

CATÁLOGO DE GERMOPLASMA DE Phaseolus DE LA MISIÓN BIOLÓGICA DE GALICIA - CSIC

Antonio M. De Ron (Coordinador)

Ana M. González

María De La Fuente

A. Paula Rodiño

J. Pedro Mansilla

M. Soledad Saburido

Marta Santalla

PONTEVEDRA 2010

Acción Complementaria AC2009-00034. Financiada por el Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), en el marco del Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (l+D+i) y por el Fondo Europeo de Desarrollo Regional (FEDER).
Editan:
Misión Biológica de Galicia - CSIC. Pontevedra, España
Asociación Española de Leguminosas (AEL). Alcalá de Henares, España
Fotografías de semillas: Antonio M. De Ron Martínez

Fotografía de campo PHA-1051: M. Carmen Menéndez-Sevillano

Diseño, maquetación e impresión: Idea Gráfica. Pontevedra, España.

Portada: José Ramón García Mercadillo

Depósito Legal: PO 14-2011

Indice

PRIMERA PARTE Phaseolus vulgaris L. (judía común): RECURSOS GENÉTICOS	11
DIVERSIDAD GENÉTICA EN LAS ESPECIES DE Phaseolus	
EN RELACIÓN CON LA JUDÍA COMÚN	. 13
ORIGEN Y DOMESTICACIÓN DE LA JUDÍA COMÚN:	
RAZAS Y CLASES COMERCIALES	. 14
IMPORTANCIA DEL MARCADOR BIOQUÍMICO FASEOLINA EN EL ESTUDIO DEL ORIGEN Y DISEMINACIÓN DE LA ESPECIE EN EUROPA	
Variación genética en judía e implicaciones en mejora genética	
	. 10
SEGUNDA PARTE	
COLECCIÓN DE GERMOPLASMA DE <i>P. vulgaris</i> DE LA MISIÓN BIOLÓGICA DE GALICIA	21
PHA-0876	
PHA-1051	
PHA-2067	
PHA-0773	
PHA-0864	
PHA-0880	
PHA-0886	
PHA-0893	
PHA-0006	
PHA-0009	
PHA-0017	
PHA-0019	
PHA-0025	
PHA-0038	
PHA-0048	
PHA-0057	
PHA-0061	
PHA-0065	
PHA-0093	
PHA-0104	
PHA-0112	
PHA-0116	
PHA-0118	. 49
PHA-0120	
PHA-0136	
PHA-0160	. 52
PHA-0177	. 53
PHA-0187	. 54
PHA-0211	. 55
PHA-0212	. 56
PHA-0222	. 57

PHA-0240	58
PHA-0242	 59
PHA-0247	 60
PHA-0252	 61
PHA-0255	 62
PHA-0261	 63
PHA-0271	 64
PHA-0272	 65
PHA-0275	 66
PHA-0305	 67
PHA-0331	 68
PHA-0365	 69
PHA-0397	 70
PHA-0398	 71
PHA-0404	 72
PHA-0407	 73
PHA-0413	 74
PHA-0414	 75
PHA-0434	76
PHA-0449	77
PHA-0471	 78
PHA-0475	 79
PHA-0490	80
PHA-0493	 81
PHA-0502	82
PHA-0525	83
PHA-0531	84
PHA-0556	85
PHA-0568	86
PHA-0573	87
PHA-0621	90
PHA-0649	93
PHA-0668	95
DH A _ 11/15	102

PHA-1160	104
PHA-1190	105
PHA-1242	106
PHA-1289	107
PHA-1295	108
PHA-1308	109
PHA-1337	110
PHA-1338	111
PHA-1358	112
PHA-1374	113
PHA-1567	114
PHA-1573	115
PHA-1598	116
PHA-1604	117
PHA-1631	118
PHA-1640	119
PHA-1669	120
PHA-1731	121
PHA-1746	122
PHA-1853	123
PHA-1891	124
PHA-1919	125
PHA-1931	126
TERCERA PARTE PRODUCCIÓN Y CONSUMO. IMPORTANCIA DE <i>Phaseolus</i> EN ESPAÑA Y EN EL MUNDO	127
EL CULTIVO DE LA JUDÍA COMÚN	
FIJACIÓN SIMBIÓTICA DE NITRÓGENO: RHIZOBIA	
POSTCOSECHA Y COMERCIALIZACIÓN	
PROBLEMAS FITOSANITARIOS	
Hongos	
Bacterias	
Virus	
Nemátodos	
Insectos	
Ácaros	
INDICACIONES GEOGRÁFICAS PROTEGIDAS (IGPs)	
IGP "Alubia de la Bañeza-León"	
IGP "Faba Asturiana"	
IGP "Faba de Lourenzá"	
IGP "Judías del Barco de Ávila"	
IGP "Judía del Ganxet Vallés-Maresme" o "Mongeta del Ganxet Vallés-Maresme	,,
o "Fesol del Ganxet Vallés-Maresme"	
Alubias del País Vasco	
CONSUMO	140

PRIMERA PARTE

Phaseolus vulgaris L. (judía común): RECURSOS GENÉTICOS

La llegada de los europeos al continente americano, a partir del siglo XV, supuso la entrada en Europa de una serie de especies vegetales, como la judía común (*Phaseolus vulgaris* L.), el cacahuete (*Arachis hypogaea* L.), el cacao (*Teobroma cacao* L.), el maíz (*Zea mays* L.), la patata (*Solanum tuberosum* L.) o el tomate (*Solanum lycopersicum* L.), desconocidas hasta entonces en el Viejo Mundo.

DIVERSIDAD GENÉTICA EN LAS ESPECIES DE *Phaseolus* EN RELACIÓN CON LA JUDÍA COMÚN

La judía común pertenece al género *Phaseolus* y recibe el nombre científico de *Phaseolus vulgaris* (Linneo, 1753). Su enclave taxonómico es (Strasburger, 1994):

Clase: DicotyledoneaeSubclase: RosidaeSuperorden: FabanaeOrden: Fabales

- Familia: Fabaceae

- Subfamilia: Papilionoidae

Hasta la actualidad se han descrito más de 400 especies (Freytag y Debouck, 2002) en el género *Phaseolus*, de las cuales cinco han sido domesticadas, *P. vulgaris* L. (judía común), *P. lunatus* L. (judía de Lima), *P. coccineus* L. (judía escarlata), *P. polyanthus* Greenman, que guarda gran semejanza con la anterior, y *P. acutifolius* A. Gray (judía tépari) (Debouck, 1991), siendo *P. vulgaris* la especie más importante en el mundo ocupando un 80% de la superficie cultivada (Singh, 1992; 1999).

Dentro del género *Phaseolus* existen diferentes grupos naturales o acervos genéticos (Gepts y Debouck, 1991). El acervo genético primario de la judía incluye las variedades silvestres y cultivadas de *P. vulgaris*, que pueden cruzarse entre ellas y recombinarse sin ninguna barrera genética. El acervo secundario incluye a *P. coccineus*, *P. costaricensis* y *P. polyanthus* (Freytag y Debouck, 1996; Debouck, 1999). Esta última especie surgió por un proceso de domesticación a partir de un ancestro silvestre diferente (Schmit y Debouck, 1991). El cruzamiento entre *P. vulgaris* y las especies del acervo secundario se realiza fácilmente sin rescate de embriones, aunque el cruzamiento utilizando *P. coccineus* como parental femenino requiere técnicas de rescate de embriones (Bannerot, 1979). El acervo genético terciario incluye a *P. acutifolius* y *P. parvifolius*, que parece que son los ancestros en la evolución de la judía común (Debouck, 1999), y los cruzamientos con *P. vulgaris* requieren de técnicas "in vitro". La especie más lejana de *P. vulgaris* es *P. lunatus*, que pertenece al acervo genético cuaternario, y hasta el momento no se han documentado cruzamientos exitosos entre las dos especies (Leonard *et al.*, 1987; Kuboyama *et al.*, 1991).

Uno de los principales objetivos del desarrollo de cruzamientos interespecíficos es facilitar la incorporación de caracteres deseables en la especie *P. vulgaris*. Si lo que interesa es introducir genes de resistencia a enfermedades se podría emplear *P. acutifolius*, que es resistente a la bacteriosis común (Singh y Muñoz, 1999) o *P. coccineus* que es resistente a antracnosis (Hubbeling, 1957). Se debe considerar también la introducción de genes de especies resistentes a condiciones de estrés, como la tolerancia a la sequía y a temperaturas elevadas (Parson y Howe, 1984), como las que presenta *P. acutifolius*. En la actualidad, ya existen variedades de judía común que tienen genes de resistencia a estrés biótico y abiótico procedentes de otras especies del complejo de *Phaseolus*.

ORIGEN Y DOMESTICACIÓN DE LA JUDÍA COMÚN: RAZAS Y CLASES COMERCIALES

Las variedades de judía común actualmente cultivadas son el resultado de un proceso de domesticación y evolución (mutación, selección, migración y deriva genética) a partir de una forma silvestre (Brücher, 1988) procedente del continente americano, desde donde se extendió a todo el mundo y en la que se han ido produciendo cambios morfológicos, físiológicos y genéticos (Gepts y Debouck, 1991) como respuesta a las exigencias humanas o del medio ambiente. El conocimiento de su origen, evolución y vías de diseminación constituye una información de inestimable valor que permitirá al mejorador un manejo más adecuado de los recursos genéticos en los programas de mejora.

Hasta finales del siglo XIX se consideró que la judía común tenía su centro de origen en Asia pero posteriormente, de acuerdo con datos arqueológicos, botánicos, históricos y lingüísticos, Gepts y Debouck (1991) concluyeron que la judía común se originó en el área comprendida entre el norte de México y el noroeste de Argentina. Existen multitud de restos arqueológicos principalmente de semillas, fragmentos de vainas e incluso plantas enteras (Kaplan, 1981), hallados en los Andes (Perú, Chile, Ecuador y Argentina), en Mesoamérica (México, América Central y sureste de Estados Unidos) y Norteamérica (Nueva York). En la actualidad los restos más antiguos datan de 10000-8000 años a. C. procedentes de los Andes y de 6000 años a. C. procedentes de Mesoamérica. Todos estos restos son de plantas ya domesticadas y fenotípicamente similares a las variedades actuales de la zona.

Existe una laguna en cuanto a datos arqueológicos en la transición de formas silvestres a cultivadas, aunque actualmente si existen formas primitivas intermedias o de transición. Esto explica por qué los hallazgos de judía común empiezan a aparecer en épocas más recientes (1900-1300 años a.C.), coincidiendo con la aplicación de los métodos de mejora en la agricultura. Además de la información obtenida de los datos arqueológicos, existen datos botánicos como las características morfológicas, la distribución geográfica y las relaciones genéticas entre formas silvestres y cultivadas que evidencian el origen americano de la judía común. También hay datos históricos y lingüísticos, como son las múltiples menciones en los textos españoles del siglo XVI a la judía en América, además de la existencia de un término específico para designar a la judía en muchos dialectos indígenas.

El origen de la judía común se sitúa en el continente americano en dos áreas geográficas bien diferenciadas (Gentry, 1969; Kaplan, 1981): zona Mesoamericana (México y América Central) y zona Andina (Perú, Chile y Ecuador). Evans (1973) fue el primero en reconocer los dos grupos o acervos de germoplasma, tanto en judías silvestres como cultivadas. Ambos grupos se pueden distinguir por marcadores morfológicos y agronómicos (tamaño de la semilla, forma de la bracteola y del foliolo, pilosidad del foliolo, etc.) (Gepts y Debouck, 1991; Singh *et al.*, 1991a), bioquímicos (faseolina e isoenzimas) (Gepts *et al.*, 1986; Singh *et al.*, 1991b) y moleculares (RFLPs, RAPDs) (Khairallah *et al.*, 1992; Freyre *et al.*, 1996). Los marcadores bioquímicos y moleculares presentan dos ventajas frente a los morfológicos y agronómicos: son un fiel reflejo del genotipo y su variación no se ve afectada por el ambiente. Además, son caracteres más complejos y las variaciones observadas son en su mayoría únicas.

La diversificación, domesticación y radiación adaptiva de la especie se produjo en las zonas Mesoamericana y Andina de manera independiente. Las poblaciones típicamente representativas de cada zona presentan marcadas diferencias fenotípicas y genotípicas. La diferencia fenotípica más destacada es el tamaño de la semilla y la forma de la bracteola.

Así, el tipo de semilla pequeña (\leq 25 g/100 semillas) y las bracteolas grandes y ovaladas se observan en las poblaciones Mesoamericanas y el tipo de semilla mediana o grande (20-40 g y \geq 40 g/100 semillas) y con bracteolas pequeñas y triangulares en las poblaciones Andinas. La proteína de reserva, faseolina, es el marcador evolutivo que más claramente diferencia las poblaciones Mesoamericanas, con patrones electroforéticos B y S, de las Andinas, con patrones electroforéticos T, H y C (Gepts y Bliss, 1986; Koening *et al.*, 1990). Esta distribución paralela se puede atribuir a una domesticación múltiple y a cruzamientos ocasionales entre formas silvestres y cultivadas (Gepts y Debouck, 1991).

Entre los cambios surgidos durante la domesticación (Smartt, 1988) se pueden citar: gigantismo, incremento del tamaño de la semilla, vaina e incluso hoja, eliminación de la dehiscencia de la vaina, evolución de las formas de crecimiento indeterminado a determinado, cambios de ciclo biológico de vida perenne a anual, pérdida de latencia de la semilla, eliminación del tegumento duro de las semillas, pérdida de sensibilidad al fotoperíodo, etc.

Singh et al. (1991c), de acuerdo con los marcadores mencionados anteriormente, dividieron los dos acervos o grupos de germoplasma en seis razas: germoplasma Andino (razas Chile, Nueva Granada y Perú) y germoplasma Mesoamericano (razas Durango, Jalisco y Mesoamérica). Las variedades de las razas Durango, Mesoamérica y Nueva Granada son cultivadas en todo el mundo, sin embargo, la raza Jalisco sólo se cultiva en los valles de México, la raza Chile se distribuye en las regiones secas y de bajas altitudes en el sur de los Andes y la raza Perú tiene una distribución limitada a los valles andinos. Las clases comerciales de mayor importancia económica pertenecen a las tres razas mencionadas anteriormente, Durango, Mesoamérica y Nueva Granada, y se presentan en la tabla 1.1. Dentro de la raza Mesoamérica, en el continente americano, se pueden distinguir regiones en las que predomina más un tipo de grano. Así el grano blanco se cultiva principalmente en México, Venezuela o Cuba mientras que las variedades de grano negro son más apreciadas en Brasil. En cuanto a la raza Durango cabe destacar la variedad "Great northern", importante en Estados Unidos y Canadá y exportada a Europa. Las variedades más importantes dentro de la raza Nueva Granada son "Cranberry" y la alubia blanca, cultivadas sobre todo en Argentina y exportadas a Europa (España y Portugal).

En España también existen una serie de variedades tradicionales, características de una zona o región. Estas variedades reciben diferentes nombres locales, como alubia, bachoca, caparrón, chícharo, faba, fréjol, feixoeiro, garbanzo, haba, habichuela, judía, judión, mongeta, pocha, etc. Muchas de ellas se conservan en la colección de germoplasma de Leguminosas de la Misión Biológica de Galicia del Consejo Superior de Investigaciones Científicas (MBG-CSIC). El hecho de que haya preferencias locales por determinados tipos de judía, ha favorecido la conservación de gran parte de la variabilidad genética original de estas poblaciones.

La gran diversidad presente en las poblaciones de judía en España, y su radiación adaptiva en Europa, fundamenta que se considere la Península Ibérica como un centro de diversificación secundario de la especie (Santalla *et al.*, 2002; Santalla *et al.*, 2010). En este proceso de diversificación surgieron nuevas formas fenotípicamente diferentes de las variedades originales de los respectivos acervos Mesoamericano y Andino y, asimismo, genotipos recombinantes naturales entre los acervos que tienen alto interés para la mejora genética de la especie (Rodiño, *et al.*, 2006), ya que pueden utilizarse como genitores "puente" para introgresar caracteres desde variedades un acervo a otro, contribuyendo a superar los problemas de incompatibilidad genética que aparecen frecuentemente en cruzamientos entre acervos.

Tabla 1.1. Principales clases comerciales de judía común, región de producción y área cultivada (Singh, 1999).

RAZAS Y CLASES COMERCIALES	REGIÓN PRODUCTORA	ÁREA (10³ ha)
Raza Mesoamérica	a (semilla pequeña)	
Negra	Argentina, Brasil, Venezuela, Caribe, Mesoamérica y Norteamérica	3500
Carioca	Brasil y Bolivia	2000
Jalinho	Brasil	500
Mulatinho	Brasil	500
Roja	Centroamérica y China	250
Blanca	África, China y Norteamérica	250
Raza Durango (sei	milla mediana)	
Bayo	Valles altos de México	800
Flor de mayo	Valles altos de México	250
Great northern	Europa, Norteamérica, oeste de Asia	700
Ojo de cabra	Valles altos de México	150
Rosa	Norteamérica	20
Pinta	Norteamérica	800
Roja	Norteamérica	30
Raza Nueva Grana	ada (semilla grande)	
Alubia	Argentina, Europa, Norte de África y Oeste de Asia.	250
Azufrado	Costa del Pacífico de México y Perú	150
Calima	África, Andes y Caribe	1500
Manteca	Andes	100
Cranberry	África, Asia, Europa, Norteamérica y Sudamérica	800
Alubia roja oscura	África, Andes y Norteamérica	500
Alubia roja clara	África y Norteamérica	300
Radical	Andes	50

IMPORTANCIA DEL MARCADOR BIOQUÍMICO FASEOLINA EN EL ESTUDIO DEL ORIGEN Y DISEMINACIÓN DE LA ESPECIE EN EUROPA

El estudio de los marcadores bioquímicos como la faseolina (proteína de reserva de la semilla), ha permitido ampliar los mapas genéticos, que hasta entonces sólo se basaban en algunos marcadores morfológicos (Bassett, 1991), destacando los relacionados con el color de la semilla, dada la gran diversidad fenotípica que presenta (Voysest, 1983). La existencia de mapas genéticos que incluyan tanto caracteres morfológicos como bioquímicos facilita la realización de programas de mejora genética. La fácil determinación de los marcadores bioquímicos, ofrece la oportunidad para usarlos como marcadores genéticos en la selección de material (Kelly y Miklas, 1999). Así, la faseolina se ha usado como marcador para aumentar el contenido de proteína en la semilla de judía común (Singh *et al.*, 1998).

Los estudios basados en marcadores bioquímicos demostraron que la judía común cultivada es el resultado de múltiples domesticaciones en la zona Andina y Mesoamericana (Singh et al., 1991b), e indicaron la división en subgrupos dentro de los dos grupos de germoplasma, Andino y Mesoamericano. Además, el aislamiento geográfico y el tipo de reproducción autógama de la especie limitaron el movimiento de genes de una población a otra, provocando diferencias genéticas entre poblaciones y dando lugar a una diferenciación de genes en ambos grupos o acervos. También se ha determinado la relación existente entre el tipo de faseolina y la procedencia geográfica, reforzando la teoría de dos centros de domesticación independsente. La variabilidad electroforética de la faseolina se usó como marcador evolutivo para observar los patrones de domesticación y diseminación de la judía común. Los primeros patrones de faseolina se identificaron empleando los cultivares Sanilac, Tendergreen, Contender, Boyaca y Huevo de Huanchaco que identifican los tipos "S", "T", "C", "B" y "H" respectivamente (Brown et al., 1981). Como ya se ha mencionado anteriormente, las variedades de origen Andino presentan faseolina tipo "T", "H" y "C" y las de origen Mesoamericano "S" o "B" mayoritariamente, y de forma menos frecuente, "Sb" o "Sd" (tabla 1.2.) (Gepts et al., 1986; Koenig et al., 1990).

Gracias al estudio de la faseolina se puede determinar el origen de las distintas variedades cultivadas que se extienden por todo el mundo. Después del descubrimiento de América, variedades Andinas y Mesoamericanas fueron introducidas en Europa, apareciendo en 1508 la judía en Francia como planta ornamental (Zeven, 1997). McClean et al. (1993) sugieren que el germoplasma europeo procede del centro de domesticación Andino, siendo menos populares las variedades Mesoamericanas. Esta preferencia puede explicarse porque los genotipos Andinos estaban mejor adaptados al frío y a los veranos cortos que los Mesoamericanos. Otros estudios confirman esta tendencia, de hecho la mayor parte de las variedades europeas estudiadas, a excepción de la Península Ibérica, presentan faseolina tipo "T" (Gepts y Bliss, 1988). En la Península Ibérica predomina la faseolina tipo "C" (Gepts y Bliss, 1988; Lioi, 1989), probablemente introducida desde Chile (Gepts et al., 1986). Estos datos no concuerdan con los estudios realizados en poblaciones del noroeste de España (Escribano et al., 1998) y en poblaciones de Portugal (Rodiño et al. 2001), donde el tipo de faseolina predominante era el tipo "T", indicando el origen Andino del germoplasma de la Península Ibérica.

Tabla 1. 2. Ti	ipo de	faseolina ei	n las	distintas	razas	de	judía	común.
----------------	--------	--------------	-------	-----------	-------	----	-------	--------

RAZA	FASEOLINA
Mesoamericana	
- Mesoamérica	S, Sb, B
- Durango	S, Sd
- Jalisco	S
Andina	
- Nueva Granada	Т
- Chile	C, H
-Perú	Т, С, Н

Variación genética en judía e implicaciones en mejora genética

Los estudios bioquímicos de faseolina y alozimas han aportado, en los últimos años, una valiosa información sobre el origen de la judía, y sobre la variabilidad genética existente para llevar a cabo programas de mejora genética. Parece que existe una relación entre los genes estructurales de la faseolina y los genes responsables de las características fenotípicas de la vaina de las clases comerciales.

Más recientemente, el uso de marcadores moleculares de ADN, como son los RAPDs (Ramdom Amplified Polymorphic DNA), SCARs (Sequence Characterized Amplified Region) y SSRs (Single Sequence Repeats) o microsatélites, y AFLPs (Amplified Fragment Length Polymorphisms) han demostrado ser muy apropiados para la identificación de la diversidad genética entre las clases comerciales de judía (Cunha et al., 2004). Estos marcadores se han utilizado en tareas de conservación y gestión de los recursos fitogenéticos (Park et al. 1996). Entre otras aplicaciones de los marcadores moleculares se encuentra la selección asistida, la identificación varietal y el análisis de caracteres complejos (Blair et al., 2007).

Una aplicación más de los marcadores moleculares basados en el ADN es el desarrollo de mapas genéticos (Freyre *et al.*, 1998). Estos mapas genéticos son representaciones de la posición relativa de los genes, obtenida a partir de las frecuencias de recombinación entre los loci analizados. Son una herramienta básica para el establecimiento del control genético de los caracteres, estudios evolutivos, desarrollo de programas de mejora, etc. El uso de los marcadores moleculares con este fin ha permitido construir mapas genéticos de alta densidad, que permiten ubicar con fiabilidad la posición de un gen de interés (Yu *et al.* 2000; Guerra-Sanz 2004; Pérez-Vega *et al.*, 2010).

En los últimos años la utilización de marcadores moleculares tipo SSR ha tenido un gran auge en los estudios de la especie, y aunque el desarrollo de marcadores de este tipo ha sido paulatino, en este momento se han descrito aproximadamente 600 marcadores en el genoma de la judía común (Benchimol *et al.*, 2007; Blair *et al.*, 2009a; 2009b; Hanai *et al.*, 2010). Estos marcadores resultan muy útiles por su elevado nivel de polimorfismo, su distribución homogénea a lo largo del genoma, su codominancia y neutralidad. La reproducibilidad de estos marcadores, aunque ya era alta, se ha visto incrementada

por la introducción de secuenciadores de tipo automático, que han permitido genotipar y analizar dichos marcadores y establecer de forma clara, y con apenas diferencias de una base, los alelos presentes en las variedades analizadas.

Usando este tipo de marcadores moleculares se ha confirmado, no solo la existencia de los dos acervos Mesoamericano y Andino, previamente determinados con caracteres fenotípicos y marcadores proteicos de semilla, sino que se ha conseguido discriminar entre razas dentro de cada acervo, algo no conseguido anteriormente con otros marcadores (Blair et al., 2007). También se ha profundizado en los estudios evolutivos relacionados con los eventos de domesticación acaecidos en las judías silvestres y que han dado lugar a las actuales variedades domesticadas (Chacon et al., 2005). Los estudios sobre la evolución y variabilidad de la judía fuera de sus centros de origen también han experimentado gran progreso gracias a los estudios de marcadores SSR (Piergiovanni et al., 2006; Tiranti y Negri 2007; Massi et al., 2009; Asfaw et al., 2009).

La dispersión de la judía hacia Europa tuvo lugar, probablemente, desde la Península Ibérica. En la cuenca Mediterránea pueden diferenciarse claramente poblaciones pertenecientes a cada uno de los acervos, así como individuos intermedios, probablemente descendientes de aquellas poblaciones de la Península Ibérica en las que se produjo el flujo genético entre Mesoamericanos y Andinos (Santalla *et al.*, 2002). En la cuenca del Mediterráneo las poblaciones del acervo Andino parecen haber experimentado mayores fenómenos de evolución y adaptación, ya que aparecen claras diferencias entre éstas. Un caso particular son las judías de semilla blanca de Turquía que parecen estar filogenéticamente alejadas del resto de las judías Europeas. Es probable pues, que no se hayan introducido en este país a través de la Península Ibérica, siendo una opción plausible la entrada de la judía en Turquía desde Asia oriental, a través de la Ruta de la Seda (De La Fuente *et al.*, 2010).

La colección mundial de germoplasma de judía se encuentra en el Centro Internacional de Agricultura Tropical (CIAT, Cali, Colombia), que cuenta con más de 30000 entradas de diferentes especies de *Phaseolus*, de las cuales la mayor parte corresponden a *P. vulgaris*. En España, la mayor colección de judía se encuentra en el CRF (Centro Nacional de Recursos Fitogenéticos)-INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), que ha sido regenerada y caracterizada tanto en el propio CRF-INIA como en otros centros de investigación, como la MBG-CSIC (De la Rosa *et al.*, 2008)

Las variedades locales, en una especie autógama, son en realidad mezclas de líneas puras con aspecto fenotípicamente semejante a la vista del agricultor, pero que mantienen cierta variación genética intrapoblacional. Por esta razón la selección individual de líneas en variedades locales ha proporcionado numerosos éxitos en la mejora genética con la obtención de variedades que hoy son ampliamente utilizadas.

Actualmente se está utilizando menos del 5% de la variación total disponible en judía en programas de mejora genética (Singh *et al.*, 1997) lo que proporciona una idea clara de la reducida base genética de las variedades comerciales utilizadas en la actualidad. Por ello, y considerando además que se trata de una especie autógama, uno de los objetivos claros de la mejora genética de judía, incluyendo los aspectos relativos a la calidad, debe ser la ampliación de la base genética de las variedades comerciales. Los métodos de retrocruzamiento recurrente y congruente, o sus variantes, son los más adecuados para asegurar el éxito en programas de mejora basados en el uso de cruzamientos entre fuentes diversas de germoplasma (Singh *et al.*, 1997, Singh, 1999).

En cada caso, el método de mejora debe tener en cuenta el problema de la evaluación de generaciones segregantes, que en el caso de la calidad no es sencillo, especialmente en lo relativo a la calidad sensorial. Esta evaluación debe realizarse en diferentes ambientes (Multiple Environments Test, METs) dada la existencia de efectos ambientales e interacciones genotipo x ambiente y, además, debe incluir como referencia testigos de calidad reconocida.

Profundizar en las características fenotípicas y genotípicas de cada una de las variedades presentes en colecciones y bancos de germoplasma supone un paso previo para conocer la variabilidad de la que se dispone. Esto es fundamental para llevar a cabo programas de mejora genética en la especie, que ayuden a obtener variedades de judía portadoras de caracteres deseables en cuanto a calidad y producción, así como resistencias a estreses abióticos y bióticos.

SEGUNDA PARTE COLECCIÓN DE GERMOPLASMA DE P. vulgaris DE LA MISIÓN BIOLÓGICA DE GALICIA

La MBG-CSIC tiene en marcha desde 1987 un programa de recolección, conservación y evaluación de germoplasma de *Phaseolus vulgaris* (De Ron *et al.*, 1997). Este material genético se ha caracterizado desde el punto de vista agronómico, de calidad genética y tolerancia a estreses bióticos y abióticos, para su uso en mejora vegetal. Asimismo esta colección es la base de los estudios moleculares de evolución de la especie. Parte de la colección ha sido colectada por su propio personal y otra parte ha sido enviada desde el Centro Nacional de Recursos Fitogenéticos (CRF-INIA) y otras instituciones. El material genético se conserva en cámaras a 5°C de temperatura y humedad relativa del 40%, condiciones adecuadas para una conservación a medio plazo. Las variedades se regeneran periódicamente en el campo, invernadero o casa de malla y se envían duplicados al CRF-INIA.

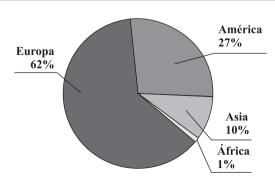

En la actualidad, la colección de germoplasma de la MBG-CSIC cuenta con 2163 entradas del género *Phaseolus* (tabla 2.1). El mayor número de ellas corresponden a la especie *P. vulgaris* L., aunque también se conservan entradas de *P. coccineus* L., *P. acutifolius* L. y *P. parviflorus* L. En la colección de *P. vulgaris* L. existen 1659 variedades locales, 321 líneas puras, 45 variedades comerciales y 73 poblaciones silvestres.

Tabla 2.1.	Número de entradas del género Phaseolus de la colección de germoplasma de la
	MBG-CSIC.

Especie	Nº de Entradas
P. vulgaris L.	2098
P. acutifolius L.	4
P. coccineus L.	59
P. parviflorus L.	2
TOTAL	2163

La colección de *P. vulgaris* L. está compuesta por germoplasma mayoritariamente europeo, procedente de 21 países tanto del área mediterránea como de la Europa atlántica y continental. Existe también en la colección una importante representación de germoplasma americano, así como algunas poblaciones de origen asiático y también una pequeña representación de África (figura 2.1).

Figura 2.1. Distribución por continentes de las entradas de *P. vulgaris* L. de la colección de germoplasma de la MBG-CSIC.

En la tabla 2.2 se muestra el número de entradas de *P. vulgaris* L. de la colección de la MBG-CSIC clasificadas según su país de origen. Una gran parte del germoplasma existente en la colección se ha recolectado en la Península Ibérica (De Ron *et al.*, 1991) y se utiliza en programas de mejora genética, ya que estas variedades presentan adaptación al entorno, lo que supone una ventaja para el mejorador. En otros casos el germoplasma se ha recibido de diversas instituciones para su uso como variedades referencia o patrones, y también para programas de mejora. El germoplasma europeo del área mediterránea y americano, es la base de las investigaciones de genética y evolución de los dos acervos genéticos, Andino y Mesoamericano, del género *Phaseolus* en Europa.

Tabla 2.2 Entradas de *P. vulgaris* L. procedentes de América, Asia, Europa y África.

País de Origen	Nº de Entradas
<i>EUROPA</i>	
Albania	1
Alemania	5
Austria	5 8 2
Bélgica	
Bulgaria	128
Chipre	2
Croacia	2 2 6
Eslovenia	6
España	666
Francia	129
Gran Bretaña	1
Grecia	63
Hungría	22
Italia	32
Macedonia	93
Portugal	125
República Checa	3
Rumania	6
Serbia	5
Suecia	1
Ucrania	6
TOTAL	1306

País de Origen	Nº de Entradas
<i>AMÉRICA</i>	
Argentina	208
Bolivia	56
Brasil	9
Canadá	2
Chile	55
Colombia	64
Costa Rica	10
Ecuador	14
Estados Unidos	7
Guatemala	18
Honduras	15
México	76
Nicaragua	1
Perú	38
TOTAL	573

País de Origen	Nº de Entradas
ASIA	
Japón	20
Libano	32
Siria	15
Turquía	140
TOTAL	207

País de Origen	Nº de Entradas
ÀFRICA	
Cabo Verde	1
Egipto	9
Marruecos	2
TOTAL	12

Las colecciones de germoplasma de judía de los Centros Internacionales de Investigación han hecho posible los avances mundiales en la producción agrícola, constituyendo la materia prima de los programas de mejora. Estos Centros proporcionan la variabilidad necesaria para aumentar la base genética de los materiales que se utilizan en los programas de mejora y aportan fuentes de resistencia a distintas plagas y enfermedades.

En este apartado se incluye la descripción de una muestra de variedades silvestres y primitivas, además de las diferentes clases comerciales cultivadas actualmente en escala global y mantenidas en la colección de germoplasma de la MBG-CSIC. Las variedades elegidas proporcionan una muestra del rango de variación genética existente en la amplia colección de *P. vulgaris* de la MBG-CSIC, para lo cual se consideró el material estudiado en trabajos anteriores del Grupo de Investigación de Leguminosas (Santalla *et al.*, 2001; Rodiño *et al.*, 2003; De Ron *et al.*, 2004; Santalla *et al.*, 2010).

En la descripción de cada variedad se incluye la siguiente información:

- Nº colección: código de la variedad en la colección de la MBG-CSIC
- Fecha entrada: fecha de incorporación a la colección de la MBG-CSIC
- Num. Cat: Número de Catálogo en el Inventario Nacional de Germoplasma del CRF-INIA
- Procedencia (provincia)
- País
- Clase comercial: de acuerdo con Santalla et al. (2001)
- Nombre local: se incluye en algunas variedades, cuando ha sido proporcionado por los agricultores o por los bancos o colecciones de germoplasma de origen
- Datos fenotípicos de caracterización: el hábito de crecimiento se determinó según los descriptores del CIAT (1984)
- Faseolina: proteína de reserva de la semilla, marcador genético racial
- Imágenes

Nº colección	PHA-0876
Fecha entrada	21/10/96
Num. Cat.	NC070597
Procedencia	Jujuy
País	ARGENTINA
Clase comercial	silvestre

Primera flor (días)	72
Final floración (días)	172
Primera vaina seca (días)	155
Dormancia (%)	80
Vainas/planta	25
Masa 100 semillas (g)	10
Longitud grano (mm)	8
Anchura grano (mm)	5
Grosor grano (mm)	3
Longitud vaina (mm)	73

Faseolina	Т
Hábito	IV
Color flor	rosa claro/oscuro
Estrías	no
Color vaina	verde
Color semilla	gris/negra/amarillo/marrón
Brillo semilla	sí

Nº colección	PHA-1051
Fecha entrada	11/05/01
Procedencia	Jalisco
País	MÉJICO
Clase comercial	silvestre

Primera flor (días)	45
Dormancia (%)	100
Vainas/planta	7
Masa 100 semillas (g)	7
Longitud grano (mm)	8
Anchura grano (mm)	5
Grosor grano (mm)	3
Granos/vaina	6

Faseolina	M
Hábito	IV
Color flor	rosa claro/oscuro
Estrías	sí
Color vaina	rojo
Color semilla	crema
Brillo semilla	sí

Nº colección	PHA-2067
Fecha entrada	27/07/04
Procedencia	Boyaca
País	COLOMBIA
Clase comercial	silvestre

Primera flor (días)	50
Primera vaina seca (días)	98
Dormancia (%)	70
Vainas/planta	9
Masa 100 semillas (g)	10
Longitud grano (mm)	9
Anchura grano (mm)	6
Grosor grano (mm)	3
Granos/vaina	2

Faseolina	S
Hábito	IV
Color flor	rosa claro
Estrías	sí
Color vaina	verde/roja
Color semilla	crema/café
Brillo semilla	sí

Nº colección	PHA-0773
Fecha entrada	8/09/95
Num. Cat.	Nc070555
Procedencia	Jujuy
País	ARGENTINA
Clase comercial	primitiva

Primera flor (días)	55
Final floración (días)	102
Primera vaina seca (días)	129
Dormancia (%)	20
Vainas/planta	10
Masa 100 semillas (g)	50
Longitud grano (mm)	13
Anchura grano (mm)	8
Grosor grano (mm)	6
Granos/vaina	4
Longitud vaina (mm)	103

Faseolina	Т
Hábito	IV
Color flor	blanca
Estrías	no
Color vaina	verde/amarilla
Color semilla	blanco/rojo
Brillo semilla	sí

Nº colección	PHA-0864
Fecha entrada	21/10/96
Num. Cat.	Nc070585
Procedencia	Jujuy
País	ARGENTINA
Clase comercial	primitiva

Primera flor (días)	82
Final floración (días)	125
Primera vaina seca (días)	122
Dormancia (%)	30
Vainas/planta	11
Masa 100 semillas (g)	37
Longitud grano (mm)	11
Anchura grano (mm)	7
Grosor grano (mm)	4
Granos/vaina	11
Longitud vaina (mm)	113

Faseolina	Т
Hábito	IV/I
Color flor	rosa claro/oscuro
Estrías	no/sí
Color vaina	amarillo/morado
Color semilla	crema
Brillo semilla	sí

Nº colección	PHA-0880
Fecha entrada	21/10/96
Num. Cat.	Nc070601
Procedencia	Salta
País	ARGENTINA
Clase comercial	primitiva

Primera flor (días)	79
Final floración (días)	131
Primera vaina seca (días)	158
Dormancia (%)	45
Vainas/planta	18
Masa 100 semillas (g)	44
Longitud grano (mm)	12
Anchura grano (mm)	8
Grosor grano (mm)	5
Granos/vaina	3
Longitud vaina (mm)	116

Faseolina	Н
Hábito	IV/III
Color flor	rosa claro/oscuro
Estrías	no/ sí
Color vaina	amarillo/morado
Color semilla	amarillo/granate
Brillo semilla	sí

Nº colección	PHA-0886
Fecha entrada	21/10/96
Num. Cat.	Nc070607
Procedencia	Salta
País	ARGENTINA
Clase comercial	primitiva

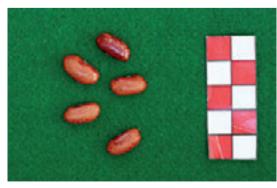
Primera flor (días)	46
Primera vaina seca (días)	123
Dormancia (%)	20
Vainas/planta	7
Masa 100 semillas (g)	37
Longitud grano (mm)	12
Anchura grano (mm)	7
Grosor grano (mm)	3
Granos/vaina	3
Longitud vaina (mm)	98

Faseolina	Т
Hábito	IV/III
Color flor	blanca/rosa claro
Estrías	no
Color vaina	amarilla
Color semilla	negro/marrón/blanco
Brillo semilla	sí

Nº colección	PHA-0893
Fecha entrada	21/10/96
Num. Cat.	Nc070614
Procedencia	Salta
País	ARGENTINA
Clase comercial	primitiva

Primera flor (días)	52
Vainas/planta	3
Masa 100 semillas (g)	44
Longitud grano (mm)	9
Anchura grano (mm)	7
Grosor grano (mm)	5
Granos/vaina	1

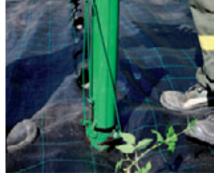
Faseolina	T
Hábito	IV
Color flor	blanca
Estrías	no
Color vaina	verde
Color semilla	marrón/blanco
Brillo semilla	sí



Nº colección	PHA-0006
Fecha entrada	1987
Num. Cat.	Nc054430
Procedencia	Pontevedra
País	ESPAÑA
Clase comercial	large cranberry

Primera flor (días)	44
Final floración (días)	74
Primera vaina seca (días)	88
Rendimiento (g/planta)	36
Masa 100 semillas (g)	42
Longitud grano (mm)	14
Anchura grano (mm)	7
Grosor grano (mm)	6
Longitud vaina (mm)	108

Faseolina	Т
Hábito	I
Color flor	rosa
Estrías	no
Color vaina	verde
Color semilla	crema/morado
Brillo semilla	sí



Nº colección	PHA-0009
Fecha entrada	1987
Num. Cat.	Nc054423
Procedencia	Pontevedra
País	ESPAÑA
Clase comercial	small white
Nombre local	garbanzo

Primera flor (días)	57
Final floración (días)	77
Primera vaina seca (días)	103
Rendimiento (g/planta)	53
Masa 100 semillas (g)	27
Longitud grano (mm)	10
Anchura grano (mm)	7
Grosor grano (mm)	5
Longitud vaina (mm)	104

Faseolina	S
Hábito	II
Color flor	blanca
Estrías	no
Color vaina	verde
Color semilla	blanca
Brillo semilla	sí

Nº colección	PHA-0017
Fecha entrada	1987
Num. Cat.	Nc054397
Procedencia	Pontevedra
País	ESPAÑA
Clase comercial	hen eye
Nombre local	ollo de pita

Primera flor (días)	62
Final floración (días)	96
Primera vaina seca (días)	115
Rendimiento (g/planta)	96
Masa 100 semillas (g)	67
Longitud grano (mm)	13
Anchura grano (mm)	9
Grosor grano (mm)	7
Longitud vaina (mm)	128

Faseolina	С
Hábito	IV
Color flor	blanca
Estrías	no
Color vaina	verde
Color semilla	blanca/negra
Brillo semilla	sí

Nº colección	PHA-0019
Fecha entrada	1987
Num. Cat.	Nc054393
Procedencia	Pontevedra
País	ESPAÑA
Clase comercial	small white

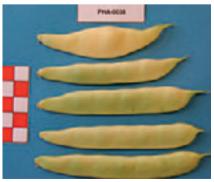
Primera flor (días)	50
Final floración (días)	90
Primera vaina seca (días)	103
Rendimiento (g/planta)	37
Masa 100 semillas (g)	45
Longitud grano (mm)	12
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	112

Faseolina	B, S
Hábito	I, III
Color flor	blanca
Estrías	no
Color vaina	verde
Color semilla	blanca
Brillo semilla	sí

Nº colección	PHA-0025
Fecha entrada	1987
Num. Cat.	Nc054309
Procedencia	Ourense
País	ESPAÑA
Clase comercial	ojo de cabra

Primera flor (días)	49
Final floración (días)	78
Primera vaina seca (días)	99
Rendimiento (g/planta)	33
Masa 100 semillas (g)	50
Longitud grano (mm)	15
Anchura grano (mm)	9
Grosor grano (mm)	7
Longitud vaina (mm)	200

Faseolina	С
Hábito	IV
Color flor	rosa oscuro
Estrías	sí
Color vaina	amarillo
Color semilla	marrón claro/oscuro
Brillo semilla	sí



Nº colección	PHA-0038
Fecha entrada	1987
Num. Cat.	Nc013422
Procedencia	Bragança
País	PORTUGAL
Clase comercial	brown marrow

Primera flor (días)	54
Final floración (días)	81
Primera vaina seca (días)	118
Rendimiento (g/planta)	41
Masa 100 semillas (g)	47
Longitud grano (mm)	11
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	117

Faseolina	С
Hábito	IV
Color flor	rosa claro/blanco
Estrías	sí
Color vaina	amarillo
Color semilla	marrón claro/oscuro
Brillo semilla	no

Nº colección	PHA-0048
Fecha entrada	1987
Num. Cat.	Nc013438
Procedencia	Bragança
País	PORTUGAL
Clase comercial	mottled canellini

Primera flor (días)	42
Final floración (días)	76
Primera vaina seca (días)	76
Rendimiento (g/planta)	51
Masa 100 semillas (g)	74
Longitud grano (mm)	19
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	208

Faseolina	Т
Hábito	II
Color flor	rosa claro
Estrías	sí
Color vaina	amarillo
Color semilla	crema/granate
Brillo semilla	no

Nº colección	PHA-0057
Fecha entrada	1987
Num. Cat.	Nc013450
Procedencia	Bragança
País	PORTUGAL
Clase comercial	pinto

Primera flor (días)	51
Final floración (días)	70
Primera vaina seca (días)	96
Rendimiento (g/planta)	32
Masa 100 semillas (g)	39
Longitud grano (mm)	13
Anchura grano (mm)	9
Grosor grano (mm)	5
Longitud vaina (mm)	110

Faseolina	В
Hábito	IV
Color flor	rosa claro
Estrías	sí
Color vaina	amarillo
Color semilla	crema / marrón
Brillo semilla	no

Nº colección	PHA-0061
Fecha entrada	1987
Num. Cat.	Nc013458
Procedencia	Bragança
País	PORTUGAL
Clase comercial	bayo gordo

Primera flor (días)	52
Final floración (días)	78
Primera vaina seca (días)	94
Rendimiento (g/planta)	33
Masa 100 semillas (g)	54
Longitud grano (mm)	13
Anchura grano (mm)	9
Grosor grano (mm)	7
Longitud vaina (mm)	141

Faseolina	С
Hábito	IV
Color flor	rosa claro
Estrías	sí
Color vaina	amarillo
Color semilla	marrón claro
Brillo semilla	sí

Nº colección	PHA-0065
Fecha entrada	1987
Num. Cat.	Nc013936
Procedencia	Bragança
País	PORTUGAL
Clase comercial	navy

Primera flor (días)	45
Final floración (días)	71
Primera vaina seca (días)	93
Rendimiento (g/planta)	56
Masa 100 semillas (g)	41
Longitud grano (mm)	10
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	110

Faseolina	S
Hábito	IV
Color flor	blanca
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-0093
Fecha entrada	1987
Num. Cat.	Nc009938
Procedencia	Bragança
País	PORTUGAL
Clase comercial	great northern

Primera flor (días)	48
Final floración (días)	82
Primera vaina seca (días)	82
Rendimiento (g/planta)	60
Masa 100 semillas (g)	50
Longitud grano (mm)	15
Anchura grano (mm)	8
Grosor grano (mm)	5
Longitud vaina (mm)	180

Faseolina	S
Hábito	II
Color flor	blanca
Estrías	no
Color vaina	amarilla
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-0104
Fecha entrada	1987
Num. Cat.	Nc009952
Procedencia	Bragança
País	PORTUGAL
Clase comercial	large cranberry

Primera flor (días)	49
Final floración (días)	70
Primera vaina seca (días)	96
Rendimiento (g/planta)	67
Masa 100 semillas (g)	73
Longitud grano (mm)	17
Anchura grano (mm)	9
Grosor grano (mm)	6
Longitud vaina (mm)	131

Faseolina	Т
Hábito	III
Color flor	blanca
Estrías	no
Color vaina	amarilla
Color semilla	marrón claro/granate
Brillo semilla	sí

Nº colección	PHA-0112
Fecha entrada	1987
Num. Cat.	Nc054294
Procedencia	Ourense
País	ESPAÑA
Clase comercial	azufrado

Primera flor (días)	51
Final floración (días)	87
Primera vaina seca (días)	104
Rendimiento (g/planta)	26
Masa 100 semillas (g)	62
Longitud grano (mm)	16
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	138

Faseolina	T, H
Hábito	II, IV
Color flor	rosa claro
Estrías	sí
Color vaina	verde
Color semilla	marrón claro
Brillo semilla	sí

Nº colección	PHA-0116
Fecha entrada	1987
Num. Cat.	Nc054314
Procedencia	Ourense
País	ESPAÑA
Clase comercial	brown marrow

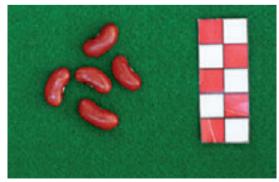
Primera flor (días)	52
Final floración (días)	102
Primera vaina seca (días)	104
Rendimiento (g/planta)	30
Masa 100 semillas (g)	46
Longitud grano (mm)	13
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	127

Faseolina	T, H
Hábito	IV
Color flor	rosa claro/oscuro
Estrías	sí
Color vaina	amarillo
Color semilla	marrón claro/oscuro
Brillo semilla	sí

Nº colección	PHA-0118
Fecha entrada	1987
Num. Cat.	Nc054293
Procedencia	Ourense
País	ESPAÑA
Clase comercial	canela

Primera flor (días)	45
Final floración (días)	81
Primera vaina seca (días)	94
Rendimiento (g/planta)	12
Masa 100 semillas (g)	56
Longitud grano (mm)	17
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	130

Faseolina	Т
Hábito	I
Color flor	blanca
Estrías	no
Color vaina	verde
Color semilla	crema
Brillo semilla	sí



Nº colección	PHA-0120
Fecha entrada	1987
Num. Cat.	Nc054308
Procedencia	Ourense
País	ESPAÑA
Clase comercial	dark red kidney

Rendimiento (g/planta)	16
Masa 100 semillas (g)	35
Longitud grano (mm)	14
Anchura grano (mm)	7
Grosor grano (mm)	5
Longitud vaina (mm)	189

Faseolina	T
Hábito	IV
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	púrpura
Brillo semilla	sí

Nº colección	PHA-0136
Fecha entrada	05/1988
Num. Cat.	Nc054671
Procedencia	Semillas Fito
País	ESPAÑA
Clase comercial	black canellini
Nombre local	rocquencourt

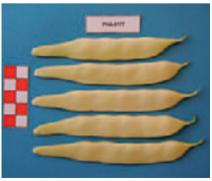
Primera flor (días)	43
Primera vaina seca (días)	93
Masa 100 semillas (g)	51
Longitud grano (mm)	12
Anchura grano (mm)	9
Grosor grano (mm)	7
Longitud vaina (mm)	161

Hábito	IV
Color flor	rosa oscuro
Estrías	sí
Color vaina	amarilla
Color semilla	negra
Brillo semilla	sí

Nº colección	PHA-0160
Fecha entrada	17/05/88
Num. Cat.	Nc011908
Procedencia	A Coruña
País	ESPAÑA
Clase comercial	azufrado

Primera flor (días)	45
Primera vaina seca (días)	69
Rendimiento (g/planta)	29
Masa 100 semillas (g)	36
Longitud grano (mm)	13
Anchura grano (mm)	7
Grosor grano (mm)	6
Longitud vaina (mm)	149

Faseolina	Н
Hábito	II
Color flor	rosa claro
Estrías	no
Color vaina	amarilla
Color semilla	marrón claro
Brillo semilla	sí



Nº colección	PHA-0177
Fecha entrada	17/05/88
Num. Cat.	Nc012115
Procedencia	A Coruña
País	ESPAÑA
Clase comercial	sangretoro
Nombre local	faba

Primera flor (días)	53
Primera vaina seca (días)	131
Masa 100 semillas (g)	33
Longitud grano (mm)	9
Anchura grano (mm)	7
Grosor grano (mm)	7
Longitud vaina (mm)	131

Faseolina	Н
Hábito	IV
Color flor	rosa claro/blanca
Estrías	sí/no
Color vaina	amarilla
Color semilla	morado
Brillo semilla	sí

Nº colección	PHA-0187
Fecha entrada	17/05/88
Num. Cat.	Nc012426
Procedencia	A Coruña
País	ESPAÑA
Clase comercial	white kidney

Primera flor (días)	56
Final floración (días)	87
Primera vaina seca (días)	113
Rendimiento (g/planta)	51
Masa 100 semillas (g)	80
Longitud grano (mm)	17
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	155

Faseolina	Т
Hábito	II
Color flor	blanca
Estrías	no
Color vaina	verde
Color semilla	blanca
Brillo semilla	sí

Nº colección	PHA-0211
Fecha entrada	17/05/88
Num. Cat.	Nc012648
Procedencia	Lugo
País	ESPAÑA
Clase comercial	red caparron

48
87
59
70
15
9
7
113

Faseolina	Н
Hábito	II
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	granate/marrón
Brillo semilla	no

Nº colección	PHA-0212
Fecha entrada	17/05/88
Num. Cat.	Nc054292
Procedencia	Ourense
País	ESPAÑA
Clase comercial	brown garbanzo

Primera flor (días)	54
Final floración (días)	87
Primera vaina seca (días)	128
Rendimiento (g/planta)	106
Masa 100 semillas (g)	45
Longitud grano (mm)	11
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	137

Faseolina	С
Hábito	IV
Color flor	rosa claro
Estrías	sí
Color vaina	amarillo
Color semilla	marrón oscuro
Brillo semilla	sí

Nº colección	PHA-0222
Fecha entrada	25/05/88
Num. Cat.	Nc091591
Procedencia	Asturias
País	ESPAÑA
Clase comercial	favada

Primera flor (días)	62
Final floración (días)	100
Primera vaina seca (días)	121
Rendimiento (g/planta)	98
Masa 100 semillas (g)	93
Longitud grano (mm)	21
Anchura grano (mm)	9
Grosor grano (mm)	7
Longitud vaina (mm)	149

Faseolina	T
Hábito	IV
Color flor	blanca
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	no

Nº colección	PHA-0240
Fecha entrada	3/06/88
Num. Cat.	Nc054357
Procedencia	Pontevedra
País	ESPAÑA
Clase comercial	white kidney

Primera flor (días)	56
Final floración (días)	86
Primera vaina seca (días)	121
Rendimiento (g/planta)	65
Masa 100 semillas (g)	51
Longitud grano (mm)	14
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	114

Faseolina	T, B
Hábito	I
Color flor	blanca/violeta
Estrías	no/sí
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí



Nº colección	PHA-0242
Fecha entrada	3/06/88
Num. Cat.	Nc054267
Procedencia	Lugo
País	ESPAÑA
Clase comercial	cranberry

Primera flor (días)	50
Final floración (días)	83
Primera vaina seca (días)	101
Rendimiento (g/planta)	28
Masa 100 semillas (g)	63
Longitud grano (mm)	13
Anchura grano (mm)	9
Grosor grano (mm)	7
Longitud vaina (mm)	85

Faseolina	Н
Hábito	I, II
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	canela/morado
Brillo semilla	sí

Nº colección	PHA-0247
Fecha entrada	3/06/88
Num. Cat.	Nc054494
Procedencia	Asturias
País	ESPAÑA
Clase comercial	black turtle

Rendimiento (g/planta)	24
Masa 100 semillas (g)	19
Longitud grano (mm)	10
Anchura grano (mm)	6
Grosor grano (mm)	4
Longitud vaina (mm)	109

Faseolina	В
Hábito	IV
Color flor	rosa oscuro
Estrías	sí
Color vaina	verde
Color semilla	negro
Brillo semilla	sí

 ${\tt http://libros.csic.es} \qquad \qquad 60$

Nº colección	PHA-0252
Fecha entrada	3/06/88
Num. Cat.	Nc054371
Procedencia	Pontevedra
País	ESPAÑA
Clase comercial	great northern

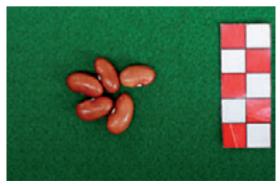
Primera flor (días)	55
Final floración (días)	80
Primera vaina seca (días)	99
Rendimiento (g/planta)	18
Masa 100 semillas (g)	64
Longitud grano (mm)	16
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	203

Faseolina	B, S
Hábito	IV
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-0255
Fecha entrada	3/06/88
Num. Cat.	Nc054260
Procedencia	A Coruña
País	ESPAÑA
Clase comercial	white kidney

Primera flor (días)	55
Final floración (días)	90
Primera vaina seca (días)	110
Rendimiento (g/planta)	40
Masa 100 semillas (g)	68
Longitud grano (mm)	17
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	140

Faseolina	Т
Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí



 ${\tt http://libros.csic.es} \qquad \qquad 62$

Nº colección	PHA-0261
Fecha entrada	3/06/88
Num. Cat.	Nc054269
Procedencia	Lugo
País	ESPAÑA
Clase comercial	dark garbanzo

Primera flor (días)	52
Final floración (días)	88
Primera vaina seca (días)	101
Rendimiento (g/planta)	28
Masa 100 semillas (g)	63
Longitud grano (mm)	16
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	156

Faseolina	S, H
Hábito	IV
Color flor	rosa claro
Estrías	no
Color vaina	amarilla
Color semilla	marrón
Brillo semilla	sí

Nº colección	PHA-0271
Fecha entrada	10/06/88
Num. Cat.	Nc054462
Procedencia	Santander
País	ESPAÑA
Clase comercial	bayo gordo

Primera flor (días)	59
Final floración (días)	94
Primera vaina seca (días)	111
Rendimiento (g/planta)	118
Masa 100 semillas (g)	37
Longitud grano (mm)	10
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	98

Faseolina	Н
Hábito	IV
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	canela
Brillo semilla	sí

Nº colección	PHA-0272
Fecha entrada	10/06/88
Num. Cat.	Nc054334
Procedencia	Ourense
País	ESPAÑA
Clase comercial	purple caparron

Primera flor (días)	56
Final floración (días)	100
Primera vaina seca (días)	114
Rendimiento (g/planta)	84
Masa 100 semillas (g)	41
Longitud grano (mm)	12
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	131

Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	amarillo
Color semilla	marrón oscuro/blanco
Brillo semilla	sí



Nº colección	PHA-0275
Fecha entrada	10/06/88
Num. Cat.	Nc054345
Procedencia	Ourense
País	ESPAÑA
Clase comercial	brown mottled

Primera flor (días)	54
Final floración (días)	90
Primera vaina seca (días)	116
Rendimiento (g/planta)	29
Masa 100 semillas (g)	51
Longitud grano (mm)	15
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	170

Faseolina	Т
Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	amarillo
Color semilla	marrón claro/oscuro
Brillo semilla	sí

Nº colección	PHA-0305
Fecha entrada	13/06/88
Num. Cat.	Nc054277
Procedencia	Lugo
País	ESPAÑA
Clase comercial	chumbinho

Primera flor (días)	46
Primera vaina seca (días)	76
Rendimiento (g/planta)	10
Masa 100 semillas (g)	18
Longitud grano (mm)	10
Anchura grano (mm)	6
Grosor grano (mm)	4
Longitud vaina (mm)	107

Faseolina	S
Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	gris
Brillo semilla	sí

Nº colección	PHA-0331
Fecha entrada	16/06/88
Num. Cat.	Nc054499
Procedencia	Asturias
País	ESPAÑA
Clase comercial	rounded caparron
Nombre local	pinta

Primera flor (días)	57
Final floración (días)	99
Primera vaina seca (días)	115
Rendimiento (g/planta)	139
Masa 100 semillas (g)	60
Longitud grano (mm)	11
Anchura grano (mm)	9
Grosor grano (mm)	8
Longitud vaina (mm)	126

Faseolina	Н
Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco/canela/morado
Brillo semilla	sí

Nº colección	PHA-0365
Fecha entrada	07/07/88
Num. Cat.	Nc026601
Procedencia	Santander
País	ESPAÑA
Clase comercial	brown marrow

Primera flor (días)	53
Primera vaina seca (días)	88
Masa 100 semillas (g)	59
Longitud grano (mm)	12
Anchura grano (mm)	10
Grosor grano (mm)	8

Faseolina	S
Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	marrón claro
Brillo semilla	sí

Nº colección	PHA-0397
Fecha entrada	22/11/88
Num. Cat.	Nc054503
Procedencia	Asturias
País	ESPAÑA
Clase comercial	black turtle
Nombre local	chichos negros

Primera flor (días)	64
Final floración (días)	88
Primera vaina seca (días)	119
Rendimiento (g/planta)	33
Masa 100 semillas (g)	25
Longitud grano (mm)	10
Anchura grano (mm)	7
Grosor grano (mm)	5
Longitud vaina (mm)	93

Faseolina	В
Hábito	IV, II
Color flor	blanco/violeta
Estrías	no/sí
Color vaina	verde
Color semilla	negro
Brillo semilla	sí

Nº colección	PHA-0398
Fecha entrada	22/11/88
Num. Cat.	Nc054504
Procedencia	Asturias
País	ESPAÑA
Clase comercial	canario bola
Nombre local	roxina

D: 0 (1/)	(2
Primera flor (días)	62
Rendimiento (g/planta)	49
Masa 100 semillas (g)	54
Longitud grano (mm)	13
Anchura grano (mm)	10
Grosor grano (mm)	7
Longitud vaina (mm)	98

Hábito	II
Color flor	rosa oscuro
Estrías	no
Color vaina	verde
Color semilla	marrón claro
Brillo semilla	sí

Nº colección	PHA-0404
Fecha entrada	22/11/88
Num. Cat.	Nc054510
Procedencia	Asturias
País	ESPAÑA
Clase comercial	red caparron
Nombre local	faba pinta

Primera flor (días)	50
Final floración (días)	85
Primera vaina seca (días)	98
Rendimiento (g/planta)	23
Masa 100 semillas (g)	57
Longitud grano (mm)	15
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	93

Hábito	I, II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco/morado
Brillo semilla	sí

Nº colección	PHA-0407
Fecha entrada	22/11/88
Num. Cat.	Nc054513
Procedencia	Asturias
País	ESPAÑA
Clase comercial	sangretoro
Nombre local	faba de vino tinto

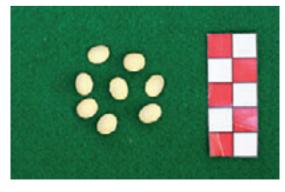
Primera flor (días)	60
Primera vaina seca (días)	99
Rendimiento (g/planta)	312
Masa 100 semillas (g)	39
Longitud grano (mm)	10
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	81

Hábito	IV
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	púrpura
Brillo semilla	sí

Nº colección	PHA-0413
Fecha entrada	22/11/88
Num. Cat.	Nc054519
Procedencia	Asturias
País	ESPAÑA
Clase comercial	fava pinto
Nombre local	faba pinta

Primera flor (días)	53
Final floración (días)	97
Primera vaina seca (días)	110
Rendimiento (g/planta)	47
Masa 100 semillas (g)	84
Longitud grano (mm)	19
Anchura grano (mm)	9
Grosor grano (mm)	7
Longitud vaina (mm)	116

Hábito	IV, II
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	blanco/morado
Brillo semilla	no



Nº colección	PHA-0414
Fecha entrada	22/11/88
Num. Cat.	Nc054520
Procedencia	Asturias
País	ESPAÑA
Clase comercial	small yellow
Nombre local	chicho amarillo

Primera flor (días)	40
Primera vaina seca (días)	78
Rendimiento (g/planta)	25
Masa 100 semillas (g)	28
Longitud grano (mm)	9
Anchura grano (mm)	7
Grosor grano (mm)	6
Longitud vaina (mm)	90

Faseolina	S
Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	amarillo/blanco
Brillo semilla	sí

Nº colección	PHA-0434
Fecha entrada	18/01/89
Num. Cat.	Nc054479
Procedencia	Navarra
País	ESPAÑA
Clase comercial	ojo de cabra
Nombre local	caparrona

Primera flor (días)	54
Final floración (días)	102
Primera vaina seca (días)	110
Rendimiento (g/planta)	43
Masa 100 semillas (g)	62
Longitud grano (mm)	13
Anchura grano (mm)	9
Grosor grano (mm)	7
Longitud vaina (mm)	123

Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	marrón claro/oscuro/rojo
Brillo semilla	no

Nº colección	PHA-0449
Fecha entrada	08/03/89
Num. Cat.	Nc054522
Procedencia	Asturias
País	ESPAÑA
Clase comercial	marrow
Nombre local	faba de garbancín

Primera flor (días)	49
Primera vaina seca (días)	84
Rendimiento (g/planta)	33
Masa 100 semillas (g)	37
Longitud grano (mm)	10
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	102

Faseolina	Н
Hábito	IV
Color flor	blanco/rosa claro
Estrías	no
Color vaina	verde cilindríca
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-0471
Fecha entrada	26/09/89
Num. Cat.	Nc054529
Procedencia	Asturias
País	ESPAÑA
Clase comercial	navy
Nombre local	chicho blanco

Primera flor (días)	56
Final floración (días)	77
Primera vaina seca (días)	93
Rendimiento (g/planta)	32
Masa 100 semillas (g)	23
Longitud grano (mm)	9
Anchura grano (mm)	6
Grosor grano (mm)	5
Longitud vaina (mm)	102

Faseolina	S
Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	no

Nº colección	PHA-0475
Fecha entrada	17/11/89
Num. Cat.	Nc054532
Procedencia	Asturias
País	ESPAÑA
Clase comercial	canario bola
Nombre local	roxina

Primera flor (días)	66
Final floración (días)	104
Primera vaina seca (días)	119
Rendimiento (g/planta)	17
Masa 100 semillas (g)	49
Longitud grano (mm)	11
Anchura grano (mm)	8
Grosor grano (mm)	7
Longitud vaina (mm)	106

Faseolina	Н
Hábito	IV
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	amarillo/ocre
Brillo semilla	sí

Nº colección	PHA-0490
Fecha entrada	17/11/90
Num. Cat.	Nc054549
Procedencia	Álava
País	ESPAÑA
Clase comercial	guernikesa

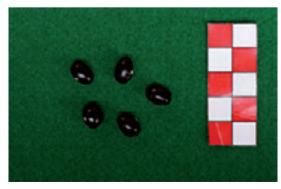
Primera flor (días)	52
Primera vaina seca (días)	96
Rendimiento (g/planta)	43
Masa 100 semillas (g)	33
Longitud grano (mm)	10
Anchura grano (mm)	7
Grosor grano (mm)	6

Faseolina	Н
Hábito	I
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	granate/canela
Brillo semilla	sí

Nº colección	PHA-0493
Fecha entrada	14/11/90
Num. Cat.	Nc054552
Procedencia	Álava
País	ESPAÑA
Clase comercial	red pinto
Nombre local	palmeña

Primera flor (días)	49
Final floración (días)	83
Primera vaina seca (días)	91
Rendimiento (g/planta)	17
Masa 100 semillas (g)	29
Longitud grano (mm)	13
Anchura grano (mm)	7
Grosor grano (mm)	5

Faseolina	С
Hábito	I, II
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	granate/rojo/crema
Brillo semilla	si



Nº colección	PHA-0502
Fecha entrada	28/06/91
Num. Cat.	Nc054557
Procedencia	Guipúzcoa
País	ESPAÑA
Clase comercial	negro brillante
Nombre local	alubia de Tolosa

Primera flor (días)	56
Final floración (días)	104
Primera vaina seca (días)	117
Rendimiento (g/planta)	49
Masa 100 semillas (g)	44
Longitud grano (mm)	11
Anchura grano (mm)	8
Grosor grano (mm)	7

Hábito	IV
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	negro
Brillo semilla	sí

Nº colección	PHA-0525
Fecha entrada	25/04/92
Num. Cat.	Nc012771
Procedencia	Ávila
País	ESPAÑA
Clase comercial	white kidney
Nombre local	judía riojana

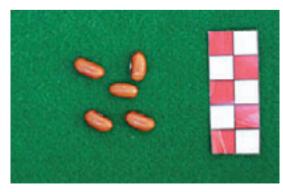
Primera flor (días)	49
Final floración (días)	87
Primera vaina seca (días)	112
Rendimiento (g/planta)	16
Masa 100 semillas (g)	48
Longitud grano (mm)	13
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	142

Faseolina	Н
Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-0531
Fecha entrada	25/04/92
Num. Cat.	Nc013029
Procedencia	Burgos
País	ESPAÑA
Clase comercial	azufrado

Primera flor (días)	40
Primera vaina seca (días)	77
Rendimiento (g/planta)	11
Masa 100 semillas (g)	37
Longitud grano (mm)	24
Anchura grano (mm)	7
Grosor grano (mm)	5
Longitud vaina (mm)	133

Faseolina	S
Hábito	I
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	marrón claro
Brillo semilla	sí



Nº colección	PHA-0556
Fecha entrada	25/04/92
Num. Cat.	Nc013594
Procedencia	León
País	ESPAÑA
Clase comercial	sargaço

Primera flor (días)	40
Primera vaina seca (días)	70
Rendimiento (g/planta)	21
Masa 100 semillas (g)	22
Longitud grano (mm)	11
Anchura grano (mm)	6
Grosor grano (mm)	5
Longitud vaina (mm)	125

Faseolina	Т
Hábito	I
Color flor	rosa claro/oscuro
Estrías	no
Color vaina	amarillo
Color semilla	canela
Brillo semilla	sí



Nº colección	PHA-0568
Fecha entrada	25/04/92
Num. Cat.	Nc019721
Procedencia	Navarra
País	ESPAÑA
Clase comercial	sangretoro
Nombre local	judía caparrón rojo

Primera flor (días)	62
Final floración (días)	107
Primera vaina seca (días)	115
Rendimiento (g/planta)	51
Masa 100 semillas (g)	53
Longitud grano (mm)	11
Anchura grano (mm)	9
Grosor grano (mm)	7
Longitud vaina (mm)	77

Faseolina	Н
Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	púrpura
Brillo semilla	sí

Nº colección	PHA-0573
Fecha entrada	25/04/92
Num. Cat.	Nc013351
Procedencia	Salamanca
País	ESPAÑA
Clase comercial	pinto
Nombre local	judía pinta, pipa

Primera flor (días)	45
Final floración (días)	89
Primera vaina seca (días)	95
Rendimiento (g/planta)	101
Masa 100 semillas (g)	35
Longitud grano (mm)	13
Anchura grano (mm)	9
Grosor grano (mm)	5

Faseolina	В
Hábito	II, IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	crema/marrón claro
Brillo semilla	sí

Nº colección	PHA-0585
Fecha entrada	25/04/92
Num. Cat.	Nc012716
Procedencia	Zamora
País	ESPAÑA
Clase comercial	marrow
Nombre local	judía redonda

Primera flor (días)	45
Final floración (días)	84
Primera vaina seca (días)	108
Rendimiento (g/planta)	12
Masa 100 semillas (g)	37
Longitud grano (mm)	10
Anchura grano (mm)	9
Grosor grano (mm)	7

Faseolina	S
Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-0598
Fecha entrada	16/02/93
Num. Cat.	Nc054694
Procedencia	León
País	ESPAÑA
Clase comercial	small yellow
Nombre local	de aceite

Primera flor (días)	51
Final floración (días)	87
Primera vaina seca (días)	102
Rendimiento (g/planta)	31
Masa 100 semillas (g)	35
Longitud grano (mm)	10
Anchura grano (mm)	7
Grosor grano (mm)	6
Longitud vaina (mm)	96

Faseolina	В
Hábito	II, III
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	amarillo
Brillo semilla	no

Nº colección	PHA-0621
Fecha entrada	25/02/93
Num. Cat.	Nc054717
Procedencia	León
País	ESPAÑA
Clase comercial	red pinto
Nombre local	palmeña

Primera flor (días)	47
Final floración (días)	77
Primera vaina seca (días)	95
Rendimiento (g/planta)	21
Masa 100 semillas (g)	56
Longitud grano (mm)	15
Anchura grano (mm)	8
Grosor grano (mm)	6

Faseolina	Т
Hábito	I
Color flor	rosa claro
Estrías	no
Color vaina	verde
Color semilla	granate/crema
Brillo semilla	sí

Nº colección	PHA-0623
Fecha entrada	10/03/93
Num. Cat.	Nc054719
Procedencia	Barcelona
País	ESPAÑA
Clase comercial	hook
Nombre local	ganxet

Primera flor (días)	67
Final floración (días)	117
Primera vaina seca (días)	137
Rendimiento (g/planta)	110
Masa 100 semillas (g)	41
Longitud grano (mm)	15
Anchura grano (mm)	7
Grosor grano (mm)	5
Longitud vaina (mm)	155

Faseolina	S
Hábito	IV
Color flor	blanco
Estrías	sí
Color vaina	verde
Color semilla	blanco
Brillo semilla	no

Nº colección	PHA-0632
Fecha entrada	26/03/93
Num. Cat.	Nc070388
Procedencia	Zaragoza
País	ESPAÑA
Clase comercial	chumbinho
Nombre local	judía marrón

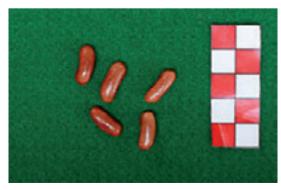
Primera flor (días)	54
Final floración (días)	94
Primera vaina seca (días)	100
Rendimiento (g/planta)	24
Masa 100 semillas (g)	35
Longitud grano (mm)	12
Anchura grano (mm)	7
Grosor grano (mm)	5
Longitud vaina (mm)	107

Faseolina	В
Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	marrón claro
Brillo semilla	sí

Nº colección	PHA-0649
Fecha entrada	15/04/93
Num. Cat.	Nc054741
Procedencia	Viseu
País	PORTUGAL
Clase comercial	dark red kidney
Nombre local	feijao avinhado

Primera flor (días)	42
Final floración (días)	73
Primera vaina seca (días)	87
Rendimiento (g/planta)	13
Masa 100 semillas (g)	37
Longitud grano (mm)	15
Anchura grano (mm)	7
Grosor grano (mm)	5
Longitud vaina (mm)	145

Faseolina	T, C
Hábito	I
Color flor	rosa claro
Estrías	sí
Color vaina	verde
Color semilla	morado
Brillo semilla	sí



Nº colección	PHA-0655
Fecha entrada	15/04/93
Num. Cat.	Nc054747
Procedencia	Viseu
País	PORTUGAL
Clase comercial	feijao sargaço

Primera flor (días)	46
Final floración (días)	70
Primera vaina seca (días)	93
Rendimiento (g/planta)	29
Masa 100 semillas (g)	57
Longitud grano (mm)	16
Anchura grano (mm)	7
Grosor grano (mm)	6
Longitud vaina (mm)	151

Hábito	I
Color flor	rosa oscuro
Estrías	no
Color vaina	verde/púrpura
Color semilla	canela
Brillo semilla	sí

Nº colección	PHA-0668
Fecha entrada	15/04/1993
Num. Cat.	Nc054760
Procedencia	Vila Real
País	PORTUGAL
Clase comercial	Large red mottled

Primera flor (días)	48
Final floración (días)	76
Primera vaina seca (días)	96
Rendimiento (g/planta)	48
Masa 100 semillas (g)	58
Longitud grano (mm)	15
Anchura grano (mm)	8
Grosor grano (mm)	6
Longitud vaina (mm)	162

Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	granate/canela
Brillo semilla	Sí

Nº colección	PHA-0671
Fecha entrada	15/04/1993
Num. Cat.	Nc054763
Procedencia	Vila Real
País	PORTUGAL
Clase comercial	large red mottled

Primera flor (días)	50
Final floración (días)	81
Primera vaina seca (días)	94
Rendimiento (g/planta)	11
Masa 100 semillas (g)	26
Longitud grano (mm)	12
Anchura grano (mm)	7
Grosor grano (mm)	4
Longitud vaina (mm)	154

Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	granate/canela
Brillo semilla	sí

 ${\tt http://libros.csic.es} \hspace{1.5cm} 96$

Nº colección	PHA-0678
Fecha entrada	15/04/1993
Num. Cat.	Nc054770
Procedencia	Vila Real
País	PORTUGAL
Clase comercial	mulatinho
Nombre local	moleirinho

Primera flor (días)	51
Final floración (días)	94
Primera vaina seca (días)	92
Rendimiento (g/planta)	31
Masa 100 semillas (g)	25
Longitud grano (mm)	11
Anchura grano (mm)	6
Grosor grano (mm)	4
Longitud vaina (mm)	96

Hábito	III
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	canela/marrón
Brillo semilla	sí

Nº colección	PHA-0682
Fecha entrada	15/04/1993
Num. Cat.	Nc054774
Procedencia	Monçao
País	PORTUGAL
Clase comercial	canellini
Nombre local	manteca

Primera flor (días)	47
Final floración (días)	77
Primera vaina seca (días)	85
Rendimiento (g/planta)	19
Masa 100 semillas (g)	41
Longitud grano (mm)	13
Anchura grano (mm)	7
Grosor grano (mm)	5
Longitud vaina (mm)	110

Faseolina	Н
Hábito	I
Color flor	blanco/rosa oscuro
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	no

Nº colección	PHA-0702
Fecha entrada	20/06/93
Num. Cat.	Nc070407
Procedencia	Larissa
País	GRECIA
Clase comercial	great northern
Nombre local	iro

Primera flor (días)	43
Primera vaina seca (días)	78
Rendimiento (g/planta)	49
Masa 100 semillas (g)	42
Longitud grano (mm)	13
Anchura grano (mm)	8
Grosor grano (mm)	6

Faseolina	В
Hábito	III
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	no

Nº colección	PHA-0910
Fecha entrada	07/12/88
Num. Cat.	Nc070722
Procedencia	Pontevedra
País	ESPAÑA
Clase comercial	azufrado

Primera flor (días)	56
Final floración (días)	96
Primera vaina seca (días)	110
Rendimiento (g/planta)	27
Masa 100 semillas (g)	64
Longitud grano (mm)	15
Anchura grano (mm)	9
Grosor grano (mm)	6
Longitud vaina (mm)	158

Hábito	IV
Color flor	rosa claro/oscuro
Estrías	no
Color vaina	verde
Color semilla	canela/oliva
Brillo semilla	SÍ

Nº colección	PHA-0917
Fecha entrada	11/10/97
Num. Cat.	Nc070723
Procedencia	Lugo
País	ESPAÑA
Clase comercial	favada

Primera flor (días)	62
Final floración (días)	104
Primera vaina seca (días)	114
Rendimiento (g/planta)	94
Masa 100 semillas (g)	89
Longitud grano (mm)	21
Anchura grano (mm)	9
Grosor grano (mm)	7
Longitud vaina (mm)	141

Faseolina	Т
Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	no

Nº colección	PHA-0970
Fecha entrada	13/11/98
Num. Cat.	Nc070643
Procedencia	Hptaes
País	JAPÓN
Clase comercial	great northern

Primera flor (días)	56
Final floración (días)	105
Primera vaina seca (días)	111
Rendimiento (g/planta)	34
Masa 100 semillas (g)	56
Longitud grano (mm)	16
Anchura grano (mm)	8
Grosor grano (mm)	5

Faseolina	B, S
Hábito	II, IV
Color flor	blanco
Estrías	sí
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí/no

Nº colección	PHA-1145
Fecha entrada	19/03/03
País	ITALIA
Clase comercial	canellini
Nombre local	Canellino de Romagna

Primera flor (días)	29
Primera vaina seca (días)	67
Masa 100 semillas (g)	82
Longitud grano (mm)	19
Anchura grano (mm)	8
Grosor grano (mm)	7

Faseolina	Т
Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1160
Fecha entrada	19/03/03
País	FRANCIA
Clase comercial	great northern
Nombre local	fevette de St. Land

Primera flor (días)	45
Primera vaina seca (días)	86
Masa 100 semillas (g)	44
Longitud grano (mm)	13
Anchura grano (mm)	8
Grosor grano (mm)	6

Faseolina	S
Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	no

Nº colección	PHA-1190
Fecha entrada	19/03/03
Procedencia	Istambul. Sabiha

Primera flor (días)	42
Primera vaina seca (días)	77
Masa 100 semillas (g)	51
Longitud grano (mm)	16
Anchura grano (mm)	7
Grosor grano (mm)	7

Faseolina	Т
Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1242
Fecha entrada	19/03/03
Procedencia	Samsum. Carsamba
País	TURQUÍA
Clase comercial	canellini

Primera flor (días)	42
Primera vaina seca (días)	77
Masa 100 semillas (g)	45
Longitud grano (mm)	15
Anchura grano (mm)	8
Grosor grano (mm)	6

Faseolina	T, C
Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1289
Fecha entrada	19/03/03
Procedencia	Adapazas
País	TURQUÍA
Clase comercial	great northern

Primera flor (días)	43
Primera vaina seca (días)	85
Masa 100 semillas (g)	36
Longitud grano (mm)	12
Anchura grano (mm)	8
Grosor grano (mm)	6

Faseolina	Т
Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1295
Fecha entrada	19/03/03
Procedencia	Carus
País	TURQUÍA
Clase comercial	small white, canellini

Primera flor (días)	39
Primera vaina seca (días)	77
Masa 100 semillas (g)	37
Longitud grano (mm)	13
Anchura grano (mm)	8
Grosor grano (mm)	6

Faseolina	S
Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1308
Fecha entrada	19/03/03
Procedencia	Rastak
País	MACEDONIA
Clase comercial	white kidney
Nombre local	bostandziski

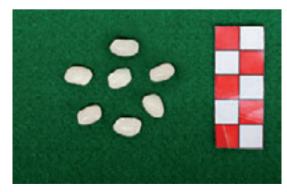
Primera flor (días)	39
Primera vaina seca (días)	77
Masa 100 semillas (g)	44
Longitud grano (mm)	15
Anchura grano (mm)	7
Grosor grano (mm)	5

Faseolina	Т
Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1337
Fecha entrada	19/03/03
Procedencia	Demir Kapija
País	MACEDONIA
Clase comercial	marrow, white kidney
Nombre local	nizok II

Primera flor (días)	50
Primera vaina seca (días)	96
Masa 100 semillas (g)	27
Longitud grano (mm)	11
Anchura grano (mm)	8
Grosor grano (mm)	6

Faseolina	С
Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí



Nº colección	PHA-1338
Fecha entrada	19/03/03
Procedencia	Calakli
País	MACEDONIA
Clase comercial	small white
Nombre local	pritkas

Primera flor (días)	49
Primera vaina seca (días)	85
Masa 100 semillas (g)	29
Longitud grano (mm)	11
Anchura grano (mm)	7
Grosor grano (mm)	5

Faseolina	В
Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1358
Fecha entrada	19/03/03
Procedencia	Sokvicka
País	MACEDONIA
Clase comercial	canellini
Nombre local	lokvicka

Primera flor (días)	43
Primera vaina seca (días)	73
Masa 100 semillas (g)	40
Longitud grano (mm)	14
Anchura grano (mm)	7
Grosor grano (mm)	5

Faseolina	Н
Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1374
Fecha entrada	19/03/03
Procedencia	Lukovica
País	ESLOVENIA
Clase comercial	great northern
Nombre local	nikok bel

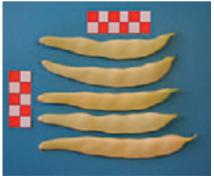
Primera flor (días)	44
Primera vaina seca (días)	81
Masa 100 semillas (g)	48
Longitud grano (mm)	16
Anchura grano (mm)	9
Grosor grano (mm)	5

Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	no

Nº colección	PHA-1567
Fecha entrada	22/03/04
País	BULGARIA
Clase comercial	great northern

Primera flor (días)	52
Primera vaina seca (días)	81
Masa 100 semillas (g)	50
Longitud grano (mm)	12
Anchura grano (mm)	8
Grosor grano (mm)	6

Faseolina	B, S
Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí



Nº colección	PHA-1573
Fecha entrada	22/03/04
País	BULGARIA
Clase comercial	navy, canellini
Nombre local	banichan 3

Primera flor (días)	39
Primera vaina seca (días)	77
Masa 100 semillas (g)	50
Longitud grano (mm)	11
Anchura grano (mm)	8
Grosor grano (mm)	7

Faseolina	Т
Hábito	I
Color flor	blanco
Estrías	no
Color vaina	amarilla
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1598
Fecha entrada	22/03/04
País	BULGARIA
Clase comercial	navy
Nombre local	gosnodinci 5

Primera flor (días)	49
Primera vaina seca (días)	79
Masa 100 semillas (g)	44
Longitud grano (mm)	10
Anchura grano (mm)	7
Grosor grano (mm)	6

Hábito	I, II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1604
Fecha entrada	22/03/04
País	BULGARIA
Clase comercial	small white
Nombre local	hali

Primera flor (días)	43
Primera vaina seca (días)	78
Masa 100 semillas (g)	18
Longitud grano (mm)	9
Anchura grano (mm)	6
Grosor grano (mm)	5

Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1631
Fecha entrada	30/03/04
Procedencia	El Cairo
País	EGIPTO
Clase comercial	canellini
Nombre local	giza 4

Primera flor (días)	39
Primera vaina seca (días)	70
Masa 100 semillas (g)	52
Longitud grano (mm)	14
Anchura grano (mm)	8
Grosor grano (mm)	6

Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	Sí

Nº colección	PHA-1640
Fecha entrada	30/03/04
Procedencia	Beirut
País	LÍBANO
Clase comercial	great northern

Primera flor (días)	51
Primera vaina seca (días)	86
Masa 100 semillas (g)	37
Longitud grano (mm)	12
Anchura grano (mm)	7
Grosor grano (mm)	6

Faseolina	B, S
Hábito	II, IV
Color flor	blanco
Estrías	sí
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí/no

Nº colección	PHA-1669
Fecha entrada	06/04/04
País	CHILE
Clase comercial	navy
Nombre local	blanco redondo

Primera flor (días)	45
Primera vaina seca (días)	73
Masa 100 semillas (g)	24
Longitud grano (mm)	9
Anchura grano (mm)	7
Grosor grano (mm)	6

Hábito	I
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1731
Fecha entrada	06/04/04
País	LÍBANO
Clase comercial	great northern

Primera flor (días)	47
Primera vaina seca (días)	78
Masa 100 semillas (g)	37
Longitud grano (mm)	14
Anchura grano (mm)	7
Grosor grano (mm)	5

Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1746
Fecha entrada	13/04/04
País	CHIPRE
Clase comercial	white kidney,
	great northern

Primera flor (días)	39
Primera vaina seca (días)	75
Masa 100 semillas (g)	32
Longitud grano (mm)	11
Anchura grano (mm)	7
Grosor grano (mm)	5

Hábito	I, II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1853
Fecha entrada	29/06/04
Procedencia	Sadovo
País	BULGARIA
Clase comercial	great northern

Primera flor (días)	43
Primera vaina seca (días)	73
Masa 100 semillas (g)	46
Longitud grano (mm)	14
Anchura grano (mm)	8
Grosor grano (mm)	5

Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1891
Fecha entrada	27/07/04
País	ITALIA
Clase comercial	great northern

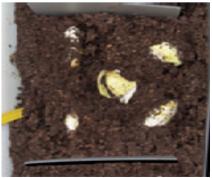
Primera flor (días)	41
Primera vaina seca (días)	74
Masa 100 semillas (g)	36
Longitud grano (mm)	12
Anchura grano (mm)	8
Grosor grano (mm)	5

Hábito	II, IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

Nº colección	PHA-1919
Fecha entrada	27/07/04
País	FRANCIA
Clase comercial	marrow

Primera flor (días)	61
Primera vaina seca (días)	80
Masa 100 semillas (g)	36
Longitud grano (mm)	11
Anchura grano (mm)	8
Grosor grano (mm)	6

Hábito	II
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí



Nº colección	PHA-1931
Fecha entrada	27/07/04
País	FRANCIA
Clase comercial	canellini (verde)

Primera flor (días)	52
Primera vaina seca (días)	79
Masa 100 semillas (g)	24
Longitud grano (mm)	12
Anchura grano (mm)	6
Grosor grano (mm)	4

Hábito	IV
Color flor	blanco
Estrías	no
Color vaina	verde
Color semilla	blanco
Brillo semilla	sí

TERCERA PARTE PRODUCCIÓN Y CONSUMO IMPORTANCIA DE *Phaseolus* EN ESPAÑA Y EN EL MUNDO

La judía común (*P. vulgaris*) es una de las leguminosas de grano de mayor importancia en la alimentación humana, siendo la principal fuente de proteína de origen vegetal en la dieta de numerosos países de América, África y Asia. El grano de la judía, además de su alto contenido en proteínas, es rico en vitaminas, minerales y fibra, y estudios recientes indican un efecto protector frente al riesgo de enfermedades cardiovasculares e incluso cáncer (Bennik, 2010). En España la variabilidad de tipos comerciales es muy grande, y determinadas variedades son muy apreciadas debido a su alta calidad sensorial, alcanzando precios elevados en el mercado nacional y local, como los tipos comerciales Faba - "Favada", Blanca Riñón – "White kidney", Planchada - "Large great northern" y Ganxet – "Hook". A las anteriores habría que añadir la judía escarlata (*P. coccineus*), cuyas variedades de grano blanco tienen alto valor de mercado debido también a su gran calidad sensorial. En los últimos años, el cultivo de judía en España se encuentra en retroceso debido fundamentalmente a los bajos e irregulares rendimientos y la mediocre calidad comercial de grano que se obtiene.

EL CULTIVO DE LA JUDÍA COMÚN

La judía común, por su procedencia de áreas intertropicales templado-húmedas, tiene particulares exigencias de temperatura (mínimo de 10-15° C) y disponibilidad de agua, especialmente en la época de floración y maduración de vainas (Julio - Agosto), lo cual restringe su cultivo en muchas zonas con limitación de aporte de agua en dicho período. Por esta razón, se están desarrollando programas de selección para adaptación a condiciones ambientales limitantes. Por otra parte, los modernos cultivares son insensibles al fotoperíodo, por lo cual es posible la producción en invernadero durante todo el año, lo cual tiene especial incidencia en la judía de verdeo.

Respecto a la fertilización, la simbiosis con *Rhizobium* debería permitir el cultivo sin aporte de Nitrógeno, pero la limitada presencia de cepas de la bacteria y/o su capacidad infectiva y de nodulación, que suele ser en general reducida, hacen necesario un aporte básico de Nitrógeno. Por ello, la inoculación artificial de la semilla o de los surcos de siembra es una alternativa que se está implantando paulatinamente, especialmente en la judía de verdeo, aunque todavía diste de ser una práctica común en las variedades de grano.

En Galicia y Asturias, dónde el cultivo de la judía es ancestral, la asociación con maíz ha sido una práctica común, al igual que en el Norte de Portugal y en numerosos lugares de Centro y Sudamérica. Este sistema tendría aspectos beneficiosos como doble utilización de espacios reducidos (y doble cosecha, por tanto), ahorro de costes, al ser el tallo del maíz el tutor natural de la judía, y el aporte de Nitrógeno que realiza la judía, por su simbiosis con *Rhizobium*. Sin embargo, algunas investigaciones han mostrado que este sistema de cultivo limita sus beneficios, prácticamente, al primero de ellos, y además, el manejo simultáneo de ambos cultivos supone problemas añadidos. Estas razones, unidas a la introducción de variedades mejoradas, más exigentes, han inducido un abandono paulatino del cultivo asociado en favor del monocultivo.

FIJACIÓN SIMBIÓTICA DE NITRÓGENO: RHIZOBIA

El Nitrógeno es uno de los elementos más importantes para las plantas y su disponibilidad condiciona en gran medida la productividad de los cultivos. Mejorar la disponibilidad de N₂ no sólo permite obtener altos rendimientos, sino también mayores concentraciones de proteínas en los forrajes y granos. La gran reserva natural de N₂ es la Atmósfera, que representa el 78% de los gases que componen el aire, sin embargo, las plantas no pueden utilizarlo en su

forma elemental y tienen que obtenerlo del suelo principalmente en forma de nitratos. De ahí la necesidad de usar fertilizantes químicos, que aplicados incontroladamente, tienen un elevado costo, una acción desgastadora del suelo y contaminan el ambiente. La Fijación Simbiótica de Nitrógeno (FSN) es un proceso clave en la biosfera, por el cual los microorganismos portadores de la enzima nitrogenasa convierten el nitrógeno gaseoso en nitrógeno combinado. En el caso de la simbiosis leguminosa-rhizobio, el microsimbionte, la bacteria, utiliza el carbono y la energía fotosintética del macrosimbionte, la planta, y le entrega amoníaco. El grupo de bacterias al que se conoce colectivamente como rhizobia, inducen en las raíces (o en el tallo) de las leguminosas la formación de unas estructuras especializadas, los nódulos, dentro de los cuales el nitrógeno gaseoso es reducido a amonio. Se estima que este proceso contribuye con un 60-80 % de la Fijación Biológica del N₂ (FBN), que está estrechamente relacionada a la producción de biomasa aérea y al rendimiento, y puede llegar a fijar hasta 100 kg N/ha/año.

Las bacterias simbióticas de N₂ o rhizobia son bacilos cortos, algunas veces pleomórficos, *Gram* negativos, aerobios, que no forman esporas, y móviles por flagelos peritricos o un solo flagelo lateral. Pertenecen a la familia *Rhizobiaceae*, en la cual se incluyen los géneros *Rhizobium, Bradyrhizobium, Mesorhizobium, Sinorhizobium y Azorhizobium*. Dentro de los nódulos radicales, pequeñas tumoraciones dentro de las que las bacterias se transforman en bacteroides, éstas tienen formas irregulares, aumentan su tamaño, se alimentan de formas carbonadas sintetizadas por la planta huésped, requieren bajo nivel de oxígeno, y fijan nitrógeno atmosférico que le entregan a la planta. Existe especificidad rhizobio-planta huésped. Normalmente los bacteroides completamente desarrollados ya no pueden volver a reproducirse, aunque existe controversia al respecto. Se ha demostrado que el rhizobio tiene tres diferentes estados de vida: uno dentro de los nódulos de las leguminosas, otro en suelo y otro dentro de plantas no leguminosas como endófitos.

El establecimiento de la simbiosis entre el rhizobio y la leguminosa es un proceso complejo, donde la formación de nódulos y la captación del N, se dan en etapas sucesivas y donde los dos organismos establecen una cooperación metabólica. La bacteria induce en la leguminosa el desarrollo de nódulos en su raíz y reducen N2 a amonio (NH4), el cual exportan al tejido vegetal para su asimilación en proteínas y otros compuestos nitrogenados complejos, las hojas reducen el C0, en azúcares durante la fotosíntesis y lo transportan a la raíz donde los bacteroides lo usan como fuente de energía para proveer ATP al proceso de fijación de N₂. La asociación rhizobioleguminosa se inicia con el proceso de infección, cuando las bacterias son estimuladas por los exudados radicales, compuestos flavonoides, que activan una serie de genes implicados en la nodulación. En la superficie de las bacterias se localiza una proteína específica de adherencia, la ricadesina. Otras sustancias, como las lectinas, proteínas que contienen carbohidratos, también cumplen una función en la adherencia planta-bacteria, y han sido identificadas en los extremos de pelos radicales y en la superficie de las células de rhizobia. Después de la unión, los pelos radicales se enroscan debido a la acción de sustancias específicas secretadas por la bacteria, que se conocen como factores Nod. La bacteria penetra entonces en el pelo radical e induce la formación, por parte de la planta, de un tubo de composición similar a la pared celular, conocido como canal de infección, (Long, 1989) que avanza por el pelo radical. A continuación, la infección alcanza las células de la raíz adyacentes a los pelos radicales, (Burity et al., 1989) y los factores Nod estimulan la división de las células vegetales, produciendo finalmente el nódulo. Las bacterias son liberadas desde el canal de infección al citoplasma de las células vegetales por un mecanismo similar al de endocitosis. Las bacterias quedan separadas del

citoplasma por una membrana derivada de la planta hospedadora y que se llama membrana peribacteroidal (MPB). Al cesar la división las bacterias se transforman en unas formaciones ramificadas, hinchadas y deformes, llamadas bacteroides. Estos quedan rodeados, individualmente o en pequeños grupos por la MPB y se denominan simbiosomas.

La reducción de N₂ a amonio, se lleva a cabo por la enzima nitrogenasa, que requiere ATP y leghemoglobina, una proteína globular cuya función es atrapar el oxígeno para facilitar el trabajo de la nitrogenasa, además de transferir 0₂ estimular la oxidación de la reserva del carbono, y cubrir el alto gasto de energía que las bacterias requieren para incorporar el N₂.

La taxonomía de rhizobia se ha desarrollado rápidamente y durante los últimos 20 años se han descrito muchas especies y géneros nuevos. La aplicación de los métodos de biología molecular en la taxonomía ha ayudado a definir nuevas especies. La taxonomía actual se basa en un enfoque polifásico que incluye caracterizaciones de tipo morfológico, bioquímico, fisiológico, genético y filogenético, entre otras. Las especies de rhizobia no conocidas hasta el momento representan un recurso biológico porque las leguminosas son uno de los grupos de plantas más diverso y éstas se encuentran distribuidas en distintos ecosistemas. El análisis de secuencias de los genes 16S rRNA se ha usado como uno de los principales criterios para la descripción de los géneros y las especies de rhizobia. Se considera que las cepas cuyas secuencias del gen de 16S rRNA son similares en un 97% o más, probablemente pertenecen a la misma especie. Otros métodos que se han utilizado son la hibridación de ADN-ADN, técnica útil cuando las secuencias de genes 16S rRNA se parecen en más del 97%. Se sugiere que las cepas que muestran una similitud >70% en la hibridación de ADN-ADN son de la misma especie. Cepas que comparten un parecido de ADN-ADN entre 25 y 70% pueden representar diferentes especies dentro del mismo género. Si el parecido es menor a 10% se considera que pertenecen a diferentes géneros. También se podrían usar técnicas como electroforesis (SDS-PAGE) de proteínas, electroforesis de enzimas metabólicas (o enzimas multilocus) (MLEE) y PCR para definir todas las especies descritas. La determinación de polimorfismo en los tamaños de los fragmentos de restricción (RFLP) es otro método para revelar la diversidad genética entre grupos de cepas bacterianas. Así se pueden caracterizar a los genes 16S rRNA amplificados por PCR o ADN del espacio intergénico (IGS). En la descripción del fenotipo de las bacterias se deben tomar características de morfología celular y colonial, bioquímica y fisiológica, los patrones de utilización de fuentes de carbono y nitrógeno, los patrones de resistencia a antibióticos, y otras como huéspedes o ambientes de donde se obtiene la bacteria. Las características fenotípicas pueden ofrecer una visión detallada de la variación de las bacterias dentro de una especie o entre diferentes especies. También permite reconocer rasgos característicos de cada especie. La descripción del rango de huéspedes también se incluye en la definición taxonómica de rhizobia. Hasta la fecha, se han escrito más de 40 especies en 9 géneros para las bacterias que forman nódulos con leguminosas.

A pesar de que las bacterias como rhizobia son habitantes comunes en los suelos agrícolas, generalmente su población es insuficiente para alcanzar una relación beneficiosa con la leguminosa, no fijan cantidades suficientes de N₂. Por ello, es necesario inocular la semilla a la siembra y asegurar así la FSN. Para ello, el microsimbionte o rhizobio debe ser infectivo (capacidad de nodular) y efectivo (eficiencia para la fijación del N₂) para lograr una disminución máxima del fertilizante nitrogenado sin disminución del rendimiento de la leguminosa. Primero se debe corroborar la existencia del tipo de rhizobio nativa en el suelo, su eficiencia para fijar N₂, la concentración de N₂ del suelo y si la leguminosa elegida se siembra con frecuencia en la región para mantener su rendimiento.

En el suelo hay tres tipos de poblaciones rhizobianas según su origen: **nativas** (evolutivamente se desarrollaron junto a las leguminosas), **naturalizadas** (sembradas con leguminosas inoculadas y que se adaptaron a esas condiciones. Competitivas pero no necesariamente efectivas), **introducidas** (inoculante comercial. Vulnerables a las condiciones de estrés, no competitivas pero altamente efectivas). Para controlar la calidad de un inoculante, es necesario mantener un número de bacterias de aproximadamente 106 bacterias/g de inoculante (FAO, 1995) y determinar si es específico para la leguminosa a prueba. Así, un inoculante, debe mantener la productividad de un cultivo agrícola con menos dosis de fertilizante nitrogenado y con ello un ahorro en los costes de producción, minimizar la contaminación de aguas superficiales y mantos acuíferos y conservar el suelo, en un esquema de producción sostenible. Existen varios tipos de inoculantes, pero el más común es un soporte a base de turba impregnada con el cultivo bacteriano. A pesar de que desde 1880 los inoculantes han sido comercializados, como un producto biológico, requieren un riguroso control de calidad de tipo microbiológico que garantice el éxito esperado con la leguminosa seleccionada. Un manejo inadecuado en su producción trae en consecuencia una baja efectividad debido a (Sánchez-Yáñez, 1997) varios motivos:

- Deficiente preparación a nivel de laboratorio, manejo, almacenamiento a nivel de comercialización y aplicación del inoculante por parte de los fabricantes, comerciantes y agricultores.
- 2. Incompatibilidad del tipo de bacteria y la leguminosa seleccionada.
- 3. Condiciones adversas para la infección y la actividad bacteriana, como concentraciones elevadas de N, metales pesados y antagonismo microbiano nativo del suelo.

POSTCOSECHA Y COMERCIALIZACIÓN

Uno de los principales problemas que se plantea en la judía grano es la producción en condiciones poco aptas para la recolección mecanizada: superficies muy reducidas, cultivo asociado con maíz, empleo de variedades de enrame,... Gran parte de la producción se destina a mercados locales, específicos en cuanto a preferencia varietal, debiendo destacarse que las variedades acogidas a Indicaciones Geográficas o Denominaciones Específicas tienen amplia difusión y mayor valor añadido. También debe considerarse el destino de cierta producción de judía de grano blanco, y en ocasiones pinta, para alimentos preparados (tipo fabada o similares).

En lo que respecta a la judía de verdeo, la recolección necesariamente manual encarece notablemente su costo, a pesar de lo cual la demanda del producto se mantiene, especialmente durante la temporada invernal. De hecho, actualmente los mercados en fresco están abastecidos prácticamente durante todo el año, con producción procedente de invernadero y de aire libre. Además, una parte notable de la producción se comercializa congelada (y minoritariamente enlatada, del tipo de vaina redonda).

PROBLEMAS FITOSANITARIOS

En este apartado se pasa revista a los agentes fitopatógenos diagnosticados en Galicia sobre judía, en los últimos 10 años, en la Estación Fitopatolóxica do Areeiro (Pontevedra), de la Deputación de Pontevedra, Unidad Asociada a la MBG-CSIC. En la tabla 3.1 se muestran los agentes encontrados y, posteriormente, se comentan algunos de ellos, sobre todo los que han tenido una mayor frecuencia en el cultivo.

Tabla 3.1. Agentes fitopatogénicos diagnosticados en Galicia en judia

Hongos	Bacterias	Virus	Nemátodos	Insectos	Ácaros
Uromyces appendiculatus	Pseudomonas syringae phaseolicola	BCMV	Meloidogyne hapla	Phorbia platura	Tetranychus urticae
Colletotrichum lindemuthianum	Pseudomonas viridiflava	TSWV	Meloidogyne incognita	Trialeurodes vaporariorum	Polyphagotars onemus latus
Botrytis cinerea		PepMV		Bemisia tabaci	
Ascochyta sp				Frankliniella occidentalis	
Sphaerotheca fuliginea				Thrips tabaci	
Sclerotinia sclerotiorum				Aphis fabae	
Rhizoctonia solani				Macrosiphum euphorbiae	
Fusarium solani				Myzus persicae	
Phytophthora sp				Acanthocelides obtectus	
Pythium sp				Heliothis armigera	
Fusarium oxysporum					
Alternaria sp					
Verticillium sp					
Cladosporium sp					

Hongos

Roya de la judía. *Uromyces appendiculatus* (Pers.) Link. (Basidiomycota, Pucciniales, Pucciniaceae). Se trata de una roya autoica con numerosas razas biológicas. La fase picnídica y ecídica son poco evidentes, mientras que la fase uredosórica es la más frecuente. Ésta se manifiesta por la aparición de pústulas herrumbrosas y pulverulentas, más tarde aparece la fase teleutosórica mediante la aparición de pústulas oscuras formadas por masas de teleutosporas que constituyen los elementos de conservación invernal del patógeno. El ataque se produce sobre hojas y, tallos, e incluso en vainas. La infección se ve favorecida por un clima cálido-húmedo. La intensidad del ataque depende, también, de la variedad.

Antracnosis. Colletotrichum lindemuthianum (Sacc. E Magn.) Briosi e Cav. (Ascomycota, Incertae sedis, Glomerellaceae). El hongo sobrevive en el terreno sobre restos vegetales infectados o como micelio sobre semillas. La enfermedad se manifiesta inicialmente sobre los cotiledones y sobre el hipocótilo de la planta. Las infecciones sucesivas se producen por los conidios diseminados por la lluvia que caen en las hojas y germinan, la penetración se produce perforando el micelio la cutícula. La enfermedad se desarrolla con temperaturas entre 13-27 °C con un óptimo de 17°C y elevada humedad ambiente. Los síntomas se manifiestan por la aparición de manchas deprimidas redondas o alargadas, pardas, de contorno destacado y negruzco. En el interior aparecen los acérvulos formando masas de color salmón, que pueden observarse en vainas, cotiledones, tallos y hojas.

Podredumbre gris. *Botrytis cinerea* Pers. (Ascomycota, Helotiales, Sclerotiniaceae). Se trata de un patógeno muy polífago que se instala sobre tejidos senescentes, pétalos, hojas, estilo, etc. Si las condiciones de humedad persisten en el cultivo, aparece una masa grisácea compuesta de conidióforos y conidios sobre los tejidos afectados.

Ascochyta sp. (Ascomycota, Incertae sedis, Incertae sedis). Esta enfermedad aparece al final del ciclo vegetativo manifestándose por la aparición de pequeñas manchas necróticas sobre las hojas y vainas de la judía. Suele aparecer sobre los cultivos tardíos, en condiciones de humedad.

Oidio. Sphaerotheca fuliginea (Schelecht) Pollacci. (Ascomycota, Erysyphales, Erysiphaceae). En la superficie de las hojas se observan manchas pulverulentas de color blanco que van cubriendo todo el aparato vegetativo llegando a invadir la hoja entera, también afecta a tallos y pecíolos e incluso frutos cuando el ataque es muy fuerte. Las hojas y tallos atacados se vuelven de color amarillento y se secan. Las plantas adventicias y otros cultivos de cucurbitáceas, así como restos de cultivos, son la fuente de inóculo siendo el viento el encargado de transportar las esporas y dispersar la enfermedad. Las temperaturas para su desarrollo están alrededor de 10-35°C, con un óptimo de 26°C.

Podredumbre blanca. Sclerotinia sclerotiorum (Lib) de Bary. (Ascomycota, Helotiales, Sclerotiniaceae). Hongo polífago que ataca a la mayoría de las especies hortícolas, tanto en plántula como en planta. En planta produce una podredumbre blanda acuosa al principio que posteriormente se seca, cubriéndose de un micelio algodonoso blanco y observándose la presencia de numerosos esclerocios, blancos al principio y negros más tarde. Los ataques al tallo con frecuencia colapsan la planta, que muere con rapidez, observándose los esclerocios en el interior del tallo. La enfermedad se conserva a partir de esclerocios del suelo procedentes de infecciones anteriores, que germinan en condiciones de humedad relativa alta y temperaturas suaves, produciendo un número variable de apotecios. El apotecio, cuando está maduro, produce ascas con ascosporas, que afectan sobre todo a los pétalos. Cuando caen sobre tallos, ramas u hojas, producen la infección secundaria.

Rhizoctonia solani J.G Kühn. (Basidiomycota, Cantharellales, Ceratobasidiaceae). En la judía produce un chancro rojizo en el hipocótilo y podredumbre de raíces en plántulas, provocando la marchitez y muerte de éstas. En judía se han observado ataques aéreos, como consecuencia de las salpicaduras de tierra contaminada, observándose cancros marrones-rojizos hundidos en frutos, tallos y hojas. Son más importantes los daños en variedades rastreras y cultivadas al aire libre. El periodo de infección varía de pocos días a semanas, dependiendo del tejido y de la humedad existente.

Fusarium solani (Mart.) Sacc. (Ascomycota, Hypocreales, Nectriaceae). Los síntomas que presenta son podredumbre seca de la parte superior de la raíz pivotante y del cuello, que se vuelve rojizo, además de necrosis de raíces. En la parte aérea se observa un decaimiento de la planta. Las hojas basales muestran clorosis y desecación. El hongo se ve favorecido por suelos muy compactos, exceso de abono nitrogenado, siembras con bajas temperaturas y exceso de humedad en el suelo. Las temperaturas óptimas de desarrollo de la enfermedad son de 15-26°C.

Podredumbres de cuello y/o raíces (*Phytophthora* sp y *Pythium* sp). Provocan enfermedades tanto en preemergencia como en postemergencia en los diversos cultivos hortícolas. Si el ataque es anterior a la emergencia lo que se observan son marras de nascencia. En plántulas provocan en la parte aérea marchitamientos y desecaciones acompañados o no de amarillamientos. La planta se colapsa y cae sobre el sustrato. Al observar el cuello se encuentran estrangulamientos y podredumbres, y en las raíces, podredumbres y pérdidas de éstas. La similitud de los síntomas, que pueden confundirse entre ellos y con otros provocados por causas no parasitarias hace necesaria la identificación del patógeno en laboratorios especializados. La enfermedad suele ser de evolución rápida y puede llegar a partir de turbas y sustratos contaminados, aguas de riego o arrastrada por el viento cargado de partículas de tierra.

Otros hongos encontrados: Fusarium oxysporum, Alternaria sp, Verticillium sp, Cladosporium sp

Bacterias

Bacteriosis de halo. *Pseudomonas syringae* pv *phaseolicola* (Burkholder) Young et al. (Pseudomonadales, Pseudomonadaceae). En las hojas aparecen unas pequeñas manchas marrones rodeadas de un halo verde pálido o amarillento de 2-3 mm. En el tallo se observan lesiones hundidas, en fruto, lesiones inicialmente de aspecto graso que pueden coalescer y posteriormente tomar una coloración rojiza o pardusca. Si la semilla está infectada se pueden producir síntomas sistémicos que consisten en clorosis, mosaico foliar y deformación de hojas. En ocasiones, aparecen en los nudos del tallo pequeñas áreas húmedas que aumentan hasta rodear el tallo. Los primeros focos en los cultivos se deben a semillas infectadas o malas hierbas infectadas y, a partir de ellos por salpicaduras de lluvias se dispersan al resto de las plantas, y a partir de estos, por el viento, se pueden extender a toda la parcela. La enfermedad se ve favorecida por temperaturas de 20°C y elevada humedad ambiental.

Otra bacteria encontrada: Pseudomonas viridiflava

Virus

Virus del mosaico común de la judía (BCMV) ("Bean Common Mosaic Virus"). (Potyviridae, Potyvirus). Este virus es transmitido por los áfidos en forma no persistente (Myzus persicae, Aphis fabae, Macrosiphum euforbiae y Acyrthosiphon pisum), a través de la semilla y el polen. Los síntomas sobre hojas consisten en manchas en mosaico verdeclaro/verde-oscuro, acompañadas, en ocasiones, de rugosidades de color rojizo. Otros síntomas son las bandas perinerviales de color verde oscuro, arrugamiento del limbo foliar, arrollamiento de las hojas hacia abajo y deformaciones. Si las temperaturas son muy elevadas, algunas cepas del virus producen enanismo y necrosis de la raíz. Las plantas sensibles se debilitan, dan poca flor y la cosecha se reduce.

Virus del bronceado del tomate (TSWV) ("Tomato Spotted Wilt Virus"). (Bunyaviridae, Potyvirus). El virus del bronceado se transmite principalmente por insectos tisanópteros trips (*Frankliniella occidentalis*, *Trips tabaci*), aunque también se puede transmitir por injerto e inoculación mecánica. Los síntomas más típicos son una reducción del crecimiento y presencia de necrosis foliares que pueden afectar al tallo y peciolo. Si las plantas son infectadas en los primeros estados de desarrollo puede provocar su muerte.

Otros virus encontrados: Mosaico del pepino dulce (PepMv). (Flexiviridae, Potexvirus)

Nemátodos

Formadores de agallas. *Meloidogyne* spp. (Nematoda, Tylenchida, Meloidogydae). Se han identificado las especies *M. hapla* y *M. incognita*. Afectan prácticamente a todos los cultivos hortícolas, produciendo los típicos "nódulos" en las raíces. Penetran en las raíces desde el suelo. Las hembras al ser fecundadas se llenan de huevos tomando un aspecto globoso dentro de las raíces. Esto unido a la hipertrofia que producen en los tejidos de las mismas, da lugar a la formación de los nódulos. Estos daños producen la obstrucción de vasos e impiden la absorción por las raíces, traduciéndose en un menor desarrollo de la planta y la aparición de síntomas de marchitez, clorosis y enanismo. Se distribuyen por rodales o líneas y se transmiten por el agua de riego, por el calzado, por los aperos y por cualquier medio de transporte de tierra. Además, los nematodos interaccionan con otros organismos patógenos, bien de manera activa (como vectores de virus), bien de manera pasiva facilitando la entrada de bacterias y hongos por las heridas que han provocado.

Insectos

Mosca de los sembrados. Phorbia platura (Meigen). (Insecta, Diptera, Muscidae). Los adultos realizan la puesta en el suelo, naciendo las larvas que se dirigen a las semillas en germinación o penetran en el tallo de las plantas jóvenes. Puede tener entre 3-4 generaciones al año e inverna en pupa en el terreno. Los mayores daños ocurren en cultivos ubicados en terrenos húmedos y ricos en materia orgánica. Los ataques más graves se producen en primavera y lo causan las larvas de la primera generación, éste se produce sobre la semilla enterrada o sobre los cotiledones de la plántula antes de la nascencia. Realizan galerías sobre los cotiledones, los pequeños tallos y las jóvenes raíces antes de la emergencia, destruyéndolas. Este díptero causa la pérdida de judías en grano durante el periodo de nascencia. Su ataque provoca un debilitamiento de las plántulas e incluso una pérdida de las mismas; además las plantas atacadas son más susceptibles a Fusarium.

Mosca blanca. *Trialeurodes vaporariorum* (West) y *Bemisia tabaci* (Genn). (Insecta, Hemiptera, Aleyrodidae). Se trata de insectos muy polífagos, afectando a las partes jóvenes de las plantas, las cuales son colonizadas por los adultos, realizando las puestas en el envés de las hojas. De éstas emergen las primeras larvas, que son móviles. Tras fijarse en la planta pasan por tres estadios larvarios y uno de pupa. Estas especies ocasionan dos tipos de daños unos los directos, ocasionados por larvas y adultos como consecuencia de su alimentación y otros indirectos, por la producción de melaza en la que se instala la negrilla. Estos daños pueden llegar a ser importantes cuando los niveles de población son altos.

Trips. Frankliniella occidentalis (Pergande) y Thrips tabaci (Lindeman). (Insecta, Thysanoptera, Thripidae). Los adultos colonizan los cultivos realizando las puestas dentro de los tejidos vegetales en hojas, frutos y, preferentemente, en flores (son florícolas). Los daños directos se producen por la alimentación de larvas y adultos, sobre todo en el envés de las hojas, dejando un aspecto plateado en los órganos afectados que luego se necrosan. El daño indirecto es el que puede tener mayor importancia y se debe a la transmisión del virus del bronceado del tomate (TSWV), que afecta a pimiento, tomate, berenjena y judía.

Pulgones. Aphis fabae Scopoli, Myzus persicae (Glover) y Macrosiphum euphorbiae Thomas. (Insecta, Homoptera, Aphididae). Las tres especies son polífagas cosmopolitas. Aphis fabae es el que se encuentra con mayor frecuencia sobre judía, con un ciclo holocíclico dioico, siendo sus huéspedes invernales especies del género Evonimus, Viburnum y Phyladelphus. Ataca a hojas, tallos, flores y vainas, provocando enrollamiento foliar, disminución del vigor de la planta y en general un decaimiento. La planta infectada se cubre de melazo. La infección es frecuente durante los meses de verano. Además de los daños directos puede ocasionar daños indirectos como vector de virosis, entre ellas el BCMV.

Gorgojo. Acanthocelides obtectus Say. (Insecta, Coleoptera, Bruchidae). Es un insecto cosmopolita, originario de las regiones tropicales de Sur América; en la actualidad se encuentra en casi todos los países de las regiones tropicales, subtropicales y templadas. Se alimenta de leguminosas y se le considera una plaga primaria de granos. Los granos atacados por esta especie pierden su valor comercial, debido a las galerías efectuadas por las larvas. Su ciclo de vida se completa de 30 a 45 días a 30° C de temperatura y 70% de humedad relativa, alargándose a temperaturas menores. Puede tener entre 3-6 generaciones al año, de las cuales sólo una se inicia en el campo, mientras el resto se realizan durante el almacenamiento del grano.

Otro insecto encontrado: Rosquilla, *Heliothis armígera* (Hübner). (Insecta, Lepidoptera, Noctuidae)

Ácaros

Araña roja. *Tetranychus urticae* (koch). (Acari, Tetranychidae). Se trata de un ácaro muy polífago que ataca a muchas plantas hortícolas. Se desarrolla en el envés de las hojas causando decoloraciones, punteaduras o manchas amarillentas que pueden apreciarse en el haz como primeros síntomas. Con mayores poblaciones se produce desecación o incluso defoliación. Inverna como hembra fecundada en los restos vegetales de las plantas infectadas y puede tener 7-8 generaciones al año. Los ataques más graves se producen en los primeros estados fenológicos. Las temperaturas elevadas y la escasa humedad relativa favorecen el desarrollo de la plaga.

Araña blanca. *Polyphagotarsonemus latus* (Banks). (Acari, Tarsonemida). Esta plaga ataca principalmente al cultivo de pimiento. Los síntomas se aprecian sobre las hojas donde se observa rizado de los nervios en las hojas apicales y brotes, y curvatura de las hojas más desarrolladas. En ataques más intensos se produce enanismo y una coloración verde intensa de las plantas. Se distribuye por focos dentro de los invernaderos, aunque se dispersa rápidamente en épocas calurosas y secas.

INDICACIONES GEOGRÁFICAS PROTEGIDAS (IGPs)

La competitividad de las judías españolas, en el mercado nacional e internacional, supone el fomento de la calidad comercial de las mismas, en comparación con la calidad de las judías importadas, lo cual implica un valor añadido de mercado. Es patente el creciente interés que los consumidores demuestran por una mayor calidad y una mejor información sobre la naturaleza, los métodos de producción y las características específicas de las legumbres. Por ello, en estos momentos se han aprobado los reglamentos de varias Indicaciones Geográficas Protegidas (IGPs), que se mencionan a continuación.

IGP "Alubia de la Bañeza-León"

Consejo Regulador de la IGP 'Alubia de La Bañeza-León'

Avenida de Portugal s/n. 24750 La Bañeza. León

Descripción del producto. El producto amparado lo constituyen las variedades locales Canela, Plancheta, Riñón menudo y Pinta de alubia o judía (*Phaseolus vulgaris* L.). Se comercializan envasadas en origen como legumbre seca o como plato preparado precocinado.

Zona geográfica. La zona de producción agrícola, de 5456 km², se encuadra en 98 municipios de la provincia de León pertenecientes a las comarcas de Astorga, El Páramo, Esla-Campos, La Bañeza, La Cabrera y Tierras de León, así como en 20 municipios de la comarca de Benavente-Los Valles, en la provincia de Zamora, colindante con la anterior. La zona de envasado y elaboración, de 17027 km², comprende toda la provincia de León y toda la comarca zamorana Benavente-Los Valles.

IGP "Faba Asturiana"

Consejo Regulador de la IGP 'Faba Asturiana'

Finca La Mata-Grado. Apartado 13. 33820 Grado. Asturias

Descripción del producto. Judías secas, separadas de la vaina, de la especie *Phaseolus vulgaris*, L, de la variedad tradicional 'Granja Asturiana', sanas, enteras, limpias, destinadas al consumo humano. Las características morfológicas de la variedad son: grano de color blanco cremoso, forma arriñonada, larga y aplanada y tamaño grande; unos 100-110 granos/100g de semillas.

Zona geográfica. La zona de producción esta constituida por los terrenos ubicados en el territorio de la Comunidad Autónoma del Principado de Asturias. La zona de elaboración y envasado coincide con la de producción.

IGP "Faba de Lourenzá"

Consejo Regulador de la IGP 'Faba de Lourenzá'

27760 Lourenzá. Lugo

Descripción del producto. El producto amparado por la indicación geográfica protegida Faba de Lourenzá son judías secas separadas de la vaina, procedentes de la familia de las fabáceas o leguminosas, especie *Phaseolus vulgaris* L, de la variedad local conocida como 'Faba Galaica'. Sus características son: porte indeterminado trepador o de enrame

y entrenudos largos; grano sin dibujo, de color blanco uniforme, de tamaño muy grande (80-120 g/100 semillas) y ciclo vegetativo muy tardío (136 días).

Zona geográfica. El área de producción coincide con la de acondicionado y envasado, abarca el territorio costero de la provincia de Lugo conocido por A Mariña luguesa, que engloba los municipios de: Alfoz, Barreiros, Burela, Cervo, Foz, Lourenzá, Mondoñedo, Ourol, Pontenova, Ribadeo, Trabada, Valadouro, Vicedo, Viveiro y Xove.

IGP "Judías del Barco de Ávila"

Consejo Regulador de la IGP 'Judías del Barco de Ávila'

Mayor, 33. 05600 Barco de Ávila. Ávila

Descripción del producto. Judías secas separadas de la vaina procedentes de la familia de las leguminosas, especie *Phaseolus vulgaris* L, de las variedades 'Blanca redonda', 'Blanca riñón', 'Morada larga', 'Morada redonda', 'Arrocina', 'Planchada' y especie *Phaseolus coccineus* L. de la variedad 'Judión de Barco', enteras y destinadas a consumo humano. Las judías protegidas serán de las categorías comerciales "Extra" y "Primera".

Zona geográfica. La zona de producción se encuentra situada al suroeste de la provincia de Ávila. Coincide esta zona de producción con la comarca agrícola denominada Barco de Ávila-Piedrahita, extendiéndose además al pueblo del Tejado de la provincia de Salamanca. La zona de elaboración y envasado coinciden con la de producción.

IGP "Judía del Ganxet Vallés-Maresme" o "Mongeta del Ganxet Vallés-Maresme" o "Fesol del Ganxet Vallés-Maresme"

Consejo Regulador de la IGP 'Judía del Ganxet Vallés-Maresme'

Sant Pau, 34. 08202 Sabadell. Barcelona

Descripción del producto. La IGP protege las semillas de la judía (*Phaseolus vulgaris* L.') del tipo varietal 'Ganxet', secas, o, cocinadas y en conserva. La judía ganxet es un tipo varietal tradicional de crecimiento indeterminado y trepador (tipo IV), de flores blancas, que presenta semillas blancas, aplanadas y extremadamente arriñonadas (ganxet significa pequeño gancho en catalán). Tiene un ciclo aproximado de ciento veinte días.

Zona geográfica. La zona geográfica de producción de las judías amparadas por la IGP corresponde a todos los municipios de las comarcas del Vallés Occidental y el Vallés Oriental, junto con los municipios de Malgrat de Mar, Palafolls, Tordera, San Cebriá de Vallalta, Sant Iscle de Vallalta, Arenys de Munt, Dosrius, Argentona y Orrius, de la comarca de El Maresme, y los municipios de Blanes, Fogars de Tordera, Massanet de La Selva, Hostalric de la comarca de la Selva. Las cuatro comarcas señaladas pertenecen a Catalunya (NE de España).

Alubias del País Vasco

La alubia es un producto de gran tradición en el País Vasco, cultivado en los caseríos desde hace más de 500 años. Las alubias con Lábel Vasco de Calidad Alimentaria (Eusko Label Kalitatea) son alubias de alta calidad, que pertenecen a variedades seleccionadas y que han sido catalogadas por catadores profesionales de "muy buenas" o "excelentes".

Su producción artesanal en pequeñas huertas próximas al caserío, se caracteriza por utilizar las técnicas de cultivo más respetuosas con el medio ambiente. Los tres tipos de alubias más características del País Vasco son:

Alubia de Tolosa (Tolosako Babarruna). Pertenece a la variedad "Tolosana", de color morada oscura casi negra de forma ovalada. El tamaño varia según el tipo al que pertenezca así en el caso de Alubia de Tolosa "txiki" varia entre 0,5 cm y 1 cm, la Alubia de Tolosa "Haundi" oscila entre 1 y 1,5 cm. Se cultiva en toda Gipuzkoa sobre todo en Tolosa-aldea y el Goiherri. El cultivo generalmente se realiza asociado al maíz ya que utiliza esta planta como soporte o entutorado y tiene una duración entre los 120 y los 170 días. Es una alubia fina, mantecosa y de piel fina.

Alubia Pinta Alavesa (Arabako Babarrun Pintoa). Es la variedad "Alavesa". Se cultiva en las comarcas de Montaña y Valles Alaveses. El cultivo se realiza en porte determinado, al aire libre y se extiende entre 100 y 110 días. Es una alubia de pequeño tamaño de 0,5 a 1,5 cm. de longitud de forma ovoidea y de color rosáceo. Al degustarla destaca su finura al paladar y su escasa piel.

Alubia de Gernika (Gernikako Indaba). Es una alubia pinta, de color granate con pintas rojas o rosáceas, que presenta forma ovoidea y un tamaño de 1 a 1,5 cm. Debe ser entera, lisa y aparecer recubierta por la piel. Su producción es artesanal, cultivándose en pequeños huertos al lado de los caseríos. El Label Vasco de Calidad Alimentaria concedió a esta alubia, en el año 1999, el distintivo Kalitatea. La zona de cultivo se extiende por toda la provincia de Vizcaya, pero la producción más importante se centra en las comarcas de Mungia, Lea Artibai y Busturia.

CONSUMO

Tradicionalmente se han cultivado variedades locales seleccionadas fenotípicamente por los agricultores para su uso como hortaliza (judía de verdeo) o como leguminosa de grano (judía seca), aunque algunos cultivares tradicionales admiten un posible uso doble. Además, en algunas zonas de España, como Navarra, también se consume el grano tierno de las tradicionales "pochas".

La judía grano, como leguminosa, tiene alto contenido en proteína en la semilla, y aunque la variabilidad en este carácter es grande, los valores promedio suelen estar en torno a 22-26 %. Esta proteína es deficiente en aminoácidos azufrados (Metionina y Cisteína), con lo cual presenta un valor del 51 % respecto al Patrón FAO, si bien una combinación con cereales en la dieta compensa esta deficiencia y puede elevar la calidad global de la proteína un 10 %. En cuanto a la judía de verdeo su aportación a la dieta humana se basa en los minerales y, especialmente, en su contenido en fibra.

Recientemente se han puesto de evidencia los efectos beneficiosos de las leguminosas, y en particular de judía grano, en la dieta humana, además de su papel como fuente saludable de proteína. Existen determinadas sustancias, no estrictamente alimentarias, que reciben el nombre de Compuestos Biológicamente Activos, que pueden tener un papel importante en la salud humana. En efecto, diversos estudios clínicos demuestran que el consumo regular de judía ayuda en la prevención y tratamiento de enfermedades cardiovasculares, diabetes mellitus, obesidad, cáncer y enfermedades del tubo digestivo, ya que reduce el nivel de colesterol y glucosa en sangre (Singh y Singh, 1992; Gatel y Champ, 1998; Thompson *et al.*, 2009; Bennink, 2010).

Respecto al consumo (FAO, 2010), en 2005, en España fue de 1,2 kg/habitante-año, inferior al de otros países europeos como Grecia (2,7 kg/habitante-año), Portugal (2,3 kg/habitante-año), Bulgaria (2,0 kg/habitante-año) o Italia (1,7 kg/habitante-año), y superior al de Reino Unido (0,2 kg/habitante-año) y Francia (0,8 kg/habitante-año). Respecto a otros continentes puede mencionarse a los Estados Unidos (3,2 kg/habitante-año) y Japón (1,7 kg/habitante-año), en contraste con Brasil (16,2 kg/habitante-año) y Burundi (28,7 kg/habitante-año).

Estas cifras muestran diversas tendencias en la producción y consumo de judía grano (tabla 3.2). Por una parte, existen países, como España, en los cuales el consumo ha ido disminuyendo, por la disponibilidad de fuentes de proteína de origen animal, lo cual ha llevado consigo una disminución en la producción. En un nivel de consumo muy superior, Burundi es un ejemplo de un consumo muy elevado que se mantiene gracias a una producción muy elevada, aunque el consumo está disminuyendo por la posible diversificación de la dieta. Un país en el cual la presencia de la judía en la dieta se ha incrementado paulatinamente es Estados Unidos, tanto por razones nutricionales derivadas del riesgo de obesidad por consumo excesivo de productos cárnicos como por el incremento de la población hispana, razones por las cuales ha aumentado también la producción. Finalmente, Canadá es el ejemplo de país de vocación claramente exportadora, que sin incrementar el consumo ha experimentado un espectacular aumento de producción, motivada por exportaciones masivas.

Tabla 3.2. Consumo y producción de judía en diferentes países

	1965	1975	1985	1995	2005	
Consumo (kg/habitante-año)						
Burundi	66,0	70,4	54,1	40,1	28,6	
Canadá	1,8	0,8	0,1	1,2	1,5	
España	3,2	3,0	1,7	2,1	1,1	
Estados Unidos	2,9	3,0	3,2	3,5	3,3	
Producción (t/año)						
Burundi	240000	294008	301000	318891	250000	
Canadá	57910	96510	58500	203100	318000	
España	118252	108300	70768	32400	14815	
Estados Unidos	750719	791152	1011400	1392000	1234770	

Bibliografía

- Asfaw A, Blair MW, Almekinders C (2009) Genetic diversity and population structure of common bean (*Phaseolus vulgaris* L.) landraces from the East African highlands. Theor Appl Genet 120:1-12
- Bannerot H (1979) Cold tolerance in beans. Annu Rep Bean Improv Coop 22:81-84
- Basset, MJ (1991) A revised linkage map of common bean (*Phaseolus vulgaris* L.) in its centres of origin. Genome 37:256-263
- Benchimol L, de Campos T, Carbonell SAM, Colombo CA, Chioratto AF, Fernandes Formighieri
 E, Lima Gouvêa LG, Pereira de Souza A (2007) Structure of genetic diversity among common
 bean (*Phaseolus vulgaris* L.) varieties of Mesoamerican and Andean origins using new developed
 microsatellite markers. Genet Resources Crop Evol 54:1747-1762
- Bennink, MR (2010) Health benefits associated with consumption of dry beans. Annu Rep Bean Improv Coop 53:2-3
- Blair MW, Díaz JM, Hidalgo R, Díaz LM, Duque MC (2007) Microsatellite characterization of Andean races of common bean (*Phaseolus vulgaris* L.) Theor Appl Genet 116:29-43
- Blair MW, Muñoz Torres M, Giraldo MC, Pedraza F (2009a) Development and diversity of Andean-derived, gene-based microsatellites for common bean (*Phaseolus vulgaris* L.). Plant Biology 9:100
- Blair MW, Muñoz M, Pedraza F, Giraldo MC, Buendia HF, Hurtado N (2009b) Development of microsatellite markers for common bean (*Phaseolus vulgaris* L.) based on screening of nonenriched, small-insert genomic libraries. Genome 52:772-782
- Brown JWS, Ma Y, Bliss FA, Hall TC (1981) Genetic variation in the subunits of globulin-1 storage protein of french bean. Theor Appl Genet 59:83-88
- Brücher H (1988) The wild ancestor of *Phaseolus vulgaris* in South America. En Gepts P (Ed.)
 Genetics resources of *Phaseolus* beans: their maintenance, domestication, evolution and
 utilization. Kluwer Academic Plublishers, Netherlands. pp 185-214
- Burity HA, Ta TC, Faris MA, Coulman BE (1989) Estimation of nitrogen-fixation and transfer from alfalfa to associated grasses in mixed swards under field conditions. Plant Soil 114:249-255
- Chacón MI, Pickersgill S, Debouck D (2005) Domestication patterns in common bean (*Phaseolus vulgaris* L.) and the origin of Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432-444
- CIAT (1984) Morfología de la planta de fríjol común (*Phaseolus vulgaris* L.). Guía de estudio. CIAT (Centro Internacional de Agricultura Tropical). Cali, Colombia.
- Cunha C, Hinz T, Griffiths P (2004) Genetic diversity of snap bean cultivars determined using randomly amplified polymorphic DNA (RAPD) markers. HortScience 39:481-484
- De La Fuente M, Rodiño AP, De Ron AM, Santalla M (2010) The common bean in southern Europe and the middle east: dispersion and evolution from their American ancestors. Theor Appl Genet (en revisión).
- De la Rosa L, Marcos T, De Ron AM, Casquero PA, Reinoso B, Asensio C, Asensio S-Manzanera MC, Ruíz de Galarreta I, Casañas F, Campa A, Ferreira JJ (2008) Red española de colecciones de judías. Actas AEL 3:135-141
- De Ron AM, Lindner R, Malvar RA, Ordás A, Baladrón JJ, Gil J (1991) Germplasm collecting and characterization in the north of the Iberian Peninsula. Plant Genet Resources Nwsl 87:17-19
- De Ron AM, Menéndez-Sevillano MC, Santalla M (2004) Variation in primitive landraces of common bean (*Phaseolus vulgaris* L.) from Argentina. Genet Resources Crop Ev 51:883-894

- De Ron AM, Santalla M, Barcala N, Rodiño AP, Casquero PA, Menéndez MC (1997) Beans (*Phaseolus* spp.) collection at the MBG-CSIC in Spain. Plant Genet Resources Nwsl 112:100
- Debouck DG (1999) Diversity in *Phaseolus* species in relation to the common bean. En: Singh SP (Ed.) Common bean improvement in the twenty-first century. Kluwer Academic Plublishers, Netherlands. pp 25-53
- Escribano MR, Santalla M, Casquero PA, De Ron AM (1998) Patterns of genetic diversity in landraces of common bean (*Phaseolus vulgaris* L.) from Galicia. Plant Breeding 117:49-56
- Evans AM (1973) Commentary upon plant architecture and physiological efficiency in the field bean. En: Wall D (Ed.) Potential of Field Beans and other Food Legumes in Latin America. CIAT (Centro Internacional de Agricultura Tropical). Cali, Colombia. pp. 279-286
- FAO (1995) Manual técnico de la fijación del nitrógeno. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma. pp. 10-35
- FAO (2009) Food Balance Sheet. http://faostat.fao.org
- Freyre R, Rios R, Guzman L, Debouck DG, Gepts P (1996) Ecogeographic distribution of *Phaseolus* spp (Fabaceae) in Bolivia. Econ Bot 50:195-215
- Freyre R, Skroch P, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson W, Llaca V, Nodari R, Pereira P, Tsai S-M, Tohme J, Dron M, Nienhuis J, Vallejos C, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847-856
- Freytag GF, Debouck DG (1996) *Phaseolus costaricensis*, a new wild bean species (*Phaseolinae*, *Leguminosae*) from Costa Rica and Panama, Central America. Novon 6:157-163
- Freytag GF, Debouck DG (2002) Taxonomy, distibution, and ecology of the genus *Phaseolus* (*Leguminosae-Papilionoideae*) in North America, Mexico and Central America. SIDA Bot Misc 23:1-300
- Gatel F, Champ M (1998) Grain legumes in human and animal nutrition up to date results and question marks. Proceedings of the 3rd Eur. Conference on Grain Legumes. Valladolid, España.
- Gentry HS (1969) Origin of the common bean, *Phaseolus vulgaris*. Econ Bot 23:55-69
- Gepts P (1988) Phaseolin as an evolutionary marker. En: Gepts P (Ed.) Genetic resources of *Phaseolus* beans, their maintenance, domestication, evolution and utilization. Kluwer Academic Plublishers, Netherlands. pp 215-241
- Gepts P, Bliss FA (1986) Phaseolin variability among wild and cultivated common beans (*Phaseolus vulgaris*) from Colombia. Econ Bot 40: 469-478
- Gepts P, Bliss FA (1988) Dissemination pathways of common bean (*Phaseolus vulgaris, Fabaceae*) deduced from phaseolin electrophoretic variability. II. Europe and Africa. Econ Bot 42:86-104
- Gepts P, Debouck DG (1991) Origin, domestication, and evolution of common bean (*Phaseolus vulgaris* L.) in: Common beans: research for crop improvement. A. van Schoonhoven and O. Voyest (Ed.), CAB Intl., Wallingford and CIAT. Cali, Colombia pp. 7-53
- Gepts P, Osborn TC, Rashka K, Bliss FA (1986) Phaseolin-protein variability in wild forms and landraces of the common bean (*Phaseolus vulgaris*): evidence for multiples centres of domestication. Econ Bot 40:451-468
- Guerra-Sanz JM (2004) Short communication New SSR markers of *Phaseolus vulgaris* from sequence databases. Plant Breed 123:87-89
- Hanai LR, Santini L, Aranha Camargo LE, Pelegrinelli Fungaro ME, Gepts P, Tsai SM, Carneiro Vieira ML (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breeding 25:25-45
- Hubbeling N (1957) New aspects of breeding for disease resistance in beans (*Phaseolus vulgaris* L.).
 Euphytica 6:111-141

- Kaplan L (1981) What is the origin of common bean? Econ Bot 35:240-2254
- Kelly JD, Miklas PN (1999) Marker-assisted selection. En Singh SP (Ed.) Common bean improvement in the twenty first century. Kluwer Academic Publishers, Netherlands. pp 93-124
- Khairallah MM, Sears BB, Adams MW (1992) Mitochondrial restriction fragment length polymorphisms in wild *Phaseolus vulgaris* L.: insights on the domestication of the common bean. Theor Appl Genet 84:915-922
- Koenig R, Singh SP, Gepts P (1990) Novel phaseolin types in wild and cultivated common bean (*Phaseolus vulgaris* L., *Fabaceae*). Econ Bot 44:50-60
- Kuboyama T, Shintaku Y, Takeda G (1991) Hybrid plant of *Phaseolus vulgaris* L. and *P. lunatus* L. obtained by means of embryo rescue and confirmed by restriction endonuclease analysis of rDNA. Euphytica 54:177-182
- Leonard MF, Stephens LC, Summers WL (1987) Effect of maternal genotype on development of *Phaseolus vulgaris* L. x *P. lunatus* L. interspecific hybrid embryos. Euphytica 36:327-332
- Linneo C (1753) Species plantarum. A facsimile (1957-1959) of the first edition (1753). Ray Society, London, England.
- Lioi L (1989) Geographical variation of phaseolin patterns in an old world collection of *Phaseolus vulgaris* L. Seed Sci Technol 17:317-324
- Long S (1989) Rhizobium-legume nodulation: Life together in the underground. Cell 56:203-214
- Masi G, Logozzo P, Donini P, Spagnoletti Z (2009) Analysis of Genetic Structure in Widely Distributed Common Bean Landraces with Different Plant Growth Habits Using SSR and AFLP Markers. Crop Sci 49:187-199
- McClean PE, Myers JR, Hammond JJ (1993) Coefficient of parentage and cluster analysis of North American dry bean cultivars. Crop Sci 33:190-197
- Park S, Michaels T, Myers J, Hunt D, Stewart-Williams K (1996) Outcrossing rates of common bean grown in Ontario and Idaho. Annu Rep Bean Improv Coop 39:90-91
- Parson LR, Howe TK (1984) Effects of water stress on the water relations of *Phaseolus vulgaris* and the drought resistant *Phaseolus acutifolius*. Physiol Plant 60:197-202
- Pérez-Vega E, Pañeda A, Rodríguez-Suárez C, Campa A, Giraldez R, Ferreira JJ (2010) Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (*Phaseolus vulgaris* L.). Theor Appl Genet 120:1367-1380
- Piergiovanni A, Taranto G, Losavio FP, Pignone D (2006) Common bean (*Phaseolus vulgaris* L.)
 landraces from Abruzzo and Lazio regions (Central Italy). Genet Resources Crop Evol 53:313-322
- Rodiño AP, González AM, Santalla M, De Ron AM, Singh SP (2006) Novel genetic variation in common bean from the Iberian Peninsula. Crop Science 46:2540-2546
- Rodiño AP, Santalla M, De Ron AM, Singh SP (2003) A core collection of common bean from the Iberian Peninsula. Euphytica 131:165-175
- Rodiño AP, Santalla M, Montero I, Casquero P, De Ron A (2001) Diversity of common bean *Phaseolus vulgaris* L. germplasm from Portugal. Genet Resources Crop Evol 48:409-417
- Sánchez-Yáñez JM (1997) Producción de inoculantes para leguminosas y gramíneas. Coordinación de la Investigación Científica. Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Proyecto 2.7. Reporte técnico.
- Santalla M, De Ron AM, Voysest O (2001) European bean market classes. En: Amurrio M, Santalla M, De Ron AM (Eds.). Catalogue of bean genetic resources, pp. 77-94. Fundación Pedro Barrié de la Maza/PHASELIEU-FAIR3463/MBG-CSIC. Pontevedra.
- Santalla M, De Ron AM, De La Fuente M (2010) Integration of genome and phenotypic scanning gives evidence of genetic structure in Mesoamerican common bean (*Phaseolus vulgaris* L.) landraces from the southwest of Europe. Theor App Genet 120:1635-1651

- Santalla M, Rodiño AP, De Ron AM (2002) Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for common bean. Theor Appl Genet 104:934-944
- Schmit V, Debouck DG (1991) Observations on the origin of *Phaseolus polyanthus* Greenman.
 Econ Bot 45:345-364
- Singh SP (1992) Common bean improvement in the tropics. Plant Breed Rev 110:199-269
- Singh SP (1999) Production and utilization. En: Singh SP (Ed.) Common bean improvement in the twenty-first century. Kluwer Academic Publishers, Netherlands. pp. 1-24
- Singh SP, Cardona C, Morales FJ, Pastor-Corrales MA, Voysest O (1998) Gamete selection for upright carioca bean with resistance to five diseases and leafhoppers. Crop Sci 38:666-672
- Singh SP, Gepts P, Debouck DG (1991c) Races of common bean (*Phaseolus vulgaris Fabaceae*). Econ Bot 45:379-396
- Singh SP, Gutierrez JA, Molina A, Urrea C, Gepts P (1991a) Genetic diversity in cultivated common bean. II. Marker-based analysis of morphological and agronomic traits. Crop Sci 31:23-29
- Singh SP, Muñoz CG (1999) Resistance of common bacterial blight among *Phaseolus* spp. and common bean improvement. Crop Sci 39:80-89
- Singh SP, Nodari R, Gepts P (1991b) Genetic diversity in cultivated common bean. I. Allozymes. Crop Sci 31:19-23
- Singh SP, Roca WM, Debouck DG (1997) Ampliación de la base genética de los cultivares de frijol: hibridación interespecífica en especies de *Phaseolus*. En: Singh SP, Voysest O (Eds.) "Taller de mejoramiento de frijol para el siglo XXI - Bases para una estrategia para América Latina". CIAT (Centro Internacional de Agricultura Tropical). Cali, Colombia. pp. 9-19
- Singh U, Singh B (1992) Tropical grain legumes as important human foods. Econ Bot 46:310-321
- Smartt J (1988) Morphological, physiological and biochemical changes in *Phaseolus* beans under domestication. En: Gepts P (Ed.) Genetics resources of *Phaseolus* beans: their maintenance, domestication, evolution and utilization. Kluwer Academic Plublishers, Netherlands. pp 543-560
- Strasburger (1994) Tratado de Botánica. 8ª Edición Española. Omega.
- Thompson, MD, Brick MA, McGinley JN, Thompson HJ (2009) Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Sci 49:179-186
- Tiranti B, Negri V (2007) Selective microenvironmental effects play a role in shaping genetic diversity and structure in a *Phaseolus vulgaris* L. landrace: implications for on-farm conservation. Mol Ecol 16:4942-4955
- Voysest O (1983) Variedades de frijol en América Latina y su origen. CIAT (Centro Internacional de Agricultura Tropical). Cali, Colombia
- Yu K, Park J, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (*Phaseolus vulgaris* L.). J Hered 91:429-434
- Zeven AC (1997) The introduction of the common bean (*Phaseolus vulgaris* L.) into western Europe and the phenotypic variation of dry beans collected in the Netherlands in 1946. Euphytica 94:319-328

