. Since nc∗, cc∗ are the minimum values that functions nc, cc can take on respec-

tively, then pc∗ ≤ |C| − nc∗ − cc∗ holds. Therefore, proving that β ≤ L
U , namely that

© CSIC © del autor o autores / Todos los derechos reservados

173

minr∈R lr
ur

≤
∑

r∈R lr∑
r∈R ur

, is enough to prove that equation B.6 holds. We build the proof

by induction of the number of relations n = |X |. Consider without loss of generality a

problem with n relations such that
lrV1

urV1

≤ . . . ≤
lrVn−1

urVn−1

≤ lrVn

urVn

holds. If n = 2, then

min(
lrV1

urV1

,
lrV2

urV2

) ≤ lrV1
+lrV2

urV1
+urV2

simplifies to
lrV1

urV1

≤ lrV2

urV2

, which by problem definition

is true. When n > 2 we must prove that
lrV1

urV1

≤
lrV1

+
∑

j≥2 lrVj

urV1
+
∑

j≥2 urVj

holds, or equivalently

that
lrV1

urV1

≤
∑

j≥2 lrVj∑
j≥2 urVj

. By recursively applying the expression for n = 2 to

∑
j≥2 lrVj∑
j≥2 urVj

we obtain that:

∑
j≥2 lrVj∑
j≥2 urVj

=
lrV2

urV2

+

∑
j≥3 lrVj∑
j≥3 urVj

≥ min(
lrV2

urV2

,

∑
j≥3 lrVj∑
j≥3 urVj

) ≥ . . . ≥

min(
lrV2

urV2

,min(
lrV3

urV3

, . . . ,min(
lrVn−1

urVn−1

,min(
lrVn

urVn

) . . .) =
lrV2

urV2

. Thus,

∑
j≥2 lrVj∑
j≥2 urVj

≥
lrV2

urV2

and consequently,

∑
j≥2 lrVj∑
j≥2 urVj

≥ lrV1

urV1

holds.

Copia gratuita. Personal free copy http://libros.csic.es

© CSIC © del autor o autores / Todos los derechos reservados

Appendix C

Max-Sum bounds proofs

In this appendix, we develop the proofs that appear in chapter 7 into further detail.

We present the proof of proposition 12 (section 7.3.1), proposition 14 (section 7.3.2),

proposition 15 (section 7.3.2), and the proposition 16 (section 7.3.2).

Proposition 12. Let G = 〈X , E〉 be a graphical model and C the SLT-region in G. Let
G′ = 〈X ′, E′〉 be a subgraph of G. Then the bound of equation 6.4 for G holds for any
SLT-optimal in G′.

Proof. We can compose a region C′ containing the same elements as C just removing

from each element of the region those variables that are not contained in X ′. Obviously

|C| = |C′|.
Since we have to deal simultaneously with two regions in the proof, we use ccC∗ =
min(i,j)∈E cc({xi, xj}, C) and ncC∗ = min(i,j)∈E nc({xi, xj}, C) when referring to C.

Likewise, we use ccC
′

∗ = min(i,j)∈E′ cc({xi, xj}, C′) and ncC
′

∗ = min(i,j)∈E′ nc({xi, xj}, C′)
for C′.
It is easy to see that ccC∗ = min(i,j)∈E cc({xi, xj}, C) ≤ min(i,j)∈E′ cc({xi, xj}, C) =
min(i,j)∈E′ cc({xi, xj}, C′) = ccC

′
∗ and that ncC∗ = min(i,j)∈E nc({xi, xj}, C) ≤

min(i,j)∈E′ nc({xi, xj}, C) = min(i,j)∈E′ cc({xi, xj}, C′) = ncC
′

∗ . Hence, the bound

obtained applying equation 6.4 to C′ is
ccC

′
∗

|C′|−ncC′
∗

≥ ccC∗
|C′|−ncC′

∗
=

ccC∗
|C|−ncC′

∗
≥ ccC∗

|C|−ncC∗
.

That is, we can obtain a bound for G′ greater or equal than the bound obtained applying

equation 6.4 to C, as we wanted to prove.

Proposition 14. For any MRF with a n-m bipartite structure where m ≥ n, and for
any Max-Sum solution xMS we have that

θ(xMS) ≥ b(n,m) · θ(x∗) b(n,m) =

{
1
n m ≥ n+ 3

2
n+m−2 m < n+ 3

(C.1)

Proof. Let CA be a region including one out of the n variables and all of the m variables

(in figure 7.3, elements (n)-(p)). Since the elements of this region are trees, we can

175

Copia gratuita. Personal free copy http://libros.csic.es

176 Appendix C. Max-Sum bounds proofs

guarantee optimality on them. The number of elements of the region is |CA| = n. It is

clear that each edge in the graph is completely covered by one of the elements of CA,

and hence cc∗ = 1. Furthermore, every edge is partially covered, since all of the m
variables are present in every element, and hence nc∗ = 0. Applying equation 6.4 gives

the bound 1
n .

Alternatively, we can define a region CB formed by taking sets of four variables, two

from each side. Since the elements of CB are single-cycle graphs (in figure 7.3, ele-

ments (b)-(j)), we can guarantee optimality on them.

Now, in order to apply proposition 6 to the region CB we only need to assess |CB |, cc∗
and nc∗. In a bipartite graph, there are |CB | =

(
n
2

)
·
(
m
2

)
different combinations of

four vertexes when taking two from each side. Hence, the number of elements of CB

that completely cover any (i, j) ∈ E is assessed as cc({xi, xj}, CB) =
(
n−1
1

)(
m−1
1

)
=

(n − 1)(m − 1), because once fixed the two variables in {xi, xj} we have to select

an additional variable from each side but excluding the variable in {xi, xj} already

included. Clearly, cc∗ = (n − 1)(m − 1) as well. The number of elements of C that

do not cover any (i, j) ∈ E at all can be assessed as nc({xi, xj}, CB) =
(
n−1
2

)(
m−1
2

)
because we have to select two elements from each side but excluding the variables in

{xi, xj}, which means one variable in each side. Obviously, nc∗ =
(
n−1
2

)(
m−1
2

)
as

well. Applying proposition 6, we get the bound 2
n+m−2 . Observe that 2

n+m−2 > 1
n

when m < n+ 3, and so equation 7.7 holds.

Proposition 15. For any MRF with an n grid structure where n is an even number, for
any Max-Sum solution xMS we have that

θ(xMS) ≥ n

3n− 4
· θ(x∗) (C.2)

Proof. Let Γ(l) be a division of l indexes into tuples of two elements, such that each

index appears exactly in one tuple and any two indexes in the same tuple are non-

consecutive. If l is even, the set of tuples Γ(l) = {(i, l
2 + i)|i = 1 . . . l

2} generates such

division. Let C be a region formed by taking the vertices that result from the combina-

tion of any pair of rows (i, j) ∈ Γ(n) and any pair of columns (k, l) ∈ Γ(n). Note that

optimality is guaranteed in each Ci ∈ C because variables in two non-consecutive rows

and two non-consecutive columns create a single-cycle graph. Because Γ(n) contains
n
2 tuples, |C| =

(
n
2

)2
.

In a grid, any (i, j) ∈ E contains two variables that are either in a column or a row. Let’s

consider without loss of generality that S contains two variables in a row with index i
(the following discussion applies for columns by exchanging rows and columns). First

observe that each index i appears exactly in one tuple in the division Γ(n) of rows, and

each tuple is combined with the n/2 tuples of the division Γ(n) of columns. Hence,

the number of elements of C that completely cover any (i, j) ∈ E when (i, j) is either

a row or a column is cc({xi, xj}, C) = n/2. Clearly, cc∗ = n/2 as well. Secondly,

we assess the number of sets in C that do not cover (i, j) at all. For any (i, j) ∈ E,

such that the two variables in (i, j) are in a row, each variable in {xi, xj} appears in a

single column. Notice that the two columns in which each variable in {xi, xj} appears

can not be in the same tuple in a division Γ(n) because they are consecutive. Thus,

© CSIC © del autor o autores / Todos los derechos reservados

177

there are |Γ(n)|−1 rows in a division that does not contain any variable in {xi, xj} and

|Γ(n)| − 2 columns in a division that do not contain any variable in {xi, xj}. Hence,

nc({xi, xj}, C) = (n2 − 1)(n2 − 2) if S contains two variables in a row. Following a

similar reasoning, nc({xi, xj}, C) = (n2 − 2)(n2 − 1) if S contains two variables in a

column. Obviously, nc∗ = (n2 −2)(m2 −1). Using these values in equation 6.4 provides

equation 7.8.

Proposition 16. For any MRF such that every pair of cycles is variable-disjoint and
where there are at most d cycles of size l or larger, and for any Max-Sum solution xMS

we have that

θ(xMS) ≥
(
1− 2(d− 1)

d · l

)
· θ(x∗) =

(l − 2) · d+ 2

l · d · θ(x∗). (C.3)

Proof. Let T = {t1, · · · , tl} be a set of variables such that its vertex induced sub-

graph is a cycle of l ≥ 3 variables in our MRF. It is evident that by removing any

variable from T we break the cycle. Hence, we can define T−k = T \ {tk} =
{t1, . . . , tk−1, tk+1, . . . , tl}, and its induced subgraph is not a cycle. Let U be the

variables in the MRF that are not involved in any cycle.

By hypothesis, our graph contains at most d cycles of size l ≤ 4. We can name them

T 1, . . . , T d. It is clear that if we construct a set including: every variable that is not

in any cycle (that is, U), a single cycle (say T i) and for every remaining cycle T i

all the variables in it but one (say T j
−kj

), its induced graph will have SLT-optimality

guaranteed. In general for each choice of cycle (i) and each choice of variable to remove

in the remaining cycles (kj) we can create a set

Ci
k1,...,ki−1,ki+1,...,kd

= U ∪ T i ∪
⋃
j �=i

1≤j≤d

T j
−kj

.

Now, we can define the following region, including each of these sets

C = {Ci
k1,...,ki−1,ki+1,...,kd

| ∀i ∈ {1, . . . , d} ∀j ∈ {1, . . . , i− 1, i+ 1, . . . , d}

∀kj ∈ {1, . . . , l}}
The total number of elements in the region is |C| = d · ld−1, since we have to select one

out of d cycles and for each of the remaining d − 1 cycles we have to remove one out

of the l variables.

To compute cc∗ we have to split our edges into four different types: (i) the ones that

have both variables in U (S1), (ii) the ones that have one variable in a cycle and the

other one in U (S2), (iii) the ones where each variable belongs to a different cycle (S3),

and finally (iv) the ones with both variables in the same cycle (S4). We will assess cc∗
as the minimum of these four values.

Since the variables in U appear in every element of the region, for each S1 vertex with

both variables in U we have that cc(S1, C) = d · ld−1.

Assume S2 is an edge with one variable in U and another in one of the cycles (we can

fix T 1 without loss of generality). Then S2 appears in every element of the region that

Copia gratuita. Personal free copy http://libros.csic.es

178 Appendix C. Max-Sum bounds proofs

contains T 1 (we have ld−1). Furthermore, for the elements of the region that include T i

completely (with i > 1), we can select one out of the l−1 variables in T 1 which are not

in S2 and for each of the d−2 cycles different from T 1 and T i we should select one out

of the l variables to remove. So, for each i we have (l−1) · ld−2 and since we have d−1
possible selections for i, we can conclude that cc(S2, C) = ld−1+(d−1)(ld−2(l−1)).
Assume S3 is an edge with one variable in a cycle (say T 1) and another variable in

a different cycle (say T 2). Including T 1 into our set, we have (l − 1) choices for

variables to remove from T 2 and l choices for variables to remove from the remaining

d − 2 cycles, for a total of (l − 1)ld−2. The same happens if we include T 2. If we

include one out of the d − 2 remaining cycles, we have l − 1 choices for T 1 and l − 1
choices for T 2 and l choices for each of the remaining d − 3 cycles. Hence, we have

that cc(S3, C) = (l − 1)ld−2 + (l − 1)ld−2 + (d− 2)(l − 1)2ld−3.
Finally, assume S4 is an edge with both variables in the same cycle (say T 1). Then S4

appears in every element of the region that contains T 1 (we have ld−1). Furthermore,

for the elements of the region that include T i completely with i > 1, we can select one

out of the l − 2 variables in T 1 which are not in S4, and for each of the d − 2 cycles

different from T 1 and T i we should select one out of the l variables to remove. So, for

each i we have (l− 2) · ld−2, and since we have d− 1 possible selections for i, we can

conclude that cc(S1, C) = ld−1 + (d− 1)(ld−2(l − 2)).
It is easy to see that cc(S1, C) ≥ cc(S2, C) ≥ cc(S3, C) ≥ cc(S4, C), and hence

cc∗ = cc(S4, C) = ld−1 + (d− 1)(ld−2(l − 2)).
Since every edge in U is completely covered by every element of the region, we have

that nc∗ = 0.
Using these values into equation 6.4 and operating provides the desired result.

© CSIC © del autor o autores / Todos los derechos reservados

Bibliography

Aji, S., Horn, G., Mceliece, R., and Xu, M. (1998). Iterative min-sum decoding of tail-

biting codes. In Proceedings of IEEE Information Theory Workshop, pages 68–69.

Aji, S. M. and McEliece, R. J. (2000). The generalized distributive law. IEEE Transac-
tions on Information Theory, 46(2):325–343.

Ali, S. M., Koenig, S., and Tambe, M. (2005). Preprocessing techniques for accelerating

the dcop algorithm adopt. In Proceedings of the 4th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2005), pages 1041–1048.

Amir, E. (2001). Efficient approximation for triangulation of minimum treewidth. In

Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI’01),
pages 7–15.

Atlas, J. and Decker, K. (2007). A complete distributed constraint optimization method

for non-traditional pseudotree arrangements. In Proceedings of the 6th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007), pages

741–784.

Barabasi, A. L. and Albert, R. (1999). Emergence of scaling in random networks.

Science, 286(5439):509–512.

Barbosa, V. (1996). An Introduction to Distributed Algorithms. The MIT Press.

Baxter, R. (1982). Exactly Solved Models in Statistical Mechanics. Academic Press,

London.

Bayati, M., Borgs, C., Chayes, J. T., and Zecchina, R. (2007). Belief-propagation for

weighted b-matchings on arbitrary graphs and its relation to linear programs with

integer solutions. CoRR, abs/0709.1190.

Bayati, M., Shah, D., and Sharma, M. (2008). Max-product for maximum weight

matching: Convergence, correctness, and lp duality. IEEE Transactions on Informa-
tion Theory, 54(3):1241–1251.

Bertsekas, D. (2007). Nonlinear Programming. Athena Scientific.

Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, 1st ed. 2006. corr. 2nd printing edition.

179

Copia gratuita. Personal free copy http://libros.csic.es

180 BIBLIOGRAPHY

Bollobas, B. (2001). Random Graphs. Cambridge Press.

Bowring, E., Pearce, J. P., Portway, C., Jain, M., and Tambe, M. (2008). On k-optimal

distributed constraint optimization algorithms: new bounds and algorithms. In Pro-
ceedings of the 7th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), pages 607–614.

Bowring, E., Tambe, M., and Yokoo, M. (2006). Multiply-constrained distributed

constraint optimization. In Proceedings of the 5th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2006), pages 1413–1420.

Cano, A. and Moral, S. (1994). Heuristic algorithms for the triangulation of graphs. In

In Proceedings of the 5th International Conference on Processing and Management
of Uncertainty in Knowledge-Based Systems (IPMU’94), pages 98–107.

Chechetka, A. and Sycara, K. P. (2005). A decentralized variable ordering method for

distributed constraint optimization. In Proceedings of the 4th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2005), pages 1307–

1308.

Chechetka, A. and Sycara, K. P. (2006). No-commitment branch and bound search for

distributed constraint optimization. In Proceedings of the 5th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2006), pages 1427–

1429.

Davin, J. and Modi, P. J. (2005). Impact of problem centralization in distributed con-

straint optimization algorithms. In Proceedings of the 4th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2005), pages 1057–1063.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Farinelli, A., Rogers, A., and Jennings, N. (2009). Bounded approximate decentralised

coordination using the max-sum algorithm. Proceedings of IJCAI-09 Workshop on
Distributed Constraint Reasoning (DCR).

Farinelli, A., Rogers, A., Petcu, A., and Jennings, N. R. (2008). Decentralised coordina-

tion of low-power embedded devices using the max-sum algorithm. In Proceedings
of the 7th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2008), pages 639–646.

Feldman, J., Wainwright, M. J., and Karger, D. R. (2005). Using linear programming to

decode binary linear codes. IEEE Transactions on Information Theory, 51(3):954–

972.

Finley, M. R., Karakura, A., and Nbogni, R. (1991). Survey of intelligent building

concepts. IEEE Communication Magazine.

Fitzpatrick, S. and Meertens, L. (2002). Experiments on Dense Graphs with a Stochas-

tic, Peer-to-Peer Colorer. In AAAI-02 Workshop on Probabilistic Approaches in
Search, pages 24–28.

© CSIC © del autor o autores / Todos los derechos reservados

BIBLIOGRAPHY 181

Flores, M. J., Gámez, J. A., and Olesen, K. G. (2003). Incremental compilation of

bayesian networks. In Proceedings of the 19th Conference in Uncertainty in Artificial
Intelligence (UAI’03), pages 233–240.

Freuder, E. C. and Quinn, M. J. (1985). Taking advantage of stable sets of variables

in constraint satisfaction problems. In Proceedings of the 9th International Joint
Conference on Artificial Intelligence (IJCAI 1985), pages 1076–1078.

Frey, B. J., Koetter, R., Jr., G. D. F., Kschischang, F. R., McEliece, R. J., and Spielman,

D. A. (2001a). Introduction to the special issue on codes on graphs and iterative

algorithms. IEEE Transactions on Information Theory, 47(2):493–497.

Frey, B. J., Koetter, R., and Petrovic, N. (2001b). Very loopy belief propagation for

unwrapping phase images. In Proceedings of the Neural Information Processing
Systems (NIPS), pages 737–743.

Gaston, M. E. and DesJardins, M. (2005). Agent-organized networks for multi-agent

production and exchange. In Proceedings of the 20th AAAI Conference on Artificial
Intelligence (AAAI 2005), pages 77–82.

Gershman, A., Meisels, A., and Zivan, R. (2009). Asynchronous forward bounding for

distributed cops. Journal of Artificial Intelligence Research (JAIR), 34:61–88.

Greenstadt, R. (2009). An overview of privacy improvements to k-optimal dcop algo-

rithms. In Proceedings of the 8th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2009), pages 1279–1280.

Gutierrez, P. and Meseguer, P. (2010). Saving Redundant Messages in BnB-ADOPT.

In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010),
pages 1259–1260.

Hirayama, K. and Yokoo, M. (1997). Distributed partial constraint satisfaction problem.

In Proceedings of Principles and Practice of Constraint Programming (CP97), pages

222–236.

Horn, G. B. (1999). Iterative decoding and pseudocodewords. PhD thesis, Department

of Electrical Engineering, California Institute of Technology, Pasadena, CA.

Huang, B. and Jebara, T. (2007). Loopy belief propagation for bipartite maximum

weight b-matching. In Meila, M. and Shen, X., editors, In Proceedings of the
Eleventh International Conference on Artificial Intelligence and Statistics.

Jebara, T. (2009). Map estimation, message passing, and perfect graphs. In Proceedings
of the 21th Conference in Uncertainty in Artificial Intelligence (UAI’09), pages 258–

267.

Jensen, F. V. and Jensen, F. (1994). Optimal junction trees. In Proceedings of the 10th
Conference in Uncertainty in Artificial Intelligence (UAI’94), pages 360–366.

Copia gratuita. Personal free copy http://libros.csic.es

182 BIBLIOGRAPHY

Junges, R. and Bazzan, A. L. C. (2008). Evaluating the performance of DCOP algo-

rithms in a real world, dynamic problem. In Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), pages

599–606.

Kask, K., Dechter, R., Larrosa, J., and Dechter, A. (2005). Unifying tree decomposi-

tions for reasoning in graphical models. Artificial Intelligence, 166(1-2):165–193.

Katagishi, H. and Pearce, J. P. (2007). KOPT: Distributed DCOP algorithm for arbitrary

k-optima with monotonically increasing utility. In Proceedings of the 9th of the
Distributed Constraint Reasoning (DCR) Workshop.

Katsutoshi Hirayama, Toshihiro Matsui, M. Y. (2009). Adaptive price update in dis-

tributed lagrangian relaxation protocol. In Proceedings of the 8th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2009), pages 1033–

1040.

Kearns, M., Tan, J., and Wortman, J. (2008). Privacy-preserving belief propagation

and sampling. In Proceedings of the Neural Information Processing Systems (NIPS),
pages 745–752.

Khanna, S., Sattar, A., Hansen, D., and Stantic, B. (2009). An efficient algorithm for

solving dynamic complex dcop problems. In Proceedings of International Agent
Technology Conference (IAT’09), pages 339–346.

Kiekintveld, C., Yin, Z., Kumar, A., and Tambe, M. (2010). Asynchronous algorithms

for approximate distributed constraint optimization with quality bounds. In Pro-
ceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2010), pages 133–140.

Kok, J. R. and Vlassis, N. A. (2006). Collaborative multiagent reinforcement learning

by payoff propagation. Journal of Machine Learning Research, 7:1789–1828.

Krause, A., Singh, A. P., and Guestrin, C. (2008). Near-optimal sensor placements in

gaussian processes: Theory, efficient algorithms and empirical studies. Journal of
Machine Learning Research, 9:235–284.

Laut, T. and Faltings, B. (2009). E[DPOP]: Distributed Constraint Optimization un-

der Stochastic Uncertainty using Collaborative Sampling. In Proceedings of the IJ-
CAI’09 Distributed Constraint Reasoning Workshop (DCR’09), pages 87–101.

Macarthur, K., Farinelli, A., Ramchurn, S., and Jennings, N. (2010). Efficient, super-

stabilizing decentralised optimisation for dynamic task allocation environments. In

Third International Workshop on: Optimisation in Multi-Agent Systems (OptMas) at
the Ninth Joint Conference on Autonomous and Multi-Agent Systems, pages 25–32.

MacKay, D. (2003). Information theory, inference, and learning algorithms. Cambridge

Univ Press.

© CSIC © del autor o autores / Todos los derechos reservados

BIBLIOGRAPHY 183

Maheswaran, R. T., Pearce, J. P., and Tambe, M. (2004a). Distributed Algorithms for

DCOP: A Graphical-Game-Based Approach. In Proceedings of the ISCA 17th Inter-
national Conference on Parallel and Distributed Computing Systems (ISCA-PDCS),
pages 432–439.

Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., and Varakantham, P.

(2004b). Taking DCOP to the Real World: Efficient Complete Solutions for Dis-

tributed Multi-Event Scheduling. In Proceedings of the 3rd International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2004), pages 310–317.

Mailler, R. and Lesser, V. R. (2004). Solving distributed constraint optimization prob-

lems using cooperative mediation. In Proceedings of the 3rd International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2004), pages 438–445.

Mailler, R. and Lesser, V. R. (2006). Asynchronous partial overlay: A new algorithm for

solving distributed constraint satisfaction problems. Journal of Artificial Intelligence
Researh (JAIR), 25:529–576.

Mark, N. (2003). The structure and function of networks. Society for Industrial and
Applied Mathematics (SIAM) Review, 45:167–256.

Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo, M. (2005). Adopt: asynchronous

distributed constraint optimization with quality guarantees. Artificial Intelligence,

161(1-2):149–180.

Murphy, K. P., Weiss, Y., and Jordan, M. I. (1999). Loopy belief propagation for ap-

proximate inference: An empirical study. In Proceedings of the 15th Conference in
Uncertainty in Artificial Intelligence (UAI’99), pages 467–475.

Newman, M. and Watts, D. (1999). Renormalization group analysis of the small-world

network model. Physics Letters A, 263:341–346.

Park, H., Burke, J., and Srivastava, M. B. (2007). Design and implementation of a

wireless sensor network for intelligent light control. In Proceedings of the 6th Inter-
national Conference on Information Processing in Sensor Networks (IPSN), pages

370–379.

Paskin, M. A., Guestrin, C., and McFadden, J. (2005). A robust architecture for dis-

tributed inference in sensor networks. In Proceedings of the 4th International Con-
ference on Information Processing in Sensor Networks (IPSN), pages 55–62.

Pearce, J., Tambe, M., and Maheswaran, R. (2008). Solving multiagent networks using

distributed constraint optimization. AI Magazine, 29(3):47–62.

Pearce, J. P. and Tambe, M. (2007). Quality guarantees on k-optimal solutions for dis-

tributed constraint optimization problems. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007), pages 1446–1451.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

Copia gratuita. Personal free copy http://libros.csic.es

184 BIBLIOGRAPHY

Petcu, A. (2007). A Class of Algorithms for Distributed Constraint Optimization. PhD

thesis, EPFL, Lausanne.

Petcu, A. and Faltings, B. (2005a). Approximations in distributed optimization. In

Proceedings of Principles and Practice of Constraint Programming (CP05), pages

802–806.

Petcu, A. and Faltings, B. (2005b). A scalable method for multiagent constraint op-

timization. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI 2005), pages 266–271.

Petcu, A. and Faltings, B. (2008). Distributed constraint optimization applications in

power networks. International Journal of Innovations in Energy Systems and Power
(IJESP), 3(1).

Petcu, A., Faltings, B., and Mailler, R. (2007). PC-DPOP: a new partial centralization

algorithm for distributed optimization. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI 2007), pages 167–172.

Petcu, A., Faltings, B., and Parkes, D. C. (2008). M-DPOP: Faithful Distributed Im-

plementation of Efficient Social Choice Problems. Journal of Artificial Intelligence
Researh (JAIR), 32:705–755.

Pujol, J. M., Delgado, J., Sangüesa, R., and Flache, A. (2005). The role of clustering

on the emergence of efficient social conventions. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2005), pages 965–970.

Pujol, M., Cerquides, J., Meseguer, P., and Rodriguez-Aguilar, J. A. (2011).

Communication-constrained dcops: Message approximation in gdl with function fil-

tering. In Proceedings of the 10th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2011). To appear.

Ramchurn, S. D., Farinelli, A., Macarthur, K. S., and Jennings, N. R. (2010). Decen-

tralized coordination in robocup rescue. The Computer Journal, 53(9):1447–1461.

Rogers, A., Corkill, D. D., and Jennings, N. R. (2009). Agent technologies for sensor

networks. IEEE Intelligent Systems, 24(2):13–17.

Rogers, A., Farinelli, A., Stranders, R., and Jennings, N. R. (2011). Bounded approx-

imate decentralised coordination via the max-sum algorithm. Artificial Intelligence,

175(2):730–759.

Sanghavi, S., Malioutov, D. M., and Willsky, A. S. (2007). Linear programming analy-

sis of loopy belief propagation for weighted matching. In Proceedings of the Neural
Information Processing Systems (NIPS), pages 1273–1280.

Sanghavi, S., Shah, D., and Willsky, A. S. (2008). Message-passing for maximum

weight independent set. CoRR, abs/0807.5091.

Santoro, N. (2006). Design and Analysis of Distributed Algorithms (Wiley Series on
Parallel and Distributed Computing). Wiley-Interscience.

© CSIC © del autor o autores / Todos los derechos reservados

BIBLIOGRAPHY 185

Scerri, P., Farinelli, A., Okamoto, S., and Tambe, M. (2005). Allocating tasks in extreme

teams. In Proceedings of the 4th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2005), pages 727–734.

Schiex, T., Fargier, H., and Verfaillie, G. (1995). Valued constraint satisfaction prob-

lems: Hard and easy problems. In Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence (IJCAI 1995), pages 631–639.

Shafer, G. and Shenoy, P. P. (1990). Probability propagation. Annals of Mathematics
and Artificial Intelligence, 2:327–351.

Silaghi, M.-C. and Yokoo, M. (2006). Nogood based asynchronous distributed op-

timization (adopt ng). In Proceedings of the 5th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2006), pages 1389–1396.

Singhvi, V., Krause, A., Guestrin, C., Jr., J. H. G., and Matthews, H. S. (2005). Intel-

ligent light control using sensor networks. In The ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 218–229.

Stranders, R., Farinelli, A., Rogers, A., and Jennings, N. R. (2009a). Decentralised co-

ordination of continuously valued control parameters using the max-sum algorithm.

In Proceedings of the 8th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2009), pages 601–608.

Stranders, R., Farinelli, A., Rogers, A., and Jennings, N. R. (2009b). Decentralised

coordination of mobile sensors using the max-sum algorithm. In Proceedings of the
21th International Joint Conference on Artificial Intelligence (IJCAI 2009), pages

299–304.

Stranders, R., Fave, F. M. D., Rogers, A., and Jennings, N. R. (2010). A decentralised

coordination algorithm for mobile sensors. In Proceedings of the 24th AAAI Confer-
ence on Artificial Intelligence (AAAI 2010), pages 874–880.

Sultanik, E., Lass, R. N., and Regli, W. C. (2009). Dynamic configuration of agent

organizations. In Proceedings of the 21th International Joint Conference on Artificial
Intelligence (IJCAI 2009), pages 305–311.

Tambe, M., Bowring, E., Jung, H., Kaminka, G. A., Maheswaran, R. T., Marecki, J.,

Modi, P. J., Nair, R., Okamoto, S., Pearce, J. P., Paruchuri, P., Pynadath, D. V.,

Scerri, P., Schurr, N., and Varakantham, P. (2005). Conflicts in teamwork: hybrids

to the rescue. In Proceedings of the 4th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2005), pages 3–10.

Tappen, M. F. and Freeman, W. T. (2003). Comparison of Graph Cuts with Belief

Propagation for Stereo, using identical MRF Parameters. In International Conference
on Computer Vision (ICCV), pages 900–907.

Taylor, M. E., Jain, M., Jin, Y., Yokoo, M., and Tambe, M. (2010). When should there

be a ”me” in ”team”?: distributed multi-agent optimization under uncertainty. In Pro-
ceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2010), pages 109–116.

Copia gratuita. Personal free copy http://libros.csic.es

186 BIBLIOGRAPHY

Vidal, R., Rashid, S., Sharp, C. S., Shakernia, O., Kim, J., and Sastry, S. (2001). Pursuit-

evasion games with unmanned ground and aerial vehicles. In Proceedings IEEE
International Conference on Robotics and Automation (ICRA), pages 2948–2955.

Vinyals, M., Rodrı́guez-Aguilar, J. A., and Cerquides, J. (2010). A survey on sensor

networks from a multiagent perspective. The Computer Journal. In press. Published

on-line on February 2010. DOI:10.1093/comjnl/bxq018.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically op-

timum decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–

269.

Voice, T., Stranders, R., Rogers, A., and Jennings, N. R. (2010). A hybrid continuous

max-sum algorithm for decentralised coordination. In ECAI, pages 61–66.

Wainwright, M. J., Jaakkola, T., and Willsky, A. S. (2004). Tree consistency and bounds

on the performance of the max-product algorithm and its generalizations. Statistics
and Computing, 14(2):143–166.

Wainwright, M. J., Jaakkola, T., and Willsky, A. S. (2005). Map estimation via

agreement on (hyper)trees: Message-passing and linear programming. CoRR,

abs/cs/0508070.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families,

and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–

305.

Weiss, Y. (2000). Correctness of local probability propagation in graphical models with

loops. Neural Computation, 12(1):1–41.

Weiss, Y. and Freeman, W. T. (2001). On the optimality of solutions of the max-product

belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Information
Theory, 47(2):736–744.

Welling, M. (2004). On the choice of regions for generalized belief propagation. In

Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence (UAI’04),
pages 585–592.

Wiberg, N. (1996). Codes and decoding on general graphs. PhD thesis, Department of

Electrical Engineering, University of Linkoping, Sweden.

Yanover, C. and Weiss, Y. (2002). Approximate inference and protein-folding. In

Advances in Neural Information Processing Systems, pages 84–86. MIT Press.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2000). Generalized belief propagation. In

Proceedings of the Neural Information Processing Systems (NIPS), pages 689–695.

Yeoh, W., Felner, A., and Koenig, S. (2010). Bnb-adopt: An asynchronous branch-and-

bound dcop algorithm. Journal of Artificial Intelligence Research (JAIR), 38:85–133.

© CSIC © del autor o autores / Todos los derechos reservados

Yeoh, W., Sun, X., and Koenig, S. (2009). Trading off solution quality for faster com-

putation in dcop search algorithms. In Proceedings of the 21th International Joint
Conference on Artificial Intelligence (IJCAI 2009), pages 354–360.

Yin, Z. (2008). USC dcop repository. http://teamcore.usc.edu/dcop. University of

Southern California, Department of Computer Science.

Zhang, W., Wang, G., Xing, Z., and Wittenburg, L. (2005). Distributed stochastic search

and distributed breakout: properties, comparison and applications to constraint opti-

mization problems in sensor networks. Artificial Intelligence, 161(1-2):55–87.

Zivan, R. (2008). Anytime local search for distributed constraint optimization. In Pro-
ceedings of the 7th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), pages 1449–1452.

Copia gratuita. Personal free copy http://libros.csic.es

© CSIC © del autor o autores / Todos los derechos reservados

Monografies

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based Systems
Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification Model

Based on Inclusions
Num. 3 Ll. Vila, On Temporal Representation and Reasoning in Knowledge–

Based Systems
Num. 4 M. Domingo, An Expert System Architecture for Identification in Bi-

ology
Num. 5 E. Armengol, A Framework for Integrating Learning and Problem

Solving
Num. 6 J. Ll. Arcos, The Noos Representation Language
Num. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial Constraint

Satisfaction
Num. 8 P. Noriega, Agent Mediated Auctions: The Fishmarket Metaphor
Num. 9 F. Manyà, Proof Procedures for Multiple-Valued Propositional Logics
Num. 10 W. M. Schorlemmer, On Specifying and Reasoning with Special Re-

lations
Num. 11 M. López-Sánchez, Approaches to Map Generation by means of Col-

laborative Autonomous Robots
Num. 12 D. Robertson, Pragmatics in the Synthesis of Logic Programs
Num. 13 P. Faratin, Automated Service Negotiation between Autonomous Com-

putational Agents
Num. 14 J. A. Rodrı́guez, On the Design and Construction of Agent-mediated

Electronis Institutions
Num. 15 T. Alsinet, Logic Programming with Fuzzy Unification and Imprecise

Constants: Possibilistic Semantics and Automated Deduction
Num. 16 A. Zapico, On Axiomatic Foundations for Qualitative Decision The-

ory - A Possibilistic Approach
Num. 17 A. Valls, ClusDM: A multiple criteria decision method for heteroge-

neous data sets
Num. 18 D. Busquets, A Multiagent Approach to Qualitative Navigation in

Robotics
Num. 19 M. Esteva, Electronic Institutions: from specification to development
Num. 20 J. Sabater, Trust and Reputation for Agent Societies
Num. 21. J. Cerquides, Improving Algorithms for Learning Bayesian Network

Classifiers.
Num. 22. M. Villaret, On Some Variants of Second-Order Unification
Num. 23. M. Gómez, Open, Reusable and Configurable Multi-Agent Systems:

A Knowledge Modelling Approach
Copia gratuita. Personal free copy http://libros.csic.es

Num. 24. S. Ramchurn, Multi-Agent Negotiation Using Trust and Persuasion
Num. 25. S. Ontañon, Ensemble Case-Based Learning for Multi-Agent Systems
Num. 26. M. Sanchez, Contributions to Search and Inference Algorithms for

CSP and Weighted CSP
Num. 27. C. Noguera, Algebraic Study of Axiomatic Extensions of Triangular

Norm Based Fuzzy Logics
Num. 28. E. Marchioni, Functional Definability Issues in Logics Based on Tri-

angular Norms
Num. 29. M. Grachten, Expressivity-Aware Tempo Transformations of Music

Performances Using Case Based Reasoning
Num. 30. I. Brito, Distributed Constraint Satisfaction
Num. 31. E. Altamirano, On Non-clausal Horn-like Satisfiability Problems
Num. 32. A. Giovannucci, Computationally Manageable Combinatorial Auc-

tions for Supply Chain Automation
Num. 33. R. Ros, Action Selection in Cooperative Robot Soccer using Case-

Based Reasoning
Num. 34. A. Garcı́a-Cerdaña, On some Implication-free Fragments of Substruc-

tural and Fuzzy Logics
Num. 35. A. Garcı́a-Camino, Normative Regulation of Open Multi-agent Sys-

tems
Num. 36. A. Ramisa Ayats, Localization and Object Recognition for Mobile

Robots
Num. 37. C.G. Baccigalupo, Poolcasting: an intelligent technique to customise

music programmes for their audience
Num. 38. J. Planes, Design and Implementation of Exact MAX-SAT Solvers
Num. 39. A. Bogdanovych, Virtual Institutions
Num. 40. J. Nin, Contributions to Record Linkage for Disclosure Risk Assess-

ment
Num. 41. J. Argelich Romà, Max-SAT Formalisms with Hard and Soft Con-

straints
Num. 42. A. Casali, On Intentional and Social Agents with Graded Attitudes
Num. 43 A. Perreau de Pinnick Bas, Decentralised Enforcement in Multiagent

Networks
Num. 44 Isaac Pinyol Catadau, Milking the Reputation Cow: Argumentation,

Reasoning and Cognitive Agents
Num. 45 Sindhu Joseph, Coherence-based Computational Agency
Num. 46 Manuel Atencia, Semantic Alignment in the Context of Agent Inter-

action
Num. 47 Meritxell Vinyals, Exploiting the Structure of Distributed Constraint

Optimization Problems to Assess and Bound Coordination Actions in
MAS

© CSIC © del autor o autores / Todos los derechos reservados

	Contents
	List of Figures
	Foreword
	Abstract
	Agraïments
	Chapter 1: Introduction
	Chapter 2: Problem definition
	Chapter 3: Related work
	Chapter 4: Action-GDL: Extending GDL to solve DCOPs
	Chapter 5: Divide-and-Coordinate
	Chapter 6: Region Optimality
	Chapter 7: Max-sum as a region optimal algorithm
	Chapter 8: Conclusions and Future work
	Appendix A
	Appendix B
	Appendix C
	Bibliography

