ÍNDICE GENERAL

Pr	Prólogo		
1.	Química del agua		
	1.1.	Introducción	17
	1.2.	Composición del agua	20
	1.3.	Propiedades físicas del agua	21
1.4. Sinopsis de la química del agua		Sinopsis de la química del agua	25
		1.4.1. Solubilidad. Efecto del ión común	26
		1.4.2. Precipitaciones químicas	29
		1.4.3. Autoprotolisis del agua. pH	29
		1.4.4. Fuerza de los ácidos y bases	31
		1.4.5. Hidrólisis	32
		1.4.6. Concentración activa	36
		1.4.7. Oxidación reducción	44
		1.4.8. rH	55
		1.4.9. Dureza de las aguas	56
		1.4.10. Detergencia	58
		1.4.11. Cambio iónico	59
	1.5.	Agua en la atmósfera: lluvia ácida natural	66
2.	Oxí	geno disuelto	69
	2.1.	Introducción	69

	2.2.	Solubilidad del oxígeno
	2.3.	Regulación de los vertidos en los ríos
	2.4.	Autodepuración de los ríos
		2.4.1. Desoxigenación
		2.4.2. Reoxigenación
		2.4.3. Déficit de concentración de oxígeno 79
		2.4.4. Evolución de la concentración de oxígeno causada por
		un vertido
	2.5.	Amperometría del oxígeno disuelto 84
	2.6.	Oxímetros
	2.7.	Calibración de los oxímetros
3.	Den	nanda bioquímica de oxígeno 91
	3.1.	Introducción
	3.2.	Cálculo de la fórmula del agua residual 91
		3.2.1. Rendimiento de producción de lodos 94
	3.3.	Requerimientos nutricionales de la DBO 95
	3.4.	Conceptos relacionados con la DBO
	3.5.	Disolución de sales nutrientes
	3.6.	Medidores de la DBO
	3.7.	Cinética de la DBO
	3.8.	Determinación de las constantes cinéticas de la DBO 102
		3.8.1. Cálculo de la determinación de la DBO 104
	3.9.	Calidad del agua y la DBO
4.	Den	nanda química de oxígeno 109
	4.1.	Introducción
	4.2.	Definición de la DQO
	4.3.	Demanda química de oxígeno de sustancias puras 110

	4.4.	Patrón para la medida de la DQO
	4.5.	Interferencias en la determinación de la DQO
	4.6.	Procedimiento y reactivos de la DQO
	4.7.	Determinación de la absortividad
		4.7.1. Determinación de la f de patrones 117
	4.8.	Demanda total de oxígeno
	4.9.	Carbono orgánico total
	4.10.	Demanda teórica de oxígeno
	4.11.	Coeficientes de transformación
		4.11.1. Relación de lodos activos y absorción de nitrógeno $$. $$. 124
	4.12.	Cálculo de muestras compuestas
	4.13.	Vertidos industriales
5.	Mod	delos dinámicos de tanques 129
	5.1.	Introducción
	5.2.	Modelo dinámico de un tanque
	5.3.	Análisis de un tanque de mezcla perfecta
	5.4.	Transferencia de oxígeno-agua
	5.5.	Diseño de tanques reguladores de caudal
		5.5.1. Cálculo gráfico de un ecualizador
		5.5.2. Cálculo numérico de un ecualizador $\dots \dots \dots 150$
	5.6.	Simulación dinámica de un ecualizador
	5.7.	Problemas
6.	Sedi	imentación de sólidos floculentos 165
	6.1.	Introducción
	6.2.	Generalidades de lodos activos
	6.3.	Velocidad de sedimentación
	6.4.	Flujo de sólidos en el sedimentador

	6.5.	Modelización del sedimentador secundario 180		
		6.5.1.	Modelo dinámico simplificado del sedimentador 180	
		6.5.2.	Modelo dinámico riguroso del sedimentador 181	
7.	Cin	ética d	le reacciones y reactores 191	
	7.1.	Introd	ucción	
	7.2.	Reacci	iones homogéneas	
		7.2.1.	Alternativas a la ecuación de Monod 198	
	7.3.	Depen	dencia de la concentración	
		7.3.1.	Método integral de análisis de datos 198	
		7.3.2.	Método diferencial de análisis de datos 205	
	7.4.	Reacci	ión de biodegradación	
		7.4.1.	Dependencia de la temperatura	
		7.4.2.	Dependencia del pH	
		7.4.3.	Limitación por nutrientes	
	7.5.	Reacto	ores químicos	
		7.5.1.	Reactor continuo de mezcla perfecta	
		7.5.2.	Reactor de flujo pistón	
	7.6.	Model	ización de la degradación de la materia carbonácea $$ 225	
	7.7.	Reacto	ores reales	
		7.7.1.	Análisis de reactores en serie con trazadores 229	
	7.8.		terísticas de los reactores biológicos en la depuración nas	
		7.8.1.	Reactor de mezcla completa	
		7.8.2.	Reactor de flujo pistón	
		7.8.3.	Reactores de mezcla perfecta en cascada	
		7.8.4.	Proceso contacto estabilización	
		7.8.5.	Proceso de alimentación escalonada	

		7.8.6. Proceso de oxidación extendida y sedimentación en una misma balsa	40
	7.9.	Redimensionando reactores	41
	7.10.	Problemas	47
8.	Mod	lelización del proceso de lodos activos 26	31
	8.1.	Introducción	61
	8.2.	Velocidad de dilución y lavado del reactor	63
		8.2.1. Reactor biológico sin recirculación	63
	8.3.	Relación de recirculación de lodos	66
	8.4.	Reactor biológico con recirculación	67
	8.5.	Tasa de crecimiento y edad de lodos	69
	8.6.	Modelo matemático del reactor biológico	71
	8.7.	Valores de los parámetros cinéticos	74
		8.7.1. Simulación del reactor biológico en estado estacionario 2	75
		8.7.2. Evolución del sustrato en el sedimentador 2	7 9
	8.8.	Modelo matemático del tratamiento secundario 2	80
		8.8.1. Modelo dinámico del proceso de lodos activos 20	81
		8.8.2. Modelo estacionario del proceso de lodos activos 2	87
9.	Res	pirometría de lodos activos 29	95
	9.1.	Introducción	95
	9.2.	Oxidación bioquímica	96
	9.3.	Consumo específico de oxígeno	97
	9.4.	Respirogramas	01
		9.4.1. Determinación de la DBO en tiempo corto 30	03
	9.5.	Toxicidad como inhibición respirométrica	04
Α.	Inte	gración con MatLab y Maple 30)9

	A.1.	Integración	309
	A.2.	Integración simbólica de ecuaciones diferenciales $\ \ \ldots \ \ \ldots$	312
	A.3.	Integ. de ecu. dif. con la transformada de Laplace	313
	A.4.	Integración de ecuaciones diferenciales lineales de primer orden	316
	A.5.	Integración numérica de ecuaciones diferenciales	317
	A.6.	Integración con SIMULINK	319
в.	Det	erminación de retrasos y derivadas	327
	B.1.	Cálculo numérico de retrasos	327
	B.2.	Cálculo numérico de derivadas	330
Bibliografía		333	
ť	Índice alfabético 3		