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INTRODUCTION

Morphometry is undergoing major changes on at least two fronts. One is the deve-
lopment of new methods by statisticians working on biological problems, and the
other in the kinds of biological questions to which they are applied, especially a new
look at development, evolution and variation in the form of organims. Form inclu-
des both size and shape. Up to now, size has been dealt with in a satisfactory quan-
titative manner, but shape has been reduced to a comparison of sizes of parts of orga-
nisms. Now, it is possible to dissect shape into linear and non-linear components
for homologous landmarks. A number of workshops in the last few years and addi-
tional ones being organized are disseminating the results of this effort, and attest to
the vigor and interest in morphometrics. We believe it is not too early to describe
the emerging changes as radical departures from the past. A new paradigm is now
being formulated. We also believe that the store of available problems and methods
qualifies morphometrics as a discipline in its own right.

A central theme in the new Morphometrics 1s to consider landmarks directly, rat-
her than to derive distances from them. The results are reported in organism spa-
ce rather than in the abstract vector space of classical multivariate statistics and tra-
ditional morphometrics. However, classical multivariate techniques are still rele-
vant in testing and inference. The benefits of such an integration are still not as
widely appreciated as we would like, but further efforts such as this one will hope-
fully make the methodology more available. Fred Bookstein has pointed out that
we have a “desperate need of a book-length primer” on the new morphometrics.

Much of the literature and examples in systematics are in two dimensions rather
than in the three that we observe and study. It is clear from the description of the
methods that the mathematics has been developed, algorithms are available, and
numerical results are easily obtained for three dimensional data. Three dimensio-
nal (3-D) data acquisition is still expensive for the systematist, who now almost rou-
tinely uses 2-D video capture systems.

Three dimensional software is being developed and the speed of low cost desk
top computers is increasing so that the dynamic graphics required will soon beco-
me widely available.

Copia gratuita. Personal free copy http://libros.csic.es



10 INTRODUCTION

This volume reports on some of the methods and applications available in the
new morphometrics. Bookstein in the first chapter has provided us with a good his-
tory of methods tracing the roots of the new perspective. Key phrases are “alterna-
tive visualizations”, and “configuration of landmarks”.

Roth in her essay outlines practical necessities in collecting adequate data for
morphometric analysis, emphasizing care in photography and measurement. She
discusses the relations between our customary 2-D perspectives and the 3-D rea-
lity of objects.

In fact there has been a 2-D emphasis in the new morphometrics applied to sys-
tematic work to date, and the gap that exists between the availability of data acqui-
sition techniques and expensive computer displays required for the newer kinds of
data used in medicine for example, will be closed in the near future.

Becerra, Bello and Valdecasas offer some practical advice on selection of equip-
ment for 2-D image capture for morphometrics based on their experience with a
selection of hardware and software available to them. They report also some expe-
riments to give an idea of resolution and repeatability available on the lower cost
systems built around IBM PC’s and clones, and data acquistion software. We hope
that gatherings in the near future will be able to discuss the pros and cons of various
3-D systems as clearly.

Slice offers a contribution dealing with outline data. He gives a useful critique
of the use of fractal dimensions in describing two dimensional shapes - using lea-
ves as examples. He offers many practical points in the use of this methodology,
and discusses pitfalls to avoid.

Marcus gives some practical applications of classical multivariate statistics in his
article, and discusses some relations between univariate and multivariate inferen-
tial statistics. The biplot method is explained, and heuristics on relations between
student’s t and Hotelling’s T? as well as analysis of variance (ANOVA), and multi-
variate analysis of variance (MANOVA) are provided. Programs written for the soft-
ware package MATLAB are included to support some of these methods.

Rohlf has contributed a clear algorithmic development of the technique of relati-
ve warps. His article is at the same time a user guide to his Thin Plate Spline Rela-
tive Warp (TPSRW) program provided with this volume. He explains all of the steps
and interpretations with his now familiar data set on mosquito wings. Practical choi-
ces in terms of ontogenetic and exploratory studies are discussed as well. The rela-
tive warp technique in his hands is seen as an another way of operating with linear
functions of the data, and in this way broadens our view of this family of techniques.

CSIC © del autor o autores / Todos los derechos reservados
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The most important test for a recipe is the tasting, and both Walker, and Loy et
al. have done just that. Walker has extended resistant fit techniques to an explora-
tion of landmark allometry and provided useful graphics. He has also contrasted
alternative registration methods in both interpretation and presentation of his results.

Loy et al. apply Bookstein shape coordinates in their analysis of systematic diver-
sity of European moles. They are interested in phylogenetic reconstruction, sexual
dimorphism, and intra-specific variation in the skulls of these highly specialized
mammals. This application also serves to illustrate the use of classical multivaria-
te statistics with data derived from the new morphometrics.

Becerra has provided a useful discussion of electronic mail and other communi-
cation possibilities over BITNET and the Internet. His article serves as a primer for
those new to these topics.

Finally the latest versions of GRF, TPS and TPSRW by Rohlf are provided on a
disk included with this book. A completely new program TPSREGR is provided
by Rohlf. See the Appendix and README file with that program for a discussion
of its features. The latter especially, is a considerable revision of the original accom-
panying the Michigan Morphometrics Workshop volume. An appendix explains their
installation and use. Also see the Appendix on how to obtain newer up to date ver-
sions.

Some programs are provided in MATLAB which means that they can be run on
IBM PC’s or clones, Mac’s, work stations and other platforms if one has the pac-
kage MATLAB avaible. Programs are included to produce the Biplots in the paper
by Marcus, and a program TPSNEW and TPSRWZ3 that do thin plate splines and
relative warp computations following the output and steps very closely in Rohlf’s
article. Other software included are documented in the README file included on
the diskette accompanying this volume.

LESLIE E MARCUS
ELISA BELLO
ANTONIO GARCIA-VALDECASAS

New York, Madrid
December 1992
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ABSTRACT

The modern morphometrics of landmark data represents a surprisingly recent
synthesis of two originally divergent methodological styles. One contributory
stream is the tradition of multivariate biometrics originated by Francis Galton,
developed further by Karl Pearson, and brought into its current form by Sewall
Wright. These approaches emphasize the geometry of the covariance matrix over
either the gometric organization of the measures or their biological rationale.
The other stream, usually attributed to D’Arcy Thompson but actually dating
from Renaissance art, emphasizes the direct visualization of changes in
biological form; until quite recently it lacked a statistical method. The two
approaches lead to quite different versions of morphometrics because they tap
quite different notions of homology: at root, they represent incompatible
channels of data. Earlier approaches to a biometrics of organic form applied
the multivariate metaphor rather arbitrarily to various subsets of the available
information.

But the goal of combining the two forms of biometric modeling arose — especially
among amateurs — with remarkable regularity throughout the century; finally, from
the late 1970’s through the 1980’s, the two families were firmly fused. The key
strategic decision was the restriction of the data base to locations of discrete
landmark points that sampled transformations at the same time that they
sampled individual forms. A combination of the geometry of the mean landmark
shape with the geometry of the covariance matrix of these shapes leads to the
quantification of transformations in tractable form and to the visualization of most
conventional multivariate maneuvers as transformations. The synthesis, carried
out by Bookstein, Kendall, Goodall, Mardia, and others, carefully combines ideas
and mathematical tricks from statistical “shape space”, multivariate analysis,
algebraic geometry, and interpolation theory. This paper summarizes the separate
histories of the two morphometric traditions, the salient features of the synthesis,
and the lessons of this history for the larger context of methodological advances
in biometry.

This essay is a slightly modified version of one to appear in the commemorative
Volume 100 of Springer’s “Green Series”, Lecture Notes in Biomethematics, edited
by Simon A. Levin.

CSIC © del autor o autores / Todos los derechos reservados



INTRODUCTION

For most of the twentieth century, techniques for the biometric analysis of organic
form fell into one of two incompatible styles. In the first, more indigenous style,
a direct extension of techniques introduced into statistics by Galton, Pearson, and
their heirs, conventional multivariate techniques were applied to a diverse roster
of measures of single forms. The only algebraic structures involved were those
of multivariate statistics, limited mainly to covariance matrices; no aspect of the
geometric organization of the measures, or their biological rationale, was
reflected in the method. Analyses of this mode led at best to path diagrams, not
to sketches of typical organisms expressing the developmental or functional import
of the coefficients computed.

In the other class of shape analyses, often associated with the name of D’Arcy
Thompson but actually dating from the Renaissance, changes of biological form were
visualized directly as distortions of Cartesian coordinate systems that accorded with
a pre-assigned biological homology. Such analyses were inextricably graphical; several
generations of bricoleurs failed to provide a corresponding statistical method. Whereas
in the first approach homology pertains to the values extracted by ruler, in the second
it refers to the pairing of “corresponding” locations of bits of tissue. The
incompatibility between these two main styles of quantification derives ultimately
from this discrepancy between fundamental metaphors for what is being measured.

Recently these two broad families of techniques have been fused in a
surprisingly brief and peaceful methodological development. The key to the synthesis
was the restriction of the information being analyzed to the locations of discrete
points, landmarks, that bore Cartesian coordinates but that also were declared to
be biologically homologous from form to form of a series. Over the decade from
the late 1970’s to the late 1980’s, Thompson’s transformation grids, as applied
to landmark configurations, were quantified in a statistically tractable form. The
statistical analysis of landmark locations was shown to be expressible in
geometric diagrams directly interpretable in the original picture plane, and the results
of the statistical analysis were made commensurate with the analytics of the
deformation analysis with the aid of an ancillary quadratic form encoding the sample
average positions of the entire landmark configuration.

The resulting morphometric synthesis is of full statistical efficiency, permits
explicit tests of many biologically interesting features, and supplies statistical



20 FRED L. BOOKSTEIN

equivalents to, or statistical instructions for, the great variety of graphical techniques
that had been previously developed by amateurs. This essay briefly recounts the
history of algebraic and geometric manipulations that culminated in the current
state of morphometrics. My subject is the accumulation of insights into the logic
of measurement: the history of a method, not of findings.

BIOMETRIC ANALYSES OF SIZE AND SHAPE MEASURES

Of the two reviews of independent developments just sketched, the more ironic
is the easier Lo wrile. Modern biometrics is a grand intellectual structure, with
applications from population genetics through psychology and into the social
sciences. But whereas it arose in response to specific tasks of size and shape
analysis, the most successful of its techniques are incapable of making any use
of such geometric origins for the data. The power of biometric methods for broader
applications — the fact that discriminant function analysis, for instance, works
as well in psychiatry as in botany — owes to its discarding half the information
of the biometric context, the information that is peculiarly biometric, at the outset.
This missing information will not be restored until quite nearly the end of our
history.

Throughout the early history of today’s biostatistical methods, data for
exemplary demonstrations typically derived from biological size measures. The
original quantitative study of development, for instance, was de Montbeillard’s
(1760) tabulation of the height of his son (see Boyd, 1980). Quetelet’s uncovering
of the normal distribution in a social context relied on measures of height, weight,
and the like. And, of course, Francis Galton’s original demonstration of regression
used the heights of 928 children and their parents. Following Duncan (1984), 1
would suspect all this owes to the origin of these thrusts in the need for “social
measurement” long before the idea of biometric statistics could be formulated.
Generals and tailors needed to understand human size variability millenia before
quantitative biology was more than an eccentric hobby.

The independence of multivariate algebra from the biometric context in which
it originated was noted very early on in the development of multivariate statistics.
Recall that Galton emphasized two related but distinct aspects of the relation
between parental and child height: the fact of regression (that is, the true, linear
causation of what we now call the “systematic part” of child’s height by midparent
height) and the convenience of a summary statistic of “co-relation”. Well before
the turn of the century, Edgeworth and then Karl Pearson and his colleague W.
F. R. Weldon were emphasizing the usefulness of this second formulation for
pairs of biometric variables, such as alternate size measures of the same organism,
for which the true causal model was not at all that of Galton’s hereditarian exemplar.
Still, the principal ideological concermn of this school of thought, usually

© CSIC © del autor o autores / Todos los derechos reservados



A BRIGF HisToRY OF THE MORPHOMETRIC SYNTHESIS 21

identified with the political thrust of the eugenic movement (Mackenzie, 1981),
was the effort to restrict regressions to a context of true causation. This purpose
was distinctly oblique to G. Udny Yule’s (1895) construction in which regression
analysis consisted simply of “fitting a plane to the data” for purposes of easing
prediction at the expense of explanation. Matters were not helped when Ronald
Fisher’s algebra of explained variance, a terminology suited to the context of
agricultural experimentation, proved to apply to the decomposition of sums of
squares underlying multiple regression, which, properly construed, “explains”
nothing — but this theme is oblique to our main story.

The meaning of regression and correlation in biometric studies of size and
shape measures was obscure until the 1920’s, when Sewall Wright applied his
considerable analytic and intellectual skills to their clarification. His method of
path analysis (see Wright, 1968) was developed to unify studies of inheritance
of quantitative characters and of the correlations among simultaneously measured
suites of characters. In the shared formalism, observed correlations were the
algebraic composite of patterns of mutual determination of data by observed or
unobserved factors. Wright’s conception of the role of correlations in biometrics
is still, in my view, the only coherent approach to their application in the biological
sciences (see Bookstein er al., 1985, or Bookstein, 1991).

While Wright was developing his strictly causal models, and enlarging their
range to include selective forces and genctic drift and diffusion, the opposing
tradition (regression as least-squares prediction) was not dormant. Of the many
intellectual developments which branched from the “general linear model” (multiple
regression, analysis of variance, and their common generalizations), several are
crucial to modern applied statistical practice, including econometrics, response-
surface analysis, and psychometric factor analysis. While none of these have
recurved to enrich biometrics in any central way, at the same time yet another
development was arising in the context of morphometric data. The technique of
discriminatory analysis originated in Fisher’s classic data set of four size measures
of Iris flowers, In phrasing his problem of “discrimination” as the maximization
of a certain variance-ratio, at root a ratio of statistical likelihoods, Fisher failed
to notice that he was once again denying the origin of the biometric task in any
coherent causal model. This was confirmed shortly afterwards when Harold
Hotelling (1936) showed how discriminant function analysis was a special case
of canonical correlations analysis, a technique that had arisen in the context of
psychometric statistics to make sense of group differences in “profiles” on any
outcome whatever, regardless of the style of measurcment and regardless of the
nature of the true factors, if any, contrelling the phenomenon under study.

By the 1960’s, then, the discipline of biometrics found itself in a context of
considerable internal contradiction. The core collection of techniques — regression,
true factor analysis, discriminant function analysis — had arisen in the context
of a strictly morphometrical question, yet in their current algebraic unfolding there

Copia gratuita. Personal free copy http://libros.csic.es



22 FRED L. BOOKSTEIN

was no role for any geometrical information at all. The question of whether the
algebra of covariance matrices and design matrices did justice to the biological
hypotheses so investigated could not be posed.

The dilemma is presented quite neatly, if inadvertently, in the first pair of
publications known to me that actually claimed to be about “morphometrics”:
R. E. Blackith’s (1965) essay of that title and his 1971 book Multivariate
Morphometrics with Richard Reyment. In both these texts, morphometrics is
mainly the interpretation of matrix manipulations in vaguely functional
biological terms. Summarizing the field as it had ramified over the preceding
half-century, these authors were quite free to ignore the origin of the variables
under study. The nature of the measures — lengths, angles, titres, proportions,
whatever, in any combination — made no difference for the matrix mechanics:
all were thrown into the same vortex of canonical analyses and clusterings.
Thus there could arise no discipline for the formulation of those variables. In
a related literature, the applied field which supplied morphometric data to the
greatest accuracy, craniometrics (along with its alternative incarnations
anthropometrics and cephalometrics), seems never to have considered what might
be a reasonable approach to their provenance. Distances, angles, ratios, areas
— all are combined helter—skelter in unitary matrix analyses from which biological
insight is presumed to emerge by inspection of tabular results or ordinations.

The clumsiness with which the methods of this suite apply to the actual data
of size and shape in which they had been conceived did not go wholly unnoticed.
Rather, from mid-century on, several thoughtful biometricians attempted to modify
the dominant matrix methods so that when interpretations in terms of size and
shape were possible they might be called to the scientist’s attention without
any more distortion than was absolutely necessary. Jolicoeur (1963), Hopkins
(1966), Burnaby (1966), Mosimann (1970), and others investigated the
interactions of the biologist’s intention with matrix operations as applied to true
measures of size and shape. For instance, the (true, causal) phenomenon of
allometry, dependence of shape on size, can (sometimes) be detected in variation
of the coefficients of the first principal component of logarithms of size measures;
analysis of *“shape” can proceed (under fairly stringent conditions, and with
limited power) using vectors of ratios of size measures; analysis of shape in
a different sense, now no longer size-independent, can proceed by referring to
residuals of the raw data from their allometric regressions; and so on. This
literature is summarized and assorted in Bookstein et al. (1985), and its semantics
is dissected in Bookstein (1989b).

Still, by about 1980 the inescapable mismatch was clear to many of us between
the matrix operations of the dominant tradition, however modified for “size
and shape” work, and the very reasonable sorts of questions about morphometric
phenomena that had been asked of the raw data all along. In a phecnomenon
typical of such periods of professional stress, new techniques began to spring
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up only to be found deeply flawed, or otherwise misadvertised, shortly
afterward. Among such techniques were (alas) my idea of “shearing” (size-free
shape discrimination from rotated principal component analyses, Humphries et
al., 1981), the vain hope that Fourier and other orthogonal functional analyses
of form might result in *“characters” (cf. Rohlf, 1986), the multivariate
analysis of Cartesian coordinate data without any preparation (Corruccini, 1981),
and several others. A review article of the time (Oxnard, 1978) summarized
morphometrics as a grab-bag of techniques borrowed from a great variety of
sources — slatistics, engineering, optics, psychometrics — without any coherence
of its own. For any such coherence to arise, the field would have to be rebuilt
from first principles emphasizing the origins of the data (quantitative
observations of actual biological form) as much as the algebraic machinery of
its statistical analysis. But where to begin? — what questions should be placed
at the foundations of morphometrics, to set the rules of discourse prior to
particular applications?

THE STUDY OF SHAPE TRANSFORMATION

The coherence lacking in the morphometrics of my graduate years was born,
though not without forceps, out of a completely different tradition than the biometric:
the systematic contemplation of biological shape change as a phenomenon in
its own right. While this idea is usually associated with the famous treatise On
Growth and Form (1917) by the British naturalist D’ Arcy Thompson, it is actually
hundreds of vears older than that. The first “transformation grids” reflect efforts
of Renaissance artists to comprehend the variability of the human forms that they
were just beginning to reproduce realistically. Figure |, for instance, from Albrecht
Diirer’s Vier Biicher von Menschlicher Proportion of 1524, demonstrates a
surprisingly broad exploration of diverse types of “transformation grid,” both affine
and localizable, in the effort to explore the limits of normal variation and the
strategies of effective caricature.

This formal theme, shape transformation as the explicit object of biometric
discussion, was first clearly set forth in the famous Chapter XVII of Thompson
(1917), On the Theory of Transformations, or the Comparison of Related Forms.
Thompson's goal is a distinctly Victorian one, perhaps too Platonic for the modemn
taste:

[If] diverse and dissimilar [organisms] can be referred as a whole
to identical functions of very different co-ordinate systems, this fact
will of itself constitute a proof that variation has proceeded on definite
and orderly lines, that a comprehensive ‘law of growth’ has
pervaded the whole structure in its integrity, and that some more or
less simple and recognisable system of forces has been in control...
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Pre-Cartestan transformations. From Albrecht Diirer, Vier Biicher von Menschlicher Proportion, 1524,

Indeed, the figures which he himself published show a clear dominance of the
Platonic thrust of homogeneity over accuracy or even realism in the representation
of actual data. Thompson’s hope that these figures would help unveil the origins
of form in force was never realized, and while several later generations of
quantitative biologists were tempted by this graphical style, it proved never to
lead to quantification in the global mode that Thompson had intended. For a
historical review of the “vicissitudes” of this method since Thompson’s
publication, see Chapter 5 of Bookstein (1978).

From the vantage point of 1992, it is possible to characterize the assortment
of earlier attempts at a proper biometrics of transformation by the nature of the
compromises they made. We shall see below that the morphometric synthesis
involves many separate themes in the biometrics of shape: representation of variation
of shape and size as well as mean effects, coverage of a full range of potential
shape descriptors in an even and “unbiased” fashion, and production of distinctive
features of such changes or variation in multiple diagrammatic forms permitting
their separate viewing and also their arbitrary combination in composite processes.
All this needs to be under the control of the same conceptual unity of descriptions
that is presumed the case for ordinary variables: all comparisons must be “of like
with like”. The innovation of the 198(’s consisted in a single formalism allowing
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of all these alternative emphases; it is no criticism of those who came before that
they had not stumbled upon the appropriate statistical geometry.

Sneath & Sokal (1963), for instance, presented realistically drawn Cartesian
transformations between holotypes, but argued (following Medawar) that such
visualizations did not lead to “features” or to measures of “distance”, and so tumed
elsewhere for the multivariate distance measures that were supposed to lead to
taxonomically appropriate ordinations. A few years later, Sneath (1967) attempted
to convert smoothed models for these grids into a trend-surface-based distance
function; but there was no possibility of interpreting the resulting coefficients
in geometric terms. Huxley’s (1932) method of “growth-gradients” would
occasionally lead to suggestive Cartesian transformation diagrams, but begged
the question of an appropriate coordinate system. Bookstein’s method of
biorthogonal grids (1978) provided shape comparisons in a canonical coordinate
system but was not consistent with visualizations of “standard error” or any other
notion of sampling variance for the features so displayed. Oxnard’s method of
displaying single principal components of multivariate size measures as grids (1973)
represented statistically reliable shape features in diagrams whose verbalization
(e.g., “‘cranio-lateral twist”) is obscure: what family of descriptions are we drawing
descriptive phrases like these from, and how much of that “twist” do we have?
Yet other methods, such as L.ohmann’s “‘eigenshapes” (1983), which could be
thought of as transformations of the boundary of a form, failed to accord with
prior knowledge of biological homology, but instead construed it in an operational
fashion that, however effective for ordination or correlation with ecophenotypy,
nevertheless did not permit interpretation in biological terms.

The earliest applications of tensor analysis in morphometrics, such as that of
Richards & Kavanagh (1943), while strongly suggesting developmental
interpretations, did not permit group-level operations such as averaging or
assessments of variation; and the later finite-element methods, such as that of
Lewis et al. (1980) or Bookstein (1984a), displayed “features” the provenance
of which was an unknown function of the (arbitrary) division into “finite elements”
that underlay every set of specific computations. The methods of Procrustes analysis
(optimal least-squares superposition of shapes), which were entering applied
morphometrics just as the synthesis was being produced on the pure side, produced
“features™ of one kind only (vectors of displacement of single landmarks) and
were inconsistent with the usual sorts of multivariate explanations (for instance,
allometric and growth-gradient models).

In hindsight we can see why the morphometrics of the 1950’s through the early
1980’s was so confused. There was no agreement about what constituted an appropriate
analysis because there was no proper theory of what constituted the data. Oxnard’s
(1978) review article, for instance, which dealt with data in the form of images,
had virtually nothing in common with the approach of Blackith & Reyment (1971),
which treated data in the form of geometric variables measured by ruler, planimeter,
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or protractor; and my first publications of the “method of biorthogonal grids” in
the late 1970’s were unaware that the statistical problem had to do with the
representation of the raw data (in this case, whole configurations of landmarks) in
a space whose dimensions would be transformations, not with the depiction of single
changes as transformations. My preliminary statistical method for triangles
(Bookstein, 1982a,b), lacking only the corresponding distribution theory, never referred
to vectors of variables, nor did it hint at any appropriate extension even to pairs
of triangles, let alone to landmarks considered without lines connecting them.

In short, none of us realized that the multivariate tradition could not apply properly
(i.e., canonically, with full efficiency) to landmark data until a canonical way were
found to make whole landmark configurations into “variables”, and none of us thought
to pursue the analysis common to alternate visualizations rather than the argument
that some visualizations were “better” than others. When analyses appeared to work
in particular examples, we could not state what it was that caused us to trust in
them, nor could we assure ourselves that other analyses, just as cogent, would result
in similar findings. In comparing methods for analysis of outlines to methods for
analysis of landmark data, no-one was able to say where lay the essence of the
difference. (We now know that the essential feature is the finite-dimensionality of
the complete description of a landmark configuration.) Thus, a whole collection of
eamest workers, some amateurs, some professionals, circled around the solution that
was to come, without ever realizing the crux of our collective problem.

THE MORPHOMETRIC SYNTHESIS 1983-1989

Suddenly, without any premonitory ferment, the earlier biometric barriers were
circumvented by the combination of many earlier methods in new ways. The
breakthrough began, as statistical breakthroughs often do, when it was realized what
constituted the appropriate “simplest case™: not a short list of distance measures,
but instead the simplest configuration of landmarks — a triangle. We knew that
statistical analysis of triangles by distances (for instance, the lengths of the edges)
was not conducive to visualization of effects on these forms (by strain-crosses,
pairs of distances at 90°). Thus several of us were searching at the same time for
a better multivariate statistical analysis that would wrestle with the landmark locations
directly, rather than in the form of the nonlinearly derived lengths, length-ratios,
principal strains, etc. This better synthesis emerged between 1983 and 1989 as an
essentially complete framework for the analysis of landmark locations as raw data.

The important contributions during this brief period when the discipline was
synthesized include a paper of mine (Bookstein, 1984b) introducing the shape coordinates
for triangles and showing how shape differences can be weighed by formal T test;
Goodall’s 1983 dissertation, deriving the equivalent F-ratio while avoiding any size-
standardization; and Kendall’s (1984) announcement of the global shape spaces to
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which Goodall’s and my methods inadvertently applied as statistical metrics in tangent
spaces (linearized feature spaces). Our joint publication in the first volume of Statistical
Science (Bookstein, 1986, with commentary) proudly announced the convergence
of all three of these approaches on one single foundation for the morphometrics of
landmarks. This core of material has since been formalized further, in a different
notation, in Goodall (1991). Meanwhile, one particular interpolation function, the thin-
plate spline (Bookstein, 1989a), turned out to support a feature space for these shapes
in an almost miraculous way: A quadratic form embodying the mean landmark
configuration served to specify a basis for sensibly decomposing variations around
that mean. I am not aware of any serious problems with this synthesis or of any
informed attacks upon it. Its most extensive exposition is my monograph of 1991;
the Proceedings of the Michigan Morphometrics Workshop (Rohlf & Bookstein, 1990)
provide a link to the language of systematics. There is a useful chapter-length overview
in Reyment (1991). We are all in desperate need of a book-length primer.

As the present essay is an experiment in intellectual history, rather than a medium
for explaining how to do modern morphometrics, I shall summarize the actual
content of the synthesis only briefly, in this paragraph and the next three, before
preparing to show how it sits atop most of the morphometrics that had gone before.
The shape of a set of K landmarks in a plane can be considered as a point in
a well-characterized elliptic manifold of dimension 2K-4 (cf. Fig. 2 A). In small
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Fig. 2 A
When the positions of two landmarks are fixed, the shape of any triangle is archived by the pair of
coardinates of the third landmark. (From Bookstein, 1991, Figure 5.1.2).
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regions of this space, ordinary multivariate maneuvers may proceed by the usual
machinery of analyses of variance, regressions, discriminations, and the like, as
applied to any convenient basis for the tangent space that linearizes “small” shape
variations. Under convenient null hypotheses, distributions in this space can be
calibrated according to so-called Procrustes distance, arc-cosine of the root mean
squared distances between the positions of paired landmarks when ecach
configuration is scaled to central second moment unity and when they are rotated
and translated to the superposition of least such distance.

But this distance cannot serve effectively as the multivariate “interspecimen
distance™ beloved of taxonomists in fact, ne formula for distance can do so; the
problem of describing biological shape variation is subtler than that simplistic
multivariate model. As matters stand today, there appear to be a minimum of
three distances involved. For size, log Centroid Size appears to be satisfactory
in most applications to landmarks. For biological work in shape space, two distances
seem to be required. One, usually log anisotropy, is taken between projections
of the two landmark configurations onto the uniform subspace (in directions which
vary from algorithm to algorithm; see Bookstein, 1991, Sec. 7.2). The third distance
represents position in the complementary subspace of nonuniform transformations,
and may correspond to a quadratic form representing some power of the bending-
energy matrix. These three distances relate among themselves, through the observed
or computed coordinates which reproduce them, by ordinary biometric covariance
structures, and they relate to putative exogenous causes and effects by Wright-
style path models just as any other quantitative characters would. This point of
view is discussed at several places in Bookstein, 1991, from Chapter 1 on.

What makes the synthesis supersede so many of the earlier, partial approaches,
even though multivariate “distance” is irreducibly ambiguous, is the existence
of a few particularly convenient bases for this space that together support all
the visualizations needed for biological interpretations of the formal statistical
analyses. The formulation of these bases crucially incorporates the mean
landmark configuration. The synthesis is unusual among multivariate methods
in this central role of the multivariale mean vector for interpreting variance-
covariance matrices around it. In any of these bases, each dimension points in
the direction of multiples of one single transformation of a mean form, just as
Thompson might have envisioned had he been statistically inclined. Our
“features”, each of which deforms the mean configuration into some variant, can
be depicted (unambiguously) by graphics: some by Cartesian grids, some by simpler
vector diagrams. That is, the Cartesian grids are not properties of the data; they
are propertics of the representation of the data by specific basis vectors. Vectors
come first, grids later.

In most of the current implementations (but see Goodall & Mardia, 1991),
the basis vectors come in pairs corresponding to the two dimensions of circular
symmetry needed to handle their possible application in any direction of the plane.
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Particularly convenient (owing to their combinatoric flexibility) may be shape
coordinates, the shapes (realized as complex numbers) of any K-3 triangles that
rigidly triangulate the landmark configuration (cf. Fig. 2A, 2B). For study of large-
scale effects on shape, one pair of dimensions is usually reserved for the uniform
shears, those which leave parallel lines parallel. Distance in this plane may often
be measured usefully by log anisotropy, the logarithm of the ratio of axes of
the ellipse into which a circle is deformed. The remaining 2K-6 dimensions can
be visualized as K-3 pairs in several ways. One is as a collection of K-3 residuals
of point locations after an affine Procrustes fit (Rohlf, 1992). But I prefer the
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Fig. 2 B
The shape of any configuration of landmarks is archived by the shape coordinates of any set of
triangles that rigidly wriangulates them. (left) Five pairs to one baseline. (right) Two pairs to
baseline 1, two baseline 2, one to baseline 3. The multivariate statistics of shape space can be
carried out in a manner independent of all the arbitrary choices involved here beyond the original
arbitrary choice, that of the landmarks to be located. (From Bookstein, 1991, Figure 5.2.1).

set of partial warp scores. These are 2-vector multiples of eigenfunctions of a
particular quadratic form, the bending energy, which represents a biological notion
of “localizability” in an algebraically convenient form. (The idea of the bending
energy was borrowed from the literature of surface interpolation; its eigenanalysis,
along with all the rest of the synthesis, rests on indigenously biometric
methods.) Whatever the basis chosen, multivariate analysis proceeds by the usual
multivariate matrix methods; but then all findings are diagrammed back in the
plane of the data by graphics of displacement or deformation each corresponding
to one of the directions of shape space in the vicinity of the mean form. For an
example, the decomposition of a group mean shape difference by its partial warps,
see Fig. 3.

The consensus involving these new methods is important to note because of
three shared formal properties that, collectively, obviate most of the arbitrariness
that had bedeviled earlier approaches to the same data. The crucial featurcs of
the morphometric core are efficiency, complete coverage of feature subspaces,
and directional symmetry of embedded distributions.
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equilateral
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Fig. 3
The relation of Kendall’s “spherical blackboard” to the shape coordinates. In the large, shape space
is curved. (From Bookstein, 1991, Figure 5.6.1)

Efficiency. One comer of this common foundation is the demonstration by
elementary theorem, in my 1986 paper, that the “shape space” common to these
schools incorporates the linearized multivariate statistics of all possible
“traditional” shape measurements of the same landmark locations. This guarantee
of efficiency “in all directions,” “in all linearizable features” is perhaps the most
important practical consequence of the methodological consensus. Methods have
been created for translating these equivalent techniques from one notation to another
and for detecting the ways, often subtle, in which other sets of variables lose
information or efficiency with respect to these optima. For instance, the older
studies of single distances and distance-ratios now come under the purview of
theorems explaining in advance how their efficiencies may be computed as functions

of the mean form. For planar data, the extremes of strain-ratio (ratio of
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(B, continned)
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Fig. 4 (continued)

Change in the ten dimensions of shape space for this set of seven landmarks, displayed as five pairs
of two dimensions (the uniform component and all four partial warps). Below each partial warp, the
underlying principal warp, shown as an actual thin plate. Landmarks (from lateral cephalograms),
clockwise from lower left: Basion, Interparietal suture, Lambda, Bregma, Sphenoethmoid
synchondrosis, Intersphenoidal suture, Sphenooccipital synchondrosis. (Data from Bookstein, 1991,
Appendix 4.5, omitting landmark Opisthion).
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corresponding distances between weighted averages of landmarks) from one mean
landmark configuration to another may always be expressed along rransects of
triangles, distances measured from single landmarks to the weighted average
location of another pair. The net 77 statistic for a test of group mean shape
difference, however, does not reduce to the comparison of two suitably selected
exemplars of these transects, one of largest ratio, one of smallest. That net 7*
instead pertains to an appropriately rank-reduced multivariate test for a vector
of ratios among themselves of all edge-lengths within the configuration. Note,
too, that the extreme ratios are typically absent from the basis for the vector space
supporting the 7°. It is the joint distribution of the edge-ratios that supports the
correct statistical interpretation, not their comparisons separately.

Complete coverage of shape space. When a shape change is detected by this
single T* statistic, or the equivalent F-ratio (Goodall, 1991) or likelihood (Mardia
and Dryden, 1989), the morphometrician’s task becomes the specification of features
by which this change may be tied to biological explanation. As effects upon shape
are of indefinitely wide variety, so, too, are the types of features to be inspected
should the hypothesis of isometry (no shape difference) be rejected. Many of
these emerged years or decades ago as isolated methods all their own; the advantage
of the synthesis is their joint expression as multiple estimations, often statistically
nested, in a common format. For configurations of K landmarks, the variants of
current interest include the rigid motion of certain subsets of the landmarks with
respect to the remainder (each such possibility is associated with a descriptor
lying in a subspace having dimension 3 for planar data, and there are 2%'-K-1
such subspaces); the individual displacements of similar lists of landmarks (having
the same number of subspaces, each now of dimension twice the count of “moving”
points); the two-dimensional subspace of uniform shears; the eight-dimensional
subspace of quadratic growth-gradients; and the scale-specific features of
nonlinearity themselves linearized in the principal warps (those “localizable”
eigenvectors of bending energy). These are all phrased as group comparisons or
exogenous covariances. There are also methods available for studying intragroup
morphomeltric covariances, including single-triangle or uniform flactor models and
models for within-group features of localized variation. A particularly interesting
factor, either exogenous or endogenous depending on the space in which the analyst
is working, is size. The associated multivariate methods include techniques for
handling the usual questions about allometry, and even dictate a preferred size
measure (“preferred” according to a plausible null model of shape noise)
corresponding to Mosimann’s (1970) theorem restricting size-shape independence.
To repeat the advertisement, all these are exposited in Bookstein, 1991.

Directional symmetry. In all these applications there is a geometry of features
inherited from the geometry of landmarks. All the methods of the synthesis are
circularly symmetric in their weighing of directions in shape space and in all the
natural subspaces. By this | do not mean that the data must be modeled as somehow
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circularly distributed — although such models are available to be tested or rejected —
but that the methods explore all directions of variation in shape space using the
same metric that applies to the construction of shape space per se, prior to consideration
of any covariances. Kendall (1984) shows how this metric is an embedding of the
natural Euclidean metric that would be applied to the landmark locations prior to
their reduction to equivalence classes of shapes. On a background of n-1 landmarks
unchanging in position, the variation of “shape” in the standard construction of shape
space is circular (isometric with Kendall’s metric) whenever the variation of the
real location of that nth landmark is circular in its own picture plane. In other words,
in the standard construction the geometry of shape space does not distort
displacements of single landmarks as a function of direction.

Beyond this geometry of single point-displacements, there are many other subordinate
geometries that may be nested as hypotheses under the standard shape-space
construction; methods for these more specialized applications must be circularly symmetric
as well. Uniform shears of equal extent, for example, result in displacements (o an
equivalent distance (as measured by log anisotropy) in the appropriate invariant subspace
of shape space, regardless of the principal directions of the shear. In the limit of small
changes, these are exact Euclidean circles about the identity transformation in that subspace.
Thus all such changes are detected by the common T2 or F with the same full efficiency,
regardless of direction. The same is true of single landmark displacements used to model
deviations from the more simplistic Procrustes models.

LESSONS FROM HISTORY

When I began my work in morphometrics, with the book-length attempt at a
new foundation, The Measurement of Biological Shape and Shape Change
(Bookstein, 1978), no-one understood the difference between the problem I was
attempting to solve and the problem I should have been solving instead. The
entirety of the new methods included in that volume would be discarded in the
course of the synthesis that now stands so sturdily on its own.

Of the critique presented in that earlier exposition, nearly all has proved insightful;
of the solutions proferred there (the constrained principal components for
analyzing closed outlines, the method of biorthogonal grids), nothing much remains.
The problem blocking derivation of a landmark-based morphometrics was not,
as I erroneously (if understandably) claimed in 1978, the construction of a canonical
coordinate system for D’Arcy Thompson’s grids. The rea/ problem was to construct
a statistical space for the finite-dimensional manifold of the landmark configurations
themselves such that each vector connecting two points in that space corresponded
to a unique diagram of a deformation. Once directions in that space could be
named and their statistical reifications assessed, pictorial representations of actual
effects on real shapes would follow.
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The problem, in other words, was properly to demarcate the biological from the
statistical aspects of morphometrics; but for that act of intellectual geodesy it was
inappropriate to follow Thompson’s lead. In suggesting an elegant graphic for the
biologist’s intuition of shape change, Thompson ignored the problem of shape
description. Conversely, in suggesting elegant techniques for the manipulation of shape
descriptions, the multivariate school ignored the problem of making biological sense
of shape differences. Once the embryo of a connection between these two problems
could implant itself in the biometrical literature — once we realized that we needed
a general descriptive system for general statistical contrasts in the shape space of
general landmark configurations— the solution could be written down almost as quickly
as we could assemble data sets to serve as examples. Throughout the 1980’s, every
data set to which the synthesis was applied — plants, rat skull growth, orthodontics,
cardiac contraction, brain images — led to findings representing clear methodological
advances in all the fields sharing a concern for the crucial methodological lacunae.

There are lessons in this synthesis, then, both for biometrics per se and for
methodology more generally. The lesson for biometrics is perhaps the simpler:
let the explanations at which the biologist ultimately needs to arrive (in this case,
the spatial localization of biological causal factors) drive the methods, not vice
versa. As multivariate methods began in true causation, so morphometrics began
in the need to comprehend growth, ecophenotypy, speciation — the true biological
causes and consequences of geometric form. As biometrics deterioriated over the
decades into the manipulation of more and more naked matrices, its methods
spoke less and less to the original purpose of shape description, namely, the
explanation of shape change. Once the subject was restored to biological language,
however ( “What, exactly, are these forms doing?”), the methodological gap was
filled in these few busy recent years.

The lesson for the broader context of applied statistical methodology, while
the easier to state, surely is the more problematic in practice. When an applied
problem refuses, decade after decade, to submit to a broad assortment of assaults
by analogy, consider carefully whether the problem has been misspecified. Sixty
years of competent biometrical explorations had failed to supply a statistical method
that corresponded to Thompson’s grids, about which every graduate student of
mathematical biology yet dreamed. Time, then, to revert to fundamentals, to suggest
that the grids were not the proper object of analysis at all: instead they are the
irresistibly effective medium of display or communication of an analysis that had
yet to be designed. Decade after decade, the dozen or so workers I have cited
here circled around this ineluctable conclusion — morphometrics must be the
geometrically relfied description of effects on geometric shape — without ever
realizing the crucial tool that was lacking: an algebraic formalization of the effects
that the biologist wanted to understand. The breakthrough came with the multiple
discovery of shape space for landmarks and the names for all the directions of
that space. Thompson’s error, like my own of 1978, was unusually subtle. It is
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not that biological explanations report the evidence of the grids, but that the grids
report the evidence of the explanations.

In stating the “moral” of my story so starkly, | intend to incite speculations
in other branches of applied metrology that may be in difficulties at the present
time. (Perhaps some are represented in the other chapters of this compendium.)
In the morphometrics of outlines, for instance (to begin closest to home), there
seems as yet to be no possibility of progress corresponding to what has happened
in the last decade for landmark data. (For the combination of outline data with
landmark locations, extending the finite-dimensional shape space constructed for
landmarks, see Bookstein & Green, 1992a.b). It is time, perhaps, for a new
statement of the problem: given the boundary of a biological object, perhaps
the left ventricle of the human heart (or its silhouette, or a particular plane section),
and given some information about homology across samples, what, exactly, do
we want to be able to say? What kinds of explanations are we interested in?
Variation of the phenomenon under study must be reduced to a finite-
dimensional representation before multivariate statistics can apply. What finite
list of descriptors do we have in mind, and how do we attach biological or clinical
medical explanations to them? In medical image analysis, likewise, we are
entrammeled in a riot of approaches to image processing and “reconstruction”
without the driving force of a clear scientific question. What do we wish to
learn, as biologists, from a medical image, or a heap of them, and what
representation of the information content of the pixels will accede to the usual
statistical tools, and what new tools are needed? In environmetric studies, in
statistical ecology, and in many other fields where data is spatially or
geometrically distributed, likewise the literature seems to me to be lacking in
a methodology for tying reasonable scientific questions to geometrically
distributed answers. We need a generalized language of “‘synoptic weather patterns”
(themselves the invention of the same Francis Galton who discovered regression)
for these more general models, and empirical hints about how to discover them
in data in a manner allowing for a coherent statistical analysis and reporting.
For an experiment along these lines, see Sampson er al., 1991.

The triumph of modern multivariate statistical methods in fields arbitrarily far
from their biometric origins has seriously distracted us from properly understanding
the true meaning of these methods in the biological sciences. The meaning of
statistical methods is inextricably bound up in what a community of scholars
believe to be the meaning of their data (cf. Kuhn, 1959; Latour, 1987). The easy
availability of matrix manipulations, and the ease with which they can lead to
publications and tenure, is no substitute for an understanding of the nature of
the tie between “the data” and the styles of explanation that actually drive the
discipline in question. As the example of morphometrics indicates, there need
be no mathematical model of a phenomenon (for instance, of skull growth), and
yet the geometric dissection of the observed patterns of that phenomenon can

CSIC © del autor o autores / Todos los derechos reservados



A BRIEF HISTORY OF THE MORPHOMETRIC SYNTHESIS 37

be effective and suggestive (Fig. 4A, B), as long as there is a satisfactory
quantitative model of the descriptive process itself, the formalism of landmarks
and deformations by which the patterns on the scientist’s retina are converted
into explanations,

The morphometrics of the synthesis supplies just such a model of description,
a model that bridges Thompson’s grids and the multivariate school’s vectors by
tying the landmark location data to the report of a difference. In the absence of
one of these models or the other — a model for the phenomenon, or a model for
the description of the phenomenon — 1 would not expect modern biostatistical
methods to be of much use in other branches of quantitative biology. For instance,
the well-known aversion of molecular biologists to statistical analysis — “if the
data need statistics, the experiment was designed wrong”— is consistent with a
digital logic of causes and effects orthogonal to the entire biometric tradition from
Galton on; and, indeed, molecular biology has neither contributed anything to
biometrics nor borrowed any techniques from us. By contrast, the morphometric
synthesis of the 1980’s drives biometrics straight back to its roots in the observation
of organic forms. In my view, it is a major intellectual triumph within
contemporary applied statistics, perhaps the most important of the last quarter-
century: the perfect match of descriptive and inferential technique to a powerful
classical mode of qualitative scientific intuition.
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ABSTRACT

In morphometrics for comparative biology, the types of data collected and the
manner in which measurements and landmarks are specified influence both the
observations and the conclusions one can make. Hence, choices are best made
deliberately, and with attention to hidden assumptions. In this paper I discuss
(1) some of the consequences for morphometrics of working with two-
dimensional representations of three-dimensional objects; (2) desiderata in the
selection of landmark points and measurements; and (3) a way to evaluate the
completeness of information captured in combinations of coordinate and linear
distance dafa. This paper is a step in the direction of a primer on three-dimensional
morphometrics, and illustrates ways in which evolutionary morphologists can deal
more explicitly with assumptions about the spatial geometry of their biological
subjects.
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INTRODUCTION

We and other organisms live in a four-dimensional world: a world of three-
dimensional morphological structures that participate in processes which add a fourth,
or temporal dimension. At times it is convenient to conceptualize this world differently,
with reference to more or to fewer dimensions: Hutchinson’s (1958) n-dimensional
hyperspace described ecological niches in a way that provides insight into
community structure; classical multivariate morphometrics considers organismal
morphology in terms of a morphospace of dimensionality defined by a set of n distance
measurements; a single dimension —the height of a tree, the length of a tentacle—
may represent most of the information relevant to a particular question of interest.
In terms of our immediate experience, however, morphology is three-dimensional.

There are exceptions, in which most processes or variation are confined to two
dimensions. Insect wings are doubled layers of cuticle whose aerodynamic
properties can be considered to a first approximation to vary according to their
shape and extent in fwo dimensions, and whose pigments distributed in the same
plane serve as visual signals; leaves vary in shape largely but not exclusively within
a single plane because of constraints related to their function as surfaces that collect
light and exchange gases. But morphometric study in systematics and evolutionary
morphology has not been limited to such objects.

Vertebrate skulls, snail shells, foraminiferan tests, and even fish bodies (bilaterally
compressed and symmetrical as many of them may be) are quintessentially three-
dimensional. Yet if one surveys the equipment available in most up-to-date
laboratories for evolutionary morphometrics, the most prominent tools are video screens
and digitizer pads, which are flat. The most recently developed techniques currently
widely available to systematists for the analysis and comparison of biological shape
are, with a few exceptions, based upon coordinate data of two dimensions (Bookstein
et al.1985; Rohlf & Bookstein, 1990); “three-dimensional data™ (but not “two”, the
apparent default) appears as a special entry in Bookstein’s recent major opus (Bookstein,
1991). What many of us think of as sophisticated three-dimensional imaging techniques
in clinical medicine -NMR, ultrasound, CT-scanning— generally present solid
objects in series of two-dimensional slices. Techniques based upon “outline data”
are a very powerful addition to the morphometric repertoire, especially for forms
with relatively few landmark features (Lohmann & Schweitzer, 1990; Rohlf, 1990;
Straney, 1990); yet 3-D objects do not in fact have outlines -they have surfaces and
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contours. (As used here, “contour” refers to a closed curve- especially the outline of a
2D slice of a 3D object drawn onto the object’s surface.) How is it that the two-dimensional
representation of three-dimensional objects has become standard practice? Why does this
seem natural, and why does it not strike us perpetually as a compromise?

One answer, I believe, lies in the fact that we are visual animals. Vision is a consequence
of the neural integration of pattems of light projected onto the two-dimensional surfaces
of retinas. The retina itself consists of several layers of cells, but the layers are involved
in successive stages of processing of information impinging on a topologically two-
dimensional array of receptors. We perceive an illusion of depth, the third dimension,
in our visual images by tricks our brains play on us. Most humans (though not all
individuals) have stereoscopic vision. From our two differently positioned eyes our brain
receives two slightly different views of an object; it compares the two, and the disparity,
or displacement, between these images is sensed by us as depth, conveying the impression
that one object in the visual field is in front of or behind another. Depth can be perceived
by a single eye or at distances too great for stereoscopy using other cues which are
familiar to many artists: light reflected at edges of objects produces highlights that block
from view the contours of objects positioned behind them; converging lines and
atmospherically dulled colors recede into the distance, etc.

As natural as two-dimensional representations appear to us, our world is in fact
3-D. Comfortable as we may be with images projected onto a plane, such
representations always selectively omit information. Unless we are consciously aware
of this process of selection, we will be prone in our interpretations to error or bias.

In this paper I discuss (1) some of the consequences for morphometrics of
working with two-dimensional representations of three-dimensional objects; (2)
desiderata in the selection of landmark points and measurements; and (3) a way
to evaluate the completeness of information captured in combinations of
coordinate and linear distance data. This essay is presented at the time of the
500th anniversary of Spanish support for a now-famous attempt to demonstrate
Earth’s 3-dimensional geometry (in which shape, but not size, was correctly
deduced), and of the approximately 108th anniversary of the publication of Flarland:
A Romance of Many Dimensions (Abbott, 1884).

THREE DIMENSIONS INTO TWO

Orienting a specimen in space for image capture, and recording distance and
coordinate data from the object for morphometric comparison, are related problems
in three-dimensional geometry. For both problems it is important to know what
constitutes the minimum essential information for unambiguously fixing the object
in space. If one is given no prior information, to specify the position of any one
landmark point in space requires three parameters, corresponding to one value for
each of the three coordinate axes. Standard (x,y,z) coordinates are distances from
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a defined set of axes that are linear and orthogonal, but in fact distances from any
well-defined set of points (provided no three are collinear) or axes (provided none
are coincident) can substitute, Typically, coordinate values have polarity -plus or
minus directionality- so if similar conventions are applied to measurement data,
they will be equally informative. With no additional prior information, to define
the configuration of n points rigidly in space, one must take a minimum of 3 n
measurements, distributed so that at least three terminate on each landmark point.

This rule of thumb is modified and manifest in various ways, according to
the additional information provided in the contexts of different problems.

Orienting specimens

Imagine an object consisting of points, the locations of which are described in
space by three coordinates whose frame of reference is defined with respect to a
camera. By definition, the (x,y) plane runs parallel to the photoreceptive surface
in the camera (“horizontal” and “vertical”), and the z axis (“depth”) emerges
perpendicular to that plane. We place the object in front of the camera in such a
way that the camera receives a specified two-dimensional projection; i.e., our objective
is for a particular plane defined within the object and by its own morphology to
be in an (x,y) plane, parallel to the photoreceptive surface in the camera. Three
points define a plane, so in principle any three non-collinear landmarks in the specimen
can be used to orient it. Three (z-coordinate) distances (one per landmark),
measured with reference to the camera or a plane parallel to the picture plane,
determine the projection of the specimen and thus determine the nature (but
not the orientation within the plane) of the image itself.

Once the image is captured, it can be shifted in position or reflected. This amounts
to specifying an additional two coordinates for each of the original three landmarks.
We are working with a rigid object, however, so fewer than this will suffice: Two
coordinates for the first landmark pin the image in place at one point; an x-coordinate
for a second landmark fixes the object in place with respect to the y-axis, but permits
reflection across an axis parallel to x; a y-coordinate for the third landmark eliminates
this remaining degree of freedom (provided neither of these last two coordinates
is zero). The total information employed for this case of three landmarks is thus
seven coordinate values or distances; by assuming our object is rigid we have in
effect specified two more parameters (the respective distances between the first
landmark and the other two), for a total of nine (=3n, as stated above).

Because organisms vary, and commonly lack perfect symmetry, it is often
preferable to choose a reference plane (for example, a sagittal plane) representing
the best fit through more than three points. Alternatively, various well-defined
axes of symmetry can be used. For example, in orienting crania of squirrels for
photography for morphometrics, I locate a point on the ventral midline just anterior
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to the foramen magnum, and another just posterior to the incisors, which define
a longitudinal axis I use in positioning the skull. A second set of axes runs
perpendicular to this, extending between points corresponding in bilateral
symmetry. (For greatest precision, it is best to select points of reference that are
widely separated. Points far from a point of rotation are moved a greater distance
with the same angular displacement than are more proximally situated points,
so slight differences are amplified and more easily detected and controlled.) To
photograph a dorsal view, I fix the anterior end of the longitudinal axis in place
with plasticine clay, and the posterior end an equal (measured) distance above
the working surface (which itself is level and parallel to the camera’s picture
plane). The skull is then still free to wobble in rotation about this longitudinal
axis, so I use bilateral symmetry in the dorsal view to identify the position in
which the skull will be fixed: I rotate the skull until the areas circumscribed by
the two zygomatic arches appear the same through the camera. This is equivalent
to specifying the distance (in the plane of projection) of a landmark on one
zygomatic arch from the longitudinal midline, although it is achieved by
balancing the positions of two points at opposite ends of an axis: a line (the
bilateral axis) rofating in a plane about another (the longitudinal) axis has one
degree of freedom, and its position can be specified with one measurement. Thus
again, the plane of reference for the object is fixed rigidly in space by three
parameters: in this example, by the two (z) distances for the longitudinal axis,
and one for the zygomatic arches. (Note that the dorsal and ventral views produce
identical planes of projection; a difference between them is only apparent when
objects are not transparent,.or as a consequence of parallax; see below.)

In choosing the points, axes, or a plane for orienting the specimen for image
capture, one makes a decision that imposes a geometry upon all data that will be
collected from that image. This decision on a reference plane is an especially important
one if, as is currently common practice, subsequent analyses and comparisons work
directly with two-dimensional coordinates, or with distance measurements obtained
from these two-dimensional projections. An object can be reconstituted in three
dimensions using a pair of images taken from different perspectives: In essence,
2D coordinates can be obtained for each landmark in one image, and the second
image, by showing the relative displacement of each landmark from the new
perspective, provides the third piece of information for a total of 3n parameters.
In systematic practice, however, descriptions and comparisons currently tend to work
within the context of a single planar representation at a time.

The tendency is natural, in working with two-dimensional representations, for
one’s conceptualization of forms and processes to become confined to that plane.
Truss networks (Strauss & Bookstein, 1982), for example, were constructed with
the understanding that relative positions of three points in a plane are rigidly specified
by the lengths of the sides of the triangle they form. Biological landmarks, however,
are free to shift in three, not two, dimensions. As finite-element methods recognize
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(c.g., Cheverud & Richtsmeier, 1986; see also Bookstein, 1991), volumetric elements
—tetrahedra, rather than triangles— may be the most appropriate elements to consider.
In a planar representation, if the vertex of a triangle is observed to draw closer
to the other two, we may in fact be witnessing either a shortening of the triangle
(a change in the distances between vertices), or a foreshortening (a change in its
orientation out of the parallel plane). Points of maximum curvature on an edge,
the intersection of a biological feature such as a suture line in a shell or bone
and the border of the form in profile, and entire “outlines” of globular or otherwise
relatively featureless forms are all geometrically-defined features that can be useful
in comparisons. Such features may not be readily identifiable on the three-
dimensional object itself, however, for they depend not only on their geometric
projection onto the plane, but also on how the plane of projection itself is defined.

When comparisons are made exclusively between two-dimensional projections,
all geometrical descriptions and biological conclusions are made with reference
to that plane. Choosing a plane of orientation constitutes an assertion of
homology, and in defining all measurements with respect to it we make an
assumption -or, at least, the language of our description suggests- that the plane
itself does not vary or change. Sometimes the particular plane chosen is not very
controversial: the midsagittal plane, identified with respect to any number of unpaired
midline structures, is arguably homologous across most of the phyla of the Bilateria.
A midpoint between the eyes, the anus, and root of the dorsal fin, for example,
can be used to define this plane for any number of fishes. (Although in our real
biological world of imperfect symmetry, slightly different planes will be defined
by different choices of “midline” landmarks.) Even such highly conserved planes
of symmetry can be inappropriate for some purposes, however. If this sagittal plane
were to be used in a description of ontogeny in flounder, the data would suggest
that larval metamorphosis involves a tremendous shift and rearrangement in the
positions of fins and viscera. What in fact occurs can not be explicitly documented
without reference to the third dimension. Disruption and change occurs in the larval
symmetry itself, and the change is best described as a migration of the eyes
themselves to a single side of the animal.

The effect of choosing a particular plane of reference in the case of the flounder
is striking. But even in subtler examples, a two-dimensional projection represents a
choice among a variety of potentially homologous planes or axes. Consequences vary.
The longitudinal axis in the squirrel skull example described above could with equal
justification be defined with respect to the axis of the basicranium, the tip of the
nasal bones, the posterior lip of the foramen magnum, the occlusal plane, etc., producing
different orientations, depending upon the shape of each skull (its basicranial flexure,
the relative elongation of its rostrum, etc.). For any set of comparisons it will be
essential to consider the possibility that a difference observed in the positions of
landmarks explicitly measured on the image may in fact arise from change in the
implicit frame of reference. Important changes can occur in structures that are
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used in orienting specimens and determining their projections -structures that
will not necessarily even be visible in the image itself.

When an image is captured, a commitment is made to a particular plane of
projection. As a safeguard against the omission of important information, it is best
to record three - rather than two-dimensional coordinates from landmarks, or to
archive multiple views of the object so that 3D coordinates can be obtained (see,
e.g., Grayson et al. 1988). Nevertheless, most of the techniques available to
systematists, both for representation and for analysis, make use of only two dimensions
at a time. Even if coordinate data ultimately must be projected into two dimensions
for analysis or illustration, access to three-dimensional coordinates will allow one
to vary the planes of projection, and examine the effect of each such choice.

Reconstructing 3 dimensions from 2-D images

The number of images necessary for capturing landmark positions in three
dimensions depends upon the distribution of those landmark points over the object.
To obtain three coordinate values from flat images, each point must be viewed
from at least two angles, and each view must either be taken from specified
orientations of the object, or show at least three additional points that are visible
in other views (and can therefore be used to determine orientation). The problem
then becomes one of photogrammetry (e.g. Slama, 1980). Our own visual systems
obtain depth information by assessing (i) the convergence angle of the eyes (through
proprioceptors in the ocular muscles) -this in essence establishes the relative
positions of the two frames of reference; and (ii) the “retinal disparity”, or disparity
in the position of a single point on the two retinal images -the two images of
a point coincide if the point is in the focal plane, and they diverge with changes
in depth (La Prade er al. 1980). In photogrammetry, a height-to-base ratio (the
ratio between the focal distance and the distance between the cameras) provides
the same information as a convergence angle, and parallax displacement in the
stereophotographs allows computation of the depth or elevation of a point out
of the plane (La Prade er al. 1980). Special problems arise in connection with
biological objects. When shapes are complex, and objects opaque, landmarks easily
disappear from view. The set of views that suffice for one specimen may not
be adequate for another one because of subtle variations in shape that cause
landmarks to disappear behind bulges, other projecting features, or surface contours
of the object. It may not be possible to determine what constitutes a sufficient
number of viewpoints to use on a set of specimens until every specimen has
been carefully examined.

Parallax may cause important distortions in the two-dimensional representation
of landmark positions. An orthographic projection is an ideal in which, by
definition, the mapping of all points follows strictly parallel lines. Objects at
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effectively infinite focal distance fulfill this condition, but at close range, the
angles of projection of widely separated points actually diverge widely. When
an object is oriented obliquely in one, two, or three dimensions with respect
to the camera plane, vanishing points (to which actually parallel lines converge)
are introduced to the perspective (Williamson & Brill, 1990). A related
problem arises with the use of X-ray images, whenever the size of the object
is large relative to the distance from the X-ray source. For these reasons, further
development both of (1) equipment (three-dimensional digitizers, the Reflex (TM)
Microscope) that allows acquisition, and of (ii) analytical techniques (mapping
and transformation) that allow direct comparison of three-dimensional coordinate
data, will be especially welcome.

THE CHOICE OF FEATURES TO BE USED IN A COMPARISON

Comparison involves a sequence of selection processes. First, the objects to
be compared are selected: the relevant taxa, and/or specimens, are identified, and
the particular elements (skulls, shells, entire bodies) selected. Then particular aspects
or features (size, as defined in a specific way, or shape, as represented or measured
in some specific manner) are isolated and subjected to comparison. The method
of comparison itself must be chosen.

No comparison of biological objects involves complete descriptions. The
information extracted from a biological specimen and used in a comparison is
by necessity a subset of everything that can be known or said about the object.
As questions in biology arise within particular conceptual or disciplinary
contexts, particular attributes or features (of the object, or of the object’s form
or size, etc.) are chosen for representation, codification, and comparison. Indeed
perception itself involves the selection and selective organization and combination
of unitary pieces of information, and as such it is analogous to comparison. In
visual perception, the primary responses of photoreceptors to light or dark become
translated, further along the chain of processing, into information about entire
objects, their motion and contours. In morphometrics, sets of measurements or
coordinate values are ultimately translated into information about shapes and
differences between objects. Both perception and comparison involve an iterative
series of processes of abstraction.

Choosing the features on a biological object to compare is an important step
in the process of comparison. Bookstein (1990a: 219) has described landmarks
as “the points at which one’s explanations of biological processes are grounded,”
and has offered a classification and ranking of landmark types. Further
generalization may be possible about what qualities are to be desired in a feature
(be it a landmark position or other measurement) that is used in biological
comparisons. I suggest that
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1. Choice of a feature should be repeatable: A feature of morphology to which we
refer in our quantitative descriptions should be well-defined; that is, it should be defined
in such a way that it can be unambiguously re-located in the same place on the same
specimen by another worker, or found uniquely on another specimen. Finding a feature
on a new specimen -correctly identifying corresponding points despite differences
in geometry- requires an appreciation for the full range of morphological variation
that is likely to be encountered, and some sensitivity to the effects of a varying geometry
on visibility in and projection into different reference planes.

2. 1f a set of features is to characterize an object, they should be well-distributed
over 1t; that is, with respect to the anatomical regions and the questions of interest,
they should be comprehensive (see Strauss & Bookstein, 1982; Bookstein et al.
1985). The data collected for each individual feature should also be comprehensive-
e.g., they should specify important qualities of that feature unambiguously; hence
the emphasis in this paper on full three-dimensionality.

3. The features should be meaningful: They should be relevant to a question
of interest, and the methods of comparison should vield indices that usefully capture,
clarify, or characterize relevant similarities and differences.

In phylogenetic analyses, the features we consider relevant are termed homologues-
features for whose genetic and epigenetic basis we have some evidence of genealogical
continuity (Roth, 1988, Van Valen, 1982). In purely biomechanical studies, homology
may be irrelevant, and the biometrical information of greatest utility may be linear
distances corresponding to lever arms, ratios of mechanical advantage, or dimensions
that determine physical tolerances (e.g., minimum diameters, moments of area).

Repeatability (criterion #1) and relevance (#3) may be the bases for
Bookstein’s (1990a) preference for landmarks defined by local characteristics,
such as the juxtaposition of different tissues, and they may account for his
dissatisfaction with landmark points that are identified by their geometric
relationships to other features (e.g., dimensional extremes, such as points of greatest
width). With such features problems can arise because global features of geometry
can be the combined effect of multiple locally-acting factors; two points defined
geometrically in the same way on different specimens need not have any biological
correspondence (and at times may not even fall on or within the specimen itself).

There are biometrical advantages to comparing the locations of landmark points
on a form (Bookstein, 1990a). However, biological evidence suggests that at times
one-to-one correspondence of single points fails:

The morphologist, when comparing one organism with another, describes
the differences between them point by point and “character” by
“character” ....and he falls readily into the habit of thinking and talking
of evolution as though it had proceeded on the lines of his own descriptions,
point by point, and character by character. (Thompson, 1942: 1036)
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Another level of description —of entire surface regions, or of volumetric elements,
or of qualitative aspects of structures rather than structures themselves— may in
some instances be most meaningful (Roth, 1984, 1991) and bring us closer to
identifying the biological processes of interest. Hence the appeal and utility of
methods of comparison that interpolate between landmark points, such as D’Arcy
Thompson’s transformation grids (Thompson, 1942; Bookstein, 1978), and the
thin-plate spline (Bookstein, 1990b).

The recognition, and operational definition, of homologous points is a non- trivial
problem (Jardine, 1969; Smith, 1990), and one not necessarily with unique
solutions. As noted above, if one compares different objects, one inevitably encounters
changing relationships between the component parts, and points defined in different
ways may reflect different aspects of homology, and answer different questions. The
appropriateness of any given set of landmark definitions is contingent —none is
inherently preferable. For example, on any two bones, the scar on the humerus where
the supinator longus inserts is a result of the same developmental process: the interaction
of developing bone and muscle. Yet in terms of the processes that generate the overall
gross morphology of a bone (such as major crests or constrictions), the positions
of the scar on the two bones may not correspond at all. For biomechanical questions,
a point of insertion may be of interest; but since a muscle may insert for quite a
distance on the periosteum without penetrating the bone itself, the position of the
scar may actually be misleading. Comparison of juvenile and adult bones presents
particularly awkward problems since structures that are ossified in an adult may
be cartilaginous in juveniles. A measurement of, for example, the longitudinal extent
of osteogenesis (delimited by respectively the most proximal and distal points on
a bone) allows the comparison of one aspect of bone development, but in terms
of topography or of cell lineages within the bone, landmark points so defined are
not homologous. Bone morphogenesis is a sufficiently complex epigenetic
phenomenon, however, that information on cell lineages could be considered noise.
Clearly, there is a plurality of different and valid approaches, and it is necessary
not only to define but also to justify the choice of particular landmark points.

FUNDAMENTAL REQUIREMENTS FOR SPECIFYING THE LOCATIONS
OF LANDMARK POINTS

The comparison of three-dimensional shapes is a deceptively simple operation.
A bulge in one portion of a bone may result from excess growth locally, from
lessened growth in the surrounding regions, or from a shift in the relative positions
of materials. A difference can usually be described multiple ways: “A is larger
than B” sets B as the reference standard, and can be taken to imply that the
condition of B is somehow primary, or perhaps primitive; “B is smaller than A”
gives similar information, but with different implications; “A is large; B small”



V. LOUISE ROoTH

54

SJUBUIBINSEAW G - ug = (€ - U) € + § [8I0],
sjuswaInseaul ¢ x sjutod (¢ - u) =
sjutod Surureural [[e 10J sayeurpi00d ¢ sud

sjuaunInsedw =

OB9 SAJRUIPIOOD T

quepd oy ur syurod pIngl pue puodas ayy jo suonisod oy

SJUIUIRINSBIW § - UE = (7 - U)E + | :[e10],
sjuowaInseaw ¢ x syuiod (g - u) =
syuiod Sururewal [fe 1oj sojeurpiood ¢ suyd

AJULISIP U0 =
UonejuaLIo

3o stxe oy Suore jured puodss Ay jo uonisod Ay

SJUAUIAINSEW € - U
sjuawaInseau ¢ x syutod (7 - u)
syutod Surureural ([-u) [je JO YoBS 10j SAJRUIPIOOD € 9]

$3JeUIPIOOD UE =
A_.N we :JC :..ANN L .Nxv .A_N g ._xv
$3JRUIPIOOGI 3

SQJRUIPIOOd G eI0],

Juerd e jo uonejuaLIO

a1 Aj10ads 03 parmbai siosrowered 7 oyl ()
suyd

®

SQJRUIPIOOD § :[BI0L

oeds (q-¢ ur aui € Jo uondApP

oyl Ajoads 03 panmbar siarewered g oyl (q)
snid

(®)

jurod U0 JOJ SAJRUIPIOOD ¢ AP (€)

UOTJRULIOJUI 010Z

ouardjar Jo aueyd e
sud
‘gouarajal jo jurod paxiy e

UOTIBIUALIO JO SIXE U
snyd
‘0ua1ayal Jo jurod paxyy e

Q)UAIAJaI
Jo Jwiod Yrewpue| paxij e

uoneunojur Ioud ou

papasu [[Us S JeypL

uaAld Suraq 03 yuageamba st sy,

UaAID)

sputod yavwpupj u 1of paunbat siz1awp.aod parfidads Jo saqunu wnung 3y |
I J1qeL



55

ON THREE DIMENSIONAL MORPHOMETRICS

‘pannbal oq [im (UwM|od pryy Y UT dA0qE USAIS)
I2qUINU PIEPURIS SY) UBY) USWAINSEIW JoMI] U0 ‘Ieaul[[03 Ik Jey) siutod 90Ua10jal YIBWPUR] 32111 JO 39S [Ied 10j ‘a10jaiey], ‘[ pue 1 sjutod om] 2y Jo yoea woyy jutod ayy
Jo seouelsip oy :sioewered (sa1y) uey) Jorel) om) A[uo Aq paryioads Ajanbiun oq ued way ym «wauljjod pue ([ 9 1) S19YI0 om) u2amiaq pareoo] Jutod e Jo uontsod oy

“Ug 0) WNS SUWIN[OD PJIY) PUB PUOS Y] Ul SJUIUIAINSEAU JO SISQUINU Y] ‘2SI [OBS 0] 910N

SJUWINSEIUW 9 - UE + (€ - U)E + € [BI0]
sjuswaInseaw ¢ x sjuted (¢ - u) =

sjutod Sururewsal |[e 10} soleurpiood ¢ snid S)BUIPIOOD § :[EIO],
1
1
—ht
>
S9JeUIPI00d 7 = "L}
— I |
T suerd e unyym Jur| B Jo UONOAIP
oy AJroads 0y paxinbar sojewered auo iy (p)
oueld ayy ur ¢# jutod jo uonisod ap snid snid
[ ]

doualdjal Jo aued e

.\1\ snpd

‘UOUBIUALIO JO SIXE Ue

snpd
uonejuaLIo jo sixe oy} Suope i utod jo uonisod o (0) snid (e) ‘aoua19yar jo jutod paxyy
papaau (s SI Jeyp uaAlg utaq o) judjealnba st siyf, UdALD)

[p.3u0d ‘1 aiqe ]

copy



56 V. Louise RoTH

is neutral in this regard, but suggests comparison with an absolute or external
reference. A description of shape difference almost always (intentionally or not)
involves implications of process.

Some of the most valuable contributions to the literature of comparative biology
on size and shape historically preceded the formal technical and conceptual
elaboration of morphometric techniques, and fall short of the ideal of providing
an efficient and uniquely-determined specification of biological form. Even today,
finances and logistics may limit the extent to which one can collect three-
dimensional coordinates on landmarks for a particular comparison. If not
optimal, it may be necessary or expedient to collect a combination of coordinate
data and distance measurements. Both for planning studies today, and for making
use of previous work, it is therefore useful to be able to evaluate a set of
measurements for their ability to specify the positions of landmark points.

As stated earlier, minimally 3n parameters are required to fix the positions of
n points in space, assuming they are arranged in such a way that at least three
measurements (or coordinate values) terminate on each point. Ignoring any external
frame of reference and concentrating upon the relative positions of landmark points
within an object reduces the number of parameters to 3n-6; variable position and
orientation of the object account for the six unspecified degrees of freedom. For
a flat object, the number of parameters is 2n (or 2n-3 if position and orientation
of the object relative to an observer in space are allowed to vary), so for a given
number of reference points a three-dimensional object requires an additional n
measurements for its specification.

In many instances, fewer than this number of measurements appears to suffice,
because implicitly additional information about symmetry, axes of orientation,
or identification of points is assumed (Table 1). For bilaterally symmetrical objects
one may wish to specify the positional relationship between the two halves and
then measure only one of the two sides. The additional information needed to
describe the symmetrical half depends upon how many of the reference points
on the measured half are shared between them. If three non-collinear points in
the measured half of the object are in the sagittal plane, no additional data are
necessary to generate the unmeasured half: since three fixed points define a plane
about which no rotation is possible, the position and orientation are completely
specified by the three points it shares with the half that has been measured, and
its shape is presumed to be symmetrical to it. If only two points are shared, one
additional measurement is necessary. The two points define an axis around which
the two halves may rotate with respect to each other. If one additional distance—
between any two symmetrical points from opposite sides —is taken, the positions
of the two halves become fixed with respect to each other. With a single shared
point, two additional measurements, between the two sides, should be taken, and
with no reference points in common, one needs three measurements between the
two sides.
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It is possible, therefore, to erect the following general guidelines for taking
measurements to specify the shape of an object: Once one has decided which
n landmark points are of interest, one must decide upon (or decide to forego)
a fixed point or a fixed orientation. One can then use Table 1 to determine
the minimum total number of distance measurements or coordinate values required
to specify their relative positions uniquely. The number is a minimum; where
measurement error is a concern (e.g., usually; moreover, error propagates, if
measurements are taken from other landmark points and not in relation to an
external reference), some redundancy may be desirable (Rohlf & Archie, 1978).
For n sufficiently large it is possible to define more measurements than are
minimally needed to specify landmark positions, so a choice of measurements
may be in order, but one needs to distribute the measurements in a way that
provides all of the essential information. Except for points involved in fixing
the frame of reference, and except for points that are collinear with two or
more others, one needs at least three measurements terminating on each of the
landmark points (and, as stated earlier, three distances, to points whose positions
are already specified, provide the same amount of information as the
specification of positions along the coordinate axes). For each set of three points
that are collinear, one fewer measurement than the standard number is
required, since a point located intermediate between two others and collinear
with them requires only the distances from each to fix its position. By way
of illustration, in Table 2 (see accompanying Fig. 1) I evaluate a set of
measurements I took on tibias for morphometric comparisons of elephants (Roth,
1982; 1992).
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Fig. 1
i. Right tibia of an elephantid, anterior view. ii. Endpoints of measurements taken on tibias, shown
diagramatically. tii. Planes of symmetry implicitly suggested by this set of measurements. See Table 2
for further discussion.
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The precise specification of shape may not be the only objective of
measurement: the overall proportions or dimensions of an object may be of more
interest than the exact positions of particular reference points. When suture lines
are wavy, for example, or boney projections are irregular, it is not difficult for
the precision of one’s measurements to exceed the precision with which one can
define a reference point. One may be satisfied with the approximation of shape
that a relatively small number of measurements provides, or to make comparisons
one may be constrained to use a particular set that another author has used

Table 2
Evaluation of a set of measurements taken on tibias (Roth, 1982; 1992).
See accompanying Figure 1.

The following measurements were initially judged informative and expedient:
. Length of diaphysis

. Maximum anterior-posterior diameter of the proximal end

. Maximum transverse diameter of the proximal end

. Minimum anterior-posterior diameter of diaphysis

. Minimum transverse diameter of diaphysis

. Maximum anterior-posterior diameter of distal end

. Maximum transverse diameter of distal end.

In an optimal world, with the additional experience 1 have now accumulated from years of staring
at elephant tibias, applying the criteria of repeatability, comprehensiveness, and relevance described in
this section, I might now define a somewhat different set of landmarks and comparisons to characterize
variation in tibial morphology. Elephant specimens are few, however, and widely dispersed among museums
(and on the basis of size alone, n=1 is a large sample of elephants), so some opportunism is necessary,
and it is desirable to make the most of available data. This set of measurements is reasonably representative
of those traditionally taken for morphometric study of vertebrate long bones.

In taking the measurements I used twelve reference points (see Fig. 1, ii). To specify the locations
of these points rigidly one would need a fixed point and a specified orientation for the bone, plus (see
Table 1) 3n-6, or 30 measurements. If, however, certain simplifying assumptions (idealizations of the
shape) are made, this set of 7 measurements comes close to describing the locations of the reference
points completely.

In taking the seven measurements to be adequate or nearly so, one is implicitly assuming that it is possible
10 (A) define two planes of symmelry, the transverse and the anteroposterior, which are perpendicular to
each other and intersect along the central axis of the bone; (B) consider all points defined to be at the proximal
end to lie in a single plane perpendicular to the central axis; and (C) consider all points at the distal end
similarly. With assumption (A) we effectively reduce the number of reference points to 8 (by symmetry,
description of one quadrant of the bone is sufficient; see Fig. 1, iii). If all distal points lie in a single plane
(ditto for proximal points), and if the antero-posterior and transverse planes are predetermined, the
localization of points c¢,d,e, and f requires only a single measurement apiece. Points g and h by definition
lie in the anteroposterior and transverse planes, respectively, so only two coordinates are needed for the location
of each; and one distance (a-b) determines the relative locations of points a and b (and consequently the
locations of proximal and distal planes). Therefore, if the stated assumptions are not too great a violation of
reality, 4 + (2 x 2) + 1 = 9 measurements should suffice: to complete the set, one need only add the distances
from the end of the bone at which measurements #4 and #5 (ahove) are taken, to position points g and h
along the vertical axis.
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previously. Whatever features, landmarks, or comparisons one ultimately chooses,
the best outcome can be expected when choices are made deliberately, with attention
to hidden assumptions, and when they are a product of evaluation, not
prescription.
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ABSTRACT

Some of the hardware and software available for video image acquisition for
2D morphometric analysis on the PC is reviewed, with a special emphasis on
cost/effect relation. We consider hardware for image acquisition from video cameras,
still video, and digital cameras 1o secondary machinery like CDs and VCRs. Images
that are in video format (analog) need to be digitized for PC processing. This
is attainable through frame grabbers. We report experience with video frame
grabbers from Imaging Technologies and on the less expensive and newer video-
VGA cards. Resolution evaluations in different combinations of cameras/monitors
and grabbers are presented. Morphosys, MTV and Java data acquisition software
are compared in terms of accuracy. A short comment on storage, compression
and format translation is included.
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INTRODUCTION

There is much recent literature on automatic capture and treatment of images
for use in systematic biology, especially for the repetitive acquisition of
morphometric data (see Fink, 1987, 1990; Macleod, 1990; Rohlf, 1990a;
Meacham, 1992). A very useful “practical primer” on image digitizing is Lindley,
1991, where the basic notions can be found. Jihne (1991) is a more technical
up to date treatment. Meacham’s paper complements our objectives, as it deals
with critical aspects of object illumination and optical deformation of the image.
Nevertheless, when we decided to procure an automatic image system for two
dimensional (2D) morphometric analysis, we had to make practical decisions,
whose answers were not easy to find in the literature. We think that a summary
of our experience will prove useful to other systematists.

We decided not to buy an “off the shelf”” assembled system, and instead built
our own. Either choice requires much thought. There are many systems on the
market, and they should be evaluated not in terms of what they offer for the
price, but rather in terms of what you will actually use in relation to the price.
Many of the already assembled systems offer multiple functions and great flexibility,
but most of this is of little or no use in systematic work. A wide range of
equipments is described in Data Sources (Anonymous, 1992).

If you are going to build your own system, there is no easy solution. You
will vacillate between numbers of options and economy, and there is an inverse
relation between the two. The more options and flexibility you want, the more
you must be prepared to spend. Some sort of balance is possible, given your
budget, and we discuss the alternative systems we have considered and tested.

MACHINE IMAGE SYSTEMS: AN OVERVIEW

Fig. I displays a general conception of the steps in the capture and analysis
of images in the morphometrics area. Rohlf's (1990b) distinction between data
acquisition, feature extraction and morphometric analysis has been simplified
somewhat as his first two steps are here labelled under Data Acquisition. Only
this step will be dealt with here.

The flow of the digitatization process is as follows:
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The real object is acquired by a sensor. In some cases (analog still video cameras
and video cameras) the sensor is read out and an analog video signal is created.
In some others, the system sensor generates a digital signal that can be used directly
by the computer.

A video signal is usually displayed as frames that are built of video lines, 625
in the PAL and SECAM standards and 525 in the NTSC standard. Video lines
are assembled into fields and two fields make a frame. One has the odd video
lines and the other the even video lines. The frame is the interlacing of the two
fields. To make the analog signal available to the computer, we need an analog-
to-digital converter card (either a grabber or a Video to VGA board). The video
signal is sampled and then translated into digital format and stored in computer
files (Luther, 1991).

CRITERIA FOR A MACHINE IMAGE SYSTEM

All the parts one should have in order to operate an automatic image system
can be described in two parts: 1) hardware; and 2) software. These are not
completely independent. As this paper is restricted to personal computers, all
considerations depend on a choice between the IBM PC standard and its clones,
and the MacIntosh. No further mention will be made of dedicated workstations
for image treatment, such as UNIX based systems and others, for which the Data
Sources reference mentioned above could be useful. Most programs for the
morphometric analysis described in the series of workshop proceedings, to which
this volume belongs, are available only on IBM PCs and clones. Therefore, all
of our discussion will consider only the IBM PC environment (hereafter
referred to as just PC). However, a mixed system - using a Mac for data acquisition
and a PC for data analysis is possible.

What were the criteria for our choice of an image system? Budget was a
constraint, but for the same amount of money a knowledgeable purchaser can
get more features than an inexperienced one. Commercial sales people can be
helpful, but for one or another reason, they often offer you things that you don’t
really need or that can become a luxury if funds are scarce. When acquiring an
image system for morphometric analysis, you should already know the kind of
data processing you would like to do. Then obtaining the right software is easily
discernible. Lots of extra functions and routines can only add to the price of
your system. If in the future you need a new software tool, then that will be
the appropriate time to buy it. Software and hardware costs tend to lower, and
paying today for something you will only use tomorrow is bad practice. That
is the main reason why the only software reviewed in this paper are MorphoSys,
MeasurementTV (MTV) and Java (we have unsuccessfully tried to obtain a copy
of CODA). All three have been developed with the morphometrician in mind.
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Other software can do morphometric acquisition and much more, but you will
probably not use the other features unless you have very specific needs.

What about selecting and testing hardware? This is most confusing for beginners.
There are a variety of cameras, digitizers and other tools, not to mention display
and TV monitors and models of computer. In order to resolve this problem we
had to compromise. We decided not to test each component separately. Tests
for some components require very sophisticated and expensive apparatus, and
they are not worth the investment for a single installation. What we were really
interested in was total system performance. So, apart from considering single
items when appropriate, we tested whole systems. Before covering equipment
and components we will discuss some general concepts.

Two main things are relevant for evaluating the adequacy of a machine image
system: resolution and accuracy. A general definition of resolution is the capacity
to discriminate between two near points. In terms of a TV system, horizontal
resolution is defined as the number of black and white vertical lines that can be
reproduced at a distance corresponding to the raster height (Luther, 1991). 450
lines of horizontal resolution correspond to 225 black and 225 white vertical lines.
Vertical resolution depends on the number of horizontal TV lines (525 or 625
but not all those lines are video active lines. See Mcleod, 1990, for a more detailed
comment). That is the main reason why European standard TV systems (PAL,
SECAM), all else being equal, have better vertical resolution than American and
Japanese (NTSC). Of course, all this is going to change in the near future with
the emerging new high definition TV. Resolution in frame grabbers is also dictated
by the sampling frequency in digitation, and this is dependent on the internal
clock of the frame grabber. As the duration of the TV signal is fixed for every
TV standard, sampling frequency determines the number of points per video line
taken from the analog signal. For example, PAL TV systems (there are several
PALs) have 625 lines per frame and 25 frames per second. Each line has a
duration of 64 pseg of which, when synchronism information is deleted, gives
approximately 52 pseg of useful information for digitization. 1f these 52 useg
are sampled with a 10 MHz clock (and this means 10 million samples every
second) we get 512 pixels per line. If the sampling is done with a 12.5 MHz
then 640 pixels are obtained.

Accuracy (Sokal & Rohlf, 1981) is the closeness of a measured or computed
value to its true value. It is related to precision, which is the closeness of
repeated measurements to the same value, The situation for image systems is
rather frustrating, because although all measurement and engineering devices
include information on measurement error, we have yet to see any estimation
of this error in any of the completely assembled systems or software that we
have looked at.

One method of finding horizontal and vertical resolution, is to use a standard
TV chart (Fig. 2). Then it is easy using one to see how many horizontal and
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Fig. 2
Standard TV chart (It may be used for approximate evaluation of resolution).

vertical lines the system is able to discriminate. We describe the results of such
a test (see below) for our available equipment, after covering the components
of the system.

As other practical criteria, it can be of interest to consider some of the following
possibilities: same system able to work with stereo or light microscopes, and by
itself with different kinds of objectives; able to be taken to the field or other
museums for laboratory work and recording.

HARDWARE

The minimal configuration you need for a machine image system is:

a) Image input devices. They can be divided into primary sources devices,
that is, those that take images from the real world (whatever that means!).
They could be a scanner, a video camera, a still video or still digital camera
(we exclude from our discussion digital calipers and digitizing tables,
as well as TV devices which can not digitize images). A scanner could
benefit from a preprocessing, like scanning images from a previously
photographed or drawn object. Secondary sources are those that
temporarily store the images from a primary source. They can be an
image saved as a file, in VCRs, laser disks, and other devices. The main
point here is that when you go from primary sources to secondary sources
you always lose resolution. Hybrid systems are always possible, for instance,
a camera or a VCR and a TV pointing device, that takes data -mainly
coordinate data points- from the TV image and creates a data file in the
PC. Measurements may be made from images previously stored on a VCR
or magnetic disk.

b) Usually, but not always, an additional device, a frame grabber or digitizer.
Frame grabbers are necessary if your image input system produces an
analog video signal. These analog signals must be converted to digital
form before processing by the computer. Video and still video cameras
belong to this type of equipment. Scanners and digital cameras give a
digitized image as an already built-in function. Frame grabbers usually
digitize video in “real time”, that is 25 or 30 frames per second. Lower
priced video-VGA boards digitize and display on a computer EGA or
VGA monitor.

c) A reasonably fast PC (386 or 486 CPU) with VGA and large hard drive
to store images. A math-coprocessor is desirable, and if Microsoft Windows
is to be used, at least 4 MBytes of RAM.



BUILDING YOUR OWN MACHINE IMAGE SYSTEM FOR MORPHOMETRIC ANALYSIS 75

d) A TV monitor is common for most digitizing boards, but as was pointed
out above, some digitizing boards use the computer monitor. Multiscan
monitors can serve as both a VGA and video monitor, and are
switchable.

There are other additional devices that could be useful, but they will be mentioned
in context. We will discuss each of these components in more detail summarizing
our experiences with some of them.

Yideo cameras

Video cameras are the most common device for image input. As mentioned
above they use NTSC, PAL, or SECAM standards. It is important that other parts
of the equipment be compatible with the standard your camera is using. They
also may be black and white, or color. The camera may also have the capability
of storing images on video-tape and in this case is called a cam-corder. If the
camera does not have this capability, it can be called an “in situ” camera. The
cam-corder may be classified as amateur or professional, depending on features,
manufacturing care, and price. Amateur video camera recorders have up to 450
TV lines of horizontal “resolution” (and the number is going up). More
expensive professional video camera recorders go beyond 700 TV lines. In-situ
cameras can be attached to different kinds of lenses, or to microscopes and stereo
microscopes. With a C mount or other compatible mounting ring, they can be
used with camera lenses. Among amateurs cameras only the Canon EX| camcorder
(L1 in the US) has detachable lenses, is compatible with the Canon EOS series
of camera lenses, and can be adapted to a microscope with a custom adapter
(about $60-70).

Light sensitivity of the camera is an important feature, as it can greatly facilitate
the crucial step of taking the image. Recent amateur cameras come with very
good sensitivity, from one lux onwards. Light sensitivity is a different question
from proper illumination of the object, a crucial e¢lement when working with
digitized images. Problems related with object illumination are dealt with in
Meacham (1992).

One reason for considering built in recording capabilities is that many systematists
frequently travel to other institutions to record data on specimens housed there.
It seems sensible to “tape” the information with the same camera you use in
your home institution, in order to avoid any transfer among tapes or video systems
that can only degrade the resolution and quality of the image. There is the added
value of obtaining images of live specimens in the field or laboratory. Resolution
of camcorders is in the following order: VHS = 8 mm < SVHS which is the
same as Hi 8. Another useful feature when using camcorders is remote control,
which allows remote focusing and frame by frame viewing, among other features.
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We have not had any experience with any professional video recording formats
like Umatic, Betacam, etc.

Another matter, is the format of the video signal that the video camera sends.
Composite seems to be a cheap way of coding the video signal, but usually does
not lead to very good resolution. S-Video gives better results. These are the two
most common ways of encoding color TV signals in amateur video cameras. Other
formats that can be found for this market in the near future are Component, RGB
and YIQ. It is important to know which of these formats your camera has, as
the frame grabber has to be able to input the video signal in one (or several)
of these formats. In our experience, we have found that those cameras that have
composite and another optional video signal output like RGB or S-Video, have
poorer resolution in the composite than in the other one. We have looked at the
Sony DXC-930 (a 3-CCD in-situ camera) that has 720 lines of horizontal
“resolution” (Lh.r.). This high number of lines is only obtainable in the RGB
output. The composite output of this camera gives values below 500 L.h.r. Similar
results are found with top end camcorders like the Sony V5000E or the Canon
EX]. See below for resolution comparisons. It seems that sending high resolution
composite signals is more expensive than doing the same in the other formats.
Video cameras could include several video output formats, but the advertised
resolution may be found in only one of the video outputs.

A final comment on optics. It is a critical part of any video camera. Lower
priced camcorders do not have good optics, and in some cases the lenses are
plastic. Higher quality cameras can have removable optics that usually can be
sustituted by an ad hoc adapter to other inexpensive optics. In this way we have
been able to attach the Canon EX1 to different types of microscopes with a special
hand-made attachment (see above).

A choice between an “in situ” camera and camcorder then depends on the
following differences in features. Color on most camcorders vs black and white
on in situ cameras, built in optics on camcorders (except the EX1) vs wide flexibility
for the in situ camera, in situ camera must be used with a digitizer (or at least
a VCR) while a camcorder has its own tape recorder and player.

A few hints to select a video camera follow:

1) Decide the resolution you would like in terms of the compatibility with

the rest of your system.

2) Look at in situ cameras in the range of your budget, and good quality
camcorders. Make a tabular comparison including the following items:
Resolution (in terms of number of horizontal lines), formats of video signal,
taping quality and availability of the optics used. Some additional items
are availability and cost of remote control.

3) Check that the video signal you are going to use with your frame grabber
has the resolution you decided on (1), and is in the format that your frame
grabber will accept.
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4) Decide if you are you going to use the same camera for different purposes
- that is, by itself, or in conjunction with a microscope for example.

5) Once you have decided which cameras fit your budget and your quality

demands, if at all possible test them with the resolution chart.

We think that the available amateur camcorders give adequate resolution in
relation to digitizing boards and are reasonably priced. Get a black and white
in situ camera, unless color is absolutely necessary and you can afford it.

Cameras tested in this study has been: the Sony F-555E and V5000E, the Canon
EX1 (all three color camcorders), and the Cohu 4815/2000 (B&W). Some other
cameras have been looked at in a more casual way.

Still video and digital cameras

We briefly discuss still video cameras, whose potential for use in morphometrics
is considerable, but models with adequate resolution are still prohibitively expensive
when compared to the best of amateur camcorders and affordable “in situ” cameras.
They derive their name from the fact that they take one image at a time, and
then save it either in analog or digital format.

Digital still cameras typically store the images in a chip inside the camera
(solid-state memory), and the number of pictures you can take are limited by
the size of memory of that chip, as the amount of memory taken per image is
fixed (and kept low through compression techniques). For instance, DYCAM Model
1 camera (whose technology has been bought by LOGITECH and now
manufactured under the name of FOTOMAN) can store 32 pictures at 376x240
pixel and 256-gray scale. Once you have exhausted your camera memory capacity,
adequate software (included in the camera set) must be used to tranfer (via a
serial link) the images to your computer or laptop before beginning again (unless
you want to rewrite a previous stored picture!). Unfortunately, the poor quality
of the optics of this camera makes it inadequate for morphometric work. Canon
is working on a digital still camera with 1,300,000 pixels with the EOS optics
for the amateur market, and it is possible that it will be available soon, despite
its recent upgrade of the Ion (see below). Top digital camera models like the
Rollei Digital Scanback with 32 million pixels in 6x6 cm format or the Kodak
Digital Camera System -DCS 200- with 1,54 million pixels in 24x36 mm format
based on a Nikon N8008a or the Megaplus XRC with 2,680 x 1,035 pixels
are prohibitively expensive.

Analog video cameras transfer the image to a floppy disk in the camera as
an analog signal. Additional equipment - a digitizer - is necessary to make your
picture available to your computer. Typically, you can store 50 pictures (typically
only 25 frames and 50 fields) in a 2" floppy disk and you can use as many disks
as you want, The Canon Ion RC 260 still video camera (Xapshot in the USA),
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records one field of 320 TV lines, but its lens has serious limitations. It is a
fixed focus lens able to focus from 1 m to infinity and from 30 c¢cm in macro
position. The camera is not designed to be adapted to microscopes or
stereomicroscopes. The Canon Ion RC 560 is improved over the 260 in that it
has 450 horizontal TV lines and a much better optical system, similar to rangefinder
35 mm cameras,that includes autofocus and a 3x zoom. Battery life is a possible
drawback.

The Sony Mavica, that can be found on the US market, is not available in
Europe, and it seems it will not be (Sony Spain dixit). Nevertheless, it has been
advertised as a high resolution still video camera: 500 horizontal lines and 3 CCD.
It has a typical reflex optical system.

Scanners

Scanners are optical devices that usually work with photographs and drawings,
i.e. images on flat surfaces. They produce an image file in one or more of the
several formats for images files (e.g. GIF, PCX, TIFF, etc). We have not been
able to test a reasonable range of scanners so the reader is referred to the literature.
See Beale and Cavuoto, 1991, or Glover, 1990 for a general overview.

Digitizers

Video digitizers digitize analog video signal and then using adequate software
it can be posible to store and display the digitized image. A first subdivision
is made between those that digitize the video signal on the board (grabbers) and
those that are complementary to the VGA board of your computer (Video to VGA
boards).

Among the grabbers, some digitize the image line by line (line grabbers), so
having a full frame digitized can take as long as 30 seconds. On the other hand,
frame grabbers are real-time digitizers, that is, there is no apparent delay between
the input of the video signal and its digitization. They digitize 25 to 30 frames
per second. Frame grabbers have their own memory, typically receive a composite
video signal and can produce a RGB or composite output video signal.

Video to VGA boards are digitizers that depend on your VGA card to display
the image on your computer monitor. They are cheaper than frame grabbers,
and can produce reasonable quality monochrome, 256 levels of gray or color
images (but see below on resolution). Some can operate at frame grabber speed.
If you want to digitize color you should keep two things clear: one thing is
the ability to digitize color in RGB and store it in a file and quite another is
the ability of your PC to display the 16 million colors potentially available in

Todos los derechos reservados



BUILDING YOUR OWN MACHINE IMAGE SYSTEM FOR MORPHOMETRIC ANALYSIS 79

a RGB file. This later capability depends mainly on the video memory
available for display. 512 K of video memory can display a selection of 256
colors, and 1 Megabyte up to 32,768 colors. Humans can distinguish up to
350,000 colors (Lindley, 1991).

The main points to consider in selecting a digitizing board are:

1) “Resolution.” This is usually reported in pixels such as 320x200 or 640x480.
Though the image may be divided into this number of pixels, the resolution
is best thought of in terms of vertical and horizontal lines as discussed earlier.

2) Real time versus time-delay digitizing. Real time gives you better control
for digitizing what you want, but for non-moving objects some delay can
be tolerated.

3) Different kinds of video input, composite, S-Video, RGB, etc., and output
signal.

4) Very important is the availability of ready to use software for the application
you have in mind. Also, it is interesting to consider boards with some
operations (image compression, image treatment, etc.) implemented in
hardware. Of the morphometric software tested later, MorphoSys, Java (and
Coda) will not run at all, unless you have installed the proper frame grabber
in the computer. MTV does not need the presence of a frame grabber to
run (although you will need it if you want to acquire images with it or
work on the TV and PC monitor at the same time). At the time of writing
this, MorphoSys and MTV are limited to working with Imaging Technology
PCVISIONplus and VISIONplus AT-OFG frame grabbers. JAVA is able to
work with PCVISIONplus, Truevison TARGA M8, Metrabyte MV-1 and
Data Translation 2855, 2953. So, the only software that can really work
with any video digitizing board is MTYV, first, because it does not need the
presence of any frame grabber to run; second, because it can work on the
PC monitor with any image saved in TIFF format.

We have worked with both Imaging Technology boards,PC Vision Plus and
Vision Plus AT OFG that only accept composite video input and two Video-VGA
boards, LifeView that accepts composite video input and Screen Machine that
accepts both composite and S-Video signals. These Video-VGA cards could work
with PAL or NTSC.

Personal Computers (PCs)

Since a computer is a very common piece of equipment in everybody’s
lab, we will only reiterate the minimum configuration for an image system. You
should have a VGA card with adequate memory for color (512K for 256 colors).
The faster your processor (386 or 486) and the larger your hard disk the better.
You must have at least one free slot to insert the digitizing card (but see below).
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A 486DX has a built in math coprocessor. The latter is a low priced accessory
for 386 and 286 computers. Math coprocessors are highly recommended for
digitizing, compression (discussed later), and a necessity for morphometric analysis.

Another factor to take into account is that there are three standards of expansion
buses: Industry Standard Architecture (ISA), Extended Industry Standard
Architecture (EISA), and the MicroChannel Architecture (MCA). This is
important because the video digitizing cards you acquire must go in a slot (as
mentioned before) and be compatible with the standard your computer belongs
to.

The ISA standard corresponds to the old designation, AT bus. The EISA standard
is compatible with the ISA standard. The MCA is totally incompatible with the
other two standards.

Monitors

We comment here on both the computer monitor and the TV monitor if used.
Some monitors with multiscan capability (e.g., the Sony GVM-1400 QM) are
able to display video and CGA/EGA/VGA signals. With this monitor you can
switch sequentially between the two modes, This is not a comfortable solution
because for the same price you can have two separate monitors, one for each
function.

Some characteristics you should look at when comparing computer or TV
monitors are: dot pitch size, horizontal/vertical resolution and sychronization range.
We have used a PC NEC Multisync 2A, two Sony TV monitors: GVM 1400QM
and PVM 1342Q); and a Toshiba green display with composite input, PA 7150E.

Additional hardware

Some additional equipment can provide images to your programs, that would
not be possible in any other way . An alternative to a VCR for temporary storage
of a video frame can be a device like the Sony XV-D300 Digital Video Adaptor,
where you can leave a single frame in analog format and then send it to a grabber
or other destination.

To properly digitize recorded images frame by frame a TBC (time basis corrector)
is necessary. It is true that most digitizing programs can freeze an image as it
passes through the frame grabber, but this is not the same as digitizing a frozen
image in the camera or VCR. When the video signal that goes from a tape to
the frame grabber is frozen by it, there is normally no time basis error and the
image is frozen without distortion (jitter). If you stop an image on your tape
and input it to the frame grabber, you will probably have distortions due to the
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fact that the mechanical motion of the recorder head drum is not smooth enough
to reproduce a stable frame (see, for example, Blinn, 1990 or Luther, 1991, for
an extended explanation). These time base errors are corrected by TBCs. TBCs
used to be an expensive piece of equipment for the video professional (in Spain,
at least, TBCs for video professionals run between $5,000 to $10,000).
Fortunately, the everyday more demanding amateur video market is providing
this equipment at more reasonable prices (the Panasonic WJ-AVES, that includes
a TBC, tested by us runs around $1500). These machines not only correct for
time base errors but also memorize one or several frames (some can display the
two fields of a frame one at a time) so they can be used as independent video
sources, with video input from a video device, or a transformed image file. Some
new amateur cameras and some video digitizers include TBC functions.

Image storage

Images require large amounts of memory. One 640x480 pixel image in 24
bit color (8 bits for each color) requires about 900 Kbytes of memory, or 300
Kbytes with 256 shades of gray or 256 colors. Very few images may be stored
on a floppy disk (only one with 24 bit color), and hard disks become filled quickly.
Magneto-optical and laser disks of 600 Mbytes capacity are available, but are
expensive at this time. They are also slower than magnetic disks (access time
to some hard disk below 20 ms, and around 70 ms in magneto-optical drives),
but their access time may soon compete with magnetic disks. Other hardware
to look at are Compact Disk Technology and their analog counterpart, Laser Disks.
A review of these components is beyond the scope of this paper.

SOFTWARE

Two kinds of software are worth considering:
a) Software for image and data acquisition, and possibly image enhancement.
b) Software for format transformation and image compression.

Software for data and image acquisition

To our knowledge there are only three packages specifically written for
morphometric data acquisition, although other software include measurement features
as part of their capabilities. These are MorphoSys, MTV and Coda. The later two
are designed for coordinate data only. MorphoSys can work with coordinates and
automatically generate outlines; macros can be written for quite sophisticated acquisition.
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We include a comparison of the accuracy of MTV and Morphosys (CODA was
unavailable). We also have examined JAVA, a program with more features, as it
includes apart from morphometric measurement, densitometry, object counting, and
image enhancement. Java costs around $2000 while MTV and MorphoSys cost $350
and $250 respectively. These last two are very inexpensive for the specialized routines
they offer, and they make working with morphometric data very simple.

The great advantage of MTV over MorphoSys and JAVA is that MTV can
work on imported images (TIFF files) without using a frame grabber ( just having
an EGA or VGA card) directly on the computer screen (JAVA works with TIFF
files, but you still need to have the frame grabber in the computer). In this way,
one institution can have a main image acquisition system to take and write images
files with a single frame grabber, and as many secondary working units as desirable
without the expense of additional frame grabbers. At present, MorphoSys can
import/export image files only for the PCVISIONplus grabber.

Software for image transformation and compression

Images may be saved in files using several possible formats. There are many
graphics formats available and it is not possible here to make even a small summary
(see Rimmer, 1990 for an introduction). It is useful to convert images from one
format to another, to make images available to other software, and to make other
images available to your software. We have used a very flexible program called
HIJAAK for format conversion. PIZAZZ PLUS and HOTSHOT GRAPHICS
can do many of the same conversions. Some shareware programs like GWS (see
appendix) include some limited conversion routines. Image file transformation
can provide morphometric programs with images taken from a scanner, a still
video camera or other image input device. Images may also be moved between
MaclIntosh and IBM PC’s using some of this software.

MorphoSys stores image memory from the board to an *.IMG file (incidentally
this has nothing to do with IMG files from Digital Research). MTV writes a
slightly different format called ITI (ITI is the file format name used by IMAGING
TECHNOLOGY, the PC VISION manufacturer) and also TIFF files. The latter
is a common image file format in computer graphics. JAVA also, saves images
in TIFF and other formats. We have included in the diskette accompanying this
book an utility for image file format conversion between MorphoSys and MTV.
This utility can translate TIFF files generated by MTV to IMG format files (used
by MorphoSys) and viceversa.

Image files usually take a lot of memory space. ITI and TIFF formats usually
take (uncompressed) around 300 kbytes of memory, so unless you have a big
hard disk space you could run out of space very soon. Despite the massive storage
devices we have mentioned earlier ( the magneto-optical disks), there are some
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alternative ways to save memory space with image files, and a brief comment
on image compression follows.

There is some difference between compression of color and black and white images,
and four parameters are considered in compression techniques (Wayner 1991):

1) the compression ratio or number of times the initial size of the image file
is reduced, for example 10 to 1;

2) speed of the compression algorithm;

3) Loss of data in the compression/decompression cycle - Some algorithms
are “lossless” because in one cycle no data is lost, while others are called
“lossy” because they exchange data loss for improved compression ratios;

4) image quality, although this is not an objective criterion,

There are several compression standards, and some give quite good compression
ratios. One of them is the JPEG (Joint Photographic Expert Group) standard. It
is important to check if the frame grabber you acquire has JPEG file
compression capability implemented in hardware. This cuts down the
compression/decompression cycle time.

TESTS ON RESOLUTION, AND MEASUREMENT PRECISION AND
ACCURACY

Three things were tested with the hardware and software available to us:
resolution, focal length and working distance selection and software accuracy.
We suggest that, at least, resolution should be tested with the equipment available
to you. For testing resolution of our components we used a standard TV chart
(Fig.2). It is easy to use one to see how many horizontal and vertical lines the
system is able to discriminate. This can be done first with the camera connected
directly to the monitor, and then again by connecting the camera to the monitor
via the frame grabber, to observe the decrease in resolution. Loss of resolution
due to taping can be detected looking at the TV chart once taped. The tables
offer the following checks of resolution: a) video cameras to monitors, by sending
a video signal before or after taping; b) video cameras to frame grabbers or Video-
VGA boards and then to TV or PC monitors (Table I).

It is surprising that the Toshiba PA7150 E monitor, a green computer monitor that
came with a pre—PC computer (the toshiba T-100, a 12 years—old—computer) that accepts
composite signals, could give a better resolution than high—priced Sony monitors. Neit-
her Sony nor Canon Spanish technical staff gave us a satisfactory explanation, and as
we are not engineers, we prefer not to guess. But it opens up the possibility of using
low—priced green monitors with composite input, at least for working with this kind of
video output. I'TI frame grabbers, when tested with high resolution cameras (in this case,
only the Cohu B&W) gave the highest resolution on display. The Sony Hi8 V-5000E
composite output produce a vertical undulating movement through frame grabbers and
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Table I
Horizontal resolution (in lines) for:

a) Four cameras, depending on the source being live or recorded video.
b) Four digitizing cards, using four different cameras.
The cameras are:
— Sony F-555-E, 8 mm camcorder (PAL).
— Sony V-5000-E, Hi8 camcorder (PAL).
— Canon EX1, Hi8 camcorder (PAL).
— Cohu 4815-2000, video camera (NTSC),
The monitors are:
— Sony PVM 1342 Q.
— Sony GVM 1400 QM.
— Toshiba PA 715 OE.
The digitizing cards are:
— AT-OFG from Imaging Technologies, Inc.
— PCVision Plus from Imaging Technologies, Inc.
— Life View Video Board from Animation Technologies, Inc.
— Screen Machine from Fast Electronics GmbH.

Video-VGA boards, resulting in poorer resolution than the Canon EX1. The NTSC option
of the Screen Machine Video~VGA board did not work properly with the Cohu.

Focal length and working distance selection

A possible way to select an appropiate focal length and working distance for a
specific object is: size of the object and size of the image in the focus plane of the
optical system are related in the following way (Blaker, 1976):

where h' is the image size in the focal plane
F is the lens focal length
h is the object size, and
v is the lens—to—subject distance

The image you see in the monitor is «h» multiplied by a constant. The constant
can be estimated by measuring the image on the screen.

We kept the image size on the screen constant and filling slightly more than half
of the screen. We then adjusted the other three variables in order to ascertain which
combination is best for every object we measured. In the example given we tried
to measure inaccuracies by working at three different focal lengths: 25 mm, 60 mm
and 120 mm; and two distances from the lens to the object in focus. We varied the
size of the object by using various portions of a piece of millimeter paper.

Results are reported in Table II. The example worked here was done with the
Canon EX |, with the 8120 mm objective and the software MorphoSys.
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Table IT
For each case we have taken measurements with millimeter paper (see
below). Measurements at focal length 25 mm and 142 cm from object could not
be taken properly. The measurements have been taken on the following square.

The measures were:
Diagonals: 1-6, 2-5 | 7 2
Horizontals: 1-2, 3-4, 5-6
Verticals: 1-5, 7-8, 2-6
Total area: 1-2-6-5
Partial areas: 1-7-9-3, 7-2-4-9, 9-4-6-8, 9-8-5-3 3 9 4
The number of replications were:
Diagonal measures: 20;
Horizontal measures: 30;
Vertical measures: 30; 5 g 6
Total Area measures: 20,
Partial Area measures: 40;

The real values were:
Focal length: 25 mm, 60 mm; Dist. Obj.: 70 cm, 142 cm.
Diagonal: 113.14 mm
Horizontal: 80 mm
Vertical: 80 mm
Total Area: 6400 mm?
Partial Area: 1600 mm?®

Focal length: 60 mm, 120 mm; Dist. Obj.: 70 ¢cm, 142 cm.
Diagonal: 56.57 mm

Horizontal: 40 mm

Vertical: 40 mm

Total Area: 1600 mm?

Partial Area: 400 mm?

Focal length: 120 mm; Dist. Obj.: 70 cm.
Diagonal: 28.28 mm

Horizontal: 20 mm

Vertical: 20 mm

Total Area: 400 mm’

Partial Area: 100 mm?*

MAE = Mean Absolute Error
SD = Standard Deviation.

Looking at the table, it can be seen that the best focal length in terms of accuracy
is 120 mm at 70 cm. from object. Keeping focal length constant and changing object
size (and distance to object if screen image is constant foo) can be done to test the
adequacy of a single focal length for working properly with different lenses.

Software and accuracy

Accuracy of measurements of MORPHOSYS, MTV and JAVA has been tested in
a PC VISION PLUS 640 NTSC frame grabber with a COHU 4815 Series Monoch-
rome camera., We could not make the same test with the AT-OFG board because MTV
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Table 111
Table of mean absolute error and standard deviation (between parentheses).

The measures have been taken on the following triangle. Number of replications= 10.

A

1: The triangle fills the whole display.

Real values:
Distance AB: 70 mm Angle ABC: 90°
Distance BC: 70 mm Angle CAB: 45°
Distance CA: 98.995 mm Angle BCA: 45°
Area: 2450 mm?

1: The triangle fills nearly half the display:

Real values:
Distance AB: 40 mm Angle ABC: 90°
Distance BC: 40 mm Angle CAB: 45°
Distance CA: 56.5685 mm Angle BCA: 45°
Area: 800 mm?

1: The triangle fills nearly a quarter of the display:
Real values:
Distance AB: 20 mm Angle ABC: 90°
Distance BC: 20 mm Angle CAB: 45°
Distance CA: 28.28 mm Angle BCA: 45°
Area: 200 mm?

did not work properly on it. Several errors detected by us in the version for the AT-OFG
board (European version) are being corrected (Garr Updegraff, pers. comm. ). See Table
I1I for a explanation of the test and a summary of the results.

It can be seen that, the three programs are very accurate, MTV and JAVA per-
formance being slightly better than MORPHOSYS.

CONCLUSION

It is difficult to make satisfactory recomendations, but some points deserve atten-
tion when looking at equipment for morphometric analysis:

a) Resolution is a good variable that can be used to check the perfomance of the
equipment.
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b) Software independence from grabber (at least for some operations) is a desi-
rable feature.

c) The Video-VGa seems to be a promising kind of board, but it is not as good
as the true frame grabbers.

d) If you assemble the different compenents of your equipment, be sure that all
inputs/outputs are compatible empirically.

) Do not pay more for something that is «theoretically» better, unless you verify
it is true.
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APPENDIX

Addrex of Hardware/Software mentioned in the article:

DYCAM
Dycam, Inc., 9588 Topanga Canyon Blvd., Chatsworth, CA 91311 USA.
EXETER
Exeter Software, 100North Country Rd., Bldg. B. Setauket, N.Y. 11733, USA.
(Supplies MTV, MorphoSys and other scientific software).
FOTOMAN
Logitech, Inc. Fremont, CA 94555, USA
GRAPHICS WORKSHOP (GWS). This program can be retrieved by anonymous
FTP from OAK.OAKLAND.EDU, in the directory pub/msdos/graphics.
HIJAAK
Inset Systems, 71 Commerce Drive, Brookfield, CT 06804, USA.
HOTSHOT GRAPHICS
SymSoft, 444 First Street, Los Altos, CA 94022, USA
IMAGING TECHNOLOGY
Imaging Technology Inc., 600 West Cummings Park, Woburn, MA 01801-
6343, USA.
ION (XAXHOP IN USA)
Canon Inc. 2-7-1 Nishi-Shinjuku-ku, Tokyo 163, Japan
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JAVA
Jandel Scienfic, 600 West Cummings Park, Woburn, MA 01801-6343, USA
MORPHOSYS
Lynch, Marks&Associates. 2180 Dwight Way#C Berkeley CA 94704 USA
(Whole system, hardware and software).

PIZAZZ PLUS
Application Techniques, Inc. 10 Lomar Park Drive. Pepperell, MA 01463, USA
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ABSTRACT

Some multivariate statistics procedures widely used for distance and coordinate
data are explained with data examples. An extensive discussion of Gabriel's biplot
method is provided together with a computer program to produce several forms
of the biplot.

The relation between univariate t tests and Hotelling’s T? test statistic is given
in an intuitive way, and similarly the relation between univariate and multivariate
analysis of variance is explored.



INTRODUCTION

Traditionally, the description of form - the size and shape of organisms, has
been based on linear measurements or distances between pairs of reference points.
These distances have been the raw data for multivariate descriptive and
inferential statistics in systematics, ontogeny and functional analysis. Distances
are frequently transformed using logarithms, and a favorite form of multivariate
analysis has been principal components.

The new morphometrics, advocates that size and shape comparisons are best
captured in organism space recorded by two or three dimensional coordinates
of homologous landmarks. In the twentieth century, D’ Arcy Thompson provided
graphical methods for displaying change and deformation in shape. Bookstein
(1978) developed methods for quantifying D’Arcy Thompson type shape
transformations, and more recently (1991) has provided methods for analyzing
the coordinates themselves. The “truss” formed a kind of bridge between the two
perspectives, where distances could be converted to coordinates, when the organism
was covered by an adequate number of distance measures described in the form
of sufficient triangles.

Landmark data may be transformed to Bookstein shape coordinates (earlier
called shape coordinates) and centroid size sequestered. Summary statistics
then describe size and for the new coordinates, uniform or linear, e.g. affine,
shape differences and non-linear shape differences (Bookstein, 1990,1991). The
landmarks as shape coordinates, and other derived size and shape statistics
may then be analyzed using classical multivariate statistics (see Rohlf, this
volume). Rectangular data matrices of raw or derived statistics form the bases
for analyses both for the more traditional distance, and the coordinate based
methods.

We will consider here that each row of the data array contains all of the values
measurements, derived coordinate based values for a single specimen or other
operational unit (see first array below). The columns will contain all of the
measurements of one character, variable, coordinate or feature for all specimens,
taxa or other kinds of units. Additional columns, or auxiliary matrices, may be
used to give specimen number, locality, sex, environmental features and other
descriptive data which may be used to partition our data into subsets; or for further

D
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analysis correlating the measurements with extrinsic and intrinsic non-morphometric
variables.

For both distance and coordinate derived data, frequency plots or histograms
summarize information for single variables, while bivariate plots or scattergrams
visually summarize patterns of variation two variables at a time. I strongly
recommend lots of such plots to “get a feel for the data” and as a method for
discovering outliers and errors in measurement or data identification. Note that
because coordinate data are in the space of the organism then two dimensional
or three dimensional projection plots of all landmarks simultaneously, or
overlays on two dimensional outlines can be useful also. They usually require
some kind of Procrustes superimposition {ree of the affects of the original digitizing
orientation and location, and sometimes adjustment for size. The GRF program
of Rohlf (1990) provides such a tool for overlays in two dimensions (Rohlf, 1990
and Rohlf & Slice, 1990).

Scatter in many dimensions extends scattergrams, but is impossible to depict
past two dimensions and even hard to interpret in two dimensional projections
of three dimensions. NTSYS (Rohlf, 1990) and NCSS (Heintze, 1990) for example
give us tools for simultaneously examining a number of bivariate plots for the
same data array. Both have routines for spinning three dimensional scatters to
study and examine data points three variables at a time.

Summaries of a data array in the form of means, variances and covariances
and correlations complete the basic descriptive statistics of classical univariate
and multivariate statistics, These can be used to produce graphic projections
of the data for further statistical analysis and as a first step in multivariate
inference.

The most popular method for summarizing multivariate scatter, among linear
metric methods, has been principal components analysis, a method which provide
displays in the lowest possible dimension summarizing the maximum variance
and covariance for multidimensional data. A corollary to the variance summarizing
feature, is that the between specimen distances in the space of the variables are
summarized best, In a sum of squares sense, as well. This fact is exploited in
Gower’s principal coordinate analysis (Marcus, 1990).

Tests of hypothesis on differences in sexes, ontogenetic stages, localities or
taxa extend our usual univariate t and Analysis of Variance procedures to Hotelling
T2 and Multivariate Analysis of Variance (MANOVA) for testing hypotheses about
joint means or centroids. Distance statistics such as Mahalanobis D? or D, are
closely related to T2 as will be shown below. D is a useful unit free descriptive
statistic for comparing multivariate centroids and for identification using
discriminant analysis. Canonical variate ordinations provides a way of displaying
centroids and scatter in a reduced dimensional space.

All of these topics are well described in the literature (Marcus, 1990;
Reyment, [990; Reyment, 1991; Dillon & Goldstein, 1984; Seber, 1985;
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Krzanowski, 1988; and many others). I still see so much uncertainty in there
use, that illustrations with biological data should help some researchers. It is not
always easy to run computer programs in the various packages so in an appendix
I will provide directions for using MATLAB procedures for manipulating all of
the data sets discussed in the text. These programs and all of the data sets described
are available on the disk accompanying this book.

THE SINGULAR VALUE DECOMPOSITION AND THE BIPLOT

Principal components analyses are usually based on the variance-
covariance or correlation matrix among variables. The eigenvectors and
eigenvalues of either matrix give us a unique decomposition of variance
and covariance into principal components. The only circumstance where the
decomposition is not unique is when two eigenvalues are exactly the same,
but this rarely occurs for real data. A small set of principal component scores,
the number of principal components depending on the magnitude of
eigenvalues or some other criterion, summarize our data best in a least squares
sense.

The singular value decomposition provides an alternative computation
technique for doing a principal component analysis giving the same results, but
it is based on a mean centered or column standardized data matrix. The covariance
or correlation matrix need not be part of the analysis, though both may form
useful adjuncts for understanding and interpretation.

The singular value decomposition (svd) is a direct dissection of the data
matrix, usually mean centered, or any matrix into the product of three matrices.
The better known terms for the results of a principal components analysis
based on a covariance or correlation matrix (eigenvalues, eigenvectors and
PC scores) are given in parentheses for those not familiar with the svd. The
singular value decomposition describes the data array in terms of scores (scaled
PC scores), the singular values (simple functions of the eigenvalues), and
loadings (eigenvectors). Here is some data, the first 10 specimens and 5
variables used in the Zygodontomys data example in Marcus (1990) and Marcus
and Corti (1989). These are measurements of small rodent skulls from one
locality in South America. We will only consider for now the first two variables,
condylo-incisive length (CIL) and length of the diastema (LD). I have
demarcated the relevant parts of the data (Note all results are directly exiracted
from the MATLLAB program BIPLOT4.M supplied on the accompanying disk
with documentation for running). Measurements are in millimeters and are
recorded to the nearest 0.05 mm. using hand held dial calipers (data
courtesy of R. Voss; see Voss et al,, 1990 and Marcus & Corti, 1989 for
details).
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CIL

23.00
24.20
24.90
24.65
24.75
25.50
25.30
24.75
25.05
25.15

LD

6.20
6.45
6.95
6.75
7.00
7.15
7.35
6.85
6.85
6.85

LM

4.05
4.30
3.90
4.10
4.00
4.10
4.05
4.10
435
4.10

The means and standard deviations are:

Mean

Std. Dev.

CIL

24.725

0.707

LD
6.840

0.327

LM
4,105

0.132

The data as deviations from the mean are:

CIL LD LM
-1.725 -0.640 -0.055
-0.525 -0.390 0.195

0.175 0.110 -0.205
-0.075 -0.090 -0.005
0.025 0.160 —0.105
0.775 0.310 -0.005
0.575 0.510 -0.055
0.025 0.010 -0.005
0.325 0.010 0.245
0.425 0.010 -0.005
The variance covariance matrix is:
CIL LD LM
cIL 0.5007 0.2089 —0.0004
LD 0.2089 0.1071 -0.0119
LM -0.0004 -0.0119 0.0175
BMI —0.0089 -0.0040 0.0051
LIF 0.1411 0.0637 -0.0073

del autor

o autores

odos los derechos reser

BM1

.30
1.25
1.15
1.20
1.20
1.20
1.30
1.20
1.35
1.25

BMI
1.240

0.061

BMI

0.060
0.010
—0.090
-0.040
-0.040
—0.040
0.060
—0.040
0.110
0.010

BMI1

—0.0089
-0.0040
0.0051
0.0038
-0.0032

LIF

5.05
5.25
5.70
5.65
5.30
5.60
5.85
5.55
5.50
5.65

LIF
5.510

0.241

LIF

-0.460
—-0.260
0.190
0.140
-0.210
0.090
0.340
0.040
-0.010
0.140

LIF

0.1411
0.0637
—0.0073
-0.0032
0.0582
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and correlation matrix:

CIL LD LM BMI1 LIF
CIL 1.0000 0.9020 0.0045 0.2044 0.8265
LD 0.9020 1.0000 0.2748 0.1988 0.8069
LM 0.0045 0.2748 1.0000 0.6223 0.2282
BM1 0.2044 0.1988 0.6223 1.0000 0.2173
LIF 0.8265 0.8069 0.2282 0.2173 1.0000

For now, we need only consider the first two means, and upper left 2 by 2
parts of the last two matrices above. Later we will analyze all five variables,
and then the complete data set of 68 specimens and 12 variables from which
this data was extracted.

The eigenvalues and eigenvectors of the 2x2 covariance matrix are:

L=Eigenvalues Eigenvectors (also see U below)

Value cum. % PCI PC2
PC1 0.5909 97.2169 ch; 0.9181 —0.3964
PC2 0.0169 100.0000 LD 0.3964 0.9181

Note that the sum of variances 0.6078 is the same as the sum of the eigenvalues,
as is always true for principal component analysis.

The three parts of the singular value decomposition are:

v
—0.7968 0.2467
-0.2760 —0.3843
0.0886 0.0810
—0.0453 —0.1356
0.0375 0.3511
0.3618 ~0.0580
0.3166 0.6158
0.0117 -0.0019
0.1311 -0.3067
0.1709 —0.4083

D=((n-1)L)>

2.3061
0

0
0.3902
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u
CIL 09181 —0.3964
LD 0.3964 0.9181

Popularly scaled PC scores having variances equal to the eigenvalues are obtained
from post multiplying V by D.

VD=Usual PC scores
-1.8374 0.0962
-0.6366 -0.1499

0.2043 0.0316
—0.1045 -0.0529
0.0864 0.1370
0.8344 -0.0226
0.7301 0.2403
0.0269 -0.0007
0.3023 —0.1197
0.3941 -0.1593

DV’VD/(n-1) = L to show that these values of VD produce the eigenvalues
or variances of our usual PC’s on the diagonal below.
Note their sum is again equal to the sum of the variances.

0.5909 0.0000
0.0000 0.0169

Here we give also VDU’ to complete the process and show that the original
deviations from the mean are recovered from the product of the three matrices.
If we add back the means of course we recover the original data.

CIL LD
-1.725 ~0.640
-0.525 —0.390

0.175 0.110
-0.075 —0.090
0.025 0.160
0.775 0.310
0.575 0.510
0.025 0.010
0.325 0.010
0.425 0.010

For more than two variables, if two principal components adequately
summarize our data matrix, then a biplot is a an adequate display of both the
specimen scores and the variable “scores” on the same graph, and most of the
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original data can be recovered. Though Gabriel suggested the method in 1968
it has been little used. There has been a recent resurgence in interest in the biplot
graph for supplementing a principal components analysis as the singular value
decomposition has become more widely available in computer packages (eg. SAS
PROC IML, MATLAB, and NTSYS). The biplot does not have to use the singular
value decomposition and can be derived from an ordinary PC analysis.

Its use is advocated here provided enough information is summarized in two
dimensions. In any case the biplot will be the best two dimensional display of
our data in an over all sums of squares sense, but interpretation of relations between
points, and variable vectors will only be appropriate to the degree that two principal
components summarize the data. Plots of only the first two principal components
have all too often been published, when they do not adequately summarize the
data and an inadequate analysis of residuals is done. Jackson (1991 book on
Principal Components) devotes quite a bit a material to this most important area
and Marcus (1990) gives some brief suggestions.

An attempt at illustrating the biplot was given in Marcus (1990), where PC
scores and variable vectors were presented on separate graphs and not
superimposed. It has been common to plot the specimens as points, and
variables as vectors on one graph -following an example in Gabriel (1968). Gabriel
found it necessary to use separate scales for the specimens and variables. Here
a “fudge” factor is introduced in the software, to provide more pleasing graphs
(see software instructions in the Appendix). It is a convention and a useful one
as we will see below. In Figure 1 for the same data the plots are superimposed.
Three forms of the biplot are given as discussed in detail below, and in addition
a fourth plot which is not a true biplot but has some of its features. Other data
examples will be given.

The first biplot figure 1a is an exact biplot as the two variable data is completely
summarized by two principal components. This plot is related to the most common
way of plotting principal components. The scores (the same as our usual principal
component scores with variance equal to the eigenvalues) are plotted for specimens
as points, and the rows of the column eigenvectors are plotted for each variable
as lines or vectors. The properties of this form of the biplot are that the distance
between points are exactly Euclidean distances between specimens in original
units of measurement, and the two vectors each of length one are at right angles,
and have angles with the principal component axes which are the angle whose
cosine is the corresponding eigenvector coefficient, that is the amount of rotation
of the bivariate ellipse axes best fitting the data to form the new PC axes. The
length of each vector is scaled to length 1. Each specimen’s value, in terms of
deviations from the mean, for each of the two variables can be reconstructed
accurately (depending on the accuracy of the plot) by dropping a perpendicular
from each specimen point onto each variable vector. This is illustrated for the
6th point in the deviation matrix with CIL = 0.775 and LD = 0.310.



106 LESLIE F. MARCUS

Fig. 1
Biplots of first ten specimens of Zygodontomys from Divedive, using only characters CIL
{condylo-incisive length) and LD (length of the diastema).
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G=V*sqri(D) and H=U*sqrt(D) - compromis of previous two
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The second form of the biplot, figure 1b, also has the property that the projection
vector to the specimen point on the variable vector exactly reconstructs the data
item for that variable. Now, however, the scores are scaled so that the distance
between specimen points is Mahalanobis distance, which involves the inverse
of the variance-covariance matrix. Variables with large variances are down weighted
in the plot of the specimen points. However, the vectors for each variable have
lengths equal to their respective standard deviations, and the angle between the
two variables is the angle whose cosine is the correlation coefficient between
the two variables.

A compromise biplot is given in figure 3c, but it does not have such simple
interpretations in terms of distances and angles. It is a true biplot in that the
data is completely recoverable from it. This is the form commonly used in
correspondence analysis, where scale is not so important. It is also useful for
other applications of the singular value decomposition, such as partial least squares
(Bookstein, 1991).

A fourth form which is not a true biplot is favored by Rohlf (pers. comm.).
It has the Euclidean distance property of the 1st plot, and the correlation coefficient
and standard deviation properties for the variables in the second plot. It is not
a true biplot as the projections of the data points onto the variable vectors will
not reproduce the data. A most useful additional property of this display is that
the distances and lengths of vectors are in original measurement units, Note that
this was true only for the observation points in the 1st plot, for the variable vectors
in the 2nd plot, and for neither in the third plot.

We will now describe in matrix algebra the verbal descriptions I have given
up to now, and then give a number of data examples from my own research.

For any data array Y (usually but not necessarily mean centered), or
alternatively Z (which is column standardized by dividing columns by the standard
deviation for the respective column, i.e. when one is thinking in terms of
correlations), we may decompose Y (or alternatively Z) as:

Y=vDU’

V is the matrix of scores (actually scaled principal component scores) which
have variance 1/(n-1), so V is orthonormal, ¢.g. V'V=I the identity matrix, If Y
has n rows and p columns and is of full rank, then V has n rows and p columns.
D is a diagonal matrix which contains the singular values. These are the square
roots of the eigenvalues times the square root of n-1, e.g. D= ((n-1L)Y2. Another
way of saying the same thing is that they are the standard deviations of the more
traditionally scaled principal component scores times the square root of n-1. U
is the matrix of column eigenvectors scaled to length 1, which are also
orthonormal (U’U=I). Repeating, if Y is of full rank and n is greater than p,
then Visnx p, Dis p x pand U is p x p. A more compact form is available if
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the rank of Y is r<p and then sizes of the matrices are respectively: Visn x r,
Disr xrand U is p x r. The usual principal component scores scaled to have
variance equal to the eigenvalues are given by:

PCScore=VD

Incidentally the singular value decomposition of a symmetric matrix such as
a covariance matrix or correlation matrix gives D as the matrix of eigenvalues,
and V=U the matrix of eigenvectors.

We may also write Y=VDU’ in the following informative way:

Y=V1d1u1’ + Vzdz“z, + ....Vidiui’... + Vpdpup,

where v, is the ith column of V, d=the ith diagonal element of D, and v, is
the ith column eigenvector in U. We may then, as in principal components
summarize and plot our data in terms of the first r principal components. Then
the proportion of original variance is:

I} M-\
(=5
—

M=
=9
—

i=1

Using this formulation to develop the biplot we may write (using the notation
of Gabriel, 1968):

Y=GH’

If G contains, as in the first form of the biplot, the first two columns of VD
and H the first two columns of U, then we plot the n rows of G for specimens
and p rows of H for variables. This plot will be the best two dimensional summary
of Y (the mean centered data matrix) in a principal components or least square
sense. That part of the data described by the plot can be reconstructed exactly
from G and H. G will be the same as the commonly plotted principal
component 1 and 2 scores scaled to have variance equal to the eigenvalues. Then
as was stated above, the data points G will be separated by that part of the
Euclidean distance between the specimens represented by the first two principal
components,

The plot of the first two columns of the H matrix will be a plot of the eigenvector
coefficients for each variable. If we project the data points onto axes along these
vectors, we then see how much each specimen’s location in the principal
components plot is determined by each variable. The angle of the variable vector
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and the display axes will be the cosine of the angle cach variable makes with
the new axes, or in other words the amount of rotation of the original variable
axes to the principal component scores axes. Each data value for each variable
will be reconstructed by multiplying the specimen vector in G by the variable
vector in H.

An alternative plot in figure 1b lets G=V and H=UD. In this case the points
will have distances apart represented by their Mahalanobis distance (actually divided
by (n-1)%-5), while the variable vectors will have lengths proportional to their
standard deviations, and be at angles to each other given by the arc cosine of
the correlation coefficient between them. Of course the data values are recovered
by the product of the rows of G and H.

Krzanowski (1988) offers a compromise form of biplot, which lets G=VD-
and H=UD-3 which balances the contribution of the singular values between
the two components. The geometric interpretation is less intuitive in this case.
This is the form usually used in correspondence analysis and partial least
squares.

Jackson (1991) has generalized the biplot partition by defining G=VD¢2 and
H=UD(-¢2), Then for Figure la c¢=0, Figure Ib c=1, and Krzanowski’s
suggestion shown in Figure lc has c¢=.5. Rohlf’s compromise doesn’t fit this
formulation.

One further generalization in Greenacre (1984) includes both the biplot and
other similar displays with biplot like properties, such as Rohlf’s suggested
formulation. Greenacre defines G=VD? and H=UDP, where a and b are constants.
Then a=1 and b=0 gives the first form, a=0 and b=1 the second, a=1/2 and b=1/2
the third - up to now all biplots have a+b=1 and this is similar to Jackson’s
suggestion. If we let a=1 and b=1, then we no longer have a biplot but rather
the approach Rohlf favors with properties discussed earlier.

Biplots for five variables (the deviation matrix given above) for Zygondontomys
from Dividive is given in figure 2. The V, D, and U matrices are given below
for the biplot together with the summary of how much of the trace of the variance
is in the biplot (the sum of the first two eigenvalues). Again note that the sum
of all five eigenvalues 0.6874 is the same as the sum of variances in the original
covariance matrix.

Eigenvalues
Eig.Val. cum.%
0.6329 92.0821
0.0309 96.5741  — note that biplot will summarize 96.6%
0.0146 98.6942 of the total variance
0.0081 99.8694

0.0009 100.0000
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V=
—0.7935 0.2294
-0.2869 -0.4762
0.1049 0.4168
-0.0267 0.0757
0.0129 0.1397
0.3476 ~0.1203
0.3324 0.4139
0.0155 0.0382
0.1192 ~0.5550
0.1746 -0.1622

D=
2.3866 0
0 0.5271

U=
CIL 0.8857 -0.3387
LD 0.3838 0.5071
LM -0.0112 —0.6896
BM1 -0.0164 -0.1360
LIF 0.2603 0.3662

Residual variance covariance matrices and residual data matrices for the
Zygodontomys data are given below. First the residual covariance matrix:

CIL LD LM BMI LIF
CIL 0.0007 -0.0010 -0.0013 -0.0011 -0.0010
LD —0.0010 0.0059 0.0016 0.0021 -0.0052
LM -0.0013 0.0016 0.0027 0.0020 0.0024
BM1 -0.0011 0.0021 0.0020 0.0030 0.0010
LIF -0.0010 -0.0052 0.0024 0.0010 0.0112

Residuals expressed in terms of the correlation matrix are:

CIL LD LM BM1 LIF
CIL 0.0013 0.0042 0.0142 0.0260 0.0057
LD 0.0042 0.0554 0.0378 0.1048 0.0664
LM 0.0142 0.0378 0.1552 0.2516 0.0743
BMI 0.0260 0.1048 0.2516 0.8039 0.0683
LIF 0.0057 0.0664 0.0743 0.0683 0.1924

Note that quite a bit of the correlation (0.2516) between LM (length of the
molar tooth row) and BM| (breadth of the 1st molar) is not recovered in this
two dimensional representation; and only (100(1 - 0.8039)) = 20% of the variance
of BMI.
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Fig. 2
Biplots of first ten specimens of Zygodontomys from Divedive for three additional characters - LM
(length maxiilary tooth row), BM1 (breadth of first molar), and LIF (length incisive foramen). a-d.
as in figure 1
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G=V*sqri(D) and H=U*sqrt(D) - compromise of previous two
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Estimated data (ul*dl*v1’+u2*d2*v2’ and adding back the means)
Yest =

CIL LD LM BM1 LIF
23.006 6.174 4.042 1.254 5.061
24.203 6.449 4.285 1.285 5.239
24.872 7.047 3.950 1.206 5.655
24.655 6.835 4.078 1.235 5.508
24,727 6.889 4.053 1.229 5.545
25.481 7.126 4.139 1.235 5.702
25.353 7.255 3.945 1.197 5.796
24.751 6.804 4.090 1.236 5.527
25.076 6.800 4.303 1.275 5476
25.123 6.956 4.159 1.244 5.587

and residual data matrix (subtracting above from original data).

CIL LD LM BM1 LIF
—0.006 0.025 0.007 0.045 -0.011
-0.003 0.000 0.014 -0.035 0.010

0.027 -0.097 -0.050 -0.056 0.044
-0.005 —0.085 0.021 -0.035 0.142

0.022 0.110 —0.053 —0.029 -0.245

0.018 0.023 —-0.039 —0.035 -0.102
-0.053 0.094 0.104 0.102 0.053
-0.001 -0.014 0.009 -0.036 0.023
—0.026 0.049 0.046 0.074 0.023

0.027 -0.106 -0.059 0.005 0.062

For CIL all but one residual is less than recording accuracy (0.05 mm.), however
for the other variables important parts of the data are not recovered. Here CIL,
that character with the most variance, contributes most to the total variance so
that it is perhaps misleading to report the results in terms of the raw data.
Logarithms were used in the published study (Voss et al. 1990), and then this
makes the variance more homogeneous and the residuals better behaved.

The biplots for the complete sample of 12 variables for 68 specimens from
Dividive is shown in Figure 3.

The data for Mediterranean birds displayed in figure 3 in Marcus (1990) is
here also shown as a biplot in the various formulations (Figure 4 a-d). In this
and the complete previous example the first two principal components summarize
85% of the variability, so that residual analysis is appropriate. The distance between
points are then not so well described. Parts of the standard deviations are not
expressed, and the angles between variables are projections into this two dimensional
plot. For the Zygondontomys example, as analyzed in Voss et al. (1990) where
the logs of 12 variables are used, it is difficult to interpret principal components
past the first two. They seem to represent measurement error and unpatterned
residual variation, so that the biplot may be a fair display of the important biological
variation in the sample for the logarithms of the data.



SOME ASPECTS OF MULTIVARIATE STATISTICS FOR MORPHOMETRICS 115

Fig. 3

Biplots of all 68 specimens of Zygodontomys from Dividive for all 12 cranial characters. (Voss et al.
1990). a-d. as in figure 1. Additional characters BR (breadth of rostrum), BPB (breadth of palatal
bridge), BZP (breadrth of zygomatic plate), BB (breadth of braincase), LIB (least orbital breadth), DI

(depth of incisor), and LOF (length of orbital fossa)
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G=V*sqri(D) and H=U*sqry(D) - compromise of previous two
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Fig. 4
Biplots of Mediterranean birds (Blondel et al., 1984) for 126 species and 7 morphological distances
and weight. a-d. as in figure 1. Characters logs of lengths of Wing, Tail, Culmen,Tarsus, and
Midtoe; Billh (height), Billw (width); and Weight

G=VD and H=U - pts. at Euc. Dist. vectors orthogonal
2 T T T

T;mn

1.5F

05-

Principal Compoent [T
=]
T

+ .
.
+ +
051
+
at :
+
1.5 PR o
2l " . ) i .
-3 2 -1 0 1 2
Principal Component I
Fig. 4a
G=sqrt(N-1)V and H=UD/qrt(N-1) - pss. Mah. Dist, vectors cos r
" + " /'i'nsm
1f + +r 4
-t * +
e 8L A ,
+ . ¢+*¢ X toe
A X ail
o} 5 t <
b . 3 b &
. \\ .t Wing,
* o
= \
-t 1 Y. Ncumen 4
. .
&
+
E‘ -2 I i
S * 2]
e b ' 1
-4 3 -2 -1 0 1 2 3 4

Principal Component 1
Fig. 4b

Copia gratuita. Personal free copy http://libros.csic.es



118 LEsLIE F. MARCUS

G=V*sqr(D) and H=U*"sqry(D) - compromise of previous two
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For the Mediterranean birds, in figure 4a the angles are the angles of the variable
vectors to the respective component axes, but in 2b the angles between veciors
only approximate the correlations between variables. Also as was pointed out
in Blondel et al. (1984) and Marcus (1990) certain values for certain birds are
not well expressed by the two dimensional principal components plots, and thus
for the biplots. An analysis of residuals was necessary to reveal the values not
well summarized by the bivariate plots.

The five species in the lower left of the plot are the hummingbirds and figure
4 shows how this plots shows that their short legs (tarsus length) and long bills
(culmen length) separates them from the other birds in the data set. Further details
are discussed in Blondel et al. (1984).

We can see that the compromise solution of figures 3¢ and 4¢ are intermediate
between 3a and 3b, and 4a and 4b respectively.

Recall that the Rohlf alternative to the biplot display has useful properties not
present in the first two formulations, but is not a true biplot in that the data cannot
be approximated directly from the display. To repeat, Rohlf suggests plotting the
row vectors of G=VD and H=UD (note that in this case Y is not equal to VDU’).
I have modified this formulation further as G=VD#*(n-1)%3 and H=f*UD*(n-1)-5
so that the points then have the property of being a distance apart equal to their
Euclidean distance, and the vectors for variables will have lengths equal to their
standard deviations. The fudge factor, f=1, adjusts the vector lengths and may
produce a more pleasing plot, but destroys the interpretation of the length of the
vector and the exact graphical reproduction of the data. This can be compensated
for by dividing through by f if known from the plot. The f multiplier does not
affect the angles between variable vectors which are equal to the arc cosine of
the correlation coefficients. Another feature of Rohlf’s proposal is that if the data
is measured in the same units for all variables (for example millimeters), then
the biplot axes will be in those units and the points can be measured from each
other in mms. The vectors corresponding to the variables will also have lengths
equal to f standard deviations in millimeters. The data can be reconstructed from
the specimen and point vectors by dividing their inner product by the length of
the variable vector. When one has mixed scales, and standardizes the data to be
scale free this may be a less important consideration. Then the symmetrical
Krzanowski choice may be appropriate as pointed out above.

Another example is given, which also makes some useful points about the use
of principal components in systematic studies. Stuenes and Marcus (1991) in a
comparison of four species of hippopotami, two living and two recently extinct,
used data on skull dimensions transformed to logarithms. The names of the living
species with their plotting symbols are Hippopotamus amphibius (a) and
Hexaprotodon liberiensis (b), and the subfossil species are Hippopotamus
lemerlei (1) and Hippopotamus madagascariensis (m). Ten measurements were
taken (see Figure 5 legend for a list). Only the Rohlf biplot like graphs are shown
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Fig. 5
Biplot of 4 species of hippopotamus for cranial variables. a. Rohlf form of biplot for best two diagnostic
characters as logs of lengths - LO (orbit); LEI (face from the orbit to eye socket). b. Rohlf form of biplot for
all 10 cranial variables. Additional logged characters - LPO (length of skull), LPM (length premolar molar
tooth row), LOO (width at auditory meatus), LEE (width across postorbital processes), WZZ (maximum
bizygomatic width), LWP (largest palatal width), WAC (muzzle width at canines), and LWR (least width of
rostrum). Note two fossil species are separated better on a. then b. Plotting symbols are a= Hippopotamus
amphibius, b = Hexaprotodon liberiensis, | = Hippopotamus lemerlei, m = Hippopotamus madagascariensis
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here for two choices of variables in figure 5. First an exact biplot of the two
best discriminating variables for the 4 species is given, and then the biplot for
all 10 variables included in the study.

Note that the 4 species form separate clusters on a biplot based on length of
the orbit (lo) and length of the face (lei), while the biplot for all 10 variables, shows
less distinction between the two Madagascan sub-fossil species (Figs. 5a and 5b).
This illustrates an important point. An overall principal component plot of all of
the variables measured may not ordinate the taxa distinctly in the plane of the first
two principal components even when an overwhelming, in this case 95.6%, percentage
of the variability is represented by these components. In this case the logs of the
data were used because of the difference in variance of the lengths used, and the
large difference in size of the various species. Cross-validation (Krzanowski, 1987,
also see Reyment, 1991) did a good job of finding the structure for the two diagnostic
variables, but also suggested a third one. Adding this third variable gives two
dimensional display with more overlap of the extinct species.

Some relevant data for the Hippo example (logged data) are:

Ipo lo lei Ipm loo lee wzz Iwp wac Iwr
Means 6.0931 4.4897 3.9355 5.1424 5.1051 52570 5.5745 4.6987 52151 4.1741
s 0.2322 04323 0.1996 02331 02213 0.2689 0.2496 0.2454 03098 0.2962
Eigenvalues

Values Cum.%

8.6800 86.7995

0.8252 95.0512

0.2539 97.5%07

0.0829 98.4195

0.0503 98.9221

0.0372 99,2942 . )

0.0309 99.6034 — Note that more that 95% of the variance is

0.0171 99.7742 summarized by the biplot.

0.0119 99.8930

0.0107 100.0000

=
Ipo lo lei lpm loo lee wzz lwp wac lwr

Ipo 1.0000 0.8874 0.8174 0.9586 0.9561 0.9540 09532 09446 09212 0.7062
lo 0.8874 1.0000 0.7155 0.9187 0.7846 0.9067 0.7782 0.7730 0.6896 0.3461
lei 0.8174 0.7155 1.0000 0.8005 0.8580 0.8448 0.8916 0.8664 0.8152 0.6465
Ipm 0.9586 09187 0.8005 [.0000 09191 0.9589 09123 09161 0.8477 0.5984
loo 09561 0.7846 0.8580 09191 1.0000 0.9371 0.9830 0.9685 0.9523 0.7940
lee 0.9540 0.9067 0.8448 09589 0.9371 1.0000 0.9330 0.8998 0.8780 0.6106
wzz 09532 0.7782 0.8916 09123 09830 0.9330 [1.0000 09692 0.9519 0.8059
Iwp 09446 0.7730 0.8664 09161 0.9685 0.8998 0.9692 1.0000 0.9260 0.8100
wae 09212 0.6896 0.8152 0.8477 009523 0.8780 0.9519 09260 1.0000 0.8530

Twr 0.7062 0.3461 0.6465 0.5984 0.7940 0.6106 0.8059 0.8100 0.8530 [1.0000
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residual T =
Ipo lo lei Ipm loo lee WZZ Iwp wac lwr
Ipo 0.0307 0.0130 0.0519 0.0035 0.0023 0.0081 0.0059 0.0027 0.0108 0.0129
lo 0.0130  0.0240 0.0271 00041 0.0068 0.0094 0.0064 00013 0.0011 0.0191
lei 0.0519 0.0271 0.2112 0.0425 00177 0.0072 0.0136 0.0014 0.0307 0.0415
Ipm 0.0035 0.0041 0.0425 0.0388 0.0014 0.0049 0.0065 0.0097 0.0061 0.0126
loo 0.0023 0.0068 0.0177 0.0014 0.0239 0.0047 0.0033 0.0004 0.0003 0.0081
lee 0.0081 0.0094 0.0072 0.0049 0.0047 0.0327 0.0018 0.0191 0.0086 0.0008

wzz 0.0059 0.0064 0.0136 0.0065 0.0033 0.0018 0.0163 0.0037 0.0060 0.0085
Iwp 0.0027 0.0013 0.0014 0.0097 00004 0.0191 0.0037 00377 0.0224 0.0005
wac 0.0108 0.0011 0.0307 0.0061 0.0003 0.0086 0.0060 0.0224 0.0508 0.0097
Iwr 0.0129 0.0191 0.0415 0.0126 0.0081 0.0008 0.0085 0.0005 0.0097 0.0287

HOTELLING’S T? AND STUDENT"’S t

The test statistic used to test the null hypothesis that two populations mean
vectors, or centroids are the same, is Hotelling’s T2, the multivariate extension
of the ordinary two sample t. The assumptions of normality, and equality of variance
must be extended to multivariate normality and homogeneity or equality of variances
to homogeneity of variance-covariance matrices.

The formula for two sample t for n; individuals in sample 1 and n, in sample
2 for the univariate case is:

>l

1, = =g

n | X

X|—X

[e*]

where t has student’s t distribution when the hypothesis of 0 difference between
the means is true, with n;+n,-2 degrees of freedom. )_(] and )_(2 are the means
for the two samples, S X, -X, is the standard error of the mean difference, and
s? is the pooled within sample variances for the two samples based on n;+n,-2

degrees of freedom.
t squared is written:

(X; - Xy 2 mn, X;-Xy:?2

Sy g2 n_+n K
X|-X, 1 2 5

t? =

and has an F distribution with 1 degree of freedom for the numerator and n+n,—2
for the denominator.
We may rewrite the last equation as:

CSIC © del autor o autores / Todos los derechos reservados
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P i rl.! nz - -
2= X -Xy (8$2)-1 X -Xp
nl + n2

Then the formula for Hotelling’s T2 will look very similar. It may be written
in an analogous way as:
- . n; 0, - =
T2 = (X; - Xp)’ -1 X -Xp
fi 4,

Where X and X, are now vectors of means, 1 the transpose operator, and S
is the pooled within variance covariance matrix of the variables, and —! the inverse
operator, is analogous to a univariate reciprocal.

Mahalanobis distance squared is a closely related statistic and is usually written
as:

D2= ()-{1'}_(2) 1 S_] (il—)—{z)

n, n
']"2=_]_2 D2

Therefore Hotelling T2 written in terms of Mahalanobis D? is:

If g samples are used to estimate the pooled within covariance matrix, with
N =n; + ny + ... + n, total observations then T2 is still the same with i and j
replacing | and 2 as the subscripts for any specific comparison of the ith and
jth centroid. Therefore the D? values in the output of most multivariate packages
may be converted to T2 values by this last formula.

We use an F statistic to test our hypothesis of equality of centroids with two
samples and the formula for F is:

ny+n,—p-1
F= 1 2 T2
(n+mp-2)p

[see Morrison and other references to textbooks mentioned earlier] which has
an F distribution with p, and n;+n,—p—I degrees of freedom, for testing the null
hypothesis of equal mean vectors.

If the variance-covariance mairix is estimated from pooled samples across g
samples then,
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N-g-p+1
(N-g)p

for N total observations in g groups. This F then has p and N-g—p+1 degrees
of freedom.

Note that these formulae reduce to the usual F=t2 for p=1 as then n,+n,—2
cancels out. We may also find a confidence interval for the difference between
two centroids, though this has not been used much in morphometrics (Morrison,
1991). The confidence interval for the mean difference does not give a
confidence interval for the distance squared A? that Mahalanobis D? estimates
as that confidence interval also depends on the unknown covariance matrix. A
program for finding approximate confidence intervals for the parameter
Mahalanobis A? is given in the Michigan Morphometrics workshop disks; where
it is also pointed out that D2 is a biased estimate of A2,

That bias correction can become quite important for small samples as the
unbiased estimate may become negative. In this case the estimate is set to 0.
An example is given for some mole data samples (discussed in this volume by
Loy, Corti and Marcus) where the sample sizes vary a great deal. Very
misleading D? values arise for small samples, and large numbers of variables
that are frequently encountered in morphometrics. The formula for the unbiased
estimate is:

B 2 n+n,-p-3 0% M +n,) p
— 2
n +n, n n

for two samples. Note that there must be more than p+3 individuals in the two
samples combined to get a non-negative unbiased estimate of A2,

For several samples where the degrees of freedom are pooled over samples,
for a total sample size of N=n; + n, + ... + n,, and g groups or samples, then
for each distance comparison from sample i to j.

N-g-p-1 m;+n;)p
Du;;2= b 1 el okt S48
N-g ninj

The mole example (see Loy et al. this volume) gives extreme examples of
the affect of bias in Mahalanobis D?. Larger samples would have reduced the
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bias, but they were not available. This matrix was computed using Bookstein
coordinates for 13 landmarks, using landmark 10 and 13 as the base, so that
there were 11 pairs of x and y coordinates, or 22 variables. However we see
that for samples of 1 and 4, comparing male and female min specimens the bias
reduces D? from 41.4 to 8.73. All negative values have been set to 0. For the
larger sample comparisons, for example between the teub females and the teus
females the bias correction reduces D? from 30.7 to 24.4.

ANALYSIS OF VARIANCE AND MULTIVARIATE ANALYSIS OF
VARIANCE

Tests of hypotheses in analysis of variance are based on the ratio of two Mean
Squares. For example the test for locality differences for the Zygodontomys data
for any one variable is a one way analysis of variance.

F in that case is:

Fe——ae
MS,,

where MS, is the among sample mean square and MS,, is the pooled mean square
within samples or as

(N-g)SSs,
(g—1)88;

where SS stands for the sum of squares about the mean.
-We may rewrite F as:

N-g .
F= S8y 8§,
g—1

We reject the null hypothesis of equal locality means if F is larger than F with
our chosen significance level, and g-1 and N-g degrees of freedom.

If we let SS, be the multivariate among sums of squares and cross products
matrix with the univariate sums of squares on the diagonal, and SSyy the sum
of squares and cross-products pooled over groups (localities in this case) then



126 LESLIE F. MARCUS

canonical variates, multiple discriminant analysis and Multivariate Analysis of
Variance are all functions of

88788,

and we see the formulation of the statistic is the same as in univariate analysis
except for the factor (N-g)/(g-1) because we are using sums of squares rather
than variance-covariance matrices. Mahalanobis D? between groups is a function
of SSy as well and may be written for group i and j as:

D2= (X, -X;) (N-g) 88y (X, -X;)

However the comparison is not so simple as for t2 and T2.

SSw1SS, is no longer a scaler and we have a matrix of results, which must
be used to test our multivariate hypothesis about centroids. All of the proposed
test statistics are based on the eigenvalues of SSy 1SS, and not surprisingly some
are functions of all of the Mahalanobis D2. One of them, is based on the largest
eigenvalue. The likelihood ratio test is yet another. Two other statistics are based
on the sum of the eigenvalues. A comparison of the tests should depend on the
power of the test, but this is very difficult to compute and no one test is uniformly
most powerful, but each is better against certain kinds of alternative hypotheses.
Seber (1984) suggests that for small departures from the null hypothesis the order
of the tests in terms of decreasing power is Pillai’s trace, the likelihood ratio test,
the Lawley-Hotelling Trace, and finally the test based on the largest root. However,
if most of the differences are concentrated in one dimension (in terms of canonical
variates) then the powers are in the reverse order. Note also that this matrix product
is frequently not of full rank and the number of eigenvalues will be equal to the
lesser of the number of variables (p) and groups minus one (g-1).

For the mole example, testing for sex by locality interaction in a two way analysis
of variance for several localities, the largest root test was highly significant while
the other three tests gave very large p values. There was no other evidence for
sexual dimorphism for any of the localities, or in general (Loy et al., this volume).

Multiple comparison procedures can be very complicated in multivariate analysis
of variance as there are very many ways in which samples can differ, on one
or more variables, Tests are suggested for consecutive roots, but Harris (1975)
casts doubts on these.

A priori comparisons or contrasts among centroids for all variables are much
more straightforward and involve pre-multiplying the matrix of means by a matrix
of contrast vectors, assuming groups in rows, and variables in columns. This is
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essentially the same as contrasts in univarate analysis of variance for the differences
between means, and the vectors of multipliers are the same (Sokal and Rohlf,
1981). Comparisons or selections of variables requires post multiplication of the
matrix of means by a matrix of constants.

Multiple comparison procedures on all centroids are like the problem in univariate
analysis of variance. A comparable approach to Bonferroni adjustments to all
possible t tests, based on the pooled within mean squared error, is the following.
Test all possible mean differences using D? or T? statistics and corresponding
F tests (see above). Adjust the significance level used in the F table, by dividing
the nominal significance level a by g(g-1)/2 for an overall o significance level,
and only reject mean differences if F exceeds the tabled F value for this o /(g(g-
1)/2) probability. For example using an o = 0.05 test for 10 localities, enter the
F table with 0.05/45 ~ 0.001 and reject the hypothesis for all F values
exceeding the 0.001 tabled F value. Note that this procedure is conservative and
less powerful than some others, but it is very easy to apply. I frequently see no
adjustment in the use of the F tests for tables of D? values, and this procedure
leads to the same much inflated overall significance level as using all possible
t tests in the analysis of variance (Snedecor and Cochran, 1967).

In the mole data none of the sex differences are significant (these are every
other entry just below the main diagonals of .000’s) within species. Here we
have 20 samples, and therefore me must divide 0.05 by 190 to obtain an overall
o = 5 % significance level using the Bonferroni adjustment. We see that
comparisons like that between min females and troc males are not significant
as 0.004 is greater than the required 0.05/190= 0.00026. If we were only going
to compare the sexes we could use 0.005, dividing the nominal alpha level of
0.05 by 10, the number of locality samples with both males and females.
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Table !
Species and sexual discrimination based on Mahalanobis D?

First Row is Species Code, Second row is Sex and Third row is sample size.
Mahalanobis D? above the diagonal and unbiased D? below the diagonal

min min pbr pbr tca tca leub (cub leun leun teus feus toc loc froc lroc o tro st tst

f m m f m f m f m f m m f m f m f m

1 4 6 3 3 3 14 13 4 e 11 6 3 3 1 4 10 14 2 1

000 41.4 120 149 135 130 640 63.0 383 373 713 794 67.0 53.8 112 84.1 102 107 143 140
873 000 111 137 114 112 948 948 50.0 452 86.0 987 53.2 433 108 91.3 851 108 138 132
720 794 000 123 149 148 164 153 135 120 173 172 103 101 157 114 732 866 119 140
91.7 96.6 .162 000 151 153 179 161 150 131 176 179 128 126 18 133 969 110 156 181
80.6 782 108 106 .000 .875 82.1 80.0 89.5 77.3 947 933 474 456 62.2 57.7 884 102 113 976
77.1 772 107 107 0 000 758 750 85.6 744 93.0 89.9 439 43.6 564 527 848 97.3 108 946
209 683 124 133 567 51.8 000 3.18 309 332 351 42.0 754 593 727 59.1 921 97.1 123 131
29.0 682 115 119 550 510 0 000 307 294 307 363 756 61.5 75.7 56.8 892 926 127 136
631 297 97.8 107 592 56.1 182 179 .000 829 309 38.5 554 43.0 987 739 887 102 148 142
7.53 280 879 940 51.6 494 220 189 0 000 284 321 54.1 413 893 62.1 78.0 89.0 137 138
353 61.1 131 130 663 650 244 209 178 17.8 .000 7.51 83.7 592 106 78.0 112 123 199 182
40.1 69.6 129 131 63.7 61.1 285 239 223 193 1.00 .000 789 646 952 69.1 102 109 190 172
27.2 307 713 882 245 21.8 515 51.6 324 334 576 525 .000 182 498 37.8 46.7 542 70.5 513
169 229 69.5 86.1 23.1 21.6 388 40.5 227 233 384 412 1.64 .000 499 384 41.6 558 789 655
50.0 613 101 121 23.5 189 367 39.0 53.7 484 625 526 13.7 13.8 000 140 47.3 495 723 89.7
422 622 817 93.1 34.2 303 403 383 485 413 547 463 186 190 0 000 25.1 27.7 674 739
594 60.1 524 678 61.1 583 69.0 66.7 629 56.6 839 752 285 244 162 13.0 000 603 457 539
63.6 79.0 634 784 721 68.7 735 69.9 73.6 658 933 80.9 348 361 185 156 1.47 .000 47.1 59.1
83.8 043 B8I.1 107 729 69.2 86.1 885 102 954 145 137 39.5 46.1 282 387 244 26.1 .000 27.8
722 802 875 116 513 489 823 860 874 867 122 113 149 261 324 343 214 260 0 .000

F above diagonal and Probability of exceeding F below

1.00 1.40 436 475 430 4.15 2.53 248 130 1.38 278 2.89 2.13 1.71 238 285 395 424 405 2.98
51 1.00 11.3 9.98 827 8.18 12.5 123 424 488 107 101 3.87 3.15 3.68 7.75 103 143 7.83 4.50

.000 1.00 1.04 127 12.6 292 266 13.7 164 285 21.9 874 BS54 572 11.6 116 154 7.60 508
.000 423 1.00 9.63 973 188 167 109 117 176 152 8.18 8.01 592 9.66 949 115 795 575
.000 1.00 .056 861 828 6.51 689 948 7.92 3.02 290 198 420 866 107 576 3.11
.000 1.00 1.00 795 7.76 623 6.63 931 7.63 2.79 278 1.79 3.83 830 102 552 3.0l
002 000 .000 1.00 .908 4.08 6.57 9.7 7.50 7.91 6.21 2.88 7.80 22.8 28.9 9.17 5.18
003 000 000 574 1.00 398 567 777 633 7.82 636 298 7.37 214 265 932 535
209 000 .000 .000 .000 1.00 .895 3.85 3.92 4.03 3.13 335 627 10.8 134 840 48]
.161 .000 .000 000 .590 1.00 5.16 4.40 4.82 368 332 671 13.6 176 9.05 5.13
001 000 .000 .000 .000 .000 1.00 124 837 592 4.13 9.71 24.8 32.1 143 7.08

000 000 .252 1.00 6.70 548 346 7.03 16.3 194 121 6.26
.000 000 .000 .000 1.00 1.16 1.58 2.75 4.58 568 3.59 163
314 1.00 1.59 2.79 4.07 5.85 4.02 2.09
083 082 1.00 476 1.83 1.96 2.05 1.90
.000 .000 .000 000 .000 001 001 965 1.00 3.04 3.65 3.82 251
.000 .000 .000 000 .000 000 .000 .035 .000 1.00 1.49 323 208
000 .000 .000 000 .000 .000 .000 .000 .021 .000 .113 1.00 3.50 2.34
.000 .000 .000 000 .000 .000 .000 .000 .015 .000 .000 .000 1.00 .785
.000 .000 .000 .000 .000 .000 .000 .070 .013 .026 .003 .014 .005 .717 1.0O

001 .000
.001 .000 .000 .000 .000 .000
020 .039 .001 .000 000 .000

000
.000
000 .000 000
000
001

g§388

5
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ABSTRACT

This paper provides an alternative description of Bookstein's (1989, 1991) method
of relative warps for the analysis of within-population morphometric variation
for landmark data. The properties of the o parameter (Bookstein, 1991), that
determines the relative weighting of the principal warps at different scales, is
investigated. It is suggested that a value of o = 0 is appropriate for taxonomic
and exploratory studies where one has no a priori expectation that variation at
a particular scale will be more important. In such cases it may also be useful
to include information on affine differences among the specimens.

New techniques for the graphical representation of the results of a relative warp
analysis are presented. The relationships between relative warp analysis and standard
morphometric techniques such as canonical variates analysis, Fourier analysis,
Procrustes analysis, and the analysis of coordinate data are described. Data on
18 landmarks from the wings of 8 species of Anopheles mosquitoes are used as
an example to illustrate the methods.

The methods described in this paper are implemented by the TPSRW
computer program for IBM PC compatible microcomputers.



INTRODUCTION

The method of relative warps is a technique developed by Bookstein (1989,
1991) for the analysis of within-population morphometric variation based on
landmark data. Bookstein (1991) gives a detailed presentation of the mathematical
basis for the method and furnishes examples of its application to cranial growth
in rats and to the analysis of Apert's syndrome, a craniofacial anomaly in humans.
The primary goal of the present paper is to provide an alternative description
of this technique. It is hoped that a description from a somewhat different
perspective will help make this important new method more accessible. Another
purpose of this paper is to suggest several new graphical techniques for
representing the results of a relative warp analysis.

The relationships between analyses of relative warps and standard multivariate
and morphometric techniques such as canonical variates analysis, Fourier
analysis, and Procrustes analysis are also discussed. The dependence of estimated
distances between pairs of specimens on the parameters of the methods and the
relationship to analyses of the original coordinate data are given special
emphasis. In that respect this paper is a continuation of Rohlf (1986, 1990a, 1990b,
and 1992),

This paper also serves as a more formal description of the TPSRW program
than is practical to provide in its “README” file. This program (for IBM PC
compatible microcomputers) is available via FTP over the Internet from
SBBIOVM.SUNYSB.EDU and upon request from the author. Most of the
computations and illustrations shown below were prepared using that program
(the NTSYS-pc program was also used).

THE METHOD OF RELATIVE WARPS

Briefly, the method consists of fitting an interpolating function (the thin-plate
spline of Bookstein, 1989) to the x, y-coordinates of the landmark for each specimen
in a sample. Variation among the specimens within a sample is described in terms
of variance in the parameters of the fitted functions. This is expressed relative
to a bending energy matrix (see below) based on the coordinates of the landmarks
of a reference configuration. The reference is often the mean configuration of
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landmarks after some appropriate alignment of specimens. The relative warps
are simply principal components vectors in this space and are used to describe
the major trends in shape variation among specimens within a sample as
deformations in shape (non-uniform shape variation).

Computation of relative warps

The computational steps described below are based in part on the algorithm
given in section 7.6.2 of Bookstein (1991). Where appropriate, the correspondence
to his step numbers is indicated. For simplicity of presentation, only the two-
dimensional case is described below. The generalization to three dimensions is
straight-forward (only the definition of the U function and the dimension of some
of the matrices need to be changed). Those familar with canonical vectors analysis
may find the steps easier to follow if they recognize the close analogy between
canonical variates and relative warps and the use of the bending energy matrix
as if it were a pooled within-groups variance-covariance matrix.

1. Let X, denote the 2Xp matrix of the digitized x, y-coordinates of the p landmarks
digitized for the i th specimen. We will use X to denote the 2nXp matrix of
coordinates for all » specimens in the sample. It will also be convenient to
use X, to refer to the nXp matrix of just the x-coordinates and X to refer
to the corresponding matrix of the y-coordinates.

2. A reference configuration of landmarks must be obtained. The choice of a reference
is important since the relative warps are relative to the eigenvectors of the bending
energy matrix (see below) which is solely a function of the reference configuration.

One approach is to use a reference specimen. This could represent an earlier
developmental stage or a hypothetical common ancestor. More often it will
simply be the mean location of the landmarks after the specimens have been
aligned in some way. A simple method of alignment is to use Bookstein's
(1986) method of shape coordinates. Bookstein (1991) uses shape coordinates
to align each object relative to an a priori defined baseline. The location of
each landmark in the consensus can be computed, for example, as the mean
x, y-coordinates across the n aligned objects.

Another approach is to use a superposition (Procrustes) method to construct
a reference configuration. Sneath (1967) and Siegel and Benson (1982) describe
methods for comparing pairs of organisms. Gower (1971) describes a
generalization that allows many specimens to be compared simultaneously. The
generalized affine resistant-fit method of Rohlf and Slice (1990) seems to be
particularly effective in ignoring the effects of a few deviant landmarks and
in achieving an intuitively appealing alignment that localizes the differences
among specimens (unfortunately this method does not optimize any known
goodness of fit criterion and its statistical properties are poorly known). This
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method was used to construct a consensus configuration to use as a reference
configuration in the examples given below. This consensus configuration is
close the majority of specimens in the sample (after adjusting for their differing
location, orientation, size, and shearing). The resulting 2Xp consensus
configuration matrix can be denoted X_. It may also be convenient to use the
x, y-coordinates of the fitted objects in subsequent computations rather than
the raw data especially if the original data were digitized with inconsistent
alignments. [f the objects differ greatly in size one may wish to scale them
by their centroid size. Centroid size is the sum of squared distances between
all pairs of landmarks or, equivalently, the sum of the squared distances of
each landmark to the centroid of the specimen (Bookstein, 1991, pp. 93-94).
This scaling can be done, for example, by dividing the coordinates for each
object by the square root of average centroid size (centroid size divided by
p), as done by Sneath (1971). Gower (1971) used the same normalization but
without the division by p. This step corresponds to step 1 of Bookstein (1991).

3. Compute the bending energy matrix, L7!, for the consensus object. To do this
one must first assemble the partitioned matrix

P Q
L:[Q, 0], M

where
0 U(r,,)  U(r,) U(r,,)
Ul(ry,) 0 U(ry,) U(r;,)
P= | U UG 0 Utr,) |- 2)
UG@,) Ur,) U(r,,) 0
The U function is defined as
U(ry) =rflnr?, (3)

where r;? is the square of the distance between landmarks 7 and j in the reference
object. Note that the sign of U is as in Bookstein (1991) which is opposite
from that in Bookstein (1989), The matrix

1 X i

1

1 X, ¥s
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consists of a column vector of all ones followed by the x, y-coordinates of
the reference object and 0 is a 3X3 matrix of all zeros.

The bending energy matrix, L', is the upper-left pXp block of the inverse
of matrix L. The product X, L' yields the coefficients for the non-affine part
of the thin-plate spline that transforms the coordinates of landmarks in the
reference configuration into those of the “target” specimen, i. The affine
coefficients are given by the product X, L', where L' is the upper-right pX3
block of the inverse of matrix L.

4. Decompose the bending energy matrix as L' = EAE', where A is a pXp
diagonal matrix of eigenvalues and E is the pXp matrix of eigenvectors (the
columns of which correspond to the normalized eigenvectors and the rows
to the landmarks). Bookstein (1989) calls these eigenvectors the principal warps.
The magnitudes of the eigenvalues are inversely related to scale. Large
eigenvalues correspond to eigenvectors that describe small-scale features
(deformations of landmarks that are close together). Small eigenvalues
correspond to eigenvectors that describe large-scale features. At least three
of the eigenvalues will be equal to zero since they correspond to the affine
components that are of infinite scale (translation, rotation, and dilatation). These
zero eigenvalues and their corresponding eigenvectors can be deleted to reduce
A to a p-3Xp-3 matrix and E to a pXp-3 matrix. The dimensions corresponding
to the affine components are not lost since they can still be computed from
the L;l matrix described above (see further discussion below). These
operations correspond to steps 2 and 3 of Bookstein (1991).

5. Compute a weight matrix, W, as a scaled projection of the x and y-coordinates
of the deviations of the n objects from the reference object onto the
principal warps.

W=[WIW,M] (5)
where
1
W=—" V(I,®E A", (©6)
= 1, )
V=[V, V], (7
and
V.=X,-1,8 [0/1]X,. (8)
V,=X,-1,e [0/1] X,. 9)

The symbol ® is used above to denote a direct (Kronecker, tensor) product
of two matrices. The V, matrix is an nXp matrix of the x-coordinates of
the differences between the n objects and the reference object (1, is a column
vector of n ones). V, is the corresponding matrix of y-coordinates.
Alternatively, one could uses deviations from the sample means as in
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Bookstein (1991)—rather than use deviations from the reference object. This
step assumes that the objects have been aligned in some reasonable way.
The coefficient 1/Vn in Equation 6 does not appear explicitly in Bookstein
(1991). It is implied since a variance-covariance matrix (with a division by n)
was used.

The elements of the nX2(p-3) weight matrix W describe each specimen
as a linear combination of the principal warps. Since the A matrix is of rank
p-3, Equation (6) represents a projection of the p-dimensional space of variation
at each landmark (separately for each coordinate) onto a p-3 dimensional
subspace. What this projection leaves behind is variation among the specimens
with respect to translation, rotation, and uniform shape change.

Bookstein (1991) has suggested the introduction of the parameter o in Equation
(6). If oo > 0 then only those principal warps that have eigenvalues greater than
zero can be used (in order to avoid having to divide by zero). This is why
those dimensions were deleted in the previous step. A value of o = 1 yields
the relative warp analysis as described by Bookstein (1989) in which the principal
warps are weighted inversely by the square roots of their eigenvalues. This means
that large-scale variation (variation among specimens in the relative positions
of widely separated landmarks) is given more weight than small-scale variation
(variation in the relative positions of landmarks that are close together).

The ith row of W corresponds to the linear combination of the normalized
principal warps that would yield the non-linear component of the thin-plate
spline that transforms the reference object's configuration of landmarks into
those of the ith object. The coefficients for these thin-plate splines are given
as the rows of

N = W Vn (I, ® AM2 EY), (10)

This matrix is of dimension nX2(p-3). Using Equation (6), this can be
simplified to
N = V(I, ® EAE)

(11)

= VI, ® L)
6. A singular-value decomposition (Eckart and Young, 1936, Joreskog, et al.,
1976) is then performed to yield the following factorization of the weight matrix:

W=SDR', (12)

where S is a matrix of normalized scores with its rows corresponding to the n
objects and the columns corresponding to the min (n-1, 2 (p-3)) relative warps
with singular values>0, D is a diagonal matrix of singular values (it is of the
same dimension as the columns of S), and R is a matrix whose columns correspond
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to the relative warps and the rows correspond to the weighted principal warps.
The first p-3 rows of R pertain to the x-coordinates and the remaining pertain
to the y-coordinates for each landmark. The columns of S and R are normalized
to length 1. All of the relative warps do not need to be retained just those that
account for an appreciable proportion of the total variance among the specimens
(energy normalized if o > 0). The relative warp scores are uncorrelated since
the columns of S are orthogonal.

Bookstein (1991) used a different approach in his steps 6 and 7 and only
considered the case with o = 1. He computed the eigenvalues and eigenvectors
of the variance-covariance matrix of the x, y-coordinates of each point scaled
in terms of inversely weighted principal warps (each principal warp with
A, > 0 was divided by VA, This procedure yields the same matrix, R, of relative
warps but his eigenvalue matrix is equal to D? The matrix of normalized
scores was computed by him using the relationship S = W R DL

7. The matrix of relative warps should be expressed in terms of the original x,
y-coordinate system rather than in terms of the principal warps. These relative
warp loadings (Bookstein, 1991) can be computed as

R' = (I,® EA™)R (13)

Each column of R' can be represented as a displacement vector at each
landmark in the reference object (see below). The rows correspond to the p
pairs of x, y-coordinates and the columns correspond to the relative warps.
This corresponds to step 8 of Bookstein (1991). The relative warps can also
be modeled as thin-plate splines (see below).

It is difficult to visualize the major morphometric components of variation among
the specimens by an examination of just the numerical results described above
(e.g., by studying the entries in the S and R’ matrices). Fortunately, there are a
number of graphical displays that allow one to visualize the statistical results in
terms of the 2 or 3-dimensional space that the specimens were digitized in rather
than only in terms of multivariate vector spaces. Some suggestions and example
are provided in the following sections.

Graphical presentations of the resnlts of a relative warp analysis

Several suggestions on ways to display the results of a relative warp analysis
are described below. The first three methods are especially useful since they allow
one to superimpose the results on plots of the specimens themselves. This has the
advantage that it keeps one's attention focused on the geometry of the configurations
of landmarks in the 2 or 3-dimensional space of the organism. This will make it
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easier to visualize the results in terms of changes in the shape of the organisms
and should make the results easier to interpret biologically. The last two graphics
are conventional displays of multivariate vector spaces. They are useful for looking
for clusters and other patterns in the relationships among the specimens.

1. The relative warp loadings can be shown as displacement vectors at each
landmark on the reference specimen. Bookstein (1991) uses the elements of
the normalized relative warp loadings matrix, R'. Since these are not in the
same units as the x, y-coordinates of the landmarks, the vectors must be scaled
arbitrarily to make them of convenient length for plotting in the same space
as the digitized reference specimen. Altemnatively, one could use the scaled
loading matrix, R' D, so that their lengths would be proportional to the square
roots of the variance per unit bending energy for each relative warp (arbitrary
scaling is still required, however). Figures 3 and 6, below, are examples.

One problem with such plots is that one is tempted to interpret them as
indicating how each landmark would be displaced by the effect of each relative
warp. The vectors are related to the coefficients of a thin-plate spline (see
below for details). The actual displacement at a location x, y is a weighted
sum of r2In r3 values (where r, is the distance from x, y to landmark 7). Loading
vectors will match those of the actual displacements only when a relative warp
is closely aligned with a principal warp (i.e., when the corresponding column
of R contains essentially all zeros except for a particular principal warp).

2. One can show all of the original objects superimposed on the reference object
as is done in the various types of Procrustes or superposition analyses (e.g.,
Rohlf and Slice, 1990). In addition, the displacements at each landmark can
be shown as vectors as described above. Since the affine component of the thin-
plate splines are not provided by Equation (11), an inverse transformation based
on the affine components of a thin-plate spline can be used. The inverse
transformation is computed as follows for specimen i:

[A, 1A ]1=X L3 (14)

where L' is the upper right pX3 block of the inverse of matrix L (Equation
(1)), A, is a column vector of dimension 2 containing the displacements for
x and y, and A, is a 2X2 shear matrix. Specimen i can be superimposed on
the reference specimen by transforming its coordinates for each landmark as:

X, = A (X, AL, (15)

where 1, is a column vector of p Is.

When o is greater than 0, landmarks that are closer together have more
of an influence on the parameters of the affine transformation than those
landmarks that are far apart. The among-specimen scatter of each landmark
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around its position in the reference specimen represents the variation that is
described by the relative warps. Note also that even though the specimens
may all have been carefully aligned (e.g., by a generalized affine resistant
fit analysis, Rohlf and Slice, 1990), this step will still adjust the alignment
of the specimens since it is using a different criterion for fit. In order to see
the variation that the relative warps are attempting to describe one must use
the “minimum-energy” superimpostion option in the TPSRW program.

3. Each relative warp can be plotted as a deformation of the space of the reference
configuration of landmarks. This can be shown by computing a thin-plate spline
for each relative warp. The non-affine coefficients for these thin-plate splines
can be computed as:

N'=Vn (L& EA*2)R D (16)

This gives the coefficients for a unit change in a relative warp score from
that of the reference object.

These deformations can be shown as animated displays in which the reference
object is deformed as a thin-plate spline in a positive direction along a selected
relative warp axis and then in a negative direction. These displays are very
useful for visualizing the integrated overall change in shape implied by a set
of displacement vectors at each landmark.

One can also show displacement vectors at each landmark by connecting
the position of each landmark in the reference configuration with its new location
in the transformed space. The pattern of vectors is usually similar to that of
the relative warp loadings. Figures 4 and 7, below, are examples.

4. The coefficients of the thin-plate splines can be regressed on age, a measure of
size, or other variables of interest. Rather than simply reporting the numerical
results, one can make an animated display (like a movie) using the thin-plate
splines to show how the reference configuration would be expected to change
as a function of changes in the independent variable. The TPS-REGR program
performs these operations if necessary, one could log-transform the independent
variable or use non-linear regression methods. This would, for example, allow
one to discover regions of the organism that show allometry without having to
decide in advance which linear distance measurements should be regressed on
size. For more on allometry and its regionalization, see Bookstein (1991). For
studies involving allometry the use of &t = 1 is recommended since the effects
of allometry tend to be at larger scales.

5. The scaled scores,

S'=SD 17

can be plotted against each other for the first few relative warps to provide an
ordination of the specimens. One expects specimens with similar configurations
of landmarks (after removing any differences that a thin-plate spline treats as



RELATIVE WARP ANALYSIS 143

an affine transformation) to be close together in the ordination space. Thus one
can search for clusters of similar specimens, look for trends, correlate with
exogenous variables, etc. The position of the ith object indicates the importance
of each relative warp in determining the thin-plate spline that would transform
the reference object into the ith specimen. Figures 5 and 8, below, are examples.
Note that these ordinations only take into account differences that represent
non-affine deformations and these differences are weighted inversely by their bending
energies if o > 0. The affine components may contain useful information about
shape variation if the initial positions of the specimens have been aligned using
a criterion that yields a better alignment than that provided by the affine component
of a thin-plate spline. For one approach to producing a scatter of the affine
components per se, see Bookstein (1991, Sec. 7.2). These are conceptually a first
pair of relative warps those for A = 0, the pair at the largest possible scale.

6. A biplot of the weight matrix, W, can be made by superimposing a plot of
the columns of R (corresponding to the principal warps) on the plot of scaled
scores, S', described above. However, one would rather express the biplot in
terms of the thin-plate splines since they are expressed in terms of the
coordinates for each landmark. The matrix, N, of the coefficients of the thin-
plate splines for each object can be expressed as the product S'R™, where

R" =Vn (L,® EA¥* ) R (18)

The matrix N' differs from R" only by the multiplication by matrix D.
Matrices S' and R" can be plotted simultaneously to yield a biplot of the
thin-plate splines for each specimen as a function of the relative warps.

Choice of metrics

Bookstein (1991 and personal communication) has suggested the introduction of
the parameter o in the exponent of A in computing the weight matrix, W, defined
in Equation (6). A value of o = 1 corresponds to the relative warp analysis described
by Bookstein (1989, 1991). This value results in variation among specimens in those
principal warps that have relatively small bending energies (corresponding to large-
scale features in the reference configuration) being weighted more heavily than variation
in those principal warps with larger bending energies (corresponding to relatively
small-scale features). On the other hand, the principal warps at the largest scale (the
affine components) are ignored since they have bending energies equal to zero. The
decomposition in Equation (12) gives the directions of maximum variance among
specimens relative to the bending energy matrix just as canonical variates analysis
(e.g., Krzanowski, 1988, or Reyment, 1991) gives directions of maximum variance
among groups relative to the within-population variance-covariance matrix.
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Other values of o can also be used to give different relative weightings to
the principal warps. The case of a = 0 (suggested by Bookstein, 1991, p. 368)
seems to be of particular interest for exploratory studies. This value gives all of
the principal warps the same weight, Thus the analysis is no longer relative to
bending energy—even though the principal warps are used as the basis vectors
for the space. In this space the Cartesian distance between specimens is the affine-
free Procrustes distance between specimens. In terms of the original coordinate
data, it corresponds to the Cartesian distance between the x and y-coordinates
of a pair of specimens after differences explainable by affine transformations
(translation, rotation, and uniform stretching) have been removed. Note however
that the affine components removed are as defined by the method of thin-plate
splines. Other methods may give a different partitioning between the affine and
non-linear differences between specimens.

If o = 0 then one can simplify the matrix of relative warp loadings in Equation
(13) to

R=(I,®E)R (19)

Since the columns of E are orthonormal, multiplication by E corresponds to
a rigid rotation of a linear vector space. However, the bending energy matrix is
not of full rank since at least 3 eigenvalues are equal to 0.

It is important to note that, despite the use of non-linear functions such as
thin-plate splines and the U function, the relative warp loadings and the relative
warp scores are just linear combinations of the original x and y-coordinates of
the specimens. Different choices of reference configurations or of o simply
correspond to different rotations and weightings of the original x and y-coordinates.
On the other hand, the principal warps which serve as basis vectors for the space
and the values of the weights assigned to them are non-linear functions of the
coordinates of the landmarks in the reference configuration. They vary in complex
ways as one varies the reference configuration. The use of different reference
configurations and of o effects the expression of the final conclusions obtained.
Unfortunately, the choices must be somewhat arbitrary since thin-plate spline
functions do not correspond to a biological model for developmental or
evolutionary shape change. They simply represent a method for capturing such
changes (in contrast, for example, to the approach of Ackerly, 1990).

Analysis of affine variation

The above account is an incomplete description of the variation among specimens
within a sample since it only considers variation that can be explained in terms
of deformations. The components that span the space of affine differences
(translation, rotation, and uniform shape change) among individuals have been
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explicitly removed from the analysis by ignoring the last 3 eigenvectors of the
bending energy matrix. While a separate procedure (e.g., Bookstein, 1991, Section
7.2) can be used to describe such differences, I believe it will often be useful
to analyze both types of variation simultaneously. It would be interesting to know,
for example, that those individuals that have high scores on relative warp 1 are
also smaller and more elongate than the average. Several approaches are
suggested below.

An obvious technique is to correlate rotation angle, centroid size, uniform factor
score, strain cross parameters, and perhaps even translation values (see below)
for each specimen with the relative warp scores. This is somewhat inefficient
since these added variables may be partially redundant. This does not give a very
elegant overall analysis.

An alternative approach is to append additional variables to the W matrix before
performing the singular-value decomposition described in step 6 of Section 2.1.
To be comparable to the existing elements, the coefficients should correspond
to the affine coefficients of the thin-plate splines that transform the reference
configuration into that of each specimen. These can be computed as X; L' which
was set aside in the computations of the relative warps. In this way the resulting
component axes will summarize both uniform and non-uniform shape variation.
One must take into account the fact that these coefficients are not orthogonal
to the principal warps and are not in the same units. A solution is simply to
retain the last 3 eigenvectors of the bending energy matrix. The matrix E will
then remain a pXp matrix. If o = 0 then the A matrix can be ignored. Otherwise
it must be modified so that the A, are taken as equal to unity (rather than 0) for
the last three eigenvalues. These last three normalized eigenvectors correspond
to that part of the affine variation that is orthogonal to the principal warps.

The consequence of retaining all of the eigenvectors is mostly interesting for
the o = 0 case. The distances between pairs of specimens will then be the same
whether based on the V matrix (the original matrix of coordinates of the specimens)
or the §' matrix (the matrix of scaled relative warp scores). This means that the
method of relative warps does not change one's perception of the relative distances
between among the specimens. Thus projection onto the principal components
axes based on the original coordinate data will be the same as the relative warp
scores. This is because the V matrix differs from the W matrix only by its
multiplication on the right by the orthonormal matrix I, ® E. In this case relative
warp analysis simply provides an interpolating function that allows one to describe
and reconstruct morphometric variation in terms of a convenient continuous function.
This is analogous to the fitting of elliptic Fourier coefficients (Kuhl and Giardina,
1982, Rohlf, 1986), parametric cubic splines (Evans ef al., 1985, Rohlf, 1990a),
and other functions of outlines rather than computing the empirical eigenshape
functions (Lohmann, 1983, Lohmann and Schweitzer, 1990). If the affine
components are not included then the pX(p-3) matrix E projects the data into a
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space of lower dimension and some information will be lost if these dimensions
are ignored.

AN EXAMPLE OF RELATIVE WARP ANALYSIS APPLIED TO
MOSQUITO WINGS

The dataset

The techniques described above were applied to the first n = 8 species (all
in the genus Anopheles) in the mosquito wing dataset used in Rohlf and Slice
(1990). These data serve as a convenient test dataset (these data are included
with the TPSRW program and the reader is encouraged to try to duplicate the
results given here and to try further experiments). There are p = 18 landmarks
corresponding to points at which wing veins either branch or intersect the margin
of the wing. Figure 7 of Rohlf and Slice, 1990, gives the standard nomenclature
for the veins and also shows the positions of the landmarks that were used in
this study. The names of the species used and their code numbers used in this
study are shown in Figure |. Also shown are the positions of the 18 landmarks.
The landmarks are connected with solid lines to represent the approximate topology
of the wing veins (the actual veins are not just straight lines).

A reference configuration was constructed using generalized affine resistant fit analysis
(Rohlf and Slice, 1990). The reference configuration is shown in Figure 1 with the
veins shown as dotted lines. In most cases the fit to the reference is very good—
especially near the tip of the wing. Species 5 shows a particularly poor fit near the
base of the wing. The positions of the landmarks in the reference configuration are
also indicated by the origins of the various vectors shown in many of the figures
presented below. The scatter of each specimen's landmarks around the position of
the landmark in the reference can be seen in Figures 3 and 6 below. As discussed
in Rohlf and Slice (1990) for the complete dataset, the scatter around the landmarks
near the tip of the wing (landmarks 3 through 9) is much less than at most of the
other landmarks-especially those at the base of the wing (landmarks 1, 12, and 13)
and landmarks at the leading and trailing edges of the wing (landmarks 2 and 11).

There are p—3 = 15 principal warps with eigenvalues greater than zero that
can be extracted from the bending energy matrix. The relative magnitudes of
the eigenvalues (from 124.1407 down to 0.0698) is a function of the spatial
arrangement of the landmarks. For the mosquito wing data the second largest
eigenvalue is much smaller than the largest eigenvalue because the average wing
is very elongated. The principal warps corresponding to the largest-scale features
(smallest non-zero eigenvalues) of the reference configuration are illustrated in
Figure 2. Note that they are shown, arbitrarily, as displacements to both the x
and y-coordinates and that the magnitude for each principal warp was scaled
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Fig. 2
Plots of the last 3 principal warps shown as displacement vectors equally for both x and
y-coordinates

arbitrarily. The relative lengths of the vectors at different landmarks indicates
the relative weighting of each landmark for a given principal warp.

Relative warps analysis, with o = 1

There are 7 relative warps that can have eigenvalues greater than zero (0.406,
0.108, 0.080, 0.063, 0.047, 0.020, and 0.016). These are the square roots of the
variance per unit bending energy. The relative warp loadings (the R' for the relative
warps with the largest eigenvalues are illustrated as vectors at each landmark in
Figure 3. The vectors point in directions of maximum variance of the joint scatter
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Relative warp 2
P ———

Relative warp 3

Fig. 3
Plots of the relative warp loadings (using o = 1) and the scatter of the 8 wings superimposed on
the refernce configuration based on an affine generalized resistant-fit

among the 8 wings relative to bending energy. The absolute magnitudes of the
vectors are arbitrarily scaled for each warp. One can see that the vectors indicate
only large-scale variation. Relative warp | indicates an expansion of the region
near the tip relative to a compression near the base. Relative warp 2 indicates
a straightening of the leading edge of the wing by movement of the central
landmarks towards the trailing edge of the wing. Relative warp 3 appears to indicate
a similar deformation but with the landmarks at the tip of the wing moving forward.

The relative warps can also be illustrated as thin-plate splines as shown in
Figure 4. This figure shows the deformations implied by positive and negative
displacements along the first two relative warps. While the vectors for relative
warp 1 are similar to those shown in Figure 3, the vectors for the second relative
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warp seem rather different. These figures show what a specimen would look like
if its relative warp score were at an extreme position along one of the relative
warp axes and zero on all others. These figures are analogous to those of figure
9 of Rohlf and Archie (1984) for a principal components analysis based on Fourier
coefficients. Rohlf (1992) compares ordination analyses based on the coefficients
of various functions fitted to outline data.

Relative warp 1 is mostly a function of a single principal warp (this can be
seen in matrix R, not shown). Its highest coefficients are -0.992 on the x-coordinates
and -0.054 on the y-coordinates of principal warp 15 (the largest-scale principal
warp). The next largest coefficient is -0.057 for the x-coordinates of warp 12,

The second relative warp has its highest coefficients for the y-coordinates of
principal warp 15 (-0.542), x-coordinates of principal warps 14 (-0.527), and 12
(0.486). The next highest coefficient is for the x-coordinates for principal warp
7 (0.220). The fact that the most important relative warps are most closely aligned
with the last few principal warps is expected since they have been given much
larger weights. For example, the weight given to the last principal warp is much
larger than that given to the first, YA,/A,s = V124.1407/0.06985 = 42.2. It would
require a very large amount of among-specimen variation in principal warp |
in order for it to be represented among the first few relative warps.

Figure 5 shows a scatter-plot of the relative warp scores (projections of the
8 species onto the relative warp axes) for first two relative warps. Most of the
variation among species (relative to bending energy) is along the first relative
warp axis with species 5 at the extreme left and species 1 at the extreme right.
From Figure 4 one expects (and easily sees) that the largest differences between
species 1 and 5 are that the central landmarks (14 to 18) are closer to the tip
of the wing in species 1 and closer to the base in species 5. Species 3 is at the
top of the plot and species 6 is at the bottom of the small cloud of points (species
I is further down but at the extreem right). Figure 4 implies that landmarks 1,
12, and 13 at the base of the wing should be relatively more anterior in species
3 (making the leading edge of the wing seem less forward) in species 3 than in
species 6. It is harder to see this in species | since the effect of relative warp

RW2
3
3 2 ° 7
* IE .4
1
RW1
Fig. 5

Plot of the 8 species of mosquitoes with respect to their relative warp scores for the firs 2 relative warps
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is so strong. These predictions can be checked against the original specimens
as illustrated in Figure 1. Species 5, indicated to be somewhat of an outlier in
Figure 5, does seem to show the largest residuals from the reference configuration.
The first two relative warps explain 84.0% of the variance (relative to bending
energy). Relative warp analysis strongly weights differences between the
specimens in the largest-scale features. In a subjective examination of the wings
shown in Figurel one considers all features (but with an unknown weighting).

Relative warps analysis, with o = 0

The results obtained using the Procrustes metric, o = 0, were quite different from
those reported above. The eigenvalues are 0.165, 0.108, 0.102, 0.057, 0.047, 0.033,
and 0.026. The first relative warp does not dominate as much as was found with
o = 1. The relative warp loadings (the R' for the relative warps with the largest

Relative warp 3

Fig. 6
Plots of the relative warp loadings (using o = 0) and the scatter of the 8 wings superimposed on
the reference configuration based on an affine generalized resistant-fit
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eigenvalues) are illustrated as vectors at each landmark in Figure 6. The vectors
point in directions of maximum variance of the joint scatter among the 8 wings—
but not relative to bending energy since o = 0. The absolute magnitude of the vectors
are arbitrarily scaled as before. As expected, the patterns of displacements are more
complex and localized than those shown in Figure 3 in which the larger scale features
were heavily weighted. The longest vectors for relative warp 1 imply displacements
of landmark 2 towards the base of the wing and landmark 13 towards the tip. This
seems to match well with the fact that there is a large amount of scatter at those
landmarks and in a direction parallel to the vectors. Relative warp 2 indicates a
more complex result with landmarks 1 and 12 being displaced away from the base
and landmark 13 towards the base (the net effect being that these landmarks shouild
become closer together). The central landmarks 2, 10, 11, and 18 displaced towards
the base of the wing and some of the landmarks at the tip displaced away from
the base (indicating an expansion in thaf region). Relative warp 3 indicates a
compression of the region between landmarks 13 and 14.

The relative warps are illustrated as thin-plate splines in Figure 7. This figure
shows the deformations implied by positive and negative displacements along
the first two relative warps. The vectors for relative warp 1 imply a somewhat
different pattern of deformation to those shown in Figure 6 (Figures 4 and 7 are
more similar than one might have expected from a comparison of Figures 3 and
6). The most apparent deformation is the displacement of landmark 2 and the
landmarks at the tip of the wing towards the base relative to the displacement
of most of the other landmarks towards the tip of the wing. The second relative
warp indicates the movement of landmark 13 towards the base, a general expansion
near the center of the wing and an outward displacement of the landmarks at
the tip of the wing. The illustrations of positive and negative displacements show
what a specimen would look like if its relative warp scores were at an extreme
position along one of the relative warp axes and zero on all others.

An important difference from the results with a = 1 is that now many of the
principal warps contribute to the first few relative warps. The largest contribution
to relative warp 1 is the x-coordinates for principal warp 7 (-0.543). The other
contributors are the x-coordinates for principal warps 12 (-0.501), 4 (-0.376) and
15 (-0.331). The major contributors to relative warp 2 are the x-coordinates of
principal warps 15 (-0.812), 8 (-0.247), and 12 (0.206). Only x-coordinates are
involved in the first few relative warps in contrast to the results for o0 = 1 where
the second relative warp showed a strong displacement in the y-direction.

Figure 8 shows an ordination scatter-plot of the relative warp scores
(projections of the 8 species onto the relative warp axes) for first two relative
warps. The first relative warp axis has somewhat more variance than the second.
Species 1 is at the extreme right of the axis 1, as in Figure 5, but the distribution
of the other points is different. Species 8 is now at the extreme left and the
other points are more spread out. Species 6 is now at the bottom of the plot.
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One would expect from Figure 7, that the most obvious difference between species
1 and species 8 would be that landmark 2 should be displaced towards the base
of the wing relative to the other landmarks in species 1 (there should also be an
expansion of landmarks 1, 12, and 13 near the base). Species 4 is now at the top
of the plot and species 6 is at the bottom. Figure 7 implies that landmarks | and
12 at the base should be closer to 13 and that the tip of the wing expanded
(landmarks 3 to 7 should be more displaced away from 8, 9, 15, and 17) in species
4 than in species 5. These predictions match what one can see in Figure | (one
does not expect a perfect match, however, since the first two relative warps only
explain 50.8% of the non-affine variance). Note that the amount of variance explained
relative to bending energy (as found using o = 1) is not directly comparable to
this value since the former is normalized by bending energy. Using all of the relative
warps for this dataset, the matrix correlation between distances among specimens
based on the scaled score matrix and distance based on the original coordinates
of the specimens is 0.879 (for o = 1 the correlation is only 0.841). If the effects
of the affine components were retained then the correlation would, of course, rise
to 1.0 (the ordination along the first two axes remains very similar to that shown
in Figure 8).

Rw2

RW1

Fig. 8
Plot of the 8 species of mosquitoes with respect to their relative warp scores for the first 2 relative
warps based on o = 0.
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DISCUSSION

The description of the method of relative warps and the example of its application
given above raises a number of important questions.

1. What value should be used for the o parameter? The effect of using a value greater
than zero is to give more emphasis to the larger-scale features. If one were to
use a value less than zero it would result in more weight being given to the small-
scale features. The different choices can make appreciable differences in the final
results. For allometric growth studies or other applications where large scale
differences are expected a value of o = 1 is likely to be the most useful. In many
exploratory studies (such as in taxonomy) it may not be clear which features should
be given more weight than others and thus a value of o = 0 which gives an equal
weighting is likely to be the most appropriate. This latter choice corresponds to
using an affine-free Procrustes distance as the measure of morphometric distance
between specimens. In a study such as that of Weber (1992) one may wish to
try a value closer to o¢ = —1. In many studies one should try a range of values
of a in order to search for interesting patterns at different scales.

2. Is bending energy a useful parameter in morphometrics? This quantity is based
on the physical properties of the thin metal sheets that are the basis of the
thin-plate splines. The fact that it takes more energy to make a smaller-scale
deformation in a sheet of metal than it does to make a larger scale-one does
not seem to be necessarily an appropriate model for the amount of
developmental or evolutionary “effort” it might take to achieve a certain
deformation of a configuration of landmarks. If the energy parameter does
not seem meaningful, then it does not seem appropriate to use it to weight
the principal warps. This is another reason for using o = 0. On the other hand,
one can view bending energy as just a convenient index for scale without
attaching biological significance to the parameter itself.

3. Should the three eigenvectors corresponding to the affine components of the
bending energy matrix be retained with the other principal warps (at least for
the o = 0 case)? Including translation and rotation in the analysis assumes
that the specimens have been aligned in some meaningful way and are not
just artifacts of the digitization process. Including these components results
in an analysis that describes the total within-population variation not just non-
uniform shape differences. This seems to a convenient way to detect
covariation between these two different kinds of shape differences.

4. Do different choices of reference configurations make much difference in the
final results? The answer is clear for the case of o = 0. Different choices
simply result in different orthogonal rotations of the basis vectors of the relative
warp space and thus will yield identical results. However, when o # 0 the
results will differ depending upon the choice of reference configuration. This
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is because different features are given diffcrent weights depending upon their
proximity in the reference configuration. It seems unlikely that there should
be a single best solution for obtaining a reference configuration. If one is
studying variation among specimens sampled from a homogeneous population
then some sort of average configuration (such as constructed by generalized
resistant-fit analysis) seems reasonable. If, on the other hand, one is studying
variation along a developmental or evolutionary sequence then an estimate
of a configuration for an early or a primitive stage may be more appropriate.
Fortunately, the results seem fairly stable for small changes in the positions
of the landmarks in the reference configuration. As a result different choices
of reference configurations often make very little difference in the final result.

5. What are the relative advantages of the method of Procrustes superpositions versus
the computation of relative warps? I believe that the method to be preferred will
depend upon the type of variation one expects to find. If one expects differences
in only a very small proportion of the landmarks to be displaced relative to the
others (the “Pinocchio effect” of Chapman, 1990), then Procrustes methods provide
a direct simple solution with an appropriate graphical display. When variation
is not well localized, Procrustes plots are less effective. Procrustes plots show
the relative levels of variation at different landmarks but it is difficult to appreciate
the pattern of covariation between the displacements at different landmarks. The
method of relative warps displays such covariation very effectively. For
example, one can see in Figure 7 that as landmark 2 varies towards the base
of the wing, landmark 13 moves away from the base and landmark 3 moves
forward in a direction orthogonal to the other displacements.

Another advantage of the use of the method of relative warps 1s that it is
possible to use thin-plate splines to construct hypothetical configurations to
represent points in the parameter space. This is very useful since it allows one
to visualize means of clusters, endpoints of axes, etc. even if the functions
themselves are not based on a biological model (as in applications of Fourier
analysis in morphometrics). While the Procrustes method can be thought of as
just a special case (o = () of relative warp analysis, Reyment's (1991) conclusion
that Procrustes superposition methods have been made largely obsolete seems
somewhat premature. Relative warp analysis uses a particular method (thin-plate
splines) for aligning specimens and for separating affine from non-affine vartation
that may not be appropriate in all cases. Even though resistant-fit methods may
have been used to determine the reference configuration and the initial
alignment of the specimens, the variation actually analyzed by relative warp
analysis is that which is present after an alignment based on thin-plate splines.

While additional work remains to be done, it is already clear that the method
of relative warps is a flexible and powerful technique. It should become part of
the standard morphometric tool kit for the analysis of landmark data.
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ABSTRACT

Many structures of interest to biologists are of such complexity that they cannot
be adequately characterized by simple measurements, Fractal analysis provides
a method for the quantification of such complexity by means of the fractal
dimension, D. This statistic summarizes the changes in estimates of length, area,
or other measures with changes in the precision of the measurement, This, in
turn, is directly related to the form and degree of the complexity of the material
being considered. In the first section, this paper presents an overview of
mathematical fractals, their properties, and methods for the estimation of D.
Applications of the fractal analysis in a number of biological fields are
reviewed. The second section illustrates the approach through the analysis of leaf
outlines from several species of the genus Acer (maple trees). Problems involved
in the practical application and interpretation of fractal analysis are discussed.

CSIC © del autor o autores / Todos los derechos reservados



INTRODUCTION

Many structures of interest to biologists are of such complexity they cannot
be adequately characterized by simple measurements or by the landmark-based
techniques discussed elsewhere in this volume. This chapter will discuss a
technique, fractal analysis, that directly uses this complexity to construct a summary
measure called the fractal dimension, D. This measure can be treated like any
other descriptor and used to investigate environmental, evolutionary, or other
factors that might influence or be influenced by the complexity of a particular
structure. :

The first section of this chapter provides a brief introduction to fractals
that describes what they are, some of their unique and interesting properties,
and how these properties can be used to describe the complexity of real
objects. It also presents an overview of some of the ways in which fractal
analysis has been used to answer diverse questions in biology. The second
section concerns the study of shape variation in outlines of leaves from trees
in the genus Acer. This part includes an application of fractal analysis that
points out some critical, but somewhat subtle, problems of such an
analysis.

A single chapter can provide no more than a general introduction to fractal
analysis. This should be enough to give some sense of the potential and
limitations of the technique and allow readers to assess its suitability to their
own research interests. There are several texts that can be recommended for
further reading. The Fractal Geometry of Nature (Mandelbrot, 1983) provides
a summary and synthesis of earlier work by the author who is most
responsible for bringing fractals to the attention of the broad audience they
have today. Unfortunately, Mandelbrot’s expansive knowledge and free-form
style of writing make this text somewhat difficult for many readers. A quite
clear presentation of the mathematics and ideas behind fractals can be found
in The Science of Fractal Images (Peitgen & Saupe, 1988), and Fractals
by J. Feder (1988) provides an exceptional discussion of the basic concepts
of fractal analysis with emphasis on its application to the study of real world
phenomena. Fractals Everywhere by Michael Barnsley (1988) is also a most
useful volume.
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FRACTALS AND FRACTAL ANALYSIS

What is a fractal?

Most of us have been exposed to fractals at least in the form of renderings
of exquisitely complex mathematical structures like Mandelbrot and Julia sets,
But what is it that makes them special and qualifies them to be called fractals?
Mandelbrot (1983) defines a fractal as “a set for which the Hausdorff-Besicovitch
dimension strictly exceeds the topological dimension.” This definition, while
mathematically rigorous, is perhaps too formal and restrictive for a general
discussion, A less stringent form suggested by Mandelbrot (see Feder, 1988) is
that “a fractal is a shape made of parts similar to the whole in some way.” It
is the latter definition that we shall adopt and we will be primarily concemed
with the “way” in which the parts are “similar to the whole.” In particular, when
the overall form of a structure is repeated at smaller scales within itself, the structure
is said to be self-similar, and it is this self-similarity, real or assumed, that is
the basis for the fractal analysis taken up later.

Figure 1 illustrates two fractal shapes that meet the self-similarity criteria in
different ways. Figure 1A is a rendering of the triadic Koch curve along with
the components used in its construction. Shapes like this are generated by starting
with a simple, initial component, called an initiator, and a more complicated
structure, called a generator, made up of scaled-down copies of the initiator, The
original initiator is first replaced by the generator. The copies of the initiator in
the resulting structure are then replaced with appropriately scaled versions of the
generator. This process is, in theory, repeated an infinite number of times to produce
a curve that at scales below that of the original initiator is composed entirely
of small, exact copies of itself. In the case of the triadic Koch curve, the initiator
is simply a straight line segment and the generator is a line segment of identical
length that has had the middle third replaced with two line segments one-third
the length of the original. In cases such as this, where identical copies of the
whole can be found in the parts, the curve is said to have exact self-similarity.
Figure 1B shows a simulated fractal coastline which represents a second type
of self-similar curve. Here the exact form of the entire curve is found nowhere
in the small-scale parts. Instead, it is its overall complexity that is retained. Such
a relationship is termed statistical self-similarity.

The existence of self-similarity, assumed present at all magnifications, leads
to the property that fundamentally distinguishes fractal curves from those that
are non-fractal, or Euclidean. As one examines a fractal curve in greater and
greater detail there is no tendency for it to “smooth out”. On the other hand,
Euclidean curves, no matter how seemingly complex, will eventually tend to smocth
out into straight lines at infinitesimal scales of observation. This leads to the result
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"initiator”

"gencrator”

after two recursions

Triadic Koch curve

A B

Fig. 1
A) Fractal curve generated by the repeated replacement of “initiators” by “generators” . Smaller parts
of the curve are exact copies of the whole leading to exact self-similarity. B) Repeated magnification of a
statistically self-similar fractal coastline. Small-scale parts retain the complexity, but not the exact shape,
of the whole. (after Voss, 1988)

that as one increases measurement precision, the measured length of Euclidean
curves will eventually converge on a single value while length measurements
of fractal curves will diverge true fractal curves have an infinite length. The rate
at which length estimates of fractal curves diverge is directly related to the
complexity of the curve and will be used to characterize that complexity in the
form of the fractal dimension, D.

One-dimensional curves and outlines are not the only structures that can exhibit
self-similarity. Two-dimensional surfaces can also have the same relative
roughness at all scales while their Euclidean counterparts smooth out into a
collection of vanishingly small planar patches. In this case, it is the area that
converges for Euclidean surfaces and diverges for fractals as the measurement
precision increases. Three dimensional structures, too, can have distributions that
are inhomogeneous at all scales.
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Another potentially self-similar pattern found in biology is that of branching
structures. Such patterns can be generated in a manner similar to that used in
the construction of Koch curve by replacing the initiator by a symmetrically or
asymmetrically forked generator and subsequently applying the generator only
to the newly formed branches. The model can be extended to transport structures
by specifying relative branch diameters at each splitting. Basically, anything that
requires efficient communication with all parts of a two- or three-dimensional
object would be a candidate for fractal branching. Examples include plant branch
and root systems, bifurcating bronchial structures, and vascular or neural
networks. Horsfield (1990) and West & Goldberger (1987) provide a more detailed
discussion of branching patterns and Glenny ef al. (1991) give a general review
of fractals with a good discussion of branching patterns emphasizing applications
in physiology.

What is fractal analysis?

We have seen that fractals have the unique characteristic that as one increases
the resolution with which they are examined, estimates of their “size”, e.g. length,
area, etc., tend to diverge to infinity instead of converging on a particular value.
The rate of this divergence is related to their complexity and quantified by the
measure D, the fractal dimension. To see how we can estimate the value of D
for real data we start by measuring some familiar Euclidean shapes.

First, consider a line segment. We could determine its length by stepping over
it with a divider or ruler of a particular length, r, and counting the number of
steps, N(r), required to cover the segment. The product of the number of steps
and the length of a step would then be our measure of the length, L(r), of the
segment based on the step size, r, L(r) = N(r)r. If r were equal to the total length
of the line segment, we would require but single step to traverse the segment,
N(1)=1. Letting r be one-half of the total length would require two steps, N(1/2)=2,
and for r=1/3, N(1/3)=3. One can see the general equation describing this pattern
is N(r)=r-L.

To extend this procedure to determine the area of two-dimensional regions
we could use squares of a particular area and count the number of such squares
necessary to cover the region. Since the area of a square is just its edge-length,
r, squared, the formula for calculating the area would be A(r)=N(r)r’. If the region
being measured is itself a square and we write r as a proportion of its edge-
length then: for r=1, N(1)=1; for r=1/2, N(1/2)=4; and for r=1/3, N(1/3)=9. The
general equation for this relationship is N(r)=r2. Similarly, if we apply this
approach to measuring the volume of a cube by filling it with smaller cubes
the relationship between number and size of measuring device is found to be
N(r)=r3.



THE FRACTAL ANALYSIS OF SHAPE 169

All of the above cases show a consistent relationship between “size” and the
scale of the measuring device given by the equation

N@m=—r-" (1)

where D is referred to as the similarity dimension. In the case of the simple
Euclidean shapes, the similarity dimension is the same as the topological
dimension. For self-similar fractals, the similarity dimension exceeds the
topological dimension and equals the Hausdorff-Besicovitch dimension (Feder,
1988).

If we use the same procedure to measure the Koch curve in Figure 1A, we
see that for r=1, relative to the length of the initiator, the number of steps required
to traverse the curve is 1 as with the line segment. However, if we use a ruler
with r = 1/3, four steps are required and the measured length is increased to
N(1/3)1/3 = 4/3. This is because the smaller ruler is able to include the additional
length due to the large, triangular bump in the middle of the curve that could
not be resolved with the larger ruler. Using a still smaller ruler, say with r set
to 1/9, would result in an even longer length measurement, 16/9, due to the inclusion
of even smaller bumps resulting from the second application of the generator.
If Equation 1 holds, and it does, then D cannot be the same as the topological
dimension of the Koch curve, which is onc. By taking logarithms of both sidcs
of Equation 1 and rearranging we can get the equation necessary to determine
the value of D. That formula is

D= —In(N(r)) / In(r) (2)

For the Koch curve using r=1/3 we find D=-In(4)/In(1/3)=1.26. With r=1/9
we have D=-In(16)/In(9)=1.26. In fact, since Equation 1 applies, for any choice
of r we would find D=1.26. The Koch curve is a self-similar fractal, and as such,
its similarly dimension exceeds its topological dimension — D is the fractal
dimension.

Most natural phenomena are not likely to have the neat, orderly structure of
the triadic Koch curve, but instead, more closely resemble the statistically self-
similar curve of Figure 1B. This does not present any major problems. First, if
the relationship in Equation | holds then we need only measure the length of the
curve with some ruler of relative length r and use Equation 2 to determine D as
with the Koch curve. However, we cannot be certain that Equation 1 holds at all
length scales. Also, we do not know r relative to the “size” of the curve. To address
the latter problem, we choose some absolute ruler size, A, and scale it by the, as
yet unknown, maximum length of the curve, L, .. The value for r can then be
written as r=A/L,, ... Using the available information we can write the relationship
between the estimated length of our curve and the selected ruler size as
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D

max

KD_I 4

A
L=NAA=rPr=

Some simple algebra gives us the more useable form

A
In(L)=DIn

me_] +(1-D) In(Ax)  (3)

which resembles the slope-intercept equation of a line, Y = a + bX. We can,
therefore, analyze an arbitrary curve by getting a number of estimates of the length
of the curve using a variety of ruler lengths and performing a linear regression
of the log-transformed length estimates onto log ruler length. The value of D
can then be estimated as 1-b. Also note that the unknown L, is found in the
constant term and can be estimated as e¥D,

The procedure described above can be used to estimate D for any continuous curve
and will be used later in this chapter fo examine variation in the complexity of leaf
outlines. Similar methods can be developed that, assuming the curve lies within a
plane, cover the plane with a grid of scale r and count the number of boxes through
which the curve passes. In this case, N(r) ~ rP. This technique, called box-counting,
also allows for the analysis of not just outlines, but also of point or areal distributions.

Finally, there is an important, but often overlooked, point that should be emphasized,
and that is the distinction between the mathematical study of fractals and the application
of fractal techniques to the study of natural phenomena. The fractal sets studied by
mathematicians are generally the products of deterministic equations or of carefully
planned recursive constructions. These entities generally manifest a fractal character
at all scales of observation. Real-world data need not be so well-behaved. Practical
considerations such as digitizer resolution limit the range over which objects can be
observed, and even over a limited range there is no guarantee that biological processes
will produce the scaling behaviour assumed in the estimation procedure. Natural objects
are no more guaranteed to be fractals than any two variables are guaranteed to have
a linear relationship. It is only assumed that growth and developmental processes produce
structures sufficiently fractal-like that D captures some important aspect of the complexity
of the structure. The assumed linear relationship between log length estimate and log
step size must be checked and no extrapolations beyond the range of scales examined
can safely be made. Fractal analysis may provide an adequate description of, or insight
into, a particular phenomenon, but if not, other tools must be sought.
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Applications of fractal analysis in biological sciences

The potential of fractal analysis for the study of shape is evident by the diversity
of problems to which it has been applied. It has been used to investigate the
structure of components of organisms, whole body forms of individual and colonial
organisms, the relationship of organisms to the structure of their environment,
and more. Table 1 shows a sampling of D-values published by various authors.
Some of these examples are discussed below and should serve to stimulate ideas
for other applications.

Table 1
A sampling of published D values. Values represent means for different data sets,
ranges within a data set, or representative values. See source for details

DATA D SOURCE
HABITAT:
Aleutian [slands 1.19 - 1.66 Pennycuick and Kline, 1986
Canadian Shield 1ake shorelines 1.10- 1.64 Kent and Wong, 1982
coral reefs 1.05-1.15 Bradbury et al., 1984
branches and twigs 1.28 -1.79 Morse et al., 1985
WHOLE ORGANISM:
Streptomyces and Ashbya
mycelia outline 1.34-1.52 Obert et al., 1990
mass 1.36 - 1.52 “
Serratia marcescens colonies 1.4-1.6 Matsuyama et al., 1989
Trichoderma viride colonies 14-2.0 Ritz & Crawford, 1990
mite wanderings 1.092 - 1.117 Dicke & Burrough, 1988
WITHIN ORGANISM:
leaf shapes 1.02-1.22 Vicek & Cheung, 1985
plant root systems 1.48 - 1.58 Tatsumi et al., 1989
sutures
white-tailed deer skulls 1.19- 1.65 Long, 1985
ammonite shells 1.20-1.53 -
blood flow distribution
cardiac {misc. spp.) 1.17-1.21 Glenny et al., 1991
pulmonary (dogs) 1.07-1.12 $
mammograms of healthy breasts 222-2.50 Caldwell er al., 1990
OTHER:
taxonomic groupings 1.10-2.14 Burlando, 1990

Morse et al. (1985) represents one of the earliest applications of fractals analysis
to the study of how the structural complexity of the environment can influence
the abundance and distribution of organisms. They use the box-counting method
to quantify the space-filling nature of a variety of plants and conclude that smaller
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animals would be exposed to relatively greater spatial resources due to the fractal
structure of vegetation. Using 1.5 as an average estimate for the fractal dimension
of vegetation and incorporating considerations of metabolic rates and populations
densities, they estimate how body size should be distributed for arthropod
communities. Available data are consistent with their predictions, On a larger scale,
Pennycuick Klein (1986) use the concept of fractally structured habitats to adjust
bald eagle nesting density estimates on two differently structured islands. Kent
Wong (1982) incorporate the fractal dimensions of lakes into estimates of littoral
zone extent, and Phillips (1985) and Palmer (1988) consider fractal properties of
the spatial structure of vegetation patterns and environmental gradients respectively,
much of which was anticipated by Loehle (1983).

Caddy Stamatopoulos (1990) have recently presented an interesting synthesis of
fractal analysis with traditional fisheries population biology by investigating the relationship
between mortality curves and habitat complexity in crevice-dwelling organisms. Using
growth and mortality data they attempt to deduce what would be a desirable distribution
of crevice sizes in the environment. Altematively, they anticipate the biological
productivity of an arbitrarily chosen distribution of crevices. They find habitats with
large D values should lead to higher juvenile survivorship, but be unable to support
a large crop of adult organisms since crevice space becomes limiting for the numerous
juveniles. This implies that less complex habitats may produce the same or more adults
with less “wastage™ of juveniles, These results are consistent with mangrove swamps
and grass beds serving as important nursery areas while sustaining relatively few adults.
The authors also propose an interesting experimental apparatus and designs for “sampling”
crevice availability and identifying habitat bottlenecks.

The structure of a more abstract space is explored by Burlando (1990) who
uses the size-frequency distribution of taxa based on the number of included subtaxa.
He finds marine groups have a higher fractal dimension than continental ones
and suggests this indicates marine environments somehow allow for the
development of greater biological diversity. Other fractal phenomena above the
level of oraganism morphology are discussed by Frontier (1987).

Some organisms lend themselves to the fractal analysis of their entire form. Obert
et al. (1990) use box-counting methods to analyze both the outline and mass distribution
of colonies of two microbial species, Streptomyces griseus and Ashbya gossypii.
They find the fractal model fits the development of the outline and mass of both
organisms well and that the fractal dimension increases during growth. Using the
divider method, Matsuyama et al. (1989) are also able to quantify fractal patterns
in the growth of Serratia marcescens colonies. They further determine that the inability
to produce certain exolipids reduced the fractal structure of colonies and renewed
fractal growth could be initiated by experimental application of these substances.
Ritz Crawford (1990) relate the fractal growth patterns and changes in the
complexity with growth of colonies of Trichoderma viride with foraging strategies
for the exploitation of substrates with patchy and uniform food distributions.
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Smualler parts and structures of an organism are likely candidates for fractal analysis.
Leaf shapes are a good example and will be discussed in the next section. The
first use of D to quantify differences in leaf morphology is due to Vicek & Cheung
(1986). They use the divider method to calculate D for leaves from eight species
of trees. The leaf shapes range from relatively simple shapes of American basswood
(Tilia americana) to the more complicated White oak (Quercus alba). They find
significant differences between three groups of species, but are unable to
distinguish individual species. Tatsumi er al. (1989) use the box-counting method
to analyze root networks of common agricultural plants such as the garden pea
(Pisum sativum) and common millet (Panicum miliaceum). In zoology, Long (1985)
considers the use of fractal techniques to quantify complexity of sutures in deer
skulls (Odocoileus virginianus) and shells of various species of extinct ammonites.

There are two recent medical applications of fractal analysis using two
dimensional data. These suggest methods that might be of more general use in
the biological sciences. Caldwell er al. (1990) classify mammograms by their
fractal dimension. Mammograms are generally put into one of four categories
called “Wolfe grades™ based on the relative distribution of fat and visible ducts.
There is a suggestion that some grades may be at greater risk of developing breast
cancer. The authors find that trained radiologists have about an 85% agreement
in classifying mammograms. Using density as the third dimension and different
size grids to measure area and estimate the fractal dimension of the surface, they
find classifications based on D to have an 84% agreement with the radiologists.
This suggests an automated approach using D might be as effective as human
interpretation and also admits the possibility of a continuous measure of
mammogram structure that might provide a better assessment of cancer risk.
Similarly, Lynch er al. (1991) use fractal “signatures” to identify differences in
the texture of arthritic knee joints.

AN EXAMPLE

Lobed, cleft, parted, divided, erose, and undulate are just some of the terms botanists
use to describe the shape of a leaf or its margin. Even with so many verbal descriptors
natural variation can blur the distinction between shape classifications, and within
a classification a considerable degree of variation remains unquantified. Yet, differences
in the pattern and complexity of leaf outline can reflect taxonomic relationships,
wide-scale geographic trends, or adaptation to local and microenvironmental conditions
of importance to the organism and the scientist. Leaf outlines may not be obviously
self-similar, but fractal analysis produces estimates of D that may effectively
summarize important differences in shape and complexity. In this section I will
demonstrate the use of fractal analysis to quantify variation in the shape of leaf
outlines from several species in the genus Acer (maple trees).
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Materials and methods

Fight trees were chosen from a larger study on leaf shape and physiology by
Jessica Gurevitch. These included one individual of Acer mono (an East Asian
maple), two A. lobelii (native to Northern Italy), two A. saccharum (North American
sugar maple), two A. palmatum (varieties from Korea and Japan), and A. japonicum
(a Japanese species). All trees were in Harvard University’s Arnold Arboretum
and had experienced the same climatic regime during growth.

Eighteen to forty-eight leaves were collected from various parts of the canopy
of each tree. The leaves were gathered from locations selected to reflect the range
of canopy microenvironments (sun and shade, northern and southern exposure,
and different heights within the canopy) but were selected arbitrarily within
locations. For the purpose of this analysis, all leaves collected from a tree will
be treated as a random sample. Immediately after collection, the fresh leaves were
photocopied and the copies checked for distortion by overlaying the original leaf
on the copy — no differences were detected.

A computer imaging system was used to capture video images of the leaf copies.
Images were enlarged to fill as much as possible of the image field which consisted
of 512x480 picture elements (pixels). The x,y-coordinates of the outlines were
then collected using the automatic edge detection capabilities of IMAGE (Rohlf
& Slice, 1990).

The outlines were processed by FRACTAL-D ver 1.00 (Slice, 1989), a program
that estimates the fractal dimension of an outline using the divider method and
a set of user supplied step-lengths. The program randomly selects an initial reference
point on an outline and moves from point to point along the outline until the
straight-line distance to the reference point meets or exceeds that specified by
the current step-length. The number of steps is increased by one and the point
at which the step-length was exceeded becomes the new reference point. This
is repeated until the entire outline, up to the initial reference point, is traversed.
The length estimate is then made by multiplying the number of steps by the current
step-length. The process is repeated for each specified step-length, and the fractal
dimension estimated as 1-b, where b is the slope obtained from the regression
of log length estimate onto log step size.

Each outline was enlarged to the same area. Fifty step-lengths from 0 to 403
pixels were used. The maximum step length was chosen to ensure that even the
largest step lengths produced nonzero length estimates for every outline. The
remaining step-lengths were selected so that after being log-transformed they were
evenly spaced between 0 and In(403). Five different starting points on each outline
were used to determine the fractal dimension of each leaf.

The above procedure produced 1,270 estimates of D for 254 leaves from eight
trees of five species. The GLM procedure in the Statistical Analysis System, SAS®
(SAS Institute Inc., 1985), was used to carry out a nested analysis of variance
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to determine the effects of species, tree-within-species, and leaf-within-tree on
the fractal dimension of the leaf outlines. The SAS® procedure VARCOMP was
used to estimate the distribution of variability in D below the species level.

A naive analysis

Representative outlines of each species are shown in Figure 2. One can see
a progression of increasing complexity overlaid on a basic five-lobed pattern from
the fairly simple Acer mono through the intermediately complex A. saccharum
and ending with A. japonicum with its highly serrate margins and additional lobing.
These differences are reflected in the mean D values (Table 2) and in the analysis
of variance table (Table 3) where differences in D between species are highly
significant (p<0.0074). Differences among trees within a species and among leaves
within a tree are even more highly significant (p<<0.001 in both cases).

A. mono A lobellil A. lobellid
#5358 #3197 T MNi5Ta
A, succharum A. saccharum
#12565¢ 20645
% @%
A palmarum A. palmatum A, japonicum
#94951b #3901 #78438b
Fig. 2

Sample leaves from each of lhe eight trees of the genus Acer discussed in the text. Numbers are Arnold
Arboretum identification numbers
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Table 2
Sample means and standard deviations for D estimates based on step lengths
between 0 and 403 “units” (see text for details). Sample size, N, includes five
replicate measurements of each leaf. Actual number of individual leaves
shown in parentheses

Species Tree # Mean D Std. Dev. N

Acer mono

5358a 1.025 0.013 240 (48)
A. lobellii

37977b 1.028 0.011 145 (29)

31577a 1.036 0.016 235 (47)
A. saccharum

12565¢ 1.043 0.020 190 (38)

20645 1.056 0.020 145 (29)
A. palmatum

3901a 1.077 0.015 20 (18)

94951b 1.078 0.012 130 (26)
A. japonicum

78438b 1.123 0.017 95 (19)

Table 3

Analysis of variance table for D estimates based on step lengths between 0
and 403. Mean values are reported in Table 2

Source df S8 Fs p
species 4 1.0244 35.22 0.0074
tree (species) 3 0.0218 6.81 0.0002
leaf (tree(species)) 246 0.2625 15.99 0.0001
error 1016 0.0678
total 1269 1.3534

How the variability in D values is distributed across various levels of the analysis
is summarized in Figure 3. This shows the amount of relative variability attributable
to differences in trees within a species, leaves within a tree, and that due to
measurement error (the replicated measurements of D from random starting points).
The species level is not included since it is considered a fixed treatment effect
and differences at this level can, at least conceptually, be made arbitrarily large.

The pattern of the distribution of variability indicated by the variance
components is quite plausible; just over twenty percent of the variability is
attributable to measurement error, nearly sixty-five percent to variation of leaves

CSIC © del autor o autores / Todos los derechos reservados
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TREE(SPP)

LEAF(TREE(SPP))

ERROR

1 L L L J

0.0% 10.0% 20.0% 30.0% 40.0% ©50.0% 60.0% 70.0%

Fig. 3
Variance components for D estimates using all step lengths between 0 and 403

within a particular tree, and about fourteen percent to variation between trees
within a species. Similarly, the analysis of variance is reassuring in that species
with obviously different outline complexities (Fig. 2) have significant species-
level differences in the ANOVA. Higher D values are associated with more complex
outlines, and measurement error is sufficiently small so as not to obscure differences
between individual leaves.

Despite their apparent plausibility, a closer examination of the results reveals several
methodological inadequacies that could invalidate the results - hence the heading “naive
analysis.” Experience has shown that although these problems, plus a few more, are
obvious once revealed, they are sufficiently subtle as to be commonly overlooked.
Furthermore, they are sufficiently pernicious as not to easily admit a universal solution.

The main problems with the analysis are revealed in Figure 4. This figure shows
a plot of log mean length estimates versus log stepsize for each tree. (Actual D
estimates were made using individual, not mean, length estimates. Means are shown
here for simplicity.) Differences between species are readily apparent with the
highly complex Acer palmatum and A. japonicum forming a band across the top
of the plot and the simpler species occupying the lower portion.

Recall that in the discussion of fractals and the development of the technique to
estimate D, the key feature was that as one increased the resolution, i.e. decreased
step-size, the number of steps required to traverse the contour increased (Equation
1). This results in increased Jength measurements using smaller length scales. Notice,
however, in Figure 4 that for log step lengths smaller than about 2.0 the log of the
length estimates (and the original estimates) manifest a more or less consistent decrease.
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Fig. 4

Average log length estimate versus log step size for each tree. Species are distinguished by symbols: J =
Acer japonicum, L = A. lobellii, M = A. mono, P = A. palmatum, § = A. saccharum

The decrease in length estimates with decreasing step lengths in the figure is
the result of inappropriately chosen step sizes. One must limit the analysis to the
use of step lengths that are not only within the range of biological interest but
also do not exceed the resolving power of the available data. In this case, the
smallest step length for which one could obtain a meaningful length estimate was
originally limited by the video image to one pixel. However, each outline was
enlarged to a standard area to limit the effects of size differences on the analysis.
This increased the minimum resolution to about 1.5 pixels. That magnification
was not considered in the construction of the original set of step lengths, and the
pathological parts of the curves in Figure 4 are the result of using step lengths
smaller than the minimum resolution of the data. In such cases, every adjacent
point in the outline exceeds the step length and will increment the step count.
The resulting length estimate is simply the number of points in the outline multiphed
by the length of the step. Smaller steps give smaller lengths. Differing outline
complexities still give significantly different D, but the artifactual nature of the
curve at small scales requires they be omitted to obtain better estimates of the
fractal dimension. In fact, as will be discussed later, a minimum step size of ten
times the minimum resolution of the data is desirable. That would suggest a
minimum step size of 15.0 units (2.71 log units) in the present case.
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The importance of inappropriately small step lengths exceeds the relative number
of such values used in the analysis. This is because the estimate of D is based
on a linear regression and is thus especially sensitive to the influence of values
of the independent variable which are far from their mean. If the effects were
distributed randomly across the range of step lengths then D might be relatively
unaffected. However, the very nature of the problem concentrates the erroneous
length estimates on the left-hand side of the trajectory and thus magnifies their
effect on the estimated slope.

Similar problems can be associated with large step sizes. These and other
problems illustrated by Figure 4 will be discussed shortly. For now, we can redo
the analysis using only step lengths between 15.0 and 200 (2.71-5.30 log units)
to see what effect that has on the results.

Reanalysis

Mean values of D for each species based on the new analysis are given in Table
4. In each case, there is an increase in estimated mean D over the earlier results,
but the ranking of trees by D remains unchanged except for the Acer lobelii.
The elimination of the too-small step lengths has allowed the regression to fit
the curve more closely and produce better estimates of D. The values for Acer
saccharum, 1.163 and 1.188 are similar to the value of 1.18 found by Vicek &
Cheung (1987) for the same species.

Table 4
Sample means and standard deviations for D esimates based on step lengths
between 15 and 200

Species Tree # Mean D Std. Dev. N

Acer mono

5358a 1.140 0.027 240 (48)
A. lobellii

37977b 1.135 0.022 145 (29)

31577a 1.142 0.027 235 47)
A. saccharum

12565¢ 1.163 0.032 190 (38)

20645 1.188 0.040 145 (29)
A. palmatum

3901a 1.218 0.034 90 (18)

94951b 1.221 0.019 130 (26)

A. japonicum
78438b 1.309 0.029 95 (19)
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The use of the restricted step sizes has relatively little effect on the significance levels
in the analysis of variance (Table 5). Both effects of tree-within-species and leaf-within-
tree are still highly significant p<(.001, although the tree-within-species probability increased
from 0.0002 to 0.0008. The significance of the species effect is increased with its
probability level decreasing to 0.0061 from its previous value of 0.0074.

Table 5
Analysis of variance table for D estimates based on step lengths between 20
and 200. Mean values are reported in Table 4

Source df S8 Fs P
species 4 2.9048 40.28 0.0061
tree (species) 3 0.0541 5.79 0.0008
leaf (tree(species)) 246 0.7665 10.77 0.0001
error 1016 0.2940

total 1269

The nature of the differences between this and the earlier analysis 1s most revealed
in the estimation of the variance components (Fig. 5). Most of the variability in
the random effects is still associated with leaves within trees, but Figure 5 indicates
variability attributable to error has increased by 50%. In this case, error is the
difference in the estimation of D for individual leaves based on random starting
locations. This is understandable since repeated measures of the same leaf with
step lengths below the minimum resolution of the data must yield identical length
estimates. These estimates would act to pull the regression line down on the left
toward an essentially constant value and thus mask the variability due to starting
location found in the other parts of the curve.

TREE(SPP)

LEAF(TREE{SPP))

ERROR

0.0% 10.0% 20.0% 30.0% 40.0% B0.0% 80.0%

Fig. 5
Variance components of D estimates using step lengths beween 15 and 200
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Figure 4 revisited

There are a few more points that can be made from Figure 4. First, one notices
that length estimates for all species appear to converge to more or less similar values
for larger step lengths. As step length increases fewer steps are required to traverse
the outline until only one or a few steps can be made. Since the leaf outlines were
scaled to a common area, the upper limit for step lengths that require a nonzero
number of steps is about the same for all leaves. A similar number of large steps
for all outlines yields similar length measurements. In fact, at a certain scale the
leaf outlines are indistinguishable from circles. Unlike the convergence of length
estimates due to inappropriately small step lengths, this convergence is driven by
the actual shape of the leaves. Still, one may not wish to confound the general
roundness of all the data with more interesting aspects. The use of 200 pixels as
a reasonable upper limit was based on considerations discussed in the next section.

Another important consideration in fractal analysis is found between the minimum
resolution suggested for this data and the upper limit where lengths converge.
The path taken by each species differs not only in slope but in curvature as well.
Length estimates for Acer japonicum, for instance, are nearly identical to those
for one of the A. palmarum trees in the area of a log step length of 2.7, but its
length estimates fall off in a more linear manner. The A. palmatum trees follow
a more curving trajectory.

These differences in trajectories of log length estimate through the log step
lengths indicate that the assumed linear relationship within leaves does not apply.
A closer examination of the frajectories reveals that the deviation is not
haphazard and is itself open to interpretation. In species that are represented by
more than one tree, i.e. Acer palmatum, A. saccharum, and A. lobelii, the conspecific
trees have trajectories that appear more similar to each other than to those of
other species. For all species, the greatest agreement in trajectory is found in
the area of smaller step sizes. The trajectories are rather flat and species are
distinguished by their relative position on the log length axis, Yet, at the larger
step lengths, length estimates tend to converge. The differences in D between
species are thus due to differences in trajectory from the relatively flat, small
scale portion to the similar large scale results. The differences we perceive in
the complexity of leaf outlines is therefore concentrated at intermediate scales
where the degree and pattern of “toothing™ or additional lobing is manifest.

SPECIAL CONSIDERATIONS

The previous discussion of the maple leaf analysis emphasized a few of the
methodological problems that arise in a fractal analysis. I would now like to present
an overview of these and other problems that are of importance to any study



182 DENNIS E. SLICE

using the fractal dimension. Unfortunately, there are no universal rules for addressing
these problems. The most desirable way to proceed will generally be dictated
by the nature of the data or by experience with preliminary analyses. Emphasis
is placed on outline analysis using the divider method, but the questions can
generally be extended to any fractal analysis technique.

Data resolution

The precision of the data used for a fractal analysis is of more importance
than in most other types of analysis. This is because D involves the examination
of data over a range of scales. A precision that would be adequate for simple
measurements at one scale may be insufficient at smaller scales to allow stable
estimates of the fractal dimension. Of course, one is limited by the nature of
the data and the equipment available for digitizing, but every effort should be
made to collect data with sufficient resolution to ensure no loss of information
within the range of scales of interest.

resolution = .00

resolutiog = 0.10

resolution = 001

Fig. 6
A unit circle digitized using resolutions of 1 (top), eq 1110 (middie), and eq 1/100 (bottom). When
the resolution of the digitizer is close to the “size” of the object the pattern of the digitizing grid
can impose artificial structure on the data
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Figure 6 shows the results of the simulated digitizing of a circle at several
resolutions. The form of the data at the lowest resolution (Fig. 6, top), where the
resolution is on the same scale as the radius of the circle, obviously does not reflect
the smooth shape on the original circle. It is instead dominated by the structure
of the underlying digitizing grid. Increasing the resolution of the digitizer by a
factor of ten still does not produce results that would be judged adequate, at least
by eye (Fig. 6, middle). Only when digitizing resolufion is increased to one one-
hundredth the radius of the circle does its actual structure not appear dominated
by that of the grid. This comparison suggests at an intuitive level a digitizing resolution
of two orders of magnitude finer than the outline radius for closed, roughly circular
contours. While this may seem a rather trivial exercise, it is easy to lose sight of
these types of problems once the data have been neatly stored in a computer file.

Step size distribution

Another fundamental question that must be asked is what step sizes should
be used? This is actually three questions in one: over what range will the step
lengths be distributed, how many steps lengths should be used, and how should
that number of steps be distributed over that range? Unfortunately, there is no
simple answer to any of these.

The range of step lengths to use is a function of the resolution of the digitized
data and the range of scales of interest to the researcher. The latter is not easily
quantified. One may be interested in characterizing leaf shape from the scale of
the whole leaf down to that of the smallest serration or from the level of a single
marginal footh down to that of the cellular structure of the margin. While both
of these ranges are intuitively obvious, they are a bit more difficult to quantify,
especially for complex forms. The lower limit at which the data can be analyzed
will usually be set by the digitizing process. In any case, one would like to
determine the range of step lengths in a manner independent of a particular outline
or data set so that meaningful comparisons can be made to results obtained from
other studies and data sets.

One approach to more data-independent determination of step range is to use
a generalized model and base step-range selection on the model instead of the
actual data. In the case of leaves or other closed outlines, a reasonable model
is a circle. A data range that gives appropriate results for the circle, D=1, should
then give results for the data that describe their how their complexity differs from
that of a circle with a fair degree of accuracy.

The circle has a convenient property that especially lends itself to being a model
for the fractal analysis of closed outlines. The exact number of steps, N(A), of
length A required to traverse a circle can be obtained from the formula for the
side length of an n-sided polygon inscribed within the circle:
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A = 2R sin (w/n),

where R, is the radius of the circle and n the number of sides. From this equation
one can determine the formula for the fractal curve that would be obtained using
the divider method:

This curve is plotted for a range of step lengths (0,2R] in Figure 7 and shows

A
L=NQ) = —————
sin”! (A/2R)

that the assumed linear relationship between log length estimate and log step
length of Equation 3 is badly violated for step lengths approaching the diameter
of the circle. The curve is approximatly linear only at relatively small step lengths.

1.5

IN(LENGTH)
P

0.5

—4.00 -275 -1.50 -0.25 1.00
In(STEP)

Fig. 7
Fractal estimation curve for a unit circle. The linearity assumed in the estimation procedures is
badly violated for step lengths approaching the diamter of the circle

One approach to measuring the fractal dimension of a circle would be to use
only step lengths up to the length of its radius. Extending this to the outlines
of real objects and assuming they have been scaled to common area, one could
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set as the upper limit for step length the radius of a circle of the same area,
Apax = VA/T, where A is the area. This length would require six steps to cover
the circle and at least that many for more complicated outlines since a circle
has the shortest perimeter for a given area. This is the basis for choosing a
maximum step length of around two hundred pixels used in the reanalysis of
our leaf data which eliminates a fair amount of the region at larger step sizes
in Figure 4 where the length estimates converge. For nonstandardized data one
might use the radius of a circle with the same area as the smallest outline.

The smallest step sizes that can be used will often be limited by the resolution
of the digitizer. While this would seem to suggest that the minimum resolution of
the digitizer would be an appropriate limit for the smallest step length, simulations
show that orientation on the digitizing grid can effect length estimates at small
scales (Slice, unpublished). The length estimates of straight lines digitized through
a series of angles with respect to the digitizing grid show effects of orientation
that are a function of the cosine of the angle. These effects are negligible for step
lengths ten times the scale of the digitizing resolution, and I have adopted that as
the minimum step length for my own work. Using this “rule of thumb”, the minimum
step length for data scaled to a common area would be ten times the resolution
of the digitizer multiplied by the largest scale factor used on the data.

Applying these criteria to a digitized circle results in average D estimates of
0.995 with a range of 0.990 to 0.999 - very close to the theoretical value of 1.

If the data under consideration are perfect fractals, one need only use two step
lengths to determine D. This is generally not the case. The inherent variability
in most data requires multiple step lengths be used to ensure good estimates.
The exact number to use is not readily apparent. If the analysis is carried out
by hand by actually stepping around a drawing or map with a divider, then the
laboriousness of the process will surely limit the number of step lengths that
can reasonably be used. For computer analysis, this is less of a problem and the
required number of steps is a question of how thoroughly one wishes to cover
the step range. Too few steps could prevent the detection of interesting
nonlinearities and too many simply consume computer time while not producing
additional useful information. The exact number is probably best determined by
examining plots of the length-step relationships of subsamples of the data. The
fifty step lengths used in the leaf analysis were able to describe the important
features of the fractal estimation curves and identify problems with the range
of steps. The twenty-two lengths within the appropriate range appear to be sufficient
to characterize the estimation curve for different leaves.

Finally, one must decide on the distribution of the step lengths across their
range. The simplest decision would be to evenly space the steps between the
minimum and maximum values. The estimation process, however, operates on
log transformed results and a set of evenly spaced step lengths, when log
transformed, will be highly concentrated in the lower values of the range. This
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will tend to give more weight to the greatest lengths in determining the slope
of the regression line. Alternatively, one can distribute the step lengths so that
after log-transformation they are evenly distributed across the range of log step
lengths.

Starting location

The point on the outline from which steps are counted can have an effect on
the estimation of D. In some cases, an outline may have curves positioned in just
such a way that they are included in the length estimate when starting from one
point, but not when starting from another. Numerous situations like this are likely
to be found in any reasonably complex curve, but are probably more important
when they involve larger features since they mainly effect results for larger step
sizes which in turn have considerable influence on the estimate of D.

The simplest way to address the effect of starting point on D is to analyze
each curve using a number of different starting locations. The mean of the resulting
estimates can then be used as the estimate for the fractal dimension of the contour
and their variance and distribution used to assess error due to starting location.
The importance of this type of effect is seen in Figure 5 where a great proportion
of within-tree variability in D estimates (over 30%) is found within leaves.

The number of different starting points to use will depend largely on the data.
The smooth, symmetric structure of a circle is such that little if any replication
would be required. In the leaf analysis, five estimates were used for each leaf.
This number was determined primarily by resource constraints. As a general
practice, one could run a series of analyses on a sample data set using different
numbers of random starting locations and plot the within-leaf sample variance
versus number of replicates. One expects the variance estimate to vary rather
widely at first then converge on some parametric value. The number of
replicates to use could then be determined as the minimum number for which
the within-leaf variance is deemed sufficiently stable.

Standardization

To standardize or not to standardize? That is an important question. The reason
is that consideration of whether or not to standardize closed outlines to a common
area brings up questions about the underlying generating process. Nonfractal outlines
with similar “shapes™ have a constant perimeter-area ratio (actually, one
considers the ratio of the perimeter to the square root of area to achieve a unitless
number). In the case of circles, this ratio is always 2/Nm. For squares, it is 4,
The situation is different for fractals. The area of a plane enclosed by a fractal
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outline is constant, and increasing the resolution of its measurement will result
in convergence to a finite value (this implies the box-counting method). Recall,
though, that as measurement resolution increases the length of a truly fractal
perimeter will diverge to infinity. This relationship is described by an equation
due to Mandelbrot (see Feder, 1988) as p = Perimeter'/PArea~!/2, where p is
constant for similar shapes, and perimeter and area are determined at some fixed
step size. This equation can be used to formulate a relationship between perimeter
length and area that can be used to estimate the fractal dimension of outlines,

P (8) = C51-D) VA(8)P. 4)

Here C is a constant and P(8) and A(8) are perimeter and area determined at
a sufficiently small step size, 6.

There are two important points concerning perimeter-area relationships.
First, while previous methods used differences in length estimates at different
step sizes to estimate the fractal dimension of a single outline, the use of the
perimeter-area relationship examines a number of outlines of different sizes to
estimate D. One must therefore have access to a sufficiently broad range of outline
sizes to effectively use this technique, and they must be assumed to have similar
fractal shapes. One would, of course, not want to standardize the data in this
case (the standardization is actually built into Equation 4). The second point is
that this approach deals more with using the outlines to study the generating
process than the outlines themselves. This may be appropriate for using the shapes
of rain clouds to study atmospheric processes (Lovejoy, 1982) but perhaps not
for biologists interested in quantifying the complexity of a particular part of a
plant or animal.

When the complexity of a structure is the focus of study, one will probably
want to standardize the data. The inverse of the scale factors can be retained as
“size” variables and related to differences in complexity. For example, small, very
young leaves could have the same shape as larger specimens or they could become
more (or less) complicated as they matured. If they were the same shape and
small and large individuals differed only by an isometric scaling, standardization
would produce similar estimates of D. If the linear relationship assumed in Equation
3 does not hold, then standardization becomes necessary. Otherwise, different
parts or proportions of the nonlinear curve will appear in the range of the log
step lengths used. This can result in quite different D estimates for shapes with
the same structure.

Another probably frequent relationship between size and shape would be small
structures differing from larger ones by simple atfine transformations. The utility
of standardization in these cases would be questionable,
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Nonlinearities

The fundamental assumption in the estimation of the fractal dimension as
outlined above is the linear relationship between log length estimate and the
log of the scale used for measurement. Quite different log length-step
relationships can produce a given D value; the curve may be linear, it may
have a lower slope for smaller step lengths and a compensatory higher slope
at larger scales, or vice versa. This makes it highly desirable to examine the
log-log plots to assess the importance of any nonlinearitics. If any are present
one may wish to perform additional analyses that would isolate linear regions
of the curve and treat them separately. Alternatively, the trajectories may not
be sufficiently similar across a sample to allow for such a partitioning. In this
case, one would have to focus on interpreting the differences in curves for
different specimens or groups.

This kind of effect was seen in the maple leaf data. The leaves generally have
curves that were quite variable between groups. Some species showed rather flat
overall relationships while others were more sloped at intermediate scales. All
tended to converge to similar length estimates for higher values, but at different
rates depending upon the initial location and structure of the curve. Other data
could show consistent slope patterns for one range of step sizes, but differ at
another. While there is nothing one can do to remove any nonlinearities (they
are a property of the data itself), one must be aware of their presence and allow
for their identification and possible interpretation.

CONCLUSION

The calculation of the fractal dimension is not as simple as weighing or
measuring the length of an object, and being a summary measure, D can mask
underlying patterns and relationships that may be important. Advances in data
collection and computing methods will make the former increasingly less of a
problem. As to the latter, neither do lengths have information about the relative
contribution of constituent parts to the length of the whole, and weights tell nothing
of the distribution of mass. In this respect they are no more adequate than D.
Even in the early stages of its development, the application of fractal analysis
to the study complexity in biological shapes has coniributed to our understanding
and quantification of things as diverse as the distribution of eagle nest sites, the
morphology and growth patterns of whole organisms, and the shapes of parts
of organisms such as the leaves discussed here. While D is not as frequently
used a measure as grams or meters, the ubiquity of complexity in biological
structures and its potential importance suggest it may become an important part
of the language of biological shapes.
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ABSTRACT

Qualitative studies of ontogenetic allometry are useful both for examining
functional and ecological consequences of shape change during growth and for
inferring historical processes that potentially explain the diversity in adult form
among closely related organisms. Allometry of body form from a single sample
of threespine stickleback from Cook Inlet Alaska is studied here using landmark
data. Landmark-based morphometrics currently provide the most powerful
techniques for studying shape. Digitized landmark configurations for cach
specimen were superimposed using the generalized resistant fit algorithm (Rohlf
and Slice 1990). Variation in size and shape among the superimposed specimens
was used to calculate trajectories of allometric shape change termed allometry
paths. Superimposition of the allometry paths on the corresponding landmarks
provides a simple, efficient, and intuitive approach for studying qualitative patterns
of allometry. The method is complimentary to other landmark based methods
that have studied allometry by superimposing outlines of mean shape forms from
a series of discrete size classes. Interpretation of the allometry paths are compared
between the set of specimens fit by the generalized resistant fit and the set of
specimens fit by the two-point registration. It is suggested that if the generalized
resistant fit is able to produce a reasonably “correct” superimposition, allometry
paths calculated from the residuals from the resistant fit are more easily interpretable,
in terms of ecological and functional implications, than the corresponding allometry
paths from a two-point registration.
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INTRODUCTION

Change in body form during growth (ontogenctic allometry) is an important
property of all organisms because of the many biomechanical, physiological,
behavioral and ecological variables associated with body size. This study
examines a new graphical method for studying allometry, one that superimposes
estimated paths of shape as a function of size change onto a set of landmarks
that describe body form. The method described here, an extension of the graphical
based analyses of shape prominent in landmark-based morphometrics, is a simple,
efficient, and intuitive approach for interpreting qualitative patterns of allometry
in organisms. The method is applied to a cross-sectional ontogenetic series of
the threespine stickleback, Gasterosteus aculeatus.

Threespine stickleback are widely distributed throughout much of the lowland
holarctic (Bell 1984). Variation in body form is common and much of this variation
is microgeographic in scale. Body form may be very different in adjacent lakes
or streams (Lavin & McPhail, 1985; Reimchen er al., 1985, Francis et al., 1986),
within the same stream (Baumgartner, 1986, 1992), or within the same lake (Larson,
1976; McPhail, 1984, 1992; Baumgartner et al., 1988). Threespine stickleback
have three general life-history forms, a marine form inhabiting open ocean or
estuaries year round, an anadromous form that enters freshwater streams only
to breed and a resident fresh-water form. Allozyme evidence (Withler & McPhail,
1985) is consistent with the hypothesis, based on extensive zoogeographic evidence
(e.g. McPhail & Lindsey, 1970; Bell, 1976, 1984), that much of the phenotypic
variation among freshwater stickleback along-the pacific coast of Canada and
Alaska has been independently derived due to repeated colonization from an
anadromous ancestor following the last glaciation. Much of the variation among
populations can be considered phylogenetically and statistically independent, an
important property for comparative studies (Harvey & Mace, 1982; Pagel & Harvey,
1988; Harvey & Pagel, 1991; Ridley, 1983; Felsenstein, 1985, 1988). Diversification
of threespine stickleback into numerous body forms likely reflects trophic and
locomotor adaptations to local environments (Lavin & McPhail, 1985, 1986, 1987,
Taylor & McPhail, 1986). Comparisons of patterns of ontogenetic allometry among
populations might be useful for studying the microevolutionary dynamics of small
phenotypic radiations. The analysis in this paper is a preliminary study of
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ontogenetic shape change a in radiation of threespine stickleback from Cook Inlet,
Alaska.

One of the appealing aspects of many of the landmark-based methods of shape
analysis is the graphical approach for exploring shape change, perhaps best
exemplified by the thin-plate spline (Bookstein, 1989, 1991). Simple
superimposition of specimens is a first step in exploring shape variation within
and among samples (Rohlf & Bookstein, 1990). Relative warps (or an
analogous principal components analysis of the 2px2p covariance matrix of
Procrustes residuals) is an elegant method to explore factors of within
population covariation among the landmarks (Bookstein, 1991; Rohlf, this
volume). Alternatively, one can explore the rclationships of landmark variation
with external variables such as geologic time (Bookstein & Reyment, 1989)
or ontogenetic time (Bookstein, 1991). The covariation between landmark variation
and size, or allometry, can be approached by relative warps, where presumably,
if general size is a factor, one of the relative warps will model this (Bookstein,
1991) or by explicitly treating size as a covariate. There are many goals in
studies of allometry. Often, univariate studies of allometry seek to test a priori
quantitative hypotheses of the relationship between two variables. Multivariate
studies of allometry are useful as qualitative descriptions of size correlated shape
change, which may then be used to form hypotheses that relate to the biology
of the organism. Traditional and recently developed methods in multivariate
allometry, including the methods of Jolicouer (1963), Mosiman & James (1979)
and Darroch & Mosiman (1985), involve the interpretation of a table of allometric
coefficients, component scores, or ratios., With a large number of variables,
visualizing shape change of the whole form measured (organ or organism)
becomes tedious and increasingly difficult. Graphical, landmark-based methods
that provide a visual description of allometric shape change allow a simpler
and more intuitive approach for exploring allometry than offered by distance-
based methods.

Allometry paths can be used on data superimposed by any Procrustes
technique. In this paper, I compare the functional and ecological implications of
allometry paths superimposed on specimens fit by the two-point registration and
specimens fit by the generalized resistant fit. The generalized resistant fit is one
of several Procrustes superimposition methods (Rohlf, 1990; Chapman, 1990;
Goodall, 1991), all of which superimpose landmark configurations by rigid
translation to a common location, rigid rotation to minimize some criterion of
fit, and scaling the configurations to a common size. The brief introduction to
superimposition methods that follows describes the methods in two-dimensions
(X and Y coordinates) although it is easily extrapolated into higher dimensions.
Three general types of Procrustes superimposition are the two-point registration,
or edge superimposition (Goodall, 1991), optimal (least squares) superimposition,
and resistant (repeated medians) superimposition. The two-point registration fits
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specimens by matching a single, homologous edge, or baseline, among the set
of configurations. Specimens are translated to center the baselines, rotated to align
the baselines horizontally and scaled to make each baseline unit length
(Bookstein, 1986, 1987, 1991; Bookstein ef al., 1985). The transformed coordinate
values of the non-baseline landmarks are called shape coordinates (Bookstein et
al., 1985). In least squares superimposition, digitized specimens are superimposed
by centering the configurations at the origin, scaling the configurations so that
the sum of the squared distances between all landmarks and the origin equals
unity, and rotating each configuration to minimize the sum of the squared distances
between homologous landmarks. The configuration centroid is the mean X and
Y coordinate value over all landmarks. The landmark centroid is the mean X
and Y coordinate value at each landmark. The configuration of landmark centroids
is the mean configuration. The residual difference between specimen coordinate
values and landmark centroids are termed Procrustes residuals. Least squares
superimposition has the undesirable property of distributing local shape differences
among objects evenly across all landmarks (Siegel & Benson, 1982; Siegel, 1982;
Benson, et al., 1982; Olshan, et al., 1982). The resistant fit effectively resists
this global spread of local residual variation if most of the shape differences occur
at fewer than half of the landmarks (Siegel & Benson, 1982). Resistant
superimposition differs from least squares superimposition in the use of repeated
medians to calculate translation, scaling and rotation parameters (see Siegel &
Benson, 1982; Rohlf, 1990; Rohlf & Slice, 1990 for the detailed methodology).
As in least squares superimposition, residual coordinates from the configuration
mean are Procrustes residuals.

METHODS

Sample

The sample was collected during summer 1990 from Picnic Lake on the Kenai
Peninsula near Cook Inlet, Alaska. The specimens were collected with minnow
traps, baited with sharp Cheddar cheese and set overnight near vegetation within
a few meters of shore. The trapped sticklebacks were anesthetized in the field
with MS-222 (Tricaine Methanesulfonate) and fixed in 10% formalin. In the
laboratory, the specimens were stained with Alizarin Red S and preserved in 50%
isopropyl alcohol. From the large sample, 66 male specimens and 10 unsexed
fry were chosen for the analysis to attempt to represent the size range of the
sample. Sex was scored after measuring by making a small slit in the abdomen
and inspecting the morphology of the gonad. Fry were not sexed because of the
undifferentiated gonad at this small size.
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Measurements

Fifteen landmarks on each fish were digitized (Fig. 1). These landmarks are:
tip of upper jaw (premaxilla) (LM1), posterior border of the supraoccipital on
the dorsal midline (LM2), anterior junction of the first dorsal spine with the dorsal
midline (LM3), anterior junction of the second dorsal spine with the dorsal midline
(LM4), junction of the first fin ray of the dorsal fin with the dorsal midline (LM5),
insertion of the dorsal fin with the dorsal midline (LM®6), origin of the caudal
fin on the dorsal midline (LM7), caudal border of lateral line (LM8&), origin of
the caudal fin on the ventral midline (LM9), insertion of the anal fin on the ventral
midline (LM10), junction of first fin ray of anal fin on the ventral midline (LM11),
caudal tip of posterior process of pelvic girdle (LM12), posterior tip of
ectocoracoid (LM13), anterior border of ectocoracoid on ventral midline (LM14),
posterior edge of angular (LMI5). These landmarks summarize the two-
dimensional form of the lateral aspect of the fish. LM2, ILM12, and LM14 cannot
be located from a lateral view of the specimen and were pinned with small insects
pins. The caudal border of the dorsal and anal fins were also pinned to aid in
more precisely identifving these landmarks.

Fig. 1
Anatomical positions of the fifteen landmarks analyzed in this study

The landmarks were digitized using a CCD video camera with a 70mm macro
lens and MorphoSys software on an IBM-compatible personal computer. The
digitized coordinates were superimposed with the generalized resistant fit option
of the Procrustes superimposition software, GRF (Rohlf & Slice, 1990).
Superimposition methods have been criticized because of the number of different
loss functions one may use to fit specimens (Lele, 1991). This critique is not
unique to superimposition analyses but applies, in general, to all statistical methods.
Different superimposition methods can indeed produce different fits (Chapman,
1990). This caveat should make one cautious about the technique used and, perhaps,
explore differences among the loss functions, but does not justify rejecting these
powerful techniques.
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Allometry Paths

Several, generally complimentary, methods are available for describing
allometry graphically. In general, allometry can be described by superimposition
of outlines of the mean shapes of discrete size classes (e.g. MacLeod & Kitchell,
1990), age classes (e.g. Bookstein, 1991), or life-history stages (e.g. Reilly, 1990),
or by allometric trajectories at each landmark. The outline method is useful if
one wants to compare shape differences at specific ages or life-history stages.
Trajectories are most useful if one wants a simple picture of allometry without
any information about shape at specific stages.

Qutlines or trajectories may be calculated from either a series of mean shapes
from different size classes or from a regression that estimates mean form at a
specific size. Previous studies of landmark-based allometry, using either outline
or trajectory methods, have used only the mean form at discrete ontogenetic
stages to determine the outlines or trajectories. Olshan er al. (1982), for example,
studied longitudinal growth of the cranium of an individual macaque by
superimposing the digitized landmarks of the skull at two different ages using
the resistant fit algorithm developed by Siegel & Benson (1982). Residual vectors
drawn between corresponding landmarks for the two ontogenetic stages
represented the trajectories of growth related shape changes within the
individual. Similarly, Reilly (1990) analyzed cranial shape differences among
larval, metamorphic and post-metamorphic salamanders. Mean landmark
configurations of multiple specimens within a single ontogenetic stage were
compared between stages pairwise using resistant fit Procrustes superimposition.
Reilly combined an outline of the ontogenetically earlier stage with a residual
vectors to represent allometric shape differences. MacLeod & Kiichell (1990)
superimposed outlines of mean shapes from eight size classes of Eocene
foramanifera, although tests of linear allometry proved to be insignificant (see
below). Finally, Bookstein (1991) examined calvarial growth in the rat by
superimposing outlines of mean forms of eight age classes using the two-point
registration.

Division of a continuous growth series into discrete stages is most useful if
one is interested in comparing shapes of specific stages, as in Reilly (1990) or
Bookstein (1991). If allometry is nonlinear, arbitrary division of a continuous
series info discrete size classes can potentially lose useful allometric information.
This problem is most acute if only two size classes are compared. Division of
the size series into multiple size classes reduces this information loss and should
converge on trajectories estimated from regression. This can easily be seen by
comparing figure 2, the allometric trajectories calculated from quadratic
regressions of shape coordinate on log centroid size, for the sample of 164 rat
skulls (ignoring longitudinal information) with figure 7.6.7a of Bookstein 1991.
The initial roll back and subsequent roll forward of the vault is readily
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demonstrated with the allometric trajectories. It should be apparent that if mean
shape for a size class is calculated from only a few specimens, outlines or
trajectories calculated from these mean forms can potentially give misleading results
because of poor estimation of means.

A
3

.
----------

Fig. 2
Quadratic allometry paths fit through combined sample of 21 rats measured at eight growth stages.
Compare to figure 7.6.7a of Bookstein (1991)
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Trajectories and outlines describing allometric shape change can be calculated
easily and efficiently by independently regressing the two Procrustes residuals
at a landmark (or shape coordinates if one is superimposing via the two-point
registration) on S, where S is centroid size, the sum of the squared distances
from each landmark to the centroid of its configuration. Centroid size is a useful
proxy for General Size (Bookstein et al., 1985) because, on the assumption of
equal and uncorrelated variation of residuals from landmark centroids, the
appropriate null model is one in which Centroid Size is orthogonal to the space
spanned by the residuals (Bookstein, 1986). I have termed a trajectory calculated
from regression of Procrustes residuals on S an allometry path (AP). After estimating
regression paramcters of both X and Y Procrustes residuals, the AP for a landmark
can be reconstructed by a series of points whose coordinate values, (X;,Y;), are
the expected values at S over the range of S for the specimens in the analysis.

Variations

A potential caveat in reconstructing AP’s results from the many regression models
one might chose to estimate regression parameters. The thirty scatterplots of S
(abscissa) and all thirty Procrustes residuals (ordinate) from the fifteen landmarks
in this study are illustrated in figure 3. Because the expectation of covariation
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Scatterplots of Procrustes residuals (ordinate) and Centroid Size (abcissa) for the fifteen landmarks
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between Procrustes residuals and S is zero, isometry would be characterized by
a scatter with no relationship between residuals and centroid size. Perusal of figure
3 indicates that allometry at these landmarks is common. Furthermore, shape appears
to vary both linearly and nonlinearly with size. Some nonlinear allometries look
asymptotic while others look quadratic. Reconstruction of AP’s should take into
account potential nonlinear allometries of landmarks. Several commonly used
methods to estimate linear regressions are ordinary least squares, major axis and
reduced major axis (Kuhry & Marcus, 1977; Harvey & Mace, 1982; Seim &
Sacther, 1983; Ricker, 1985; Rayner, 1985; McArdle, 1988; Riska, 1991). Ordinary
least squares regression of the Procrustes residuals (and shape coordinates) on
log transformed centroid size was used in this analysis as the independent variable,
S, is an explicitly derived proxy for the latent General Size factor that explains
allometries (Bookstein et al., 1985; Crespi & Bookstein, 1989; Bookstein, 1991).
Two alternative linear methods that are not employed in this study but are
more in the spirit of resistant Procrustes superimposition are:

l) minimize i (Y _ b!ogS) where b =i(log)’| —median (logY)) ((logS, —median (logS)) and
= : ! ) {logS, —medion (logSF) :

2) robust regression using repeated medians (Siegel 1982). Non-linear allometries
estimated from polynomial regressions have been explored but are not reported
in this paper. Linear, quadratic and cubic regressions are implemented in a program
written for the Macintosh.

RESULTS

The 95% confidence ellipses on the bivariate distribution of Procrustes residuals
for each of the landmarks are illustrated in figure 4. The most variable landmarks
are the tip of snout and angular, the landmarks of the ventral border (excepting
the anterior tip of the ectocoracoid), and the landmarks of the caudal peduncle.
The landmarks of the caudal region vary much greater in the anteroposterior direction
than in the dorsoventral direction. Of particular interest, variation in the snout (LM1)
is large and principally in a anterodorsal-posteroventral direction, while variation
at the caudal tip of the lateral line (ILM8) is nearly all in the anteroposterior direction.
Figure 3 shows the scatterplots of all thirty Procrustes residuals against centroid
size. Using standard F-tests (Sokal & Rohlf, 1981), a least squares regression of
the Procrustes residuals on log S is significant (a = 0.05) for 21 of the 30 coordinates
and significant linear allometry occurs in 13 of the 15 landmarks. Only LM3 (first
dorsal spine) and LM4 (second dorsal spine) do not show significant allometry in
the size range examined here. Perusal of the scatterplots indicate that shape change
at many landmarks is nonlinear. A higher order (quadratic) regression is significant
for 24 of the 30 Procrustes residuals and explains significantly more variation than
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a linear fit in 10 Procrustes residuals, six of which have significant linear fits.
Significant allometry, either linear or quadratic, occurs in all landmarks except LM3.
The strongesi allometries occur at the landmarks of the head, median fins, caudal
peduncle, and ventral border.
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Bivariate confidence ellipses of residual variation of fifteen landmarks for 76 specimens
superimposed by generalized resistant fit

Allometry paths calculated from the Procrustes residuals are illustrated in figures
5. The strength of allometry is indicated by the length of the AP. The magnitude
of the AP includes only the line segment; the arrow indicates only the direction
of shape change from small specimens to large specimens. It should be emphasized
that errors in the estimation of the regression parameters effect both the length
and the direction of the AP. Figure 5 suggests a number of significant trends in
ontogenetic allometry of the picnic lake stickleback. First, the snout tends to lengthen
both anteriorly and dorsally during ontogeny. Relative head size expands both dorsally
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Linear allometry paths at fifteen landmarks for 76 specimens superimposed by the generalized
resistant fit
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(greatly) and ventrally (moderately). Body depth increases ventrally (greatly) at
the mid-body and both dorsally and ventrally at the median fins. The insertion of
the dorsal and anal fins migrate caudally. Finally, the caudal peduncle both shortens
in length and increases in depth (equally in the dorsal and ventral direction).

DISCUSSION

Perhaps the most interesting pattern of variation indicated in Figure 4 is the
large dorsoventral variation in the snout, which is strongly correlated with size
change (Fig. 3) and the extremely small dorsoventral variation at the caudal tip
of the lateral line. The position of the mouth is highly variable among
populations of threespine stickleback and the pattern of interlocality variation is
similar to the intralocality variation indicated in this study (Walker in prep.).
Variation in mouth position is well known in fish (Keast & Webb, 1966). In
threespine stickleback, Hart & Gill (1992) have suggested that dorsoventral variation
in mouth form may indicate foraging differences among populations: benthic and
stream forms having more ventral mouths and limnetic forms having more dorsal
mouths. The small dorsoventral variation at the posterior tip of the lateral line
was generally expected as large variation in this direction might limit swimming
performance. Additionally, the small dorsoventral variation at the posterior tip
of the lateral line may indicate the general efficacy of the generalized resistant
fit to superimpose these specimens into a biologically meaningful fit.

The patterns of allometry suggested by the allometry paths has interesting
implications both for the ecology of the population and for interpretation of
historical changes from a marine ancestor. In general, the head region expands
during growth, which may improve trophic performance (acquiring and handling)
of larger benthic prey by either increasing mouth gape and buccal volume or
allowing for greater muscular development (Lavin & McPhail, 1985, 1986).
Baumgartner et al. (1988) demonstrated patterns of interspecific shape variation
in the head between a benthic-limnetic sympatric species pair of threespine
stickleback very similar to allometry pattern in this sample. Comparisons of
interpopulation differences in body form from multiple localities (Walker, in prep.)
indicate that not only is interlocality variation similar to the pattern of allometry
described by the allometry paths, but also that the anadromous form is very similar
in head form to the smaller individuals of this sample. A possible exception to
this increased benthic performance during growth is the anterodorsally directed
allometry of the premaxilla.

Shape changes in the mid-body and caudal region are also in the direction of
increased benthic design. It has been demonstrated theoretically, experimentally,
and comparatively, that performance for rapid starts and turns, functions
important for both escaping predators and foraging in complex habitats, is
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augmented by deep bodies, caudally placed insertions of the median fins and
short, deep caudal peduncles (see Webb 1982, 1984; Weihs, 1989 for review).
These changes are precisely what is observed in the cross-sectional ontogeny of
this sample of threespine stickleback. During growth in this population, the body
deepens, the median fins migrate caudally, and the caudal peduncle both
shortens and deepens. Inspection of individual landmarks reveal that, whereas,
in the caudal peduncle region, dorsal and ventral landmarks contribute equally
to the relatively shorter, deeper peduncle, the increased depth of the mid-body
occurs largely from stronger allometry of the ventral landmarks. A study of the
comparative locomotor performance between resident freshwater and anadromous
threespine sticklebacks (Taylor & McPhail, 1986) demonstrated significantly greater
fast start performance, deeper bodies and deeper caudal peduncles in freshwater
specimens. Whether this pattern of allometry reflects natural selection of growth
parameters or a phenotypically plastic response to environmental stimuli remains
untested.

Concerning the method of allometry paths itself, these trajectories provide a
method of graphically displaying and exploring biologic implications of allometric
shape changes in body form that is complimentary to the outline method
successfully used by Rielly (1990), MacLeod & Kitchell (1990) and Bookstein
(1991). An outline method is more informative if the comparison of specific stages
in the life-history of the organism are desired. Outlines may be misleading, however,
if few size classes are compared and allometry is nonlinear or if the mean form
of the size classes are not well estimated due to small sample sizes. In addition,
superimposed outlines from numerous size classes may become cluttered with
intersecting lines. Finally, superimposed outlines do not indicate the direction of
shape change, although this may be easily resolved by labeling the lines with
the size class as in Bookstein (1991). Allometry paths are useful for graphically
displaying continuous size correlated shape change that may be easily compared
among populations. For example, the superimposition of group mean forms and
AP’s for each group, with each group represented by different colors, offers a
simple, exploratory method for comparing both mean shape and allometric
differences among populations or species.

The use of the generalized Procrustes (either least squares or resistant) methods
allow an efficient and intuitive approach for describing general patterns of allometric
shape change in an organism. The emphasis of this approach was to develop a
method for easily interpreting the functional and ecological implications of allometric
shape change. Two other methods that have been used to analyze local
allometries are polar coordinates (Ehlinger, 1991) and the two-point registration
(MacLeod & Kitchell, 1990; Bookstein, 1991). Both of these methods require
registering the specimens along a homologous baseline. Bookstein (1986) has
demonstrated that for small shape changes, the choice of bascline does not effect
the results of statistical tests for differences in mean shape among groups in the
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two-point registration. For both methods, however, the direction and magnitude
of allometric shape change at a landmark can only be interpreted with respect
to the baseline. If shape changes normal to the baseline at either of the two baseline
landmarks are relatively large, interpretation of results are, at best, ambiguous.
For the specimens analyzed in this study, the obvious choice of a baseline would
be the chord between LM (tip of premaxilla) and LM2 (caudal tip of lateral
line) as in Ehlinger (1991). The Procrustes residuals indicate significant
dorsoventral variation at the tip of the premaxilla but relatively little dorsoventral
variation at the caudal tip of the lateral line. Because of this apparently large
dorsoventral variation at the snout, the 76 specimens were refit by the two-point
registration using the tip of the premaxilla (LM1) and the tip of the lateral line
(LM8) as baseline landmarks, AP’s for the thirteen non-baseline landmarks were
estimated to compare to AP’s of Procrustes fit specimens.

Bivariate confidence ellipses for the landmarks fit by a two-point registration
are shown in figure 6 and should be compared with the confidence ellipses for
the Procrustes residuals (Fig. 4). As expected, variation for the non-baseline
landmarks is greater in the shape coordinates than in the corresponding
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Fig. 6

Bivariate confidence ellipses of residual variation of thirteen non-baseline landmarks for 76
specimens superimposed by two-point registration

Procrustes residuals. By holding two landmarks constant, the two-point registration
effectively transfers the variation at these landmarks to the other landmarks. Two-
point registration allometry paths (TPRAP’s) are illustrated in figure 7 and should
be compared to the Procrustes allometry paths (PAP’s) in figure 5. TPRAP’s for
the landmarks of the median fins and caudal peduncle were generally similar in
magnitude and direction to the corresponding PAP’s and are not discussed. Not
surprisingly, there are predictable differences between the TPRAP’s and the PAP’s.
The TPRAP for LM2, the caudal tip of the skull on the dorsal border is directed
posteroventrally while the PAP for LM2 is larger in magnitude and directed
anterodorsally. TPRAP’s for LM3 and LM4, both on the dorsal border, have
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moderate magnitudes and, as in LMI, are oriented posteroventrally. Linear
allometries are not significant for the PAP’s for LM3 and LM4. On the ventral
border, TPRAP’s at LM12 and LM13 have a similar orientation to the PAP’s
but are greater in magnitude. TPRAP’s at LM14 and LMI15, both oriented
posteroventrally, are both greater in magnitude and differ in direction than the
corresponding PAP’s, which are oriented anteroventrally.

Fig. 7
Linear allometry paths at thirteen non-baseline landmarks for 76 specimens superimposed by two-
point registration

Two general trends result from this comparison of TPRAP’s and PAP’s. First,
with the exception of LM2, the magnitude of allometry tends to be greater in
the TPRAP’s. This greater magnitude must be due to the greater variation in
the shape coordinates relative to the Procrustes residuals. Second, the more anterior
TPRAP’s all have a posterior component, while the corresponding PAP’s have
an anterior component. AP’s of the landmarks fit by two-point registration must
be interpreted in light of the constant baseline. The tendency for the orientation
of all anterior TPRAP’s to be directed posteroventrally at both dorsal and ventral
landmarks may be real or due to the presence of allometry in the anterior baseline
landmark (tip of premaxilla) oriented in the opposite direction (anterodorsal).
If significant allometry exists in an anterodorsal direction at the tip of the
premaxilla, the effect of removing all variation from this landmark will
generally force the other landmarks to have posteroventral allometry (unless the
real pattern of allometry is also dorsoventral, in which case, this real pattern
will be canceled out by being forced in the opposite direction. This is probably
the case in LM2). The pattern of allometry in landmarks fit by a two-point
registration will necessarily be ambiguous, unless, one can be sure that the baseline
is invariant among specimens. This is not to say that AP’s of Procrustes fit
specimens may not be misleading. The reality of PAP’s is dependent on the efficacy
of the generalized resistant fit in superimposing the specimens in a “correct”
orientation, which cannot be known. But this is the case for the interpretation
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of any scientific data; one never knows the truth. For many morphometric data
sets, however, there is probably no a priori reason for suspecting that two
landmarks are invariant. Although PCA of polar coordinates were not examined,
it is expected that interpretation would be similar to that for the two-point
registration. Whereas the two-point registration is reasonable for testing shape
difference among specimens or groups, inference drawn from the direction of
shape change is necessarily ambiguous because results have to be interpreted
with respect to an invariant baseline. For this reason, fitting specimens with
Procrustes superimposition offers a simple and efficient means to draw
functional or ecological interpretations of size correlated shape changes.
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ABSTRACT

Morphometric divergence in moles was studied using Bookstein shape
coordinates, at both the intraspecific and interspecific level. 13 landmarks were
recorded on the right half dorsal view of the skull for 7 fossorial species in the
three genera of the family Talpidae, including: Old World Talpa (five species);
Mogera (one species), and New World Parascalops (one species). The latter two
species were used as outgroups. All coordinates were standardized to a common
baseline of unit length. Centroid size was examined for intra—specific and
inter—specific variation. Similarities among populations and species in Bookstein
shape coordinates were summarized using Mahalanobis D?* and an UPGMA
phenogram. Shape differences among European moles (genus Talpa) were further
investigated in terms of uniform and non—uniform shape components using landmark
based methods.

The UPGMA phenogram is congruent with the systematic hierarchy and
phylogenetic hypothesis derived from genetic and cytogenetic data. Size is revealed
as the unique component of sexual dimorphism. Size and the uniform component
are almost uncorrelated and together represent good descriptors of interspecific
variation. A non-uniform component also contributes to our understanding of
the phylogenetic relationships among European moles.



INTRODUCTION

Morphometrics on landmark based data has rarely been used in systematics. Up
to now, most studies of within and between species variation have been based on
‘traditional morphometrics’ (sensu Marcus, 1990), e.g. the study of variation and
covariation of distance measurements. A few published applications using landmarks
include Bookstein and Reyment (1989) on the Miocene foraminifer Brizalina, Abe
et al. (1988) on Cretaceous ostracod Veenia, and Tabachnick and Bookstein (1990a,
b) on the Miocene foraminifer Globorotalia. We believe it is essential to explore
the potentiality of the new geometric morphometrics (Rohlf and Bookstein, 1990;
Bookstein, 1991) in the description of evolutionary relationships.

These innovative statistical and geometric techniques offer new incites to the
study of evolutionary divergence. They provide another tool for determining
significant differences and provide new characters for hypotheses of relationship.
They also show how anatomy, depicted by the geometric relation between
landmarks, differs among populations and taxa of organisms in a way that may
be related to past history (phylogeny) and to ecology. These objectives are likely
to be achieved through the splitting of morphological variation into its various
comporients, size, and uniform and non-uniform shape (see Bookstein, 1991, and
Reyment, 1991, for detailed discussions).

We use shape coordinates to investigate the changes in morphology that occurred
during intraspecific and interspecific divergence in some species of insectivorous
mammals in the family Talpidae, strictly fossorial mammals. The subterranean
habitat is characterized by unique ecological parameters that force microclimatic
stability and establish environmental constraints. These in turn support a high
degree of specialization and morphological convergence among species (Nevo,
1991). Subterranean animals are thus suitable subjects for a study on how size
and various shape components of morphological changes, both linear (uniform
or affine, sensu Bookstein, 1990), and non linear (non— uniform or non-affine)
landmark changes can be related to phylogeny and adaptation.

Taxa examined include the Palacarctic genus Talpa, the Asian genus Mogera,
and the Neartic genus Parascalops. Moles of the family Talpidae are widely
distributed in the temperate regions of Holartica (Fig. 1). The systematics of the
family is still under revision. We have selected parts of the most recent species
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Fig. 1
World range of the family Talpidae (areas included in dotted lines, from Yates and Moore, 1990),
and location of samples: P = Parascalops breweri; M = Mogera larouchei ; T = Talpa sp

classifications (Honacki et al., 1982; Ramalhinho, 1985; Corti & Loy, 1987,
Filippucci et al., 1987; Yates & Moore, 1990; Corbet & Hill, 1991). Samples
analyzed represent the following species: Hairy tailed mole (Parascalops
breweri), occurring in North-East USA and South-East Canada; Mogera
latouchei, South—-East China, Hinan, and Assam, (included in Talpa by Corbet
and Hill, 1991, but here we use the nomenclature of Yates and Moore, 1990);
European mole (Talpa europaea), Europe, West Siberia; Roman mole (7.
romana), Central and Southern Italy, T. stankovici, Balkans; Mediterranean mole
(T. caeca), South Europe and Caucasus; T. occidentalis, Spain and Portugal.

Yates and Moore (1990) propose a phylogeny of the Talpidae on the basis of
genic, cytogenetic and morphologic characters. They suggest that the Talpa and
Mogera form a monophyletic group. Parascalops is not a sister to this group,
but has been placed in a clade in a different part of the phylogeny, which appears
al present to be paraphyletic.

MATERIAL & METHODS

We examined a total of 113 individuals in 10 samples. They represent three
populations of T. europaea, from Northern, Western, and Central-South parts of
the species range (from England, Spain and Switzerland respectively), two
populations of T. romana, from the type locality (Lazio, Italy) and from a Southern
locality (Calabria, Italy); and one population each for the other 5 species (Fig.
1, Table 1). Specimens are housed in various institutions in Europe and the United
States of America (Table 1).
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Table 1
Sample localities and collections: MAC = Museo di Anatomia Comparata,
University of Rome ‘La Sapienza’; VER = Museo di Storia Naturale di
Verona (Verona, Italy); MAD = Museo Nacional de Ciencias Naturales de
Madrid (Madrid, Spain); BRI = British Museum of Natural History; AMNH =
American Museum of Natural History (New York, USA); BER = Museum
d’ Histoire Naturelle Berne (Berne, Switzerland)

SPECIES LOCALITY COLL. CODE M F TOT
Talpa europaea Avendano (Pyrenee, Spain) MAD TEUSP 6 11 17
Talpa europaea Berne (Switzerland) BER TEUBE 13 14 27
Talpa europaea Galles (Great Britain) BRI TEUEN 7 4 11
Talpa romana Ostia (Lazio, Italy) MAC TRO 14 10 24
Talpa romana Fiumefreddo (Calabria, Italy) MAC  TROCA 4 | 5
Talpa stankovici M. Vitzi (Macedonia, Greece) MAC TST 1 2 3
Talpa caeca Zumaglia (ltaly) VER TCA 3 3 6
Talpa occidentalis ~ Salamanca (Spain) MAD TOC 3 3 6
Mogera latouchei Chung Hsian (Fuxien, China) AMNH MIN 4 1 5
Parascalops breweri Wayre (Pennsylvania, USA)  AMNH PBR 3 6 9

Total

L
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We photographed the dorsal view of each skull using a Nikon FE camera
equipped with a 50mm macro lens and a circular flash. The focal plane of the
camera was parallel to the dorsal surface of the skull, and centered on bregma.
Pictures were enlarged x 4 on glossy paper. Landmarks were collected on a Calcomp
2200 digitizing tablet using a modification of Lessoft caliper software (Marcus,
1988).

We collected 13 landmarks on the right half of the skull, to avoid the effect
of lateral asymmetry (Fig. 2). The landmarks are points at the: 1 — tip of the
rostrum, 2 — maximum width of the rostrum (point of maximum curvature), 3
— minimum width of the rostrum (point of flexus); 4 — maximum width of palatine
(point of maximum curvature); 5 — anterior inner curvature of zygomatic arch
(point of flexus); 6 — distal extremity of coronal suture; 7 — posterior inner curvature
of zygomatic arch (point of flexus); 8 — maximum width of the bulla (point of
maximum curvature); 9 — asterion; 10 — tip of postparietal; 11 — lambda; 12 —
bregma; 13 — nasion. These are landmarks of different types according to the
classification of Bookstein (1991): landmarks 9, 11, and 12 are type one; 6, 8,
and 13 are type two; and 1, 2, 3, 4, 5, 7, and 10 are type three.

Error of measurements was evaluated by computing the standard deviation of
measurements from 3 separate digitizing sessions at 20 days intervals) on a
subsample of 39 individuals. Before all further computation raw coordinates were
rotated and translated to have the X axis described by landmarks 11 and 13, with
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Fig. 2
Location of landmarks for which coordinate data was collected on the dorsal view of each skull

the arigin located on landmark 11, using another modification of Lessoft caliper
software (Marcus, 1988).

Baseline endpoints (Bookstein, 1990, 1991) were selected from the five landmarks
along the midline of the skull (numbers 1, 10, 11, 12, 13 in Fig. 2). Two alternative
baselines were evaluated. One baseline was between landmarks | and 10 (proximal
and distal tips of the skull), and the other between 11 and 13 (lambda and nasion
respectively). Baseline 11 — 13 was almost as long and was preferred as it appeared
to introduce less distortion in the alignment of the skulls along the midline. The
‘midline’ points did not always lie strictly on a straight line, especially landmark
10. The length of the baseline and centroid size were compared.

All of the coordinates were rotated to the baseline and divided by its length
to produce Bookstein shape coordinates (Mardia and Dryden, 1989) using the
SAS IML program UNICOORD written by L.F. Marcus (corrected and modified
from version in appendix in Reyment, 1991). Centroid size, as the square root
of the mean squared distance from each point to the centroid of an object, was
determined as well. Bookstein shape coordinates have a baseline with one end
at (0,0) and the other at (1,0), therefore the baseline length is 1. Bookstein shape
coordinates thus describe the position of the non—baseline landmarks as vertices
of triangles having the baseline as a common side. Similarities and differences
in shape may then be studied in terms of the distribution or scatter of these vertices.

Baseline size and centroid size were compared by bivariate scatter and correlation.
Analysis of variance of centroid size included: two way analysis (unbalanced
design) to test for sexual dimorphism, population differences, and sex—population
interaction using PROC GLM in SAS. Since there was no interaction or sexual
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dimorphism detected, a one way analysis of variance was subsequently used for
group comparisons.

Univariate and multivariate analyses of the shape coordinates provided
estimates of differences among populations. Canonical variate analysis and
Multivariate Analysis of Variance (MANOVA) were used to examine and test
for population differences for the multivariate assemblage of coordinates.

Differences among populations were summarized by Mahalanobis D? and these
were clustered in a phenogram using the Unweighted Pair Group Method (UPGMA)
in the program package NTSYS—pc (Rohlf, 1990). Significance of differences
between group means was tested using Hotelling’s T? statistic and significance
was adjusted for multiple comparisons by use of the Bonferroni inequality (Marcus,
1990). A minimum spanning tree was found for Mahalanobis D’s and
superimposed on a bivariate plot of the means of the first two canonical variates
using NTSYS.

Uniform X and Y factors were extracted from the Bookstein shape coordinates
following the formula in Bookstein (1990), and as part of the output of
UNICOORD. These factors were regressed on size and on each other.

The coordinates were also analyzed using superimposition methods, which
partition shape differences into linear (uniform or affine) and non linear
(non—uniform or non-affine) components. For each sample the Generalized Least
Square option (GLS in GRF software, Rohlf and Slice, 1990), was used to find
consensus configurations for the specimens. Bivariate plots of landmark means
for each population were produced and overlain on one plot. Deviation vectors
were plotted for each population from other populations for intraspecific
comparisons, from Talpa europaea for species of Talpa, and from Parascalops
breweri consensus for all species of Talpa.

The consensus configurations for each of the five species of genus Talpa were
then compared using the method of relative Warps and the Thin Plate Spline
Relative Warp program (TPSRW, Rohlf, 1990; version May 1992).

Relative Warps were determined with respect to the mean configuration for
the five species as a reference and using the option alpha= 0. Rohlf, this volume,
suggesis this option in exploratory systematic studies as warps are equally
weighted. A choice of o=1 emphasizes large scale non-linear deformations over
local or small-scale ones, and this strategy appears to be more appropriate in
ontogenetic or evolutionary sequence comparisons. The minimum energy
superposition option was used, and weights were based on raw data as
deviations from means. Relative warp scores were computed both retaining and
removing the affine eigenvectors, and the matrices produced were compared using
the Mantel test in NTSYS—pc.

Finally, to test for relations among components of morphometric variation, results
from different analyses were compared. The uniform factor, relative warps 1, 2
and 3, were regressed on centroid size.
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RESULTS

Measurement error

Standard deviation varied between 0.002 and 0.019 over the 13 landmarks,
and the average standard deviation was 0.009. This corresponds to 13 digitising
units, which in turn translates to 0.3 mm on a skull of about 30 mm. We considered
this error to be negligible.

Sexual dimorphism

Analysis of Variance did not show significant interaction, that is differences in
dimorphism among populations, or a sexual dimorphism main effect in shape coordinates
(Table 2). However multivariate analysis of variance found a significant interaction
for shape coordinates for only Roy’s largest root criterion. An analysis of variance
of the canonical variate corresponding to this root, also showed highly significant
interaction. The coefficients for this variate were a complicated function of all of
the coordinates, and showed no simple interpretable relation among the coordinates.

Sexual dimorphism is strongly present for centroid size (Table 4) and the
logarithm of centroid size. There is no interaction between population and sex,
except for the exception pointed out above, so that the results are interpreted as
isometric differences between males and females: males are bigger than females

Table 2
Two way analysis of variance testing sexual dimorphism against population
variation for all shape coordinates; and one way analysis of variance
combining sexes. Mean squares from SAS Type III GLM procedure for
unbalanced designs. All mean squares should be multiplied by 107
*alpha=.05; ** 0.01; *** 0.001.

Analysis of Variance Tables

Two Way Analysis One Way Analysis
POP. SEX POP. * SEX ERROR POP, ERROR
D.F. 9 1 9 93 9 103
COORD.
X1 40.86%** 0.50 0.87 1.48 45, 32%%:% 1.41
Yl 1.01%* 0.00 0.46 0.35 0.91% 0.35
X2 16.50%** 0.09 0.79 1.60 [7.35%%% 1.51
Y2 8.93 %% 0.01 a3 0.76 9,51 % 0.75

X3 17,704 %* 0.04 1.06 2.62 18.85%kk 2.47
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Table 2 (Continued)

Two Way Analysis One Way Analysis

POP. SEX POP. * SEX ERROR PQOP, ERROR
Y3 35.34% %% 0.01 0.59 0.70 5.34% % 0.69
X4 51.65%** 0.91 1.16 291 53.594%# 2.73
Y4 13:79%%% 0.29 1.28 1.22 14,04% %% 1.22
X5 52.70%* 1.09 0.81 2.58 335, 3k 2.44
Y5 13.88xH* 0.74 0.76 1.04 145G 1.01
X6 54,19%%* 0.32 10,00 8.52 66.56%%* 8.58
Y6 11,61%%* 0.38 1.71 1.33 12.86%** 1.36
X7 62.87*** 0.15 1.30 442 65.51%%% 4,12
X7 13.08%** 2.28 L.18 1.58 14.39%#* 1.54
X8 122.57*** 1.23 1.81 8.68 129.95%** 8.00
Y8 46.30%** 0.21 2.32 3.17 48.40%** 3.07
X9 59.34%%% 6.66 5.12 9.24 63,68 +5* 8.82
Y9 85.34H+* 0.22 2.77 3.80 90.86%** 3.68
X10 317.15%%* 17.22 5.75 12,21 3331 3k+ 11.66
Y10 11.56%* 0.03 4.79 3.81 10.56%* 3.89
X12 108.36%** 0.02 10.21 1.47 116.20%** 13.24
Y12 1.30 0.83 0.67 0.84 1.78* 0.82

Table 3

Results from multivariate analysis of variance testing sexual dimorphism against
population variation for all shape coordinates, p values, SAS GLM Type Il
Sums of Squares. Note interaction for Roy’s Greatest Root significant vector

is:(—18%x1-96*y]1-34*x2+107*y2 +11*x3
+12%y3+16%x4—1 7%y4-30%x5-27*y5-3 1 *x6+9*y6 +40* x7+ 50%y7-27*x8-30%y8
+4*x9—40%y9+21*x10+28*y10+6*x12-61*y12).* alpha=0.05; ** .01; *** 001

Source Wilk’s Lambda Pillai’s Trace Hotelling-Lawley Roy’s Greatest Root
Num,Den DF Num,Den DF Trace Num,Den DF Num,Den DF
POp. 8.45%%* 5.30%*% [3.04*%* 198,632 65.81***
198,621.5 198,720 22,80
sex 0.61 0.61 0.61 0.61
22,72 22,72 22,72 22,72
pop.* sex 0.75 0.76 0.75 2.20%*
198,621.5 198,720 198,632 198,632

by the same amount for each population (Table 5) or by the same proportion
for the logged data. The small sample sizes account for the similarities.

These results justified combining the shape coordinate data over sexes for each
species and ignoring sex in further analyses. This made the analysis simpler because
of the disparate sample sizes for sexes among populations.
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Table 4

Results from two way analysis of variance of centroid size.
alpha=.00] ***

Mean
DF Squares F
population 9 180358 591 rex
sex 1 23979 12.75%%*
pop. * sex 9 1249 0.74
error 93 1880

Population comparisons: distances

As it is shown in Table 5, size is also an important component of population
and species differences, and must be considered both by itself and together with
shape differences. Figure 3 shows the relation between centroid size and baseline
size for all populations. This plot demonstrates the clear differences in size among

Table 5
Centroid size in digitizing units for males and females of each population

Centroid Size Overall

POP SEX Mean Mean

TEUBE M 1601 1572
F 1545

TEUSP M 1683 1637
F 1612

TEUEN M 1588 1573
F 1548

TRO M 1823 1797
F 1760

TROCA M 1677 1663
F 1610

TST M 1670 1635
F 1618

TCA M 1439 1440
F 1440

TOC M 1491 1480
F 1468

MIN M 1275 1274
F 1267

PBR M 1496 1480
F 1472
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Scatter—plot of individuals showing relation between baseline and centroid size for all specimens.
Baseline “size” is the distance from landmark 11 to 13 in digitizing units. Range of variation for
each species enclosed by dashed lines
P = Parascalops breweri; M = Mogera latouchei; E = Talpa europaea; R = Talpa romana; K =
Talpa stankovici; C = Talpa caeca; O = Talpa occidentalis
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species, and particularly the scparation between the ‘small moles’ Talpa caeca and
Talpa occidentalis and the ‘big moles’ Talpa romana and Talpa stankovici, a fact
already known and well described in the literature (Toschi and Lanza, 1959;
Capolongo and Panasci, 1976; Capanna, 1981; Corti and Loy, 1987, Gonzales and
Roman, 1989). It is also interesting to notice that in Parascalops there is a different
covariance between centroid size and baseline size.

19 of the 22 Bookstein shape coordinates are highly significantly different
among populations (Table 2, last column). The high discriminatory power
of these characters is confirmed by multivariate analysis: Mahalanobis D?
is always large, even for intraspecific differences (Table 6), and the F — value
is always significant (0.05 level) for each paired comparison, and most are
highly significant. Bonferroni adjustment for the comparison of 10 samples,
requires a 0.05/45 probability level for each comparison for an overall 0.05
significance level. This stringent criterion is satisfied by all of the
comparisons. No overlap was observed between groups, with 100% correct
assignment for all samples, though this is not unusual for such small samples
with so many variables.

Table 6
Mahalanobis distances squared computed on canonical variate centroids of
all Bookstein coordinates for all populations. D? values above diagonal and
unbiased D* below the diagonal. All values significant at 0.0001 level. See
table one for population codes

PBR MIN TCA  TEUB  TEUE TEUS TOC TROC TRO TST

E N P A

PBR 0 103 132 142 112 155 85 109 70 11
MIN 90 0 127 87 39 85 46 89 92 130
TCA 117 111 0 83 90 102 45 55 91 100
TEUBE 127 76 73 0 32 34 67 58 86 120
TEUEN 99 33 79 27 0 31 47 72 84 136
TEUSP 139 74 90 30 26 0 79 77 107 184
TOC 74 38 37 59 40 61 0 34 41 59
TROCA 95 77 46 50 62 67 27 0 28 66
TRO 62 81 81 77 75 96 35 23 0 42
TST 97 113 86 105 119 163 49 55 35 0

Mahalanobis distances between centroids are congruent with the current
systematic hierarchy: intraspecific distances are smaller then interspecific ones,
and species of the same genus or belonging to the same clade are more similar
to each other then outgroup species.

CSIC © del autor o autores / Todos los derechos reservados
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This pattern is evident also from the minimum spanning tree superimposed on
the scatter plot for the first two canonical variate means (Fig. 4). Parascalops is
farthest from all other populations, which is congruent with its distant relationship
(Yates and Moore, 1990). Mogera latouchei has as its nearest neighbor Talpa europaea.
The Jatter is then connected to the other four species of the genus Talpa, e.g. the
European species that are endemic for restricted areas (1. romana, 1. stankovici, T.
occidentalis), or have a limited distribution (7. caeca). Similar relationships are also
shown by the UPGMA phenogram computed from Mahalanobis D* (Fig. 5):
Parascalops breweri is most separated from all other species, and therefore may
be considered as a morphometric outgroup. Mogera latouchei clusters with Talpa
europaea, while another cluster includes the other species of Talpa and shows more
similarities among the three endemic species Talpa romana, T. stankovici and T.
occidentalis, with Talpa caeca joining this group at a greater morphometric distance,
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Fig. 4
Minimum spanning tree of sample centroids superimposed on the plot of the first two canonical
variates. All 22 Bookstein shape coordinates were used in the analysis of the 10 samples: 3 of Talpa
europaea, 2 of Talpa romani and one each of Talpa caeca, Talpa occidentalis, Talpa stankovici,
Mogera latouchei, and Parascalops breweri

Landmark shape comparisons

To show how landmarks vary in rclation to the hierarchical pattern depicted
by the UPGMA (Fig. 5), intraspecific and interspecific shape differences were
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Fig. 5
UPGMA phenogram derived from Mahalanobis squared distances computed on all 22 Bookstein
coordinates for all 10 samples

first visualized by superimposing landmarks of consensus specimens (Fig. 6)
for each sample. Figure 6A shows the two populations of T. romana,
expressing the Calabria sample as a deviation from the type Lazio sample, and
Figure 6B shows landmark deviations of each population consensus from the
other for the three populations of Talpa europaea. Directions of landmark
deviations differ in the two species, e.g. intraspecific variation involves
different landmarks.

Landmark deviations of consensus specimens for the four limited—range species
relative to Talpa europaea are also heterogeneous (Fig. 6C): most landmarks “move”
in opposite directions (e.g. landmarks 3, 6, 8, 9, 10), and T. europaea behaves
as an ‘intermediate’ form. Figure 6D shows deviations of consensus configurations
of all specics of Talpa from the reference configuration of Parascalops breweri.
The difference in shape is clear and the Talpa species deviate from Parascalops
in similar ways generally. There is a general tendency for a wider and shorter
braincase and for a longer and wider rostrum.

Figure 7 and Table 7 report results of relative warp analysis run on the five
species of Talpa superimposed on the average specimen. As can be seen from
the table and figure, major modifications are described by horizontal shifting of
landmarks, with the X component of principal warp 2, 8, and 10 characterizing
the larger part of the variation. These principal warps are influenced by
different regions of the skull; principal warp 2 has highest coefficients for landmarks
1, 2, 3 and 13 which describe the rostrum (Fig. 2), and for landmark 6 located
on the zygomatic region; principal warp 8, 9 and 10 are more related to the
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braincase (landmarks 9, 10, 11), zygomatic region (landmarks 5 and 6), and the
palatine (landmark 4). This general trend of shape changes indicates that species
differ for relative lengthening of regions of the skull rather then for their relative
width.

Table 7
Results of Relative Warp analysis run on five species of European moles
considering the mean configuration as the reference configuration (options:
alpha=0; minimum energy as superimposition criterium; deviations from
reference; affine eigenvectors not retained). Are reported Principal Warps that
have most influence on each Relative Warp, together with main direction of
vector changes for each Principal Warp (X or Y) and landmarks that are
most related with each Principal Warp

Rel.Wa Eigenvalue % Variance Cumulative Prin.Wa Landmark
P p
1 0.02369 39.3 39.3 8X 3-6-10-11
9X 4-10

2 0.01654 27.4 66.6 2X 1-2-3-6-13
10X 5-6-9-10~12

3 0.01365 22.5 89.1 8X 3-6-10-11
10X 5-6-9-10-12

The three dimensional plot of relative warp scores (Fig. 8) shows an
interesting species distribution pattern: on the first relative warp axis (39.3% of
total square root variance, affine removed) the two extremes are represented by
T. romana (negative values) and T. caeca (positive values), which differ in relative
lengthening of the rostral and zygomatic regions; on the second relative warp
(27.4% of variance explained) the extremes are represented by T. europaea (negative
values) and T. stankovici (positive values) , which differ mainly by the extension
(Fig. 7); and on the third axis (22.5% of variance explained) T. caeca is found
at the negative extreme and T. occidentalis at the positive one, diverging essentially
by relative extension of the braincase and the zygomatic region. In the UPGMA
phenogram computed from relative warp scores (Fig. 9) T. romana and T. stankovici,
and T. caeca and T. occidentalis form separate clusters, and these two clusters
then join T. europaea.

Retention of the affine eigenvectors in the computation of relative warp scores
do not affect this pattern of relations (Mantel test for the two matrices gives a
value of r = 0.96 and P < 0.003), but distances between species increase with
the retention of the affine eigenvectors (Fig. 10). This is to be expected for =0,
and 1s due to the fact that only three relative warps were retained.
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Fig. 8
Top, scatter plot of first three relative warps for the five species of European moles (genus Talpa)
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UPGMA phenogram computed on Euclidean distances in the relative warp space
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The analysis of the affine (uniform) factor for all samples shows that its
components along the X and Y axes are only moderately correlated (Fig. 11)
with an r* of 0.0336. Figure 11 shows that Parascalops breweri is well
separated for affine components, with much more overlap among the other species.

Moreover, the uniform components are only slightly correlated with centroid size
(Fig. 12, Table 8). The affine factors of size and uniform shape more clearly define
the species than centroid size (Fig. 3) or uniform shape differences (Fig. 11) alone.
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Scatter plot of Unifarm Y factor and Centroid Size for all specimens. P = Parascalops breweri: M =
Mogera latouchei; E = Talpa europaea; R = Talpa romana; K = Talpa stankovici; C = Talpa
caeca; O = Talpa occidentalis
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The first three relative warps are also not correlated with centroid size (Table 8).
These results offer clear evidence that differences in size among the species are
not related to linear or non-linear components of shape variation among the landmarks.

Table 8
Correlation between size (expressed by centroid size) and other components of
shape variation, e.g. affine (expressed by Uniform X and Y) and non — affine
(expressed by Relative Warps). Uniform factors are estimated for all
specimens, while Relative Warps were computed for the five consensus
specimens of genus Talpa

Centroid size

Uniform X r* = 0.071
Uniform Y 2 =0.121
Relative Warp 1 r* = 0.005
Relative Warp 2 r = 0.095
Relative Warp 3 2 =0.190

DISCUSSION

Phenetic distances computed on Bookstein coordinates confirm that
Parascalops breweri is morphologically distinct from the Old World Talpidae,
while Mogera is not separated from the Talpa group. Mogera appears to be
more closely related to 7. europaea then the latter is to the other species of
Talpa analyzed. The inclusion of Mogera in the genus Talpa proposed by Corbet
& Hill (1991) appears more acceptable in the light of our results. The analysis
also demonstrated affinities between south Enropean moles T. occidentalis, T.
stankovici, T. romana and T. caeca, which appear to be more closely related
to each other then to T. europaea. This suggests that the latter belongs to a
different ancestral stock.

Separate analysis of different components of variation, e.g. size, affine, and
non-affine variation helped us to clarify relationships among populations and
species. Size has been revealed to be the only identifiable component of sexual
dimorphism in our data for the dorsal view of the skull, considered in all populations
and species of Talpidae included in our study. Moreover, the relation between
centroid size and baseline size is the same for all species belonging to the
monophyletic group Talpa together with Mogera, while a different relationship
was observed between the two size measures in Parascalops. The relation between
baseline length and centroid size might represent a synapomorphy, therefore
supporting a phylogenetic relationship within the family Talpidae. Of course this
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hypothesis should be tested by including in the analyses other sister taxa to
Parascalops, namely Scalopus, Scapanus, and Scapanulus.

Non—affine changes in shape of the skull among European species mainly involve
horizontal shifting of landmarks that express themselves in different
anterior—posterior lengthenings of the braincase, the zygomatic region, the palatine,
and the rostrum, rather then in the relative width of these regions.

The UPGMA phenogram derived from the non-affine components of shape
changes shows affinities between T. stankovici and T. romana, and between T.
occidentalis and T. caeca, while T. europaea is still separate from these four species.
The affine or linear component of shape variation among this group of species
is not correlated with size.

Therefore the differences in size among species is not closely linked to linear
shape modifications.

Similarly, non affine variation is independent of size as determined from the
relations to the relative warp scores. It is important to emphasize the choice of
the value O for the alpha parameter in the relative warp analysis. A choice of
a=1 weights the warps so that large—scale deformations are considered more
important than small ones. In a taxonomic study such as this, there is no a priori
reason to do that, and a=0 provides an equal weighting option. In a comparison
to a putative ancestor in an evolutionary study, or analysis of an ontogenetic series,
setting o=1 might be preferable,

The non—affine component of shape variation allowed us to detect differences
between different parts of the skull that were ‘hidden’ as convergence when the
‘traditional’ approach was used. If similarities shown by the non-affine
component reflects common historical events, one may hypothesize a common
origin of T. romana and T. stankovici, dating back to the earliest Pleistocene glacial
events (Donau, Gunz), when the land link between the Balkans and Italy was
established.
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Electronic mail (or “e-mail” as it is known in the media) is a way of
communicating among computers located in very different places (even
countries!), that allows exchange of messages, documents, programs, and, in modem
systems, even graphics.

We are going to discuss here the two major international scholarly networks
for e-mail available nowadays: Bitnet and Internet, and the scientific resources
that are available there related to the matters treated in this volume.

BITNET (Because It’s Time NETwork)

This is the first major network we are going to deal with, This network only
allows electronic mail and file transfer, but not in an online fashion. Remote
connection to other computers is not possible.

Apart from electronic mail, there is the LISTSERV resource on BITNET.

LISTSERYV stands for “list server”. Originally, LISTSERV was a mailing-list
server which was designed to make group communication easier. People with a
common interest were grouped in a list which was then stored on LISTSERV.
They could then communicate with each other by sending mail to a special network
address. Any piece of mail sent to these special user-ids would then be
automatically distributed by the list server to each and every person on the list.

Revised LISTSERV is a brand new list processor which was developed at the
Ecole Centrale de Paris in France. It retains the basics of the old LISTSERV
and provides good upward compatibility, while offering more sophisticated functions,
helpfiles and more user-friendliness.

The usual procedure in order to subscribe to a list is to send email to the userid
LISTSERV at the appropriate node. For example, to subscribe to the CONSLINK
list, send email to LISTSERV@SIVM, with no Subject line, and in the body of
the message put:

SUBSCRIBE CONSLINK Your Name Here

If you are not on a Bitnet node (for example, if you are only connected to
Internet), simply append “.bitnet” to the email address, thus:
LISTSERV@SIVM.bitnet.
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To get a list of forums, you can send the following line in a message
aimed to BITNET address NETSERV@BITNIC (if you are in a BITNET
node) or NETSERV@BITNIC.BITNET (if you are not) for USA, and
NETSERV@EBCESCA .BITNET for Spain:

SENDME LISTSERV LISTS

You will obtain a group of list addresses that allow you to explore further.
Two interesting documents on Bitnet, that can help you to dive into the electronic
networks arena can be obtained from these addresses:
¢ address: LISTSERV@CMUCCVMA.BITNET
include in the body of your message the following line:

GET BITNET USERHELP

 address: LISTSERV@BITNIC.BITNET
include in the body of your message the following line:

GET EMAILNET UPDEGR_D
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INTERNET

At the time of its creation (1969), it was called ARPANET (Advanced Research
Projects Agency, established by the U.S. Deparment of Defense). Today, Internet
comprises a group of networks that provides global access to computing and
information resources (Britten, 1990).

In order to have access to Internet resources, you must have a computer (it
can be a PC or a Mac) connected to this network, and a resident network protocol
(TCP/IP) software, or be logged onto a computer that is an Internet host. The
best way to know if you have these requirements is to contact your local computing
center.

Once you have an account in your computer center, you will be able to send
messages through E-mail from Internet. You will even be able to connect
(although just for mail) to Compuserve , a very well-known online service.
To send mail from Internet to compuserve, you must use the following format
(Schepp, 1990):

CompuServe user ID@compuserve.com

With this connection to the network, you will be dealing (apart from the electronic
mail) with two resources present in Intermet: TELNET and FTP.

TELNET

It is a remote login protocol in the Internet protocol suite. It allows a user on
one host to establish a connection with a remote host and interact as if the user’s
terminal is connected directly to the remote host. This is also an online facility.

The first thing you need is an Internet address of a TELNET host.

TELNET addresses are of two kinds:

— name.name.name.etc.
for example: boombox.micro.umn.edu
This is called a domain name.

— number.number.number.etc
for example: 128.101.95.95
This 1s known as an IP address.

To get a list of TELNET hosts, you must send the following line in the body
of a message to BITNET address LISTSERV@UNMVM.BITNET:
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GET INTERNET LIBRARY (for text file)
or
GET LIBRARY PS (for a postscrip file)

This file contains the St. George, Dr. Art and Mr Ron Larsen, Intemet-Accessible
Library Catalogs and Databases, 18 pgs, University of New Mexico, Albuquerque
and University of Maryland, NM, December 1989.

This guide is an ongoing project listing online library catalogs and databases
available within the United States.

Some interesting TELNET places are:

BISON.CC.BUFFALO.EDU  128.205.2.22 SUNY Buffalo Online
Catalog (Library)

PAC.CARL.ORG 192.54.81.128  Colorado Assn. of
Research Libraries
NYPLGATE.NYPL.ORG 192.94.250.2 New York Public Library
(login:NYpl, password: NYpl)
STIS.NSEGOV 128.150.195.40 NSF’s Science and

Technology Information
System (login: public)

HUB.NNSC.NSENET Wide Area Info Server.
Document database Inc.
WORLDBOOK, Wall St.
Journal (login: WAIS)

EBB.UIT.UNC.EDU Variety of services (Libtel,
WAIS, NetNews)

FTP (File Transfer Protocol)

This service allows a user to transfer files to and from a remote host on the
Internet network. You can have access to hundreds of hosts with subjects as diverse
as graphics, programming, cartography, music, literature, technical reports, etc.
You can compare these services to big stores operating on a self-service approach.

How can you reach this services?

First, we must state that we are only going to deal here with the so-called
anonymous FTP; in this kind of FTP, you do not need to have an account in
the remofe computer. The computer is freely accessible to anyone willing to
call it.

All that we have said before about TELNET addresses can be applied here.
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Sources for FTP:
There are several ways of finding sources for FTP hosts:

— One of them is to subscribe to a forum list, in which many people share
comments, and, from time to time, lists of places for FTP can be obtained.
Among them, we can find:

BIOSCI, GIS-L, GRAPHICS, MORPHOMET, etc.

— Another way is to send a message to a BITNET address, asking for a list
of FTP hosts,

The address is the following:
LISTSERV@MARIST.BITNET

You must include in the body of your message the following line:
SENDME BITNET FTPLIST

— Another source of information, not only for FTP, but also for many other
subjects dealing with networks, is a collection of user introductions called
Biobit. This electronic magazine can be obtained through FTP from
NIC.FUNET.FI, in the subdirectory pub/sci/molbio/biobit.

— Perhaps the best way to obtain information on FTP places is through Archie.

Archie

Archie is a database that stores information on FTP hosts: addresses, programs,
ect. You can make a search on various items (even by country!) in an online session.
This database is regularly updated, so you always get the latest information.

So, how do you get access to ARCHIE? If you are Internet connected, it is
easy. Telnet to quiche.cs.mcgill.ca (132.206.2.3 or 132.206.51.1, although you must
look at the intro screen below, where you will find the most convenient address
for you location) and login as user “archie”. “help” gets a list of valid commands.

Let us now try a demo session. This example session has been carried out in
a PC connected to a VAX, using kermit as communication program'. Comments

! Default terminal type is usually VT100. Keys many not be all mapped out correctly.
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go in brackets and are italicized. My input is in bold. The answer that the machine
gives on the screen goes in normal letters.

Beginning of the sample session

PINAR_S telnet 132.206.2.3 [Trying to connect]

Trying...132.206.2.3

[We are now connected to the remote computer]

Connected to .

Escape character is ‘/]’.

SunOS UNIX (quiche.CS.McGill.CA)

login: archie [Login to enter into Archie]

[Now comes an introductory screen to Archie. It is important to read carefully this screen]
ARCHIE: The McGill School of Computer Science Archive Server [2 Apr 1992]

**% Due to a bug, percentages given on the status line may become negative values.
This does not affect the search in any way however. We’ll put a fix in place later on
in the week.

Australian users: archie on archie.au (139.130.4.6), login “archie”

European users: archie on archie.funet.fi (128.214.6.100), login “archie”

UK users: archie on archie.doc.ic.ac.uk (146.169.11.3), login “archie”

Use the ‘servers’ command to list all archie servers.

A limit of 10 concurrent telnet sessions has been put on archie.mcgill.ca.

Alternative access through the standalone clients available via

anonymous ftp to this machine. See README file in ~archie/clients.

#* ‘help’ for help
** corrections/additions to archie-admin@archie.mcgill.ca
** bug reports, comments etc. to archie-l@archie.mcgill.ca

archie> help

Help gives you information about various topics, including all the

commands that are available and how to use them. Telling archie about your terminal
type and size (via the “term” variable) and to use the pager (via the “pager” variable)
is not necessary to use help, but provides a somewhat nicer interface.

Currently, the available help topics are:

about - a blurb about archie

bugs - known bugs and undesirable features
bye - same as “quit”

email - how to contact the archie email interface
exit - same as “quit”

help - this message

list - list the sites in the archie database
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mail - mail output to a user
nopager - *¥* use ‘unset pager’ instead
pager - *¥¥ yse ‘set pager’ instead

plans - future plans for archie
prog - search the database for a file
quit - exit archie

servers - display a list of all currently available archie servers
set - set a variable
show - display the value of a variable

site - list the files at an archive site
term - #¥% yge ‘set term ... instead
unset - unset a variable

whatis - search for keyword in the software description database
For information on one of these topics type:
help <topic>

A ‘7" at the help prompt will list the available sub-topics.
Help topics available:

about bugs bye email
list mail nopager pager
plans prog regex servers
set show site term
unset whatis

Help topic? about [Let’s leave them to explain what they are]

archie: the McGill School of Computer Science Archive Server Listing Service

Given the number of hosts being used as archive sites nowadays, there can be great difficulty
in finding needed software in a distributed environment. You may know that the software
that you need is out there, but it can sometimes be difficult to find. The School of Computer
Science at McGill University has one solution to the problem - “archie”.

archie is a pair of software tools: the first maintains a list of about 1000 Internet ftp
archive sites. Each night software executes an anonymous ftp to a subset of these sites
and fetches a recursive directory listing of each, which it stores in a database. We hit
about 1/30th of the list each time, so each site gets updated about once a month, hopefully
balancing timely updates against unnecessary network load.The “raw” listings are stored
in compressed form on archie.mcgill.ca (132.206.2.3), where they are made available
via anonymous ftp in the directory archie/listings.
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The second tool is the interesting one as far as the users are concerned.

It consists of a program running on a dummy user code that allows outsiders to log onto
the archive server host to query the database. This is in fact the program we call “archie”.
Users can ask archie to search for specific name strings. For example, “prog kcl” would
find all occurences of the string “kecl” and tell you which hosts have entries with this
string, the size of the program, its last modification date and where it can be found on
the host along with some other useful information. In this example, you could thus find
those archive sites that are storing Kyoto Common Lisp. With one central database for
all the archive sites we know about, archie greatly speeds the task of finding a specific
program on the net.

Complete anonymous ftp listings of the various sites that we keep in the database may
be obtained via the ‘site’ command and for a list of the sites which we keep track of,
see the ‘list” command. For a list of all the archie servers worldwide, see the ‘servers’
command.

archie also maintains a ‘Software Description Database’ which consists of the names
and descriptions of various software packages, documents and datasets that are kept on
anonymous ftp archive sites all around the Internet. The ‘whatis’ command allows you
to search this database.

Send comments, bug reports etc to

archie-group@cc.mcgill.ca

If you have a favourite anonymous ftp site that archie doesn’t seem to maintain, or if
you have additions or corrections to the Software Description database, send mail to

archie-admin@cc.mcgill.ca
archie was written and is maintained by Alan Emtage (bajan@cc.mcgill.ca) and Bill Heelan
(wheelan@cs.mcgill.ca). Peter Deutsch (peterd@cc.mcgill.ca) provided (and continues to
provide) ideas and inspiration.
Help topic?
archie> list [Now, we shall see how the list command acts. We have cut the listing a

bit]

898 sites are stored in the database

[Domain name] [IP address]

a.cs.uiuc.edu 128.174.252.1 03:30 20 May 1992
accuvax.nwu.edu 129.105.49.1 03:31 20 May 1992
acsc.com 143.127.0.2 03:31 20 May 1992
adder.maths.su.o0z.au 129.78.68.2 03:31 20 May 1992
aelred-3.ie.org 192.48.115.36 03:56 20 May 1992
aeneas.mit.edu 18.71.0.38 03:56 20 May 1992
4erospace.aero.org 130.221.192.10 03:58 20 May 1992

agate.berkeley.edu 128.32.136.1 03:59 20 May 1992
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ahkcus.org 192.55.187.25 03:59 20 May 1992
aisunl.ai.uga.edu 128.192.12.9 04:02 20 May 1992
aix.rpi.edu 128.113.26.11 04:04 20 May 1992
aix1.segi.ulg.ac.be 139.165.32.13 05:35 12 May 1992
ajk.tele.fi 131.177.5.20 04:08 20 May 1992
ajpo.sei.cmu.edu 128.237.2.253 04:09 20 May 1992
akiu.gw.tohoku.ac.jp 130.34.8.9 04:14 20 May 1992
alcazar.cd.chalmers.se 129.16.79.30 04:22 20 May 1992
alex.stacken.kth.se 130.237.237.3 04:26 20 May 1992
alf.uib.no 129.177.30.3 04:55 20 May 1992
alfred.ccs.carleton.ca 134.117.1.1 04:57 20 May 1992
algol.cs.umbc.cdu 130.85.100.2 04:58 20 May 1992
alice.fmi.uni-passau.de 132.231.10.1 04:59 20 May 1992
xview.ucdavis.edu 128.120.1.150 03:33 11 May 1992
xylogics.com 132.245.1.95 03:33 11 May 1992
yaouk.anu.edu.au 150.203.4.29 03:33 11 May 1992
zaphod.lanl.gov 128.165.44.202 03:33 11 May 1992
zaphod.ncsa.uiuc.edu 141.142.20.50 03:33 11 May 1992
zariski.harvard.edu 128.103.28.10 03:35 11 May 1992
zebra.cns.udel.edu 128.175.8.11 03:36 11 May 1992
zebra.desy.de 131.169.2.244 18:52 5 May 1992
ZEeus.cs.umu.se 130.239.32.12 03:36 11 May 1992
zeus.ieee.org 140.98.1.1 03:36 11 May 1992
zug.csmil.umich.edu 141.211.184.2 03:38 11 May 1992

[Now, we are going to search a program that we know has the string “sura” in its file
name. We have also cut this list a bit]

archie> prog sura

# matches / % database searched: 66 /100% [In less than 2 minutes!]

[Here comes the first address]
[Domain name, and the IP address in parenthesis]
Host cac.washington.edu (128.95.112.1)
Last updated 13:06 5 May 1992
[What directory is located the file, and information on the accessibility to it (rw—r— —r— —)]
Location: /pub

FILE w—r——-1—— 863504

[Here comes the second address]

Nov 29 22:26 urusei-yatsura.txt

(129.173.4.5)
5 May 1992

Host cs.dal.ca
Last updated 13:34

Location: /pub/comp.archives
FILE r——-r—-1—- 1749 Oct 31 23:18 1991nov1.001543.4799%@sura.net
FILE - —1— —1—— 547 Nov 22 05:18 1991nov22.064744.4716@sura.net
FILE r—-r—-r—— 1081 Oct 17 12:58 19910ct17.152350.6786@sura.net
FILE r1—-r—-r—— 934 Oct 19 20:31 19910ct19.224958.19838@sura.net
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Location: /pub/comp.archives/rec.arts.anime
FILE  r— -r— ~r—— 3980 Aug 19 1991 ranma-platonic-tsuranuite-translation-lyrics
[Here comes the last address]

................

Last updated 04:16 10 May 1992

Location: /mirrors3/rascal.ics.utexas.edu/system7-related

FILE rw--tw— r—— 6400 Jul 15 1991 Basura_bin
FILE w—tw—r1—— 231 Jul 27 1991 Basura_intro
FILE rw—rw—r— — 58 Jul 16 1991 Basura_intro~

archie> quit [We are disconnecting]
Remote connection closed

PINAR_$ [Back again to our local host]

End of the sample session

We encourage you to try this database. You will find very valuable information.

FTP sessions

Now you have several addresses of FTP hosts and you are willing to dig into
this plethora of program and data sources®.

We are going to carry out a typical FTP anonymous session. We shall connect
to NIS.NSENET, where we know of the existence of the document “The
Hitchhiker’s guide to the Intemet”, a very valuable report on Intemet. The document
is stored in the file RFC1118.TXT, in the subdirectory /publications/rfc (we can
know this after a search using Archie, or through a message on one list).

As above, the comments will go between square brackets and in italics. Our input
goes in boldface, and the output of the remote computer in normal letters.

Beginning of the sampleF FTP session

PINAR_S [This is the computer prompt under VMS, the operative system of our computer,
a VAX]

2 Software is usually kept in compressed formats, which can be identified by a special extension:
. zip (for PC), . tar or . Z (for Unix), or. sit (Mac) among others. These files must be downloaded
as image files and subsequently uncompressed. Decompression software is usually found in the
same places where you FTP, or can be developed as well. Text files should be downloaded as
ASCII files.
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PINAR_$ ftp :== $ucx$ftp/ultrix [ This order allows our computer to emulate Unix-
like commands from a VAX. Only necessary for people on machines running VMS!]

PINAR_$ ftp nis.nsf.net [We are making the call]
[After a short period of time, the remote host answers our call]

nic.merit.edu FTP server (Version 4.1 Fri Aug 28 11:37:57 GDT 1987) ready.
Connected to NIS.NSF.NET.

Name (nis.nsf.net:mcnjm14): anonymous [The computer asks for our user name; we
must type anonymous]

331 Guest login ok, send ident as password.

Password: [For password, you can type whatever you want, but it is polite to send your
e-mail address|

230 Guest login ok, access restrictions apply.

[Now, we are connected to the remote computer]

ftp> dir [First, we can look and see what directories there are in the remote computer]
200 PORT command successful.

150 Opening ASCII mode data connection for /bin/ls.
total 57

[size]

[Several UNIX information] [file or directory name]

—w—1——T1—— 1 nic merit 16033 May 19 10:19 $index
—rw—I—-—T1—— | nic merit 4870 May 20 14:59 $read.me
drwxr—sr—x 2 nic  merit 512 Mar 16 23:24 acceptable.use.policies
drwxr—sr—-x 2 root  system 512 Feb 20 17:02 bin
drwxr-sr—x 3 cise nsf 512 May 15 19:20 cise

drwxr— sr—x 3 root system 512 Feb 20 17:02 etc

drwxr— sr—x 7 nic  merit 512 Apr 21 07:26 internet
drwxr— sr—x 2 root system 512 Feb 20 17:02 lib

drwxr- sr—x 2 nic  merit 512 May 15 17:41 maps
drwxr—sr—x 6 nic  merit 512 Mar 25 08:24 michnet
drwxr—sr—x 11 nic  merit 512 May 13 12:45 nsfnet
drwxr—sr—x 2 omb omb 512 Apr 28 09:36 omb
drwxr—sr—x 13 nic  merit 512 May 12 22:07 publications
drwxr— sr—x 3 nic  merit 512 Mar 25 08:42 resources
drwxr—sr—x 3 nic  merit 512 Mar 14 19:19 statistics
drwxr—sr—x 3 root system 512 Feb 20 17:02 usr
drwxr—sr-x 3 nic  merit 512 May 07 16:15 working.groups

226 Transfer complete.

1088 bytes received in 00:00:03.78 seconds

ftp> cd publications [We move to one subdirectory. We know that this is a subdirectory
from the information on the list: those entries that in the first column have a ‘d’ (e.g.,
drwxr-sr-x), are subdirectories, the rest are files, that you can retrieve]

250 CWD command successful.

ftp> dir
200 PORT command successful.
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150 Opening ASCII mode data connection for /bin/ls.

total 111

—rw—r—-—1—— 1 nic merit 2791 May 15 15:28 $index.publications
drwxr-sr—x 2 nic merit 512 Mar 04 08:31 farnet.gazette
drwxr—sr—x 2 nic merit 512 May 28 10:42 fyi

drwxr-sr—x 2 iesg ietf 1024 May 22 11:47 iesg

drwxr—sr—x 2 iesg ietf 18944 May 22 11:52 ietf

drwxr—sr—x 2 iesg ietf 12288 May 10 18:43 internet-drafts
drwxr—sr—x 2 nic merit 2048 May 13 15:37 internet.monthly.report
drwxr—sr—x 2 nic merit 1024 Apr 03 13:09 linkletter
drwxr—sr—x 2 nic merit 512 Mar 30 22:02 michnet.news
drwxr—sr—x 2 nic merit 512 Mar 25 09:24 michnet.tour.guides
drwxr—sr—x 2 nic merit 14848 May 28 10:04 rfc

drwxr-sr—x 2 nic merit 1536 May 27 15:22 std

226 Transfer complete.
812 bytes received in 00:00:01.58 seconds

ftp> cd rfe [We move down again to the subdirectory we are interested in]
250 CWD command successful.

ftp> dir [Now, we look for the file we want to retrieve]
200 PORT command successful.

150 Opening ASCII mode data connection for /bin/ls.
total 78703

[Due to the length of the screen output, we have cut it a bit]

—IW—r——r-— 2 nic merit 129670 May 28 10:15 $index.rfc
—IW—r——r—— 2 nic merit 2350 Nov 19 1988 rfc0003.txt
—IW—I——1—— 2 nic merit 26766 Nov 19 1988 rfc0005.txt
—-IW—TI-—I—— 2 nic merit 1585 Nov 19 1988 rfc0006.txt
—rw—r-—r—— 2 nic merit 3382 Nov 21 1988 rfc0010.txt
—IW—r——1—— 2 nic merit 367 Nov 18 1988 rfc0016.txt
—rw—r——r—— 2 nic merit 4511 Nov 18 1988 rfc0017.txt
—IW—I——1—— 2 nic merit 310 Nov 19 1988 rfc0018.txt
—IW—TI——TI—— 2 nic merit 2852 Nov 19 1988 rfc0019.txt
—TW—TI-—I—-— 2 nic merit 2179 Nov 19 1988 rfc0021.txt
—IW—r—-—1—— 2 nic merit 700 Nov 19 1988 rfc0023.txt
—I'W—r~-~r—~ 2 nic merit 3501 Nov 19 1988 rfc0024.txt
—rw—r—-1—— 2 nic merit 489 Nov 19 1988 rfc0025.txt
—W—r—-—r—-— 2 nic merit 3705 Nov 19 1988 rfc0027.txt
—IW—TI—T— 2 nic merit 581 Nov 19 1988 rfc0028.txt
—IW—T— —r—— 2 nic  merit 58150 May 19 08:40 rfc1329.1xt
—Iw—I—-—1—~ 2 nic  merit 192925 May 22 10:39 rfc1330.txt

—IW—TI— —1—— 2 nic  merit 129892 May 26 10:10 rfc1331.txt
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—rw—I——r—— 2 nic merit 17613 May 26 10:10 rfc1332.txt
—rwW—r——-r—— 2 nic merit 29965 May 26 10:10 rfc1333.txt
—W—r—-1—— 2 nic merit 15418 May 26 10:10 rfc1335.txt
—rw—I— —1——~ 4 nic merit 92119 May 28 10:03 rfcl1336.txt
—tW—r——-r—— 2 nic merit 22887 May 28 10:03 rfc1337.txt

226 Transfer complete.
47562 bytes received in 00:01:09.12 seconds
[Once we have checked that the file we want is there, we proceed to retrieve it/

ftp> ascii [There are two modes for the transmission, depending on the kind of file: ASCII
(the default one) for text files, and BINARY or IMAGE for programs and compressed files
(see note 2 on page 252). Here, we choose ascii because the file is text. Anyway, you must
be aware that for some computers this syntax can change]

200 Type set to A.
ftp> get rfcll18.txt [This order allows us to transfer the file from the remote host to
our local host]

200 PORT command successful,

150 Opening ASCII mode data connection for rfcl1118.txt (61740 bytes).
[Here comes a report on the transaction]

226 Transfer complete.

local; rfc1118.txt remote: rfcll18.txt

63087 bytes received in 00:00:53.74 seconds

ftp> get $index.rfc [It is usually of interest to retrieve a file that contains an index of
the files present in the subdirectory, with an explanation of its content’]

200 PORT command successful.

150 Opening ASCII mode data connection for $index.rfc (129670 bytes).

226 Transfer complete.

local: $index.rfc remote: $index.rfc

133153 bytes received in 00:01:55.01 seconds

ftp> ed / [We return now to the root directory]
250 CWD command successful.

ftp> bye [We disconnect from the remote computer]
221 Goodbye.

PINAR S [Back again to the prompt of our computer]

End of the sample FTP session

3 Other commands:
— mget for multiple gets.
— put for uploading (given you have permission).
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Usually you will have to transfer the files from your local host computer to
your PC. For this we use Kermit, a well-known communication program. We
have also used Kermit to obtain a log file of the FTP session.

We now give a brief list of places where you can find interesting things for
FTP:

Domain name IP Address Comments

ALW.NIH.GOV 128.231.128.251

WSMR-SIMTEL20.ARMY.MIL Many interesting programs

FTP.BIO.INDIANA.EDU

NIC.FUNET.FI 128.214.6.100

GARBO.UWASA FI 128.214.87.1 Mirror site of WSMR-
SIMTEL20.ARMY.MIL

SDSC.EDU 132.249.20.22

OAK.OAKLAND.EDU GraphicsWorkshop
(pub/msdos/graphics)

PLAINS.NODAK.EDU 192.33.18.50 ASCII pics, /pub/picture

VAX.FTP.COM 128.127.25.100 FTP software, inc.

ZAMENHOFE.CS.RICE.EDU 128.42.1.75 Graphic file format docs.

SBBIOVM.SUNYSB.EDU 129.49.22.2 J.Rohlf morphometric

programs (in
morphmet.192 directory).
Login as GUEST and
password ANONYMOU.
HUH.HARVARD.EDU TAXACOM FTP node
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The accompanying disk provided, includes programs by Becerra, Marcus, and
Rohlf mentioned in various articles. In addition there are updates to some of the
programs distributed along with the Proceedings of the Michigan Morphometrics
workshop. All of the software is written for IBM PC’s or clones.

I. James Rohlf provided the following programs. They are complete programs
and are supported by appropriate drivers (in BGIA.EXE) and data files (see
the README file along with each program). Programs have been com-
pressed using LHARC.EXE and put in a “self extracting” form so that typing
the name of the program will produce the files necessary to run them. To
save space, all drivers for monitors and printers have been put in BGIA.EXE.
Few of these are needed for any one module depending on vour monitor and
printer.

Example data files are supplied with each program. It is suggested that each pro-
gram be put in its own directory on a hard disk, and BGIA.EXE in its own direc-
tory. The size of the compressed module and full size of all the components are given
below, so they can be run from High Density Floppies as well. Erase the drivers
you don’t use once you have “extracted” the arced BGIA.EXE and put the appro-
priate drivers with the programs:

List of Rohlf Programs and Driver File

Self Exploding File Size Date Arced

GRFA.EXE 89490 2-12-93 3:54p
BGIA.EXE 224647 2-12-93 3:58p
TPSRWA EXE 129914 2-12-93 3:47p
TPSREGRA.EXE 115671 2-12-93 3:56p
TPSA.EXE 115101 2-12-93 3:42p

Note that the A at the end of the file name indicates that they have been com-
pressed into self-extracting files using LHARC.EXE
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A list of the files for each program and the sizes are given below:

GREF - Generalized Resistant Fit

GREEXE

T

T1

T2

T3
LIN.DTA
LIN2.DTA
LIN3.DTA
MOSQ.DTA
README.GRF
GREOVR

97952

3387
1697
1697
3395
191
955
955
2705
8399

77765

9-12-91
10-17-87
10-13-88
10-13-88
10-13-88

7-08-88

7-08-88

9-27-88

4-07-88

9-12-91

9-12-91

BGI - These are the drivers for graphics monitors and printers

$BMP.BGI
$CANON.BGI
$CFX.BGI
$CGM.BGI
$CLQ.BGI
$DJ.BGI
$FX.BGI
$HP7470.BGI
$HP7475.BGI
$HP7550.BGI
$HP7585.BGI
$IBMQ.BGI
$IMG.BGI
$LI.BGI
$LQ.BGI
$0KI192.BGI
$PCX.BGI
$PJET.BGI
$PP24.BGI
$TIFF.BGI
$TSH.BGI
$UTIFE.BGI
$WPG.BGI
ATT.BGI
CGA.BGI
EGAVGA.BGI

15359
17926
16876

9988
19520
17872
15359
14364
14396
14364
14500
15359
16812
16678
17358
15359
15359
18518
17214
17272
15950
17272

7900

6348

6332

5554

5-28-91
5-28-91
5-28-91
5-28-91
5-28-91
5-28-91
7-26-90
12-27-90
12-27-90
12-27-90
12-27-90
7-26-90
5-28-91
10-02-90
10-01-90
5-28-91
5-28-91
7-26-90
7-26-90
5-28-91
7-26-90
5-28-91
5-28-91
10-23-90
10-23-90
10-23-90

10:14a
11:36a
1:23p
1:28p
1:30p
4:37p
4:37p
6:32p
12:24p
11:26a
10:14a

2:19p
2:20p
2:20p
2:21p
2:21p
2:22p
4:48p
12:01p
12:01p
12:01p
12:02p
4:50p
2:27p
11:26a
3:41p
2:29p
2:29p
4:48p
4:51p
2:32p
4:48p
2:33p
2:33p
6:00a
6:00a
6:00a
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HERC.BGI 6204 10-23-90 6:00a
IBM8514.BGI 6665 10-23-90 6:00a
PC3270.BGI 6012 10-23-90 6:00a

TPSRW - Thin Plate Spline Relative Warp

TPSRW.EXE 130752 1-07-93  11:27a
TPSRW.OVR 123652 1-07-93  11:27a
README.TPR 32342 1-07-93  11:24a
RATS7.DTA 3711 5-11-91  10:28p
MOSQI18R.GRF 3468 10-13-92  4:38p
MOSQI18R.LNK 250 10-13-92  4:23p
MOSQI18R.NTS 3359 10-13-92  4:38p

TPSREGR - Thin Plate Spline Regression

This is a new program not discussed in the Valsain or earlier workshops. It is for
relating relative warp scores for objects to other characters, or extrinsic variables.
See the README file for further details and instructions. This is a very important
extension of the spline application software.

RATS.LNK 88 10-12-92 9:54p
RATS.NTS 15809 10-14-92  12:21p
RATS.REF 227 10-14-92 12:24
RATS.SIZ 1734 10-14-92  12:24p
README.REG 18164 12-11-92  12:02p
TPSREGR.EXE 82175 12-11-92  11:39a
TPSREGR.OVR 131952 12-11-92  11:3%a
RATS.V1 48 [2-11-92  10:39a

TPS - These are the original Thin Plate Spline programs, updated from the Michi-
gan Workshop Proceedings Manual

README.TPS 17307 11-29-91  12:04p
TPSPLINE.EXE 60751 12-17-91  11:26a
TPSPLINE.OVR 83903 12-17-91 11:22a
FIG520.DTA 5255 5-07-89 1:45a
FIG519.DTA 4680 5-07-89 1:45a
FIG518.DTA 5170 5-07-89 1:34a
FIG517.DTA 5196 5-07-89 1:22a
SNEATH3.DTA 4081 5-11-89  2:37p

SNEATH4.DTA 3564 5-13-890  2:00p
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SNEATH2.DTA 3929 5-13-89 1:57p
SNEATHI1.DTA 3664 5-11-89 2:37p
BKEGI.2 102 10-26-89 2:12a
BKEGI.1 102 10-26-89  12:52a

All above are latest versions of the programs available as this book went to press.
Updates are available by anonymous FTP (File Transfer Process) from State Uni-
versity of New York, Stony Brook computer as follows.

[

. FTP to SBBIOVM.SUNYSB.EDU
. Logon as guest... with password..... anonymou
change directory to BIOSTAT.192

W

cd BIOSTAT.192

N

. Look at directory using the DIR command
. Change the file type mode to binary by typing:

wn

binary

6. Download the file of interest to your main frame by typing - eg. for the latest
TPSRW

get TPSRWZ.IBMPCEXE

7. Download the TPSRWZ.IBMPCEXE file to your PC or clone. In your PC remem-
ber that you are downloading a binary file. For example in Kermit on CMS, you
would have to type the special instruction on the main frame SET FILE TYPE
BINARY, and make sure that the PC receiving mode is inbinary as well (ask your
local computer center for help if in doubt).

8. Rename the program TPSRWZ.ZIP so that PKUNZIP.EXE supplied on the
accompanying disk as PKUNZIPA.EXE can “unzip” it. This is best done on a
hard disk in a separate directory for each large zipped file.

The Z at the end of the name of the file generally indicates a “zipped” file, as
opposed to a self-exploding file as supplied on the accompanying disk. To reitera-
te, you will have actually a Zipped file and will require PKUNZIP.EXE to decom-
press it.

II. The second set of programs are MATLAB scripts written by Leslie F. Marcus
to accompany his article. In addition there are MATLAB programs for thin pla-
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te splines and relative warps which produce the same output as the Rohlf pro-
grams. These programs have code which is in the form of the matrix equations
in the various articles. However you have to own MATLAB (from Mathworks,
Inc.) and have a Math co-processor on your PC or Mac to run them. I have not
written graphics for the output - one main point of the “new morphometrics™.
For research and analysis use the Rohlf programs. To see the actual steps in the
analysis the MATLAB programs should be useful.

Programs and relevant data sets are in the self-extracting file:
MATLABA.EXE 15404 2-12-93 3:55p

which includes:

BIPLOT.M 805 7-15-92  11:04a
BIPLOT4.M 2692 7-15-92  10:34a
BIRDLAB.M 131 7-15-92 1:09p
EUEND.M 1193 12-08-92  4:36p
HIPLAB.M 240 7-02-92 5:32p
VARLAB.M 113 5-30-92 2:00p
LHIPPO.DAT 4187 11-15-91  11:03p
LMEDBIRD.DAT 9289 11-15-91  10:38p
LHIPCOL.M 135 6-03-92  11:38p
NUMBERS.M 227 11-25-91 11:12p
MOSQ.M 3177 10-10-92  11:32a
TPLOT.M 454 10-06-92  4:28p
ZYGO.M 4768 9-26-91 4:13p
TPSRAFF3.M 1066 10-10-92  12:15p
TPSRWZ3.M 2259 12-08-92  4:39p
SNEATHI.M 366 12-07-92  10:11p
SNEATH2.M 366 12-07-92  10:11p
SNEATH3.M 366 12-08-92 3:09p
SNEATH4.M 366 12-08-92 3:11p
TPSNEW.M 1945 12-08-92 3:08p
LHIPROW.M 240 6-03-92  11:32p

BIPLOT4.M is the program used to do biplots as in the Marcus article, and
BIPLOT.M is a called subroutine. ZYGO.M, LHIPPO.DAT, LMEDBIRD.DAT are
the data used in the article. NUMBERS.M, and VARLAB.M are general label files.
LHIPROW.M and LHIPCOL.M are row and column labels for LHIPPO. BIRD-
LAB.M supplies variable labels for the LMEDBIRD data.
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TPSRWZ3.M gives similar output to Rohlf’s TPSRW program run with MOSQ.M
which is a modified MOSQ18R.GRF. MOSQ.M loads the data into an array called
*coords”. You are asked for the number of specimens, 8, and number of coordina-
tes for each specimen, 18. This corresponds to using a GRF file as input for TPSRW,
using the Average as reference, and alpha = 0. TPSRWZ3.M uses subroutines
TPLOT.M which plots the reference specimen.

TPSAFF3.M does the affine part of the analysis and is min after TPSRWZ3 as it
needs some of the arrays from there. EUEND.M is another data set used in the Tal-
pa article, and must be put in the same format MOSQ.M. The file EUEND.M does
just that, so there are several programming steps at the end.

TPSNEW.M gives the same output as Rohlf’s TPSPLINE and works with data
files SNEATH1.M, SNEATH2.M, SNEATH3.M and SNEATH4.M. These are the
same coordinates as in files with TPSPLINE. In each case coordinates are put in an
X array in the *.M file.

II1. The third program is a useful utility to convert image files as explained in the
short text file CONVERIN.TXT found within CONVERTZ.EXE and repro-
duced between the ..... lines.

................................................................................................................................

CONVERIN.EXE

This program is a utility that works through simple menus. It translates Morp-
hoSys image files to TIFF image files (uncompressed) and viceversa. In this way
you can, for example, capture an image with MTV, make a modifi- cation of the
image (e.g., histogram flatten), save it, and then input the modified image into Morp-
hoSys. At the moment, the program supports the following resolutions: 512x512,
640x480, and 768x512. The version of MorphoSys version for the European AT-
OFG board can not read or write image files.

CONVERTZ when exploded will be found to contain the following files.

CONVERIN.TXT 559 30/01/93 17:38
CONVERIN PAS 13106 10/02/93 8:53
CONVERIN EXE 9152 10/02/93 9:04

CONVERIN . EXE is the executable module and has self contained instructions.
CONVERIN.PAS is the Pascal source code for this software. Updates will also be
saved and available by FTP from SBBIOVM.SUNYSB.EDU.



OBRAS PUBLICADAS

. CATALOGO DE LOS FONDOS ESPECIALES DE LA BIBLIOTECA
DEL MUSEO NACIONAL DE CIENCIAS NATURALES.

. LOS REPTILES MESOZOICOS DEL REGISTRO ESPANOL.
. DINAMICA DE POBLACIONES DE PECES EN RIOS.
. ECOLOGIA DEL OSO PARDO EN ESPANA.

. LA COLECCION DE BRIOZOOS DEL MUSEO NACIONAL
DE CIENCIAS NATURALES.

. CATALOGO DE LOS FONDOS ESPECIALES DE LA BIBLIOTECA
DEL MUSEO NACIONAL DE CIENCIAS NATURALES.

. THE NATURAL HISTORY OF BIOSPELEOLOGY.

. CONTRIBUTIONS TO MORPHOMETRICS.












	INDEX
	INTRODUCTION
	PART ONE. HISTORY, CONCEPTS, DISCUSSION AND CRITICISM
	A BRIEF HISTORY OF THE MORPHOMETRIC SYNTHESIS
	ON THREE-DIMENSIONAL MORPHOMETRICS, AND ON THE IDENTIFICATION OF LANDMARK POINTS

	PART TWO. DATA ACQUISITION
	BUILDING YOUR OWN MACHINE IMAGE SYSTEM FOR MORPHOMETRIC ANALYSIS: A USER POINT OF VIEW

	PART THREE. METHODOLOGY AND SOFTWARE
	SOME ASPECTS OF MULTIVARIATE STATISTICS FOR MORPHOMETRICS
	RELATIVE WARP ANALYSIS AND AN EXAMPLE OF ITS APPLICATION TO MOSQUITO WINGS
	THE FRACTAL ANALYSIS OF SHAPE

	PART FOUR. APPLICATIONS
	ONTOGENETIC ALLOMETRY OF THREESPINE STICKLEBACK BODY FOR MUSING LANDMARK-BASED MORPHOMETRICS
	LANDMARK DATA: SIZE AND SHAPE ANALYSIS IN SYSTEMATCS. A CASE STUDY ON OLD WORLD TALPIDAE

	ABSTRACT
	APPENDIX ONE. KNOWLEDGE FOR NOTHING: ABSORBING INTERNET AND BITNET RESOURCES
	APPENDIX TWO. SOFTWARE



